NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

INFORMATION STORAGE CAPACITY OF CONNECTIONIST SYSTEMS: THE LINEAR ASSOCIATOR

Technical Report AIP - 25
Dean C. Mumme \& Walter Schneider
Learning Research and Devlopment Center
University of Pittsburgh Pittsburgh, PA 15260

29 September 1987

This research was supported by the Computer Sciences Division, Office of Naval Research and DARPA under Contract Number N00014-86-K-0678. Reproduction in whole or in part is permitted for purposes of the United States Government. Approved for public release; distribution unlimited.

$$
\begin{aligned}
& 006.3 \\
& 628 a \\
& 10.25 \\
& 6.2
\end{aligned}
$$

Information Storage Capacity of Connectionist Systems: The Linear Associator. ${ }^{1,2}$

Dean C. Mumme and

Walter Schneider

Learning Research and Development Center University of Plttsburgh

Abstract

Information theory is applled to determine the number of items storable In a llnear assoclator. An ensemble of association matrices is treated as an M-ary symmetric information channel where M is the number associations stored via the outer-product rule. The entropy of the ensemble under the outerproduct learning rule is derived and used to bound the number of usefully-storable ltems for the ensemble. In particular, if the ensemble has input dimensionallty n_{1} and output dimensionallty n_{0}, and M associations between vectors of $\pm 1^{\prime} s$ are stored, then the entropy of each weight is $1 / 2 \log _{2} \frac{\pi e M}{2}$. Assuming independent weights gives the upper bound $1 / 2 \cdot n_{I} n^{\prime} \cdot \log _{2} \frac{\pi e M}{2}$ for the entropy of the ensemble. The task of the ensemble as an M-ary symmetric channel is correct identincation of which outputprototype corresponds to the prototype presented at the input. The corresponding task entropy or task load for M stored items is $M \cdot \log _{2} M$ which leads to the upper bound

$$
\frac{M}{n_{I} n_{O}} \leq \frac{1}{2}+\frac{1}{\log _{2} M}
$$

for the ratlo of the number of associations storable to the number of welghts in the system. Asymptotically, large matrices can store at most half as many assoclations as there are weights in the system. Storage efficiency is deflned as the number of bits stored in the ensemble divided by the number of blts needed to specify the ensemble itself. The effciency can be shown to be less than $\frac{M}{n^{n} O}$.

Performance degradation due to storage of correlated vectors is addressed. A performance merit parameter, d^{\prime}, is derived as a function of matrix size, number of items stored, and correlation between stored prototypes. This parameter is shown to decrease with the square-root of M if the vectors are uncorrelated, otherwise it decreases with M. This indlcates a marked capacity decline in the correlated case and reveals quantitatively the sensitivity of large systems to prototype correlation. In order for correlation effects to be negligible, the probabillty p that a 1 occurs should be very nearly $1 / 2$ as M gets large. A sufficlent condition is that $|p-1 / 2|<\frac{2}{\sqrt{3}} \cdot M^{-1 / 4}$. A suffclent condition for correlation effects

[^0]to be prevalent is $|p-1 / 2|>2 \cdot \sqrt{3} \cdot M^{1 / 4}$. This refects the sensitivity of large systems vector correlation.

More generally, performance llmits are derived by evaluating the task-entropy and using information theoretical relations between input, memory, and output random-variables. Thls has implications for memory-classincation of input vectors. This task can be viewed as a retrieval on information-degraded Inputs (e.g. retrieval on partial or nolsy input vectors). Performance is llmited by the amount of Information the input vector provides about the correct input prototype. The amount of information provided by the input decreases as more classincation "fan-In" is allowed. The amount of information the input provides and its relation to memory storage and classincation can be derived analytically in certain interesting cases.

Numerical evaluation of derived relations and simulations are included to verify the theory. The Intent of thls investigation is to provide a basis for the eventual development of an Information-theory of memory.

Information Storage and Classification in Connectionist Systems: The Linear Associator

1

Introduction

The systems under consideration are an outgrowth of work done on self-organizing automata and perceptrons $[26,30$) and later work in parallel assoclative memories, e.g. [15, 31] Minsky and Papert In [26| had carried out rather extensive mathematical analysis on perceptrons revealling inherent Ilmitations in the classes of problems they could solve. These systems were "learning" automata expected to classify input "stimull" based on their past experience on "training" Inputs. Minsky and Papert showed that multiple-stages of perceptrons were required for many problems of interest yet no tralalng algorithm was known at the time for multi-level systems. They concluded in their book that the systems held llttle promise and subsequent Investigation of perceptrons evaporated.

Eventually however, with more powerful computers to carry out simulations, and the development of several multi-level learning algorithms $[32,16,27,5]$ descendant offshoots of the perceptron have regained interest. Currently a variety of these automata exist and are known by names such as "Neuralnets", "Parallel Distributed Processors" (PDP networks), "Assoclative Memories". They are collectively called "Connectionist Architectures" and have been studled as self-organizing memories of perception [21] content-addressable memories, helrarchical knowledge bases, and classincation systems [3,2] models of human "neural-computation" $[13,3 \mid$ of human task performance and attentlonal learning $|37,35|$ speech performance and natural language understanding $[36,33,11]$

These and other efforts have led to guarded optimism for the future of Connectionist archltectures as knowledge engines or as models of human Intelligence. Capabllitles and llmitations of both task learning and performance have been demonstrated. However, with the exception of a few mathematical Investigations $|21,13,14,5,12|$ these structures are understood primarily in a qualltative sense.

In thls paper, we utllize concepts from information theory to study a slmple matrix model of distributed memory. Its information-storage capacity and effclency are evaluated allowing deflnition of a matrix's storage load factor. Memory performance in problems such as pattern completion can then be

[^1]viewed as a function of matrix loading. Degradation of storage capacity with inter-stimulus correlation and nolse at the Input are also addressed.

This work is motivated by a simulation-model of human attentional learning developed by the authors $[35 \mid$. Though these results are speciflcally intended for fuller understanding of the model, the apply to a much broader class of "Connectionist" systems.

- Neural-based" systems

Matrix models of parallel distributed memories were derlved as a simplistic model of braln ce computation. In the model, the output of each cell is a real number, y representing the deviation of cell's fling frequency from some reference frequency. As such, y can be negative as well as positive. T/ Inputs $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ to the cell are similarly real valued and each input, x_{i} has an associated couplli strength w_{i} to the cell which determines the effectiveness of that input on the cell output. The cas determines its output by taking the weighted average of the inputs,

$$
y=\frac{1}{n} \sum_{i=1}^{n} w_{i} x_{i}
$$

The matrix memory is constructed from a collection of these cells, each sampling the same set of Inpu If n_{1} is the number of inputs to the memory and n_{0} is the number of cells in the memory, the vect $x \equiv\left(x_{1}, x_{2}, \ldots, x_{n I}\right)$ of Inputs when presented to the input of the system produces an output vect, $y \equiv\left(y_{1}, y_{2}, \ldots, y_{n O}\right)$ given by the relation:

$$
y=\frac{1}{n_{I}} A x
$$

where A is the matrix of coupling welghts $w_{j i}$ connecting the Ith Input to the Jth cell $\{15,21 \mid$

To store information in this system, two sets of vectors called the input prototypes $\left\{\boldsymbol{f}_{1}, \boldsymbol{P}_{2}, \ldots, \boldsymbol{f}_{M}\right\}$ a the output prototypes $\left\{\mathbf{g}_{1}, \mathbf{g}_{\mathbf{2}}, \ldots, \mathbf{g}_{M}\right\}$ are used. For each input prototype $\boldsymbol{f}_{\mathrm{m}}$, the weights of the system a adjusted so that the $\boldsymbol{g}_{\mathrm{m}}$ vector results at the system output when $\boldsymbol{f}_{\mathrm{m}}$ is presented at the input. T : system is then sald to associate $\boldsymbol{f}_{\mathrm{m}}$ with \mathbf{g}_{m}. For each $\mathrm{m}=1,2, \ldots, \mathrm{M}$, the matrix that is used to assocla $\boldsymbol{f}_{\mathrm{m}}$ with g_{m} (called the mth association) is the outer-product $\boldsymbol{g}_{\mathrm{m}} \boldsymbol{f}_{m}^{T}$ [15, p. 18|. To store the assoclatlons, these M matrices are added to obtaln:

$$
\begin{equation*}
A=\sum_{m=1}^{M} \mathbf{g}_{m} \mathbf{p}_{m}^{\mathrm{T}} \tag{1}
\end{equation*}
$$

The information for each association is distrlbuted over the whole of A and therefore is overiald with the Information for the other assoclations. The resulting interference between assoclations increases with \bar{M}, and ultimately limits the number of assoclations storable in the system.

In the case that $\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \ldots, \boldsymbol{P}_{M}$ are mutually orthogonal, no Interference exists. When \boldsymbol{P}_{k} is Input to the
system, we have ${ }^{2}$

$$
\begin{aligned}
A \mathbf{P}_{m} & =\frac{1}{n_{I}} \sum_{m=1}^{M} \mathbf{g}_{m} \mathbf{f}_{m}^{\mathrm{T}} \mathbf{P}_{k} \\
& =\frac{1}{n_{I}} \mathbf{g}_{k} \mathbf{f}_{k}^{T_{\mathbf{P}}} \\
& =\frac{1}{n_{I}}\left\|\boldsymbol{f}_{k}\right\|^{2} \mathbf{g}_{k}, \quad k=1,2, \ldots, M .
\end{aligned}
$$

The matrix produces a multiple of $\mathbf{g}_{\mathbf{k}}$ when $\mathbf{f}_{\mathbf{k}}$ is present at the input. If the $\mathbf{P}_{\mathbf{k}}$ are chosen so that $\left\|f_{k}\right\|^{2}=n_{1}$ then g_{k} is reproduced exactly [3, p. 804]

The synopsis is concerned primarlly with the case that $M>n_{I}$ so that the Input vectors are llnearly dependent and Interference effects must be accounted for. In this case the output vector is only an approximation of the proper prototype output. Our concern is the number \mathbf{M} of associations that can be stored in a matrix or a given size before the output becomes unrecognizable.

Characterizing Storage Capacity

To estimate the storage capacity of the matrix, we examine a system that has stored M assoclations $\left(f_{m}, g_{m}\right), m=1.2, \ldots, M$ for some M. The input-prototype vectors are n_{1}-dimensional and the outputprototypes are n_{0}-dimensional. Initlally, the values allowed for the components are ± 1. All inputprototypes will then have $\left\|\boldsymbol{f}_{\mathrm{m}}\right\|^{2}=n_{1}$ and all output-prototypes $\left\|\boldsymbol{g}_{m}\right\|^{2}=n_{0}$. Later we can generallze but this case is interesting in itself as these values represent saturation extremes of the inputs/outputs. A value of 1 represents a cell fing at its maximum rate and a value of -1 represents the minimum rate. Storing prototypes of this limited form corresponds to the cells each producing a "polarized" response to an input vector that itself is the result of a previous stage of saturated cells. The vectors are assumed to have an unblased distribution of ± 1 's as explained later.

To motlvate the method of storage measurement, we make an analogy with digital memory. The address to the memory can be vlewed as an Input vector and the retrleved data as the output vector. A partlcular address vector and the data vector stored at the address location can be regarded as a vectorassoclation palr. The number of bits represented by the data vector is the Information the system provides upon performing the input-to-output assoclation. For digltal memory, the number of bits represented is the same as the number of bit-locations in the data vector and so is identical with the dimensionallty of the data vector. Storage is deflned as the amount of Information per association multiplled by the number of asocitions stored in memory. Storage capacity is the maximum storage the system can provide. In this case, the storage capacity is llmited by the number of storage locatlons of

[^2]the memory. Though the dimensionallty of both the Input and output vectors is specined in advance, the data items are not. That is, the number of items that can be stored is not determined by what they are.

For the matrix memory, the storage is llkewise given by the information per association multiplied by the number of assoclations stored. The dimensionallty of the Input and output prototypes are specined In advance, but the prototypes themselves are not. For this reason, the storage of the memory is not deflned for a particular matrix but rather for a class of matrices all of the same size. The class of outerpiod:act matrix-associators of a given size is the set of all matrices that can be generated from vectors of ± 1 's via equation (1). An association is not considered to be stored in a partlcular matrix of the class unless unless it is expllcitly included in the sum, (1) that determines the matrix.

Unllke digital memory, the Information per assoclation can be characterized In two ways. The nrst is to present for arbitrary $k \in\{1,2, \ldots, M\}$ the $k^{\text {th }}$ Input prototype to the system, and regard the matrixoutput as a probabllistic rendition of the $k^{\text {th }}$ output prototype. On the average, (over all matrices of the class) given M, the matrix-output will provide a certain amount of information about the prototype output and this is taken as the information provided by the association.

The second method is to consider the matrix as an information channel. The $k^{\text {th }}$ input is presented to the system and an output is generated. The latter is compared with each prototype-output vector via a similarity measure and the best prototype match is chosen. This is called an output decision. If the $1^{\text {th }}$ output prototype is chosen, an error is identifled with $i \neq k$. The probabllity of error averaged over the matrix-class is taken as the error probabillty for the associator as an M-ary symmetric channel. The average mutual information between the output and input is thus denned. This average is considered as the information per assoclation.

In either case, the storage is the product of M and the information represented by a single assoclation. Initially, the storage of the matrix Increases proportionally with \mathbf{M}. The error probabllity Increases with M as well so that the information per assoclation gradually decreases. For some value M^{*} of M. the Information per association begins to diminish more rapldly than M Increases. At this polnt. storing more associations decreases total information storage of the system. The system has reached its storage capaclty.

For the second case, we denne for each matrix-size, N, the matrix channel of size N on M associations. It conslsts of the ensemble of all possible matrices with $n_{1} n_{0}=N$ that can be constructed from a set of M prototype-palrs $\left(f_{m}, \mathbf{g}_{\mathrm{m}}\right)$. Once a set of assoclations is chosen for storage, a particular matrix is selected from the ensemble via equation (1). This matrix is deterministic and therefore is not a channel in the usual sense. The storage for a particular matrix constructed from M associations is deflned as the storage of the matrix channel from which it was selected.

The matrix-channel does not require that the system reconstruct the appropriate output response as does the frst storage characterization. The matrix channel merely selects the best match from among the M prototype-outputs. Therefore one would expect the number of assoclations storable in the matrixchannel to be larger than in the nist type of assoclator. The storage capacity of the matrix-channel Identines the maximum number of useable ${ }^{3}$ assoclations that can be stored. Use of the channel for inputclassification will require storage at some fraction of this maximal ngure. Our objective is to quantify the maximal Igure as a runction of channel-size and use to determine memory requirements for particular classiflcation tasks. For thls purpose, matrix-channel will considered in what follows.

Bounds on Storage Capacity

Assumptions and Notation

This analysis assumes important relative magnitudes among the parameters. We assume $n_{i} \geq 100, i=1,2$. The number of associations, M satisfies $n_{i} \ll M \ll 2^{n i} \quad i=1,2$. ${ }^{4}$ The upper bound In this case is assumed to exceed M by many orders of magnitude. This assures that sampling without replacement is virtually identical to sampling with replacement and simplines the analysis. An optimal value M^{*} or M will be shown to exist that is less than the net-size, $n_{1} n_{0}$. Therefore, as long as the net-size is Insignificant compared with $2^{n i}, i=1,2$ the assumption on M is Justined.

The vector-prototypes are chosen by independently assigning values ± 1 to the components. The probabllity that either value is taken is $1 / 2$. Random vectors will be referred to with bold capltols (e.g. $\mathbf{X)}$ whereas specinc vector-outcomes are denoted in bold lower-case. For $m=1,2, \ldots, M$, the inputprototypes are \mathbf{F}_{m} and the output-prototypes are \mathbf{G}_{m} when considered as random vectors. The components of the input vectors will be Indexed by "l" (e.g. \mathbf{F}_{ki}) and the output vectors will be indexed by " J ". The range of I is $1,2, \ldots, n_{l}$ and that of J is $1,2, \ldots, n_{0}$.

Ir $X_{1}, X_{2}, \ldots, X_{n}$ are Independent Identically distributed (i.i.d.) random varlables (r.v.'s) on $\{-1,1\}$ with $p \equiv P\left(X_{i}=1\right)$ and S is thelr sum, then S is binomlal with parameters $\pm 1, n$. p. We denote thls by $S \sim \operatorname{Bin}(\pm 1, n, p)$. Similarly, if X is a normal r.v., with mean μ, and varlance σ^{2}, we put $X \sim N(\mu, \sigma)$.

The matrix-assoclator will be referred to as "A". Whether a random matrlx or a particular outcome is being discussed should be clear from context. To be consistent with the " 1 , j" indexing of input and output vectors. "I" will refer to the column and "f" to the row of a matrix entry, e.g. A A_{ji}. We deflne the $k^{\text {th }}$ matrix-output as

$$
\begin{equation*}
\mathbf{g}_{k}^{\prime} \equiv A \boldsymbol{P}_{k} \tag{2}
\end{equation*}
$$

[^3](The constant $1 / n_{1}$ is dropped) and write the corresponding random vector as $\mathbf{G}_{\mathbf{k}}^{\mathbf{k}}$. The dot-product of the $k^{\text {th }}$ matrix-output and the $l^{\text {th }}$ prototype-output is $D_{k!}$ with outcome $d_{k l}$.

Parameters that take values in $\{-1,1\}$ are referred to as "blts" with -1 acting as the logical "0". Logical operations on these parameters are defined in this context as are terms "parity", "compliment" (logical), etc.

Derivation of Storage Limits

Given the M Input-output prototype-palrs $\left(\boldsymbol{f}_{\mathrm{m}}, \boldsymbol{g}_{\mathrm{m}}\right)$, the matrix defned by equation (1) is seen as the sum of M outer-product matrices. The $\mathrm{m}^{\text {th }}$ outer-product or association-plane is completely determined by the $n_{1}+n_{o}$ bits of f_{m} and g_{m}. Its $\mathrm{Jl}^{\text {th }}$ component, $m_{j i}$ is the product $f_{m i} g_{m j}$, which takes values in $\{-1,1\}$. The $\mathrm{m}^{\text {th }}$ assoclation-plane is not changed if both f_{m} and \mathbf{g}_{m} are multiplied by -1 . This indicates that the $m^{\text {th }}$ plane represents at most $n_{1}+n_{0}-1$ bits of information. The $n_{1}+n_{0}{ }^{-1}$ entries that make up a particular row and column, are easily seen to be independent, so that $n_{1}+n_{0}{ }^{-1}$ is also the lower bound. In fact, the entries of the row and column are enough to determine every other entry in the plane. To Illustrate, examine the $\mathrm{k}^{\text {th }}$ row and $\mathrm{l}^{\text {th }}$ column and the entry $\mathrm{m}_{\mathrm{ji}}=\mathrm{r}_{\mathrm{mi}} \mathrm{g}_{\mathrm{mj}}$. The three entries (blts) m_{ki}, $m_{k l}$ and $m_{j l}$ determine $m_{j i}$ so that the parity of these four numbers is even. ${ }^{5}$ Therefore each associationplane represents exactly $n_{l}+n_{0}-1$ blts.

When the assoclation-planes are summed information is lost. Storage is bounded above by the information contalned in the weights (entries) of the assoclator. An assessment of the matrix entropy provides a bound on the number of association palrs storable. To begin, it can be shown that the entropy or self-information of a r.v. $X \sim \operatorname{Bin}(\pm 1, n, 1 / 2)$ is virtually identlcal to that of a normal r.v. with varlance n . The A_{ji} are $\operatorname{Bin}(\pm 1, \mathrm{M}, 1 / 2)$ so each has entropy $H\left(A_{j i}\right)=\frac{1}{2} \log _{2} 2 \pi e \mathrm{M}$. An upper bound on the matrix entropy can be obtained by assuming independence of the Individual weights. One multiplys the weight-entropy by the number of weights in the system to get $H(A)=\frac{1}{2} n_{I} n_{O} \cdot \log _{2} 2 \pi e M$

For M stored assoclations, there are M ! ways to map the M (distinct) Inputs to the M (distinct) outputs. To produce an output vector for each Input prototype that results In a correct output-decision, the matrix entropy must exceed $\log _{2} \mathrm{M}!\approx M \cdot\left|\log _{2} \mathrm{M}-\log _{2} e\right| .{ }^{6}$ For $\mathrm{M}<\mathrm{M}$ we must have

$$
\frac{1}{2} n_{1} n_{0} \log _{2} 2 \pi e M>M\left|\log _{2} M-\log _{2} e\right|
$$

which leads to

[^4]$$
\frac{M}{n_{I} n_{O}}<\frac{1}{2} \cdot \frac{\log _{2} M+\log _{2} 2 \pi e}{\log _{2} M-\log _{2} e}
$$

Generally we can ignore the term $\log _{2} e$ and since $\log _{2} 2 \pi e \approx 4$, an approximate bound is

$$
\frac{M}{n_{I_{0}}}<\frac{1}{2}+\frac{2}{\log _{2} M}
$$

For the systems considered, the right side of the Inequally will not exceed 1 for M near M^{*}. As the net-size approaches innnity, M^{*} is seen to lle beneath one-halr the net-size. An Important observation here is that though one row and one column are enough to specify the blts in each assocition-plane, the other bits act to preserve information stored in the plane when the planes are summed together. Without the additional blts, the entropy of the row and column alone becomes $\frac{1}{2}\left(n_{I}+n_{O}\right) \log _{2} 2 \pi e M$. This is much smaller than the entropy calculated above and will serve as a lower bound. The assumption of Independent weights is false for Individual assoclation-planes but should be accurate for M near M slnce the inter-correlations between bits in a given plane should be "washed out" by "counter-correlations" In the other (independent) planes in the sum.

Measuring Similarity

The output decisions of a matrix-assoclator depend on the simllarity measure used at the output. A glven system will perform differently under different slmilarlty measures. Therefore, the performance of a system must be defined with respect to a particular similarity measure. The general dennition of slmilarity measure follows from the Hamming distance function. Defining $\{-1,1\}^{n}$ to be $\left\{x \in R^{n} \mid x_{i} \in\{-1,1\}, i=1,2, \ldots, n\right\}$, the Hamming Distance is the function $H D:\{-1,1\}^{n} \times\{-1,1\}^{n} \rightarrow \mathbf{R}$ given by $H D(x, y)=\frac{1}{2} \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|: \quad$ The Hamming Distance is the number of components at which x and y disagree. Its negative is a similarity measure on $\{-1,1\}$. If V is an n-dimensional vector-space, then a similarity measure ls a function $S: V \times V \rightarrow \mathbf{R}$ such that for $x . y \in V$.

1. $S(x, y)=S(y, x)$
2. For $x, y \in\{x \in V \mid\|x\|=1\}, S(x, y)$ is maximized by $x=y$.
3. For $x . y, w, z \in\{-1,1\}^{n}, H D(x, y)<H D(w, z)$ implies $S(x, y) \leq S(w, z)$

Under thls type of similarity, x and y are to said to be more slmilar than w, z whenever $S(x, y)<S(w, z)$. The function is maximal for similar vectors. Condition 3 requires the similarity measure to be consistent with the negative Hamming diztance similarity, $-H D(x, y)$ on $\{-1,1\}^{\mathrm{n}}$.

We allow the word "minimumized" to be replaced by "maximized" In 2 with the reversal of the Inequally in 3. This results in a function that is minimal for simllar vectors. The negative of a similarity function is therefore also a similarity function.

Examples of simllarity measures Include those based on Minkowski Metrics. For instance, elther of the forms $S(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}$ or $S(x, y)=\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}, p>0$ or their negatives can be used. An Inner-product can also be used, e.g. the dot-product, $S(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$. The dot-product has several advantages the first of which is the relative ease of analysis it provides. The dot-product detection distributions are readlly identined. Additionally, the dot-product similarity criterion should be a good benchmark for the expected performance of systems that are connected to the output of the matrixassoclator. This is because an associator often determines its output by comparing the matrix-Input with its stored Input-prototypes via the dot-product similarity measure. The resultant output is constructed as a weighted sum of the output-prototypes according to how similar their respective Input-prototypes are to the matrix-input. If an assoclator of this form is connected to the output of a first-stage matrixassoclator, it will function best if the nirst stage always produces a vector that is close to the "correct" Input-prototype of the second stage with respect to dot-product similarlty.

Detection

The dot-product will be the subject of the analysis, so that $S(x, y)$ will represent thls function. Detection will consist of placing f_{k} at the input of the matrix, determining the output $\boldsymbol{g}_{\mathbf{k}}$ and calculating $S\left(\mathbf{g}_{k}^{\prime}, g_{m}\right)$ for $m=1,2, \ldots, M$. The value of m for which this quantity is largest will be chosen as the best match. Since the vectors were originally chosen randomly, the dot-products produced are random varlables. The distribution of $S\left(\mathbf{G}_{\mathbf{k}}, \mathbf{G}_{\mathrm{m}}\right)$ varies according to whether $\mathrm{m}=\mathrm{k}$. The condition $\mathrm{m}=\mathrm{k}$ is the match condition and deflnes the match distribution for the system. The condition $m \neq k$ is the no-match condition defining the no-match distribution. Determination of the distributions will allow evaluation of the probabillty \mathbf{P}_{e} of an Incorrect output-decision.

The dot product is $D_{k l} \equiv \mathbf{G}_{k} \mathbf{G}_{l}, \quad k=1,2, \ldots, M$ where $\mathbf{G}_{k}{ }_{k}=A \mathbf{F}_{k}$, and A is given by (1). More explicitly.

$$
\begin{align*}
\mathbf{G}_{k}^{\prime} & =A \mathbf{F}_{k} \\
& =\sum_{m=1}^{M} \mathbf{G}_{m} \mathbf{F}_{m}^{\mathbf{T}} \mathbf{F}_{k} \\
& =\sum_{m=1}^{M}\left(\mathbf{F}_{m} \cdot \mathbf{F}_{k}\right) \mathbf{G}_{m} \tag{3}
\end{align*}
$$

From this $D_{k l}$ is seen to be.

$$
\begin{align*}
D_{k l} & =\mathbf{G}_{k}^{\prime} \mathbf{G}_{l} \\
& =\sum_{m=1}^{M}\left(\mathbf{F}_{m} \cdot \mathbf{F}_{k}\right)\left(\mathbf{G}_{m} \cdot \mathbf{G}_{l}\right) \tag{4}
\end{align*}
$$

Since $\mathbf{F}_{m} \cdot \mathbf{F}_{k}=\sum_{i=1}^{n I} F_{m i} F_{k i}$ and similarly for $\mathbf{G}_{m} \cdot \mathbf{G}_{l}$, the sum for D_{kl} expands to

$$
\begin{equation*}
D_{k l}=\sum_{m=1}^{M} \sum_{i=1}^{n_{1}} \sum_{j=1}^{n^{0}} \mathbf{F}_{m i} \boldsymbol{F}_{k i} \mathbf{G}_{m j} \mathbf{G}_{l j} \tag{5}
\end{equation*}
$$

The components of the prototype-vectors are chosen Independently over $\{-1,1\}$ with each of these two values occurring with probabillty $1 / 2$. This implies that the terms in (5) are "blts " by our defnition so that $D_{k l} \sim \operatorname{Bin}\left(\pm 1, M n_{I} n^{\prime}, 1 / 2\right)$ when $k \neq l$. For $k=l$,

$$
\begin{equation*}
D_{k k}=\left(\mathbf{F}_{k} \cdot \mathbf{F}_{k}\right)\left(\mathbf{G}_{k} \mathbf{G}_{k}\right)+\sum_{m=1, m}^{M} \sum_{k i=1}^{n_{I}} \sum_{j=1}^{n_{O}} \mathbf{F}_{m_{i}} \mathbf{F}_{k i} \mathbf{G}_{m j} \mathbf{G}_{k j} \tag{6}
\end{equation*}
$$

and $D_{k k} \sim \operatorname{Bin}\left(\pm 1,(M-1) \cdot n_{I} n_{O}, 1 / 2\right)$. For the assumed range of $M, M-1 \approx M$ so that $D_{k k}$ and $D_{k l}$ have the same variance, $\sigma_{D}=M n_{I} n_{O}$. The two distributions are identical except for the difference in the means. The mean of the sums $\ln (6)$ and (5) are zero. The first term in (0) however, is the constant $n_{1} n_{0}$ The match distribution then, has mean $\mu_{1}=n_{I} n_{0}$ and the no-match has mean $\mu_{2}=0$.

The separation, d^{\prime} of the two distributions is deflned as the absolute difference of the means divided by the geometric mean of the standard-devlations. Since the same standard-deviation is common to both distributions, d^{\prime} is the difference between the means measured in standard-deviation-length units:

$$
\begin{align*}
d^{\prime} & \equiv \frac{\left|\mu_{1}-\mu_{2}\right|}{\sigma_{D}} \\
& =\frac{n_{I} n_{O}}{\sqrt{M n_{I} n_{O}}} \\
& =\sqrt{n_{I} n_{O} / M} \tag{7}
\end{align*}
$$

The larger the relative separation between between the distributions, the smaller the probabillty that an outcome from one distribution will be found near typlcal outcomes from the other distribution. As we will see, a large d^{\prime} will afford a low error-rate. From (7), d^{\prime} Increases with increasing net-size and decreases with M as would be expected. ${ }^{7}$

Evaluation of Error Probability

In order to determine the information storage for a system whose net-size is $n_{1} n_{0}$ with M stored assoclations, P_{e} must be determined as a runction of M. An error on the $k^{t h}$ input, $P_{e, k}$ occurs ir there is an $l \in\{1,2, \ldots, M\}, l \neq k$ such that $D_{k l} \geq D_{k k}$. The average over k or $P_{e, k}$ is P_{e}.

Let R_{k} denote the range uf possible values of $D_{k k}$. One minus the probablilty that an error occurs is the probabillty that $D_{k l} \geq D_{k k}$, i.e.

[^5]\[

$$
\begin{aligned}
1- & P_{e, k} \\
& =\sum_{a \in R_{k}} P\left(D_{k 1}<a, D_{k 2}<a, \ldots, D_{k k-1}<a, D_{k k}<a, D_{k k+1}<a, \ldots, D_{k m}<a\right)
\end{aligned}
$$
\]

Since $D_{k l}=\mathbf{G}_{\boldsymbol{k}} \cdot \mathbf{G}_{\boldsymbol{l}}$ and $D_{k l^{\prime}}=\mathbf{G}_{\boldsymbol{k}} \cdot \mathbf{G}_{\boldsymbol{l}}$ the two r.v.'s both contain Information from $\mathbf{G}_{\mathbf{k}}{ }^{\text {and }}$ are not strictly incuependent. However, the dot-products are Independent given $\mathbf{G}_{\mathbf{k}}{ }^{\text {and }}$ and they each provide very little information about its components. We assume then that they are very nearly Independent. This allows approximation of $P_{e, k}$ by

$$
P_{e, k}=1-\sum_{a \in R_{k}} P\left(D_{k k}=a\right) \prod_{l=1, l \neq k}^{M} P\left(D_{k l}<a\right) .
$$

The $\mathrm{D}_{\mathbf{k} \mid} k \neq l$ are Identically distributed as no-matches, so letting $\mathrm{D}_{\mathbf{k}}$ be ar.v. with the no-match distribution gives ${ }^{8}$

$$
\begin{equation*}
P_{e, k}=1-\sum_{a \in R_{k}} P\left(D_{k} \leq a\right)^{M-1} P\left(D_{k k}=a\right) \tag{8}
\end{equation*}
$$

If we deflne F^{\prime} as the distribution $\operatorname{Bin}\left(\pm 1, M n_{I} n_{0}, 1 / 2\right)$ with mean of zero, and r^{r} as the corresponding density function, then (8) can be written,

$$
\begin{equation*}
P_{e, k}=1-\sum_{a \in R_{k}} F^{\prime}(a) \cdot f^{\prime}\left(a-\mu_{1}\right) \tag{9}
\end{equation*}
$$

where the argument to f^{\prime} must be displaced by the mean of $D_{k k}$. The distribution, F ' can be "normalized" by dividing all dot-product r.v.s by $\sigma_{D}=\sqrt{M n_{I} n_{O}}$ to obtain the distribution $F \sim \operatorname{Bin}\left(\pm 1 / \sqrt{M n_{I} n_{O}}, 1,1 / 2\right)$ with mean of zero. The error $P_{e, k}$ becomes

$$
\begin{equation*}
P_{e, k}=1-\sum_{a \in R_{k}} F(a)^{M-1} \cdot f\left(a-d^{\prime}\right) \tag{10}
\end{equation*}
$$

where f is the density of the normalized distribution F.

The expression above is not dependent on k, so the average probabllity P_{e} that an input will produce an error at the output is glven by equation (10); the matrlx-channel has been shown to be M-ary symmetric. If X represents the input vector r.v. and \mathbf{Y} the subsequent output vector r.v., then the Information per assoclation is given by

$$
\begin{equation*}
I(\mathbf{X} ; \mathbf{Y})=\log _{2} \mathrm{M}-P_{e} \cdot \log _{2}(\mathrm{M}-1)-H_{b}\left(P_{e}\right) \tag{11}
\end{equation*}
$$

where $H_{b}(x) \equiv-x \log _{2} x-(1-x) \log _{2}(1-x), 0 \leq x \leq 1 \quad$ is the binary entropy function.

For a given matrix-class, we evaluate the storage $M \cdot I(\mathbf{X} ; \mathbf{Y})$ for increasing M untll the maximum storage is found. The maximum is called the storage capacity of the net. The value M of M that produces the maximum is called the storage addressability of the system under thls storage

[^6]characterization. Uniqueness of \mathbf{M}^{*} depends upon the nature of $\mathbf{I}(\mathbf{X} ; \mathbf{Y})$ as a function of \mathbf{M}. This function is plotted in ngure for a net-size of $10^{5.5}$. The through-put addressability is the value M^{0} of M at which the maximum is achleved. The function is belleved to be unimodal, increasing to a maximum before M reaches the net-size and then decreasing rapidly thereafter. The storage should reach a maximum before M reaches the bound given by equation and remaining low for larger M as long as $M \ll 2^{n}{ }^{n}, i=1,2$ is satisfled. The numerical analysis carrled out to date bears thls out. However, a normal approximation to the distribution F in equation (10) was used and is highly inaccurate for large M. Presently, a more accurate approximation is being devised [29] Numerical methods based on the new approximation and actual simulations of associator matrices will be used to determine storage of the systems and the valldity of the analysis.

Data-Dependence of Capacity

In the forgolng development, we assumed the vector-prototypes were chosen randomly. Random vectors' tendency toward pairwise orthogonallty keeps Interference among assoclations low. Subsequent sections examine suboptimal prototype storage and retreival. The object will be to characterize deleterious effects of storing low-entroplc associations.

Storage Efficiency

Storage efficiency of a matrix is the matrix-storage divided by the information required to represent a matrix associator on M associations. Examination of equation (1) reveals that each entry in an assoclator matrix is the sum of M bits. The range of values of each entry is the integers between - M and M. The extremes are reallzed whenever the blts for that entry all agree in value. Further, the entry will be be even if and only if M is even. It follows that the number of values an entry can assume is $M+1$. Thls means that $n_{1} n_{0}$ welghts will require $n_{r} n_{0} \log _{2}(M+1) \approx n_{I} n_{0} \log _{2} M$ bits for storage. Letting $\Sigma=M \cdot I(\mathbf{X} ; \mathbf{Y})$ be the storage of the net, then we define the efficiency η by

$$
\eta=\frac{\Sigma}{n_{I} n^{\prime} \log _{2} M}
$$

Since $I(X: Y) \leq \log _{2} M$ by equation (11), It follows that $\Sigma \leq M \operatorname{Mog}_{2} M$ and we have

$$
\eta \leq \frac{M \log _{2} M}{n_{I} n_{O} \log _{2} M}=\frac{M}{n_{I} n_{O}}
$$

From equation, the bound becomes

$$
\eta \leq \frac{1}{2}+\frac{2}{\log _{2} M}
$$

If one could take advantage the fact that each weight has entropy $1 / 2 \cdot \log _{2} 2 \pi e M$. the information required to Impliment the matrix becomes $1 / 2 \cdot n_{I} n_{0} \log _{2} 2 \pi e \mathrm{M}$ as stated earller. One could therefore deflne the efficlency by

$$
\eta=\frac{\Gamma}{1 / 2 \cdot n_{I} n_{O} \log _{2} 2 \pi e \mathrm{M}}
$$

Equation stipulates the efficlency defined this way is less than unlty.

The second of these effciency deflnitions might be most appropriate If $1 / 2 n_{\Gamma} n^{l^{l o g}}{ }_{2} \cdot 2 \pi e M$ were the maximum achlevable entropy of the welghts. However, a method for achieving the matrix entropy $n_{I} n^{\log _{2}}(M+1)$ is being formulated through Judicious cholce of the assoclations to be learned. If successful, the maximum storage possible for a matrix would be shown to be $\boldsymbol{n}_{1} \boldsymbol{n}_{0} \log _{2} M$. The nrst definition of efficlency would then Indicate the relation of random storage to optimal storage.

Sensitivity of Storage to Vector Correlation

Previously the vector-components of the prototype-vectors were Independently selected from \{-1,1\} with probablity $1 / 2$ that elther value was taken. If a blas is made in choosing the vectors so that the probabllity that the value 1 occurs is p for each vector component, then the storage capacity is adversely affected. In this sense, the unblased selection was optimal. Two questions are important for the consideration of blased vector selection:

1. What does blas cost in terms of reduced memory capacity?
2. How nearly unblased must the selection process be in order for the matrix to perform nearly optimally?

The Mrst question addresses the severity of memory degradation with blas. The second relates to the practicallty of achieving near optimal storage.

The analysis reveals capacity degradation as a consequence of reduced d' due to blas-induced vectorcorrelation. The bias, Δ is deflned as $\Delta=|p-1 / 2|$ where the bias-probability p, is the probabllity that any vector component is assigned the value 1. The input may be selected with a different blas than the output so we let p_{F} be the blas-probabillty for the Input prototypes and \vec{p}_{G} be the blas-probabillty for the output.

To see how blas affects vector correlation, let \mathbf{U} and \mathbf{V} be n -dimensional vectors on $\{-1,1\}$ with blas-probabllity p. When the components are chosen independently, the probabillty that a component of \mathbf{U} will agree with its counterpart $\ln \mathbf{V}$ is

$$
\begin{align*}
P\left(U_{i}\right. & \left.=V_{i}\right)=P\left(U_{i}=1, \quad V_{i}=1\right)+P\left(U_{i}=-1, V_{i}=-1\right) \quad i=1,2, \ldots, n \\
& =P\left(U_{i}=1\right) P\left(V_{i}=1\right)+P\left(U_{i}=-1\right) P\left(V_{i}=-1\right) \\
& =p^{* 2}+(1-p)^{2} \\
& =2 \cdot(p-1 / 2)^{2}+1 / 2 \\
& =1 / 2+2 \cdot \Delta^{2} \tag{12}
\end{align*}
$$

So $P\left(\mathrm{U}_{i}=\mathrm{V}_{i}\right) \geq 1 / 2$ with equallty when p is $1 / 2 \quad(\Delta=0)$.

$$
\text { We denne } p_{F} \equiv \dot{p}_{F}^{2}+\left(1-\dot{p}_{F}\right)^{2} \text { to be the probablllty that } F_{m i}=F_{m^{\prime} i} \text { for arbltrary }
$$

$m, m^{\prime} \in\{1,2, \ldots, M\}$ and $i \in\left\{1,2, \ldots, n_{I}\right\}$. We say that the input prototypes are p_{F}-correlated. Slmilarly, the parameter p_{G} represents the correlation between palrs of output prototypes. The d ' parameter can be evaluated for the system by determining the mean and varlance of both the match and no-match distributions. The derivation of these is tedious and non-informative and so will be left to an appendix. Results pertinent to the discussion will be related here. For the match distribution, the mean μ_{1} and varlance σ_{1}^{2} are

$$
\begin{align*}
& \mu_{1}=n_{I} n_{O} \cdot\left[1+(M-1)\left(2 p_{F}-1\right)\left(2 p_{G}-1\right)\right] \\
& \sigma_{1}^{2}=n_{I} n_{O} M 1+M\left(2 p_{F}-1\right)\left(2 p_{G}-1\right) \mid\left[1-\left(2 p_{F}-1\right)\left(2 p_{G}-1\right)\right] \tag{13}
\end{align*}
$$

The no-match parameters are ${ }^{0}$

$$
\begin{align*}
& \mu_{2}=n_{I} n_{O}\left|\left(2 p_{F}-1\right)+\left(2 p_{G}-1\right)+M\left(2 p_{F}-1\right)\left(2 p_{G}-1\right)\right| \\
& \sigma_{2}=n_{I} n_{O}^{M \cdot\left|1+M\left(2 p_{F}-1\right)\left(2 p_{G}-1\right)\left(1-\left(2 p_{F}-1\right)\left(2 p_{G}-1\right)\right)\right|} \tag{14}
\end{align*}
$$

If $\cdot p_{F}$ and p_{G} are set to $1 / 2$ in the above equations, the mean and variance assume the values for the unblased distributions considered earller. On the other hand, if each blas is large enough (but not too close to 1) for the relation

$$
\begin{equation*}
M\left(2 p_{F}-1\right)\left(2 p_{G}-1\right)\left(1-\left(2 p_{F}-1\right)\left(2 p_{G}-1\right)\right)>1 \tag{15}
\end{equation*}
$$

to hold, then both the match and no-match varlances can be approximated by $n_{I} n_{O} M^{2}\left(2 p_{F}-1\right)\left(2 p_{G}-1\right)\left(1-\left(2 p_{F}-1\right)\left(2 p_{G}-1\right)\right)$. The absolute difference between the means is $4 n_{I} n_{O}\left(p_{F}-1\right)\left(p_{G}-1\right)$ so that from the deffition of $d \cdot \ln (7)$, we have ${ }^{10}$

$$
\begin{equation*}
d^{\prime}=\frac{4 \sqrt{n_{I} n_{O}}}{M} \cdot \frac{\left(1-p_{F}\right)\left(1-p_{G}\right)}{\sqrt{\left(2 p_{F}-1\right)\left(2 p_{G}-1\right)\left(1-\left(2 p_{F}-1\right)\left(2 p_{G}-1\right)\right)}} \tag{16}
\end{equation*}
$$

Whereas d^{\cdot} varied inversely as \sqrt{M} in the unblased case, It varies inversely as M when a blas is present. Therefore, a blas is thought to severely llmit the capacity of the assoclator. On the other hand, a blas must be present on both the Input and output vectors for the effect to be present. Correlated vectors are not as nearly orthogonal as are uncorrelated vectors. Interference effects will not be present if the assoclator elther maps correlated vectors to nearly orthogonal vectors or vice-versa. In partlcular, if correlated Input vectors are assoclated to uncorrelated output vectors, no resulting capacity degradation is present. An assoclator could be used as a "front-end" to other associator unlts in order to translate correlated input vectors to uncorrelated outputs for further processing.

[^7]In order for correlation effects not to be signincant, the blas should be small enough so that the reverse of the conditions (15) should hold. One could Ignore p_{F} and p_{G} in (14) and (13) if they satisned ${ }^{11}$

$$
M\left(2 p_{F}-1\right)\left(2 p_{G}-1\right) \leq 1 / 9
$$

Say for example, the blas of the input and the output prototypes were the same. We set both D_{F} and D_{G} equal to $1 / 2 \pm \Delta^{2}$ in accordance with (12). From condition, it follows that $M\left(2 p_{F}-1\right)\left(2 p_{G}-1\right)>1$. The blas, Δ would have to satisfy $\left|2\left(1 / 2 \pm 2 \Delta^{2}\right)-1\right|^{2} \leq 1 / 9 M$ so that Δ cannot exceed $\frac{1}{2 \sqrt{3}} M^{-1 / 4}$. Large associators with many stored assoclations will require small values of Δ to perform nearly optimally. It is the large systems that will suffer substantial capacity deterioration if care is not taken to Insure that the vector prototypes are chosen with nearly even distribution of -1's and 1 's.

When Δ is large enough to llmit performance, it is desirable to substitute d' from equation (16) Into (10) and (11) to estimate the reduced capacity. A large blas however will compromise the independence of the dot-products $\mathrm{D}_{\mathrm{k}]}, k, l \in\{1,2, \ldots, M\}$ that was assumed for the derivation of (10). At best. (10) might be accurate for the smallest values of Δ in the non-optimal range. If we assume p_{F} equals p_{G}, then the smallest non-optimal value for M associations is determined from (15) and so must satisfy

$$
M\left(2 p_{F}-1\right)\left(2 p_{G}-1\right) \gg 1
$$

We take " 9 " to be much greater than 1 and get

$$
\Delta \approx \frac{\sqrt{3}}{2} M^{-1 / 4}
$$

An upper bound on the capacity may be found by estlmating the entropy of the matrix weights which will be distributed as $\operatorname{Bin}(\pm 1, n, p)$ where p is determined from p_{F} and p_{G}. Agaln, only the smallest values of non-optimal Δ can be considered by this method since the weights will lose their Independence as the blas becomes large.

[^8]
References

1. Algner, Martin. A Series of Comprehensive Studies in Mathematics. Volume 234: Conbinatorial Theory. Springer-Verlag, New York, New York, 1979.
2. Anderson, James A., Sllversteln, Jack W., Ritz, Stephen A., and Jones, Randall S. 'Dlstinctive Features, Categorical Perception, and Probabillty Learning: Some Appllcations of a Neural Model ${ }^{*}$. Psycological Review 84, 5 (1977), 413-451.
3. Anderson, James A. "Cognitive and Psychologleal Computation with Neural Models". IEEE Transactions on Systems, Man, and Cybernetics SMC-19, 5 (September/October 1983).
4. Ash, Robert B.. Inter-Science Tracts in Pure and Applied Mathematics. Volume 19: Information Theory. John Willey and Sons, New York, New York, 1965.
5. Barto, A. G. "Learning by Statistical Cooperation of Self-Interested Computing Elements". Human Neurobiology 4 (1985), 229-256.
6. Conte, Samuel D., and de Boor, Carl. International Series in Pure and Applied Mathematics. Volume : Elementary Numerical Analysis, An Algorithmic Approach, Srd Ed. McGraw-Hill Books, 1980.
7. Duda, Rlchard and Hart, Peter. Pattern Classification and Scene Analysis. John Wlley and Sons, New York, New York, 1973.
8. Dudewicz, Edward J., and Ralley, Thomas G.. The Handbook of Random Number Generation and Testing with TESTRAND Computer Code. American Sclences Press, P.O. Box 21161, Columbus, Ohio 43221, 1981.
9. Feller, William. An Introduction to Probability Theory and its Applications Srd. Ed. John Wlley and Sons, New York, New York, 1968.
10. Gallager, Robert G.. Information Theory and Reliable Communication. John Wlley and Sons, New York, New York, 1968.
11. Golden. Richard M. Modelling Causal Schemata in Human Memory: A Connectionist Approach. Ph.D. Th., Dept of Psychology, Brown University, Providence Rhode Island, 1886.
12. Golden. Richard M. "The "Brain-State-In-a-Box" Neural Model Is a Gradient Descent Algorithm". Journal of Mathmatical Psychology 90. 1 (March 1986). 73-80.
13. Grossberg, Steven. Boston Studies in the Philosophy of Science. Volume 70: Studies of Mind and Brain, Neural Princikes of Learning, Perception, Development, Cognition and Motor Control. D. Reldel Publlshers, Boston, Mass., 1982.
14. Grossberg, Stephen. Competive Learning: From Interactive Actlvation to Adaptlve Resonance. Blbllographic Information on this article is not complete.
15. Hinton, Geoffrey E., and Anderson, James A.. Parallel Models of Associative Memory. Lawrence Erlbaum Assoclates, 365 Broadway, Hillsdale, New Jersey 07642, 1981.
16. Hinton, Geoffrey E. "Boltzmann Machines: Constraint Satisfaction Networks that Learn". Cognitive Science 9 (1985), 147-169.
17. Hopfield, J. J. "Neurons with Graded Response have Collective Computational Properties llke those of Two-State Neurons". Proceedings of National Acadamy of Science 81 (May 1984).
18. Hopfleld, J.J. and Tank, D.W. 'Neural' Computation of Decisions In Optimization Problems. Research Document. Information pertaining to the source of this document is incomplete.
19. Kanerva, Penttl. Self-Propagating Search: A Unified Theory of Memory. Ph.D. Th., Stanford University, 1883.
20. Knuth, Donald E.. Addison-Wesley Series in Computer Science and Information Processing. Volume 2: The Art of Computer Programming, 2nd Ed. Addison-Wesley, Reading Mass., 1968.
21. Kohonen, Tuevo. Springer Series in Information Sciences. Volume 8: Self-Organization and Associative Memory. Springer-Verlag, New York, New York, 1984.
22. Krylov, V.I.. Approximate Calculation of Integrals. Translated from the Russlan by A. H. Stroud. MacMillan (Crowell-Colller Publlshers, New York, New York, 1962. Copy Wright A. H. Stroud 1962.
23. Lancaster Peter. Theory of Matrices. Reproduced Photographlcally by Author from the 1969 Edition or Academic Press, 1977.
24. Lindgren, Bernard W.. Statistical Theory, Srd Ed. MacMlllan Publlshing, New York, New York. 1976.
25. McEllece, Robert J.. Encyclopedia of Mathematics and its Applications. Volume 3: The Theory of Information and Coding. Addison-Wesley, Reading, Mass., 1977.
26. Minsky, Marvin and Papert, Seymour. Perceptrons, An Introduction to Computational Geometry. M.I.T. Press, Cambridge, Mass., 1969.
27. Parker. David B. Learning Logic. TR-47, Center for Computational Research in Economics and Management Sclence, M.I.T., Aprll, 1885.
28. Pearlmutter, Barak A. and Hinton Geoffrey E. G-Maximization: An Unsupervised Learning Procedure for Dlscovering Regularitles. Neural Networks for Computing, American Institute of Physics, 1988. Blbllographic Information not complete.
29. Pelzer, David B. and Pratt, John W. "A Normal Approximtion for Blnomlal. F, Beta, and Other Common Related Tall Probabllitles'. American Statistical Association Journal 1, 68 (December 1988), 1410-1483.
30. Rosenblatt, Frank. Principles of Neurodynamics. Spartan Books, New York, New York, 1982.
31. Rumelhart. David E.. McClelland. James L., and the PDP Research Group. Parallel Distributed Proccssing, Explorations in the Microstructure of Cognition. M.I.T. Press, Cambridge. Mass., 1988.
32. Rumelhart. David E., Hinton, Geoffrey E., and Williams, Ronald J. Learning Internal Representations by Error Propagation. In Parallel Distributed Processing, Explorations in the Microstructure of Cognition, M.I.T. Press, 1988, pp. 318-382.
33. Rumelhart. David E. and McClelland, James L. On Learning the Past Tenses of Engllsh Verbs. In Parallel Distributed Processing, Explorations in the Microstructure of Cognition, M.I.T. Press, 1988. pp. 210-271.
34. Samuelson, Paul A. "Constructing an Unblased Random Sequence". American Statistical Association Journal 1, 68 (December 1988), 1526-1527.
35. Schnelder, Walter and Mumme, Dean C. Attention, Automatle Processing and the Compilling of Knowledge: A Two-Level Architecture for Cognition. To appear in Psychology Review.
36. Sejnowski, Terrance J. and Rosenberg, Charles R. NETtalk: A Parallel Network that Learns to Read Aloud. JHU/EECS-88/01, The Johns Hopkins University Electrical Engineering and Computer Sclence, 1986.
37. Shiffrin, Rlchard M. and Schnelder, Walter. 'Controlled and Automatic Human Information Processing: II. Perceptual Learning, Automatlc Attending, and a General Theory ${ }^{\text {. }}$. Psychological Review 84, 2 (1977), 127-189.
38. Stroud, A. H. and Don Secrest. Gaussian Quadrature Formulas. Prentice Hall, Englewood Cliffs, New Jersey, 1968.

[^0]: ${ }^{1}$ Paper is based on a thesis by the first author for the doctoral degee in Computer Science at the University of Illinois at Urbana-Champaign.
 ${ }^{2}$ This research is funded by a grant from the Office of Naval Research.

[^1]: ${ }^{1}$ This resaerch supported by a grant from the Office of Naval Research

[^2]: ${ }^{2}$ The norm $\|\|$ refers to the euclidean norm.

[^3]: ${ }^{3}$ "Usable" for the purposes of input-classification
 ${ }^{4}$ For positive parameters, ${ }^{\prime} y \gg x^{*}$ indicates that y is minimally $10 \cdot x$ and is typically mucb larger.

[^4]: ${ }^{5}$ Therefore exactly balf of the 10 concievable configurations of these four bits are possible.
 ${ }^{6}$ For $M>2.2 \cdot 10^{4}, \log _{2} M>\log _{2} e$ so that the $\log _{2}$ e term can be ignored. Even for M as small as 3000 however, the approximation $\log _{2} \mathrm{M}!\approx \log _{2} \mathrm{M}$ is reasonably accurate.

[^5]: ${ }^{7}$ A matrix with a large number of stored associations should poorly discriminate between mateb v.s. no-mateh output prototype vectors

[^6]: ${ }^{8}$ Since $f\left(D_{k}=a\right) \approx 0$, no distinction between $\left.P D_{k}<a\right)$ and $A\left(D_{k} \leq a\right)$ is made.

[^7]: ${ }^{0}$ Notice the subtle difference between the match and no-match variances. This is not an error!
 ${ }^{10}$ In this discussion, the correlations are considered as by-products of the bias so that the vector prototypes can be considered as mutually independent. However, calculation of the match/no-match mean and variances and that of d' was carried out without the assumption of independence between respective components of the prototype vectors.

[^8]: ${ }^{11}$ The fraction " $1 / 10^{\prime \prime}$ is <1 but θ is a perfect square so ${ }^{\prime \prime} 1 / 0^{\circ}$ is used.

