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Information Storage Capacity of Connectionist Systems:
The Linear Associator.1'2

Dean C. Mumme
and

Waiter Schneider

Learning Research and Development Center
University of Pittsburgh

Abstract

Information theory is applied to determine the number of items storable in a linear associator. An

ensemble of association matrices is treated as an M-ary symmetric Information channel where M is the

number associations stored via the outer-product rule. The entropy of the ensemble under the outer-

product learning rule Is derived and used to bound the number of utefully-itorable items for the

ensemble. In particular, if the ensemble has input dimensionality iij and output dimensionality nQ, and M
*e\i

associations between vectors of ±lra are stored, then the entropy of each weight Is 1/2 log2 .

Assuming Independent weights gives the upper bound l/2-nrrrr|-log, for the entropy of the ensemble.
TO "Wf*2 2

The ta$k of the ensemble as an M-ary symmetric channel is correct Identification of which output-

prototype corresponds to the prototype presented at the input. The corresponding task entropy or ta§k

load for M stored Items Is A/log2 Af which leads to the upper bound

M

nInO 2 log2 M

for the ratio of the number of associations storable to the number of weights In the system.

Asymptotically, large matrices can store at most half as many associations as there are weights in the

system. Storage efficiency Is defined as the number of bits stored In the ensemble divided by the

number of bits needed to specify the ensemble itself. The efficiency can be shown to be less than

Performance degradation due to storage of correlated vectors is addressed. A performance merit

parameter, d\ Is derived as a function of matrix size, number of Items stored, and correlation between

stored prototypes. This parameter Is shown to decrease with the square-root of M If the vectors are

uncorrelated, otherwise It decreases with M. This Indicates a marked capacity decline In the correlated

case and reveals quantitatively the sensitivity of large systems to prototype correlation. In order for

correlation effects to be negligible, the probability p that a 1 occurs should be very nearly 1/2 as M gets

large. A sufficient condition Is that \p — 1/2| < —Af"1 '4. A sufficient condition for correlation effects
/

Paper is based on a thesis by the first author for the doctoral degee in Computer Science at the University of Illinois at
Urbana-Champaign.
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to be prevalent is \p — 1/2| > 2-vZ-M~lf4. This reflects the sensitivity of large systems vector

correlation.

More generally, performance limits are derived by evaluating the task-entropy and using Information

theoretical relations between input, memory, and output random-variables. This has Implications for

memory-classification of input vectors. This task can be viewed as a retrieval on information-degraded

Inputs (e.g. retrieval on partial or noisy input vectors). Performance is limited by the amount of

Information the input vector provides about the correct input prototype. The amount of Information

provided by the input decreases as more classification "fan-in" is allowed. The amount of information the

input provides and its relation to memory storage and classification can be derived analytically in certain

interesting cases.

Numerical evaluation of derived relations and simulations are Included to verify the theory. The

Intent of this investigation is to provide a basis for the eventual development of an information-theory of

memory.



Information Storage and Classification in

Connectionist Systems:

The Linear Associator

The systems under consideration are an outgrowth of work done on self-organizing automata and

perceptrons [26. 30] and later work In parallel associative memories, e.g. [15. 31] Mlnsky and Papert

In [26) had carried out rather extensive mathematical analysis on perceptrons revealing inherent

limitations In the classes of problems they could solve. These systems were •learning" automata expected

to classify Input •stimuli* based on their past experience on "training* Inputs. Mlnsky and Papert showed

that multiple-stages of perceptrons were required for many problems of interest yet no training aigorithm

was known at the time for multi-level systems. They concluded in their book that the systems held little

promise and subsequent Investigation of perceptrons evaporated.

Eventually however, with more powerful computers to carry out simulations, and the development

of several multi-level learning algorithms [32. 16. 27, 5] descendant offshoots of the perceptron have

regained interest. Currently a variety of these automata exist and are known by names such as "Neural-

nets". "Parallel Distributed Processors" (PDP networks), "Associative Memories". They are collectively

called "Connectionist Architectures" and have been studied as self-organizing memories of perception [21]

content-addressable memories, heirarchical knowledge bases, and classification systems [3, 2] models of

human "neural-computation" [13, 3] of human task performance and attentlonal learning [37, 35] speech

performance and natural language understanding [36, 33, 11]

These and other efforts have led to guarded optimism for the future of Connectionist architectures

as knowledge engines or as models of human Intelligence. Capabilities and limitations of both task

learning and performance have been demonstrated. However, with the exception of a few mathematical

Investigations (21, 13, 14, 5, 12] these structures are understood primarily In a qualitative sense.

In this paper, we utilize concepts from information theory to study a simple matrix model of

distributed memory. Its Information-storage capacity and efficiency are evaluated allowing definition of̂ a

matrix's storage load factor. Memory performance In problems such as pattern completion can then be

This resaerch supported by a grant from the Office of Naval Research



viewed as a function of matrix loading. Degradation of storage capacity with inter-stimulus correlation

and noise at the input are also addressed.

This work Is motivated by a simulation-model of human attentlonal learning developed by the

authors [35). Though these results are specifically Intended for fuller understanding of the model, the

apply to a much broader class of "Connectlonist* systems.

• Neural-based" systems

Matrix models of parallel distributed memories were derived as a simplistic model of brain ce

computation. In the model, the output of each cell Is a real number, y representing the deviation of t l .

cell's firing frequency from some reference frequency. As such, y can be negative as well as positive. Tl.

Inputs {x | fx9,...,x } to the cell are similarly real valued and each Input, x. has an associated couplii

strength w. to the cell which determines the effectiveness of that Input on the cell output. The c,-,!

determines its output by taking the weighted average of the inputs,

y = — > w.x.

The matrix memory is constructed from a collection of these cells, each sampling the same set of Inpu

If n. is the number of inputs to the memory and nQ Is the number of cells In the memory, the vect

x = (x fx ,...,x .) of Inputs when presented to the Input of the system produces an output vect<

y == (yvyr->ynO) given by the relation:

1
y = —Ax

nI
where A is the matrix of coupling weights w.. connecting the Ith Input to the Jth cell [15. 21]

To store information In this system, two sets of vectors called the Input prototypes {f ,f2,...,fM} a

the output prototypes {g t .g 2 g M } are used. For each Input prototype f , the weights of the system a

adjusted so that the g vector results at the system output when f Is presented at the Input. T
m m

system Is then said to associate f with g . For each m = l , 2 M, the matrix that Is used to assocls
m m

f with g (called the mth association) Is the outer-product g r [15, p. 181. To store the

associations, these M matrices are added to obtain:
M

The information for each association is distributed over the whole of A and therefore is overlaid with the

Information for the other associations. The resulting interference between associations Increases with M,

and ultimately limits the number of associations storable In the system.

In the case chat f,f> fw are mutually orthogonal, no Interference exists. When f, is input to the
1 J M K



2
system, we have

= -%ktk
Trk

= 7IIMIV k - *•* M

The matrix produces a multiple of g. when fk is present at the input. If the f̂  are chosen so that

= n. then g. Is reproduced exactly [3, p. 804|

The synopsis Is concerned primarily with the case that M>n. so that the input vectors are linearly

dependent and Interference effects must be accounted for. In this case the output vector is only an

approximation of the proper prototype output. Our concern ls the number M of associations that can be

stored In a matrix of a given size before the output becomes unrecognizable.

Characterizing Storage Capacity

To estimate the storage capacity of the matrix, we examine a system that has stored M associations

(f , g ), m = 1.2 M for some M. The Input-prototype vectors are n.-dlmenslonal and the output-
m m I

prototypes are n0-dimenslonal. Initially, the values allowed for the components are ± 1. All input-
2 = = n a n d a N o u t p u t p r o t o t y p e s I l 8 l | 2

prototypes will then have | | 'ml |2==ni a n d aN output-prototypes Il8ml|2===no* Later we can generalize but

this case is interesting in Itself as these values represent saturation extremes of the Inputs/outputs. A

value of 1 represents a cell firing at its maximum rate and a value of -1 represents the minimum rate.

Storing prototypes of this limited form corresponds to the cells each producing a "polarized1 response to

an input vector that itself is the result of a previous stage of saturated cells. The vectors are assumed to

have an unbiased distribution of ± l ' s as explained later.

To motivate the method of storage measurement, we make an analogy with digital memory. The

address to the memory can be viewed as an Input vector and the retrieved data as the output vector. A

particular address vector and the data vector stored at the address location can be regarded as a vector-

association pair. The number of bits represented by the data vector is the Information the system

provides upon performing the Input-to-output association. For digital memory, the number of bits

represented Is the same as the number of blt-locatlons In the data vector and so Is Identical with the

dimensionality of the data vector. Storage is defined as the amount of information per association

multiplied by the number of a&socltlons stored In memory. Storage capacity is the maximum storage

the system can provide. In this case, the storage capacity is limited by the number of storage locations of

"The norm |||| refers to the euclidean norm.



the memory. Though the dimensionality of both the Input and output vectors Is specified in advance, the

data items are not. That Is, the number of Items that can be stored is not determined by what they are.

For the matrix memory, the storage Is likewise given by the Information per association multiplied

by the number of associations stored. The dimensionality of the Input and output prototypes are specified

In advance, but the prototypes themselves are not. For this reason, the storage of the memory is not

defined for a particular matrix but rather for a class of matrices all of the same size* The class of outer-

prodict matrix-assoclators of a given size Is the set of all matrices that can be generated from vectors of

±l's via equation (1). An association is not considered to be stored In a particular matrix of the class

unless unless it is explicitly included In the sum. (1) that determines the matrix.

Unlike digital memory, the information per association can be characterized In two ways. The first

Is to present for arbitrary k 6 {l,2,...,M} the kth input prototype to the system, and regard the matrix-

output as a probabilistic rendition of the k output prototype. On the average, (over all matrices of the

class) given M, the matrix-output will provide a certain amount of Information about the prototype

output and this is taken as the Information provided by the association.

The second method is to consider the matrix as an Information channel. The k Input Is presented

to the system and an output is generated. The latter Is compared with each prototype-output vector via

a similarity measure and the best prototype match is chosen. This is called an output decision. If the

I output prototype Is chosen, an error is identified with i j& k. The probability of error averaged over

the matrix-class is taken as the error probability for the assoclator as an M-ary symmetric channel. The

average mutual information between the output and Input Is thus defined. This average is considered as

the Information per association.

In either case, the storage is the product of M and the information represented by a single

association. Initially, the storage of the matrix Increases proportionally with M. The error probability

Increases with M as well so that the Information per association gradually decreases. For some value M

of M. the information per association begins to diminish more rapidly than M Increases. At this point,

storing more associations decreases total information storage of the system. The system has reached Its

storage capacity.

For the second case, we define for each matrix-size. N, the matrix channel of size N on M

associations. It consists of the ensemble of all possible matrices with n.nQ = N that can be constructed

from a set of M prototype-pairs (f , g ). Once a set of associations is chosen for storage, a particular
m m

matrix Is selected from the ensemble via equation (1). This matrix is deterministic and therefore Is not a

channel In the usual sense. The storage for a particular matrix constructed from M associations is defined

as the storage of the matrix channel from which It was selected.



The matrix-channel does not require that the system reconstruct the appropriate output response as

does the first storage characterization. The matrix channel merely selects the best match from among the

M prototype-outputs. Therefore one would expect the number of associations storable In the matrix-

channel to be larger than in the first type of assoclator. The storage capacity of the matrix-channel

Identifies the maximum number of useable3 associations that can be stored. Use of the channel for input-

classification will require storage at some fraction of this maximal figure. Our objective Is to quantify the

maximal figure as a function of channel-size and use it to determine memory requirements for particular

classification tasks. For this purpose, matrix-channel will considered In what follows.

Bounds on Storage Capacity

Assumptions and Notation

This analysis assumes Important relative magnitudes among the parameters. We assume

n. > 100, t=l ,2 . The number of associations, M satisfies n . < < A f < < 2 n t s=l,2. The upper

bound In this case is assumed to exceed M by many orders of magnitude. This assures that sampling

without replacement is virtually Identical to sampling with replacement and simplifies the analysis. An

optimal value M of M will be shown to exist that is less than the net-size, n ^ . Therefore, as long as

the net-size Is Insignificant compared with 2 n \ i = 1,2 the assumption on M is Justified.

The vector-prototypes are chosen by Independently assigning values ± 1 to the components. The

probability that either value is taken is 1/2. Random vectors will be referred to with bold capitols (e.g.

X) whereas specific vector-outcomes are denoted In bold lower-case. For m=l ,2 M, the Input-

prototypes are F and the output-prototypes are G when considered as random vectors. The
m m

components of the input vectors will be Indexed by "iB (e.g. F^.) and the output vectors will be Indexed by

JV The range of I is 1,2 ^ and that of J is 1,2 nQ.• \ •

If XX,X2 X are Independent Identically distributed (t.t.ef.) random variables (r.v.'s) on {-1,1}

with p s P[X.= l) and S Is their sum, then S Is binomial with parameters ± 1, n. p. We denote this by

5 — Bin(±l,n,p). Similarly, If X Is a normal r.v., with mean /i, and variance o*, we put X ~~

The matrix-assoclator will be referred to as •A1. Whether a random matrix or a particular outcome

is being discussed should be clear from context. To be consistent with the "1, J* Indexing of Input and

output vectors. 'I* will refer to the column and 'J1 to the row of a matrix entry, e.g. A... We define the

k matrix-output as
»

(2)

•Usable" for the purposes of input-classification

For positive parameters, -y > > x
m indicates that y is minimally 10* and is typically much larger.



(The constant l/nj Is dropped) and write the corresponding random vector as G \ . The dot-product of

the k matrix-output and the 1 prototype-output Is Dj. with outcome d...

Parameters that take values In {-l.l} are referred to as •bits* with -1 acting as the logical "0".

Logical operations on these parameters are defined In this context as are terms "parity*, "compliment*

(logical), etc.

Derivation of Storage Limits

Given the M Input-output prototype-pairs (fm, gm), the matrix defined by equation (1) Is seen as the

sum of M outer-product matrices. The m outer-product or association-plane Is completely determined

by the n.+n~ bits of f and g . Its Ji component, m.. Is the product f .g ., which takes values InI u m m ji mi ny

{-1,1}. The m th association-plane Is not changed if both f and gm are multiplied by -1 . This Indicates
th

that the m plane represents at most n.-f nQ-l bits of Information. The n.+nQ-l entries that make up a

particular row and column, are easily seen to be independent, so that n.+nQ-l Is also the lower bound. In

fact, the entries of the row and column are enough to determine every other entry in the plane. To

illustrate, examine the k row and il column and the entry m..=f .g .. The three entries (bits) m..,

m,. and m.. determine m.. so that the parity of these four numbers Is even. Therefore each association-

plane represents exactly n.+ no-l bits.

When the association-planes are summed information is lost. Storage Is bounded above by the

Information contained In the weights (entries) of the associator. An assessment of the matrix entropy

provides a bound on the number of association pairs storable. To begin. It can be shown that the entropy

or self-information of a r.Y. X ~~ Bin(±l,n,1/2) Is virtually Identical to that of a normal r.v. with

variance n. The A., are Bin(±l.M,l/2) so each has entropy H(A..) = — log0 2;reM. An upper bound on

the matrix entropy can be obtained by assuming Independence of the Individual weights. One multiplys

the weight-entropy by the number of weights in the system to get H(A) = " n

For M stored associations, there are M! ways to map the M (distinct) inputs to the M (distinct)

outputs. To produce an output vector for each input prototype that results in a correct output-decision,

the matrix entropy must exceed log2 M! ^ Af-[log2 M — log^ e).ft For M<M we must have

1
-nTn log0 27reM > iV/jlog0 M — log0 e

which leads to

Therefore exactly half of the 18 concievable configurations of these four bits are possible.

For M > 2.2-10 ,log0 M > log0 t so that the log0 e term can be ignored. Even for M as small as 3000 however, the

approximation log0 M! ss log M is reasonably accurate.
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M + log- 2ne
< .

2 log2 M — log2 e

Generally we can Ignore the term log2 e and since log2 2xc « 4, an approximate bound Is

M 1 2

2 iog2 M

For the systems considered, the right side of the Inequality will not exceed 1 for M near M . As the

net-size approaches Infinity, M is seen to lie beneath one-half the net-size. An Important observation

here Is that though one row and one column are enough to specify the bits In each assocltlon-plane, the

other bits act to preserve information stored in the plane when the planes are summed together. Without

the additional bits, the entropy of the row and column alone becomes — (n^ + *o)log2 2TTCM. This Is much

smaller than the entropy calculated above and will serve as a lower bound. The assumption of

independent weights is false for individual association-planes but should be accurate for M near M since

the inter-correlations between bits In a given plane should be Bwashed out" by •counter-correlations" In

the other (Independent) planes in the sum.

Measuring Similarity

The output decisions of a matrix-associator depend on the similarity measure used at the output. A

given system will perform differently under different similarity measures. Therefore, the performance of a

system must be defined with respect to a particular similarity measure. The general definition of

similarity measure follows from the Hamming distance function. Defining {- l , l}n to be

(x 6 Rn I 1. 6 I"*1*1}' *=1.2 n}, the Hamming Distance Is the function

HD:{-l.l}n X { - l . l } n - • R given by HD(x,y) = - £ * _ ! |x. - yf.|: The Hamming Distance Is the

number of components at which x and y disagree. Its negative Is a similarity measure on {-l . l} . If V is

an n-dlmensional vector-space, then a similarity measure is a function S:VxV-* R such that for

x.y € V.

1. S(x.y) = S(y,x)

2. For x. y € {x 6 V\ | | x | | = l } . S(x,y) Is maximized by x = y .

3. For x.y.w,* 6 { - l . l } n . HD{x.y) < HD{v*,z) implies S(x.y) < 5(W,E)

Under this type of similarity, x and y are to said to be more similar than w, z whenever S(x,y) < S(w,x).

The function Is maximal for similar vectors. Condition 3 requires the similarity measure to be consistent

with the negative Hamming distance similarity, —HD{x, y) on {-l , l}n .

We allow the word •minlmumlzed" to be replaced by •maximized* in 2 with the reversal of the

Inequality in 3. This results In a function that is minima/ for similar vectors. The negative of a

similarity function Is therefore also a similarity function.



Examples of similarity measures include those based on Minkowski Metrics. For instance, either of

the rorms S(x,y) = E ^ . l l*t- " 2/tl
P or 5(x,y) = E"—j |*t- + lff.|

p. p > 0 or their negatives can be used.

An inner-product can also be used, e.g. the dot-product, S(x,y) = E , w i x.y.. The dot-product has

several advantages the first of which is the relative ease of analysis it provides. The dot-product detection

distributions are readily identified. Additionally, the dot-product similarity criterion should be a good

benchmark for the expected performance of systems that are connected to the output of the matrix-

associator. This is because an associator often determines its output by comparing the matrix-input with

Its stored input-prototypes via the dot-product similarity measure. The resultant output is constructed as

a weighted sum of the output-prototypes according to how similar their respective input-prototypes are to

the matrix-input. If an associator of this form is connected to the output of a first-stage matrix-

associator, it will function best if the first stage always produces a vector that is close to the •correct"

Input-prototype of the second stage with respect to dot-product similarity.

Detection

The dot-product will be the subject of the analysis, so that S(x, y) will represent this function.

Detection will consist of placing f. at the input of the matrix, determining the output g \ and calculating

S(g*. * g ) for m=l,2,...,M. The value of m for which this quantity is largest will be chosen as the best
K m

match. Since the vectors were originally chosen randomly, the dot-products produced are random

variables. The distribution of S (G\ , G ) varies according to whether m = k. The condition m = k is

the match condition and defines the match distribution for the system. The condition m ^ k is the

no-match condition defining the no-match distribution. Determination of the distributions will

allow evaluation of the probability P of an incorrect output-decision.

The dot product is Du s G \ G r * = 1,2,. ..,Af where G'k = AF^, and A is given by (1). More

explicitly.

k

; 1 I S

M

M

seen to

= G \ C

= v*

G 1
m

1

m
1
be.

(F
v m

• ' *

•Fk ) ( G
m

G / )

(3)

Since F -F. = ]T? F F. .and similarly for G G., the sum for D,. expands to
" • * •"•!——i mi Act m t Ki
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M nI nO

..= Y V V P P..G .G.. (5)

The components of the prototype-vectors are chosen Independently over {-1,1} with each of these

two values occurring with probability 1/2. This Implies that the terms In (5) are "bits • by our definition

so that Dj, ~ Stn(±l,Mn /no , l /2)when k j& I. For k = I,

M nI nO

and Dkk ~* Bin(±l,(M — l)-n /no , l /2) . For the assumed range of M. Af — 1 « M so that Dk k and Dk l

have the same variance, aD = Mn.no. The two distributions are identical except for the difference in the

means. The mean of the sums In (6) and (5) are zero. The first term In (6) however, is the constant'n.nQ.

The match distribution then, has mean tix = njn>o a-nd the no-match has mean /*2 = 0.

The separation, d* of the two distributions Is defined as the absolute difference of the means divided

by the geometric mean of the standard-deviations. Since the same standard-deviation is common to both

distributions, d' is the difference between the means measured In standard-devlatlon-length units:

d! s

nInO

M (7)

The larger the relative separation between between the distributions, the smaller the probability that an

outcome from one distribution will be found near typical outcomes from the other distribution. As we will

see, a large d* will afford a low error-rate. From (7), d' Increases with increasing net-size and decreases

with M as would be expected.7

Evaluation of Error Probability

In order to determine the Information storage for a system whose net-size is n ^ with M stored

associations, P must be determined as a function of M. An error on the k Input, P . occurs if there Is

an / 6 {1.2 A/}, f j& k such that D ^ > Dkk. The average over k or P^ k Is P .̂

Let Rk denote the range of possible values of D, k. One minus the probability that an error occurs Is

the probability that Dkl > Dkk, I.e.

A matrix with a large Dumber of stored associations should poorly discriminate between match v.s. no-match output-
prototype vectors
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a Dkk-l < a'Dkk < aDkk+l < a Dkm <

Since Dkl = G^-G^ and DL» = ® V ^ V the two r.v.'s both contain Information from G \ and are not

strictly independent. However, the dot-products are Independent given G f . and they each provide very

little information about its components. We assume then that they are very nearly Independent. This

allows approximation of P . b y

M

k=i - £ Wkk=•> n

The D.., k j£ I are identically distributed as no-matches, so letting Dfc be a r.v. with the no-match

distribution gives

E Ml " (8)

If we define F ' as the distribution B»n(±l,A/njio > l /2) with mean of zero, and f as the

corresponding density function, then (8) can be written,

• (9)

where the argument to V must be displaced by the mean of D k k . The distribution, Ff can be •normalized*

by dividing all dot-product r.v.'s by aD= VMTIJTIQ to obtain the distribution

F ~ Bin(±l/>/Mnrn~, 1.1/2) with mean of zero. The error P . becomes

where f is the density of the normalized distribution F.

The expression above Is not dependent on k, so the average probability P that an Input will

produce an error at the output Is given by equation (10); the matrix-channel has been shown to be M-ary

symmetric. If X represents the input vector r.v. and Y the subsequent output vector r.v., then the

Information per association Is given by

/(X;Y) = Iog2 M - Pg\og2 (M-l) - HJJ*} (11)

where Hb{x) = — x log2 x — (1-x) log0 (1 — x). 0 < x < 1 is the binary entropy function.

For a given matrix-class, we evaluate the storage A/-/(X;Y) for Increasing M until the maximum

storage Is found. The maximum is called the storage capacity of the net. The value M of M that

produces the maximum Is called the storage addressability of the system under this storage

8
Since f\D, = a) *& 0, no distinction between F{D, < a) and f\D. < a) is made.
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characterization. Uniqueness of M depends upon the nature of I(X;Y) as a function of M. This function

is plotted in figure for a net-size of 105'5. The through-put addressability Is the value M° of M at

which the maximum is achieved. The function Is believed to be unimodal, increasing to a maximum

before M reaches the net-size and then decreasing rapidly thereafter. The storage should reach a

maximum before M reaches the bound given by equation and remaining low for larger M as long as

A f < 2 n i . i = 1.2 is satisfied. The numerical analysis carried out to date bears this out. However, a

normal approximation to the distribution F In equation (10) was used and is highly Inaccurate for large

M. Presently, a more accurate approximation Is being devised |29| Numerical methods based on the new

approximation and actual simulations of assoclator matrices will be used to determine storage of the

systems and the validity of the analysis.

Data-Dependence of Capacity

In the forgoing development, we assumed the vector-prototypes were chosen randomly. Random

vectors' tendency toward palrwlse orthogonality keeps Interference among associations low. Subsequent

sections examine suboptimal prototype storage and retrelval. The object will be to characterize

deleterious effects of storing low-entroplc associations.

Storage Efficiency

Storage efficiency of a matrix Is the matrix-storage divided by the Information required to represent

a matrix associator on M associations. Examination of equation (1) reveals that each entry In an

associator matrix Is the sum of M bits. The range of values of each entry Is the Integers between -M and

M. The extremes are realized whenever the bits for that entry all agree In value. Further, the entry will

be be even If and only If M is even. It follows that the number of values an entry can assume Is M+l.

This means that n.nQ weights will require n /no log2 (Af-f l ) «n / n 0 l og 2 Af bits for storage. Letting

E = Af/(X;Y) be the storage of the net, then we define the efficiency rj by

r\ = M
Since /(X;Y) < log2 Af by equation (11), it follows that E < Mog M and we have

M log2 M

n7nolog2 A/ nInQ

From equation , the bound becomes

1
< T2 log0 M

If one could take advantage W the fact that each weight has entropy l/21og0 27reM. the information

required to Impllment the matrix becomes 1/2-n.n^log^ 2?reM as stated earlier. One could therefore

define the efficiency by

n =
l /2n / n Q l0g o 27reM

Equation stipulates the efficiency defined this way Is less than unity.
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The second of these efficiency definitions might be most appropriate if l/2n /nolog2 -2neM were the

maximum achievable entropy of the weights. However, a method for achieving the matrix entropy

n /n0log2 (A/+ 1) is being formulated through Judicious choice of the associations to be learned. IT

successful, the maximum storage possible for a matrix would be shown to be i ^ o l o g 2 A/. The first

definition of efficiency would then indicate the relation of random storage to optimal storage.

Sensitivity of Storage to Vector Correlation

Previously the vector-components of the prototype-vectors were Independently selected from {-l.l}

with probability 1/2 that either value was taken. If a bias is made in choosing the vectors so that the

probability that the value 1 occurs is p for each vector component, then the storage capacity Is adversely

affected. In this sense, the unbiased selection was optimal. Two questions are Important for the

consideration of biased vector selection:

1. What does bias cost in terms of reduced memory capacity?

2. How nearly unbiased must the selection process be In order for the matrix to perform nearly
optimally?

The first question addresses the severity of memory degradation with bias. The second relates to the

practicality of achieving near optimal storage.

The analysis reveals capacity degradation as a consequence of reduced df due to bias-Induced vector-

correlation. The bias, A is defined as A = \p — 1/2| where the bias-probability p. Is the probability

that any vector component Is assigned the value 1. The Input may be selected with a different bias than

the output so we let pF be the bias-probability for the input prototypes and pG be the bias-probability for

the output.

To see how bias affects vector correlation, let U and V be n-dlmensional vectors on {-1,1} with

bias-probability p . When the components are chosen independently, the probability that a component of

U will agree with Its counterpart In V is

l) + / ^ / l V l) i = i.2 n.

= P[U. = l)P[V. = 1) + P[U. = -l)I\V. = - 1 )

2(p* - 1/2)2 + 1/2

= 1/2 + 2 A (12)

So P[\] = V.) > 1/2 with equality when p Is 1/2 {A = 0).

We define pF = p 2 + (1 — p J 2 to be the probability that Fmi — Fm,. for arbitrary
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m, m! 6 {l,2 A/} and i € {1,2 n.}. We say that the input prototypes are pp-correlated.

Similarly, the parameter pQ represents the correlation between pairs of output prototypes. The df

parameter can be evaluated for the system by determining the mean and variance of both the match and

no-match distributions. The derivation of these is tedious and non-informative and so will be left to an

appendix. Results pertinent to the discussion will be related here. For the match distribution, the mean
2

and variance ax are

i = nino[l + (Af""

The no-match parameters are

Af(2pF- l)(2pG - 1)1(1 - (2p F ~ l)(2pG - 1)] (13)

M ( 2 p F - l)(2pG - 1)(1 - ( 2 p F - l)(2pG - 1))I (14)

If pF and pG are set to 1/2 In the above equations, the mean and variance assume the values for the

unbiased distributions considered earlier. On the other hand, if each bias is iarge enough (but not too

close to 1) for the relation

A/(2pF - l)(2pG - 1)(1 - ( 2 p F - l)(2pG - 1)) > 1 (15)

to hold, then both the match and no-match variances can be approximated by

— (2pF— l)(2pG — 1)). The absolute difference between the means is

— 1 ̂  <n that, frnn

' (i - P J(i - Pri)

— l)(pG — 1) so that from the definition of d' in (7), we have10

M
(16)

- 1))

Whereas d# varied inversely as V M in the unbiased case, It varies Inversely as M when a bias is

present. Therefore, a bias is thought to severely limit the capacity of the associator. On the other hand,

a bias must be present on both the Input and output vectors for the effect to be present. Correlated

vectors are not as nearly orthogonal as are uncorrelated vectors. Interference effects will not be present if

the associator either maps correlated vectors to nearly orthogonal vectors or vice-versa. In particular, if

correlated input vectors are associated to uncorrelated output vectors, no resulting capacity degradation is

present. An associator could be used as a •front-end1 to other associator units in order to translate

correlated Input vectors to uncorrelated outputs for further processing.

o
Notice the subtle difference between the match and no-match variances. This is not an error!

la this discussion, the correlations are considered as by-products of the bias so that the vector prototypes can be
considered as mutually independent. However, calculation of the match/no-match mean and variances and that of d1 was
carried out without the assumption of independence between respective components of the prototype vectors.
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In order for correlation effects not to be significant, the bias should be small enough so that the

reverse of the conditions (15) should hold. One could Ignore pF and pG In (14) and (13) If they satisfied11

A / ( 2 p F - l ) ( 2 p G - l ) < 1/9

Say for example, the bias of the Input and the output prototypes were the same. We set both p_ and p -
r \J

equal to l/2±A2 In accordance with (12). From condition , It follows that Af(2pF — 1)(2P<7 — 1) > 1.

The bias, A would have to satisfy [2(1/2 ± 2A2) - l|2 < 1/9M so that A cannot exceed
Large assoclators with many stored associations will require small values of A to perform nearly

optimally. It Is the large systems that will suffer substantial capacity deterioration If care Is not taken to

Insure that the vector prototypes are chosen with nearly even distribution of-l's and l's.

When A Is large enough to limit performance. It Is desirable to substitute df from equation (16) Into

(10) and (11) to estimate the reduced capacity. A large bias however will compromise the Independence of

the dot-products Dkl, ktl 6 {l.2 M) that was assumed for the derivation of (10). At best, (10)

might be accurate for the smallest values of A In the non-optimal range. If we assume p_ equals p ,̂, then
r KM

the smallest non-optimal value for M associations Is determined from (15) and so must satisfy

We take "91 to be much greater than 1 and get

A **—M
2

An upper bound on the capacity may be found by estimating the entropy of the matrix weights

which will be distributed as Bin(±l,n,p) where p Is determined from pp and pG. Again, only the

smallest values of non-optimal A can be considered by this method since the weights will lose their

Independence as the bias becomes large.

The fraction "1/10" is < 1 but 0 is a perfect square so "I/O" is used.
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