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SESSION 1
PRESIDENTIAL ADDRESS

Connectionism: Is it a paradigm
shift for psychology?

WALTER SCHNEIDER
University of Pinsburgh, Pintsburgh, Pennsylvania

Connectionism is a method of modeling cognition as the interaction of neuron-like units. Con-
nectionism has received a gread deal of interest and may represent a paradigm shift for psychol-
ogy. The nature of a paradigm shift (Kuhn, 1970) is reviewed with respect to connectionism. The
reader is provided an overview on connectionism including: an introduction to connectionist model-
ing, new issues it emphasizes, a brief history, its developing sociopolitical impact, theoretical
impact, and empirical impact. Cautions, concerns, and enthusiasm for connectionism are expressed.

In recent years there has been an explosive interest in
modeling cognition within a connectionist framework. The
connectionist framework assumes that cognition is car-
ried out via the mutual interaction of neuron-like elements.
The theoretical interest in this' approach probably
represents the most dramatic shift in theoretical orienta-
tion in psychology in the last 20 years. This modeling is
still in its infancy. We are currently in a period of excit-
ing development. In this presidential address, I review
some of the basics of connectionist modeling and describe
the reasons for the enthusiasm and some reasons for cau-
tion. I also encourage the reader to try to decide for him-
self/herself whether or not this represents a paradigm shift
in the sense of Kuhn (1970).

Throughout the history of psychology, we have gener-
ally tried to describe the brain in terms of the most com-
plex systems we understand. In this century the brain has
been described in terms of a telephone network, a homeo-
static system, a computer system, a semantic net, and a
production system. Connectionism is different: it seeks
to model cognition in terms of something we do not un-
derstand, that is, how the brain operates. It utilizes very
simplisitic features of the brain’s physiology to attempt
to model cognitive processes. Connectionism examines
computation based on the assumption of many parallel
processing elements. Each element combines simple ana-
log inputs weighted by the strength of the connection to
produce analog or digital outputs. Connectionism does not
incorporate either the microstructure (e.g., differential

I wish to acknowledge the many rewarding interactions [ have had
with Jay McClelland and Geoffrey Hinton on the topic of connectionism.
My own research on simulation modeling is supported by Contract No.
N0OO14-86-0107 from the Office of Naval Research. Reprint requests
should be addressed to Walter Schneider, 517 Learning Research & De-
velopment Center, University of Pittsburgh, 3939 O'Hara St., Pitts-
burgh, PA 15260.
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polarization, depending on whether the synapse contacts
the cell body or the dendrite) or macrostructure (e.g., very
specific neuroanatomical connections between regions of
the cortex) of neurophysiology (see Sejnowski, 1986).
However, the simplifications do make the models tracta-
ble and allow us to begin looking at what neural-like sys-
tems could compute. As a result of dissatisfaction with
previous modeling frameworks and an availability of com-
puter resources, a number of researchers have begun a
movement toward modeling connectionist systems.

CHARACTERISTICS OF A
PARADIGM SHIFT

It is useful to review some of the characternistics of a
paradigm shift according to Kuhn (1970). Four charac-
teristics of a paradigm shift seem to be present in the cur-
rent movement toward connectionism. Kuhn commented
that *‘all crises begin with a blurring of the paradigm and
a consequent loosening of the rules for normal research’’
(p- 84). This loosening typically occurs partially because
few practitioners agree on what the paradigm is. In the
1970s there was a clear movement away from box models
of information processing to a variety of representations
(e.g., levels of processing, schemata, semantic networks,
and production systems). One of the examples of this loos-
ening is that a number of psychologists are now studying
learning in computer models rather than explicitly examin-
ing learning in humans. Kuhn commented that anomalies
appear that do not fit the traditional view (pp. 82-91).
In psychology, due to our relatively weak theories, there
are many phenomena that we poorly predict. Two phe-
nomena that are particularly important from the connec-
tionist perspective are our abilities to learn without in-
struction and to perform procedural tasks very well even
when we are unable to specify the rules of that perfor-
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mance. The difficulty of obtaining knowledge from ex-
perts to build expert systems illustrates the problems of
rule-based descriptions.

Kuhn (1970) suggested that a new paradigm must pro-
vide the hope that it is possible to march forward (p. 158).
The connectionist framework suggests that we might be
able to connect the computational, cognitive, and physio-
logical levels of analysis and to do so with a conceptually
very simple system. During a paradigm shift ‘‘commu-
nication across the revolutionary divide is inevitably par-
tial”’ (p. 149). Connectionism is introducing new vocabu-
lary (e.g., vectors, weight spaces), new mathematics
(e.g., eigenvectors, gradient descent), and even new rules
of evidence in psychology (e.g., posing simulation ex-
periments about small-scale learning systems to illustrate
what can be learned by such systems). Finally, Kuhn
stated that ‘‘during the transition period there will be a
large but never complete overlap between the problems
that can be solved by the old and the new paradigm’’
(p. 85). For example, connectionism and production sys-
tems both examine learning. However, connectionism fo-
cuses on slow learning, such as learning the correspon-
dence between text and speech, which may require 40,000
trials of training (e.g., Sejnowski & Rosenberg, 1986).
Production system learning typically examines learning
that occurs in under 10 tnals (e.g., J. R. Anderson, 1983).

DEFINING FEATURES OF
CONNECTIONIST MODELS

Four defining features are common to all connectionist
models. First, processing is assumed to occur in popula-
tions of simple elements. The letter H, for example, may
be encoded as a set of eight elements that have binary
values for features, such as vertically symmetric, horizon-
tally symmetric, diagonally symmetric, not rounded, not
diagonal, not closed, and without descender. Although
some information may be encoded by a single element
being on, most information is coded by a set of elements
being on or a vector of activation.

The second, and perhaps prototypical, characteristic is
that all knowledge is stored in the connectionist weights
between the elements. Knowledge is stored in the associ-
ations or strength of connections between neural-like ele-
ments (see Figure 1). The knowledge is stored in a small
number of association matrices that represent the addi-
tion of all the stimulus response patterns the system has
learned. This results in making the knowledge very con-
text sensitive. For example, it may be more difficult to
learn the past tense of go as being went because for most
words the past tense of words is formed by adding ed (see
Rumelhart & McClelland, 1986a).

The third characteristic is that all the units perform a
simple combination of their inputs (e.g., addition or mul-
tiplication) and perform a simple nonlinear transforma-
tion on those inputs (e.g., a logistic function). There 1s
generally no complex matching of a particular set of in-
puts to a unit to some internal pattern (e.g., as might oc-
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Figure 1. A connectionist association matrix. The input units are
on the bottom, the output units on the right. The triangies represent
connections from the input to the output. The filled circles represent
the active units. Learning involves changing the strength of the in-
put units to the output units. The filled triangles illustrate which
connections would change so that the input would evoke the out-
put. The figure is adapted from Figure 1 in “Resource Requirements
of Standard and Programmabie Nets” by J. L. McClelland, 1986,
in D. E. Rumeihart and J. L. McClelland (Eds.), Paralle! Distributed
Processing: Explorations in the Microstructures of Cognition.
Volume 1: Foundations, p. 462. Copyright 1986 by MIT Press.
Adapted by permission.

cur in a symbol-processing-based comparison). Rather,
a unit generally simply adds or multiplies all the inputs.
The nonlinear transformation is sometimes represented
as a simple saturation effect (e.g., a neuron can fire at
a frequency of no less than 0 and no more than 1,000 times
per second). This nonlinearity is critical in that it gives
the models the ability to categorize information (J. A. An-
derson & Mozer, 1981).

The fourth characteristic is that learning occurs via sim-
ple learning rules that are based on local information avail-
able within the unit. Learning involves modifying the con-
nections to enable a later input pattern to evoke a new
output pattern. There are a variety of learning rules that
have been employed (see Rumelhart & McClelland,
1986b). In order to associate an input to an output, the
weights between the input and output units are modified
so that the input unit will evoke the output. Figure | shows
a simple illustration of the delta learning rule. If two units
were on in the input layer and two units were on in the
output layer, the connection strength between the input
and output units would be increased to a level of a desired
output of one divided by the number of input neurons that
were on. This results in the input pattern becoming able
to evoke the output pattern. In order to reduce the inter-
ference between different input patterns in the same as-
sociation network, a variety of more sophisticated learn-



ing rules (¢.8 delta rule, Bolzmann learning, back
propagation algonthm see Rumelhart, Hinton, & Wil-
liams, 1986) are utilized.

EXAMPLE OF CONNECTIONIST
LEARNING

There are six basic steps in conducting a connectionist
simulation. First, the input and output units and codes for
the model must be specified. Second, the connection ar-
chitecture specifying the number of units at the input, out-
ut, and any intermediate layers of processing must be
established. Third, the initial weights must be set to small
random values. Fourth, the input and the desired output
must be presented for all the input and output relations
to be learned. Fifth, some learning rule must be applied
such that the weights are updated so that the input comes
to activate the output. The simulation may present the
presentation and learning steps hundreds of thousands of
times. Sixth, diagnostic experiments (e.g., presenting
degraded stimuli, cutting out connections, examining
transfer to related patterns) must be run to determine the
robustness and generalizability of the knowledge.
Probably the flashiest demonstration of connectionist
learning is embodied in NET-TALK by Sejnowski and
Rosenberg (1986) (see Figure 2). They taught a network
to learn to associate English text to the appropriate En-
glish phonology. There were seven groups of letter posi-
tions of visual input. Each position could be encoded as
one of 29 characters including punctuation. There were
26 output feature units coding one of 53 potential pho-
nemes. The intermediate or hidden units recoded the in-
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Figure 2. Schematic drawing of the Sejnowski and Rosenberg
(1986) NET-TALK coanection architecture. Input units are shown
on the bottom of the pyramid, with seven groups for sequential let-
ter positions. Each hidden unit in the intermediate layer receives
inputs from all of the input units on the bottom layer, and in turn
sends its outputs to all 26 phonemic feature units in the output layer.
An exampie of an input string of letters is shown below the input
groups, and the correct output phoneme for the middie letter is shown
above the output layer. The network was presented letter strings
and phonemic patterns. The connection weights were aitered using
back propagation. From T. J. Sejnowski and C.R. Rosenberg, 1986,
NETtalk: A Parallel Network that Learns to Read Aloud (Tech. Rep.
No. JHU/EECS-86/01), The Johns Hopkins University Electrical En-
gineering and Computer Science, Baltimore, MD.
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put to produce the desired output. The model was pre-
sented successive passes over the text and the phonology
of a corpus of 1,024 words of continuous informal speech
produced by a child. After 10,000 presentations of words,
the network was about 85% accurate at specifying the pho-
nemes for the text input. An accuracy of 90% was reached
by 20,000 tnals and of 95% by 50,000 trials. The demon-
stration is particularly memorable because one can listen
to the network speak. The output of the network controls
a synthetic speech production system. During the initial
learning, the system babbles, continuously outputting a
few vowels. It gradually learns to distinguish between
vowels and consonants, and then it learns to identify the
space as a pause. The system begins to babble in pseudo-
speech form and gradually acquires some words. After
40,000 trials, it produces words that sound intuitively like
those you might expect to hear from a 2-year-old child.
This demonstration is very intriguing, and the auditory
tape produced by the network has been played many times,
including once on network television on the ‘‘Today
Show.”’

With a working connectionist model in hand, there are
a variety of experiments that can be performed. First, one
can look at the type of units developed to perform the task.
This is done by examining the input and output weights
for each of the units. The units each specialize in per-
forming some complex functional transformation of the
input to the output. It is generally very difficult to inter-
pret the form of the units. The units operate in very high-
dimensional spaces (e.g., 80 dimensions). Examining any
one unit in isolation provides one with little information
about what the network is doing as a whole. The informa-
tion is distributed across all of the units in the network.
After the network has learned to map a particular input
to an output, one can examine how well this learning gen-
eralizes to novel words. NET-TALK reproduced correctly
78% of the novel words it was presented. One can also
examine how the network reacts to damage to the net-
work. These systems are typically quite robust to substan-
tial amounts of damage in the network (e.g., J. A. Ander-
son, 1983). NET-TALK illustrated that relearning after
damage to the network can be substantially faster (i.e.,
10 times faster) than the original learning. One can also
explore such issues as how learning changes as a func-
tion of the number of units in the intermediate layers.

A PARADIGM SHIFT EXPOSES
NEW ISSUES

A paradigm shift emphasizes new issues. These are
often issues that existed in the field before but now are

brought to center stage for close examination. Four is- - )

sues are particularly important in the connectionist
paradigm. The issue of representation, the hidden units
problem and learning rules, the problem of sequencing,
and the nature of teaching.

The representational issue involves coding information
so that connectionist networks can perform nontrivial in-
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formation processing tasks. For example, if one wants
a model to perceive words exhibiting behaviors that hy-
mans produce, should the model have levels for visual
features, letters, and word units (e.g., see McClelland &
Rumelhart, 1981)? What are the semantic features of
nouns (McClelland & Kawamoto, 1986)? How are family
relationships coded in a network (Hinton, 1986)? In order
to produce a workable model, people have to become very
explicit as to what information is stored in a network.
Rumelhart and McClelland (1986a) were unable to have
their simulation accurately associate word phonemes to
the phonemes for the past tense of words using a number
of coding schemes. They then tried coding words in terms
of Wickelphones (a scheme proposed by Wickelgren [1969]
to code a phoneme in the context of its preceding and fol-
lowing phoneme). With this coding scheme the networks
could learn to associate words with the past tense sound
of the words. Producing representations that are learnable
in realistic time periods provides a serious constraint on
connectionist models. These constraints allow the use of
learnability constraints to evaluate representations.

Connectionism has given considerable emphasis to the
‘‘hidden unit problem’’ (Hinton & Sejnowski, 1986). In
order to learn complex responses to a given input pattern,
one cannot simply connect the inputs to the output units.
If one directly connects the input units to the output units,
only first-order relationships can be learned. For exam-
ple, if two inputs are connected to one output, the net-
work can learn to perform either an AND or an OR oper-
ation. However, it cannot learn to perform an exclusive
XOR operation (i.e, ‘‘on’’ if either of the inputs are on;
“‘off’" either if both of the inputs are off or if both of the
inputs are ‘‘on’’). A network cannot learn such second-
order information with only pair-wise weights between
the visible units (i.e., the input and output units). In order
to learn such input/output relationships, a set of hidden
units are needed that receive connections from the input
unit and make connections to the output units. However,
the hidden units themselves are not set directly by either
the input or the output. Changes in the connection strength
in the hidden units reorganize the input pattern to allow
the learning of more complex input/output patterns
(Rumelhart, Hinton, & Williams, 1986). Algorithms that
enable hidden unit learning develop truly emergent prop-
erties. For example, networks with hidden units can solve
the XOR problem (Ackley, Hinton, & Sejnowski, 1985).
NET-TALK reached only an 80% accuracy in a network
without hidden units, whereas it reached a 95 % accuracy
with hidden units. The study of the hidden unit problem
has emphasized the need to understand the nature of higher
order similarity. Human learning is very much influenced
by similarity. Traditional approaches to learning have had
relatively poor techniques for interpreting and predicting
these similarity effects.

The third issue emphasized in connectionist simulations
is the problem sequencing. For example, should training
proceed by first showing the prototypes of a category and
then showing the more distant exemplars? As networks

are presented examples, they perform a search through
a weight space (i.e., the strengths of all the connections),
trying to come up with the best combination of weights.
Depending upon whether practice is dnstnbutqd or massed,
differential learning is observed that looks similar to that
seen in humans (see Rosenberg & Sejnowski, 1986). Con-
nectionism emphasizes learning rules that can rapidly
modify weights so that the hidden umts can perform com-
plex computations (e.g., Boltzmann learning, back propa-
gation; see Rumelhart, Hinton, & Williams, 1986).

The fourth issue in connectionism is an explicit con-
cern for various levels of teaching. Connectionist networks
can learn in one of three types of learning or supervision
environments. The first class is supervised learning, in
which a teacher explicitly indicates to the network what
the correct output state is for any input state. In this sense,
the teacher is a supervisor. The network then compares
the output produced by the input to the desired output and
uses that difference in activation to modify the weights
in the network. The NET-TALK example is an instance
of supervised learning. Supervised learning is slow ini-
tially, but the network can very quickly acquire new as-
sociations that are similar to previous associations.

The second class of learning involves a yes-no teacher
and is referred to as reinforcement learning. In such a
situation the teacher provides the learner feedback only
at the end of a trial, after the student has executed many
operations. Barto and Anandan (1985) taught a connec-
tionist network to perform a pole-balancing operation on
a moving cart. The network would push the stick left or
right, trying to balance it on the cart as long as possible.
Eventually, after many stick movements, the cart would
run into a barrier on the left or right side. This running
into the barrier was the only feedback the network re-
ceived. The network then had to learn when to push the
pole to the left or right to try to balance it so that the cart
would stay between the two barriers. The stick might be
moved a hundred times before the cart would hit one of
the barriers. The system learned to perform this task by
dividing the learning into two components. The controller
network controlled the stick and performed operations
similar to supervised learning. However, the supervision
was provided by a second teacher network. This network
used the input from the controller to try to predict whether
ornota ‘‘yes ' ora "'no’’ would come from the teacher
(1.e.. whether it would hit a barmrier). The teacher network
developed the abulity to predict error signals that the super-
vised learning teacher would provide during the time
preceding the ‘‘yes/no’’ reinforcement. The teacher net-
work used this information to give feedback to the con-
troller network. The controller network then learned via
supervised-like learning procedures and eventually ac-
quired the skill. It should be noted that learning under
this procedure is far slower than learning via supervised
learning procedures.

The third class of learning is unsupervised learning, or
learning without any teacher at all. Under this type of
learning, the system tries to predict its own behavior



through a small number of hidden units. For example,
Elman and Zipser (1987) used unsupervised learning to
have a network learn the basic features of speech phonetic
perception. In their model they used 50 input units for por-
tions of the speech spectrogram, 20 hidden units, and 50
output units that predicted the speech spectrogram. The in-
put pattern activated the hidden units, and the hidden units
activated output units that paralleled the input units. The
network was able to compare the input to what it produced
from that coded version of the input. Since the hidden unit
level contained far fewer units than the input or output
level, the hidden units had to develop some type of gener-
alized scheme for coding the information. The hidden units

the major higher order invariances of the input.
Elman and Zipser (1987) presented the acoustic stimulus,
<*this is the voice of the neural network,’’ to the network
100,000 times. Then the hidden units captured sufficient
features of the input so that the network could reproduce
the speech quite intelligibly. More importantly, the net-
work captured generalizations of the inputs. The hidden
units were, in essence, encoding the stimulus in phoneme-
like feature codes that could be used for higher levels of
processing. Using unsupervised learning, a network can
develop representations of higher-order invariances of the
external world as a result of mere exposure. This type
of unsupervised learning suggests how the Suzuki method
of teaching violin might be effective. A student who
repeatedly hears certain acoustic patterns learns to encode
those features of the pattern. This encoding can be used
later to verify whether the student can produce the desired
acoustic code. More generally, this unsupervised learn-
ing provides an interpretation of how listening to speech
might help a child learn the phonemes of the target lan-
guage in the absence of corrective feedback.

BRIEF HISTORY OF CONNECTIONISM

In the short history of connectionism in psychology, it
has already had a birth, a death, and a rebirth (see Rumel-
hart & McClelland, 1986b, for detailed account). In the
late 1950s the perceptron was a basic connectionist net-
work with no hidden units. This system was proposed as
a neurally feasible mechanism that could accomplish com-
plex learning (Rosenblatt, 1962). In 1969, Minsky and
Papert provided a very severe and influential critique that
suggested that the study of perceptrons would be *‘sterile’’
because it could not deal with the hidden unit problem.
The field was fairly dormant for about 10 years. By 1981
there was a substantial rebirth of interest in perceptron-
type models as illustrated by the publication of the book
Parallel Models of Associative Memory by Hinton and
J. A. Anderson (1981). By 1985 the Minsky and Papert
critique was finally confronted and overcome with the so-
lution of the hidden unit problem by Ackley et al. (1985).
Shortly thereafter, Rumelhart, Hinton, and Williams
(1986) developed the back propagation algorithm that al-
lowed very rapid computer simulation of learning for net-
works with hidden units. With NET-TALK, Sejnowski
and Rosenberg (1986) provided a very imaginative and
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enthusiastic demonstration of connectionist learning
processes. In 1986 Rumelhart and McClelland and
McClelland and Rumelhart provided a two-volume text-
book entitled Parallel Distributed Processing: Explora-
tions in the Microstructures of Cognition. These volumes
provide a 1,158-page compendium of the techniques and
simulations of connectionism. The books provide a wealth
of new connectionist modeling simulations and concepts.
The volumes are likely to be classics and are the basis
for many courses in connectionism throughout the
country.

SOCIOPOLITICAL IMPACT
OF THE SHIFT

A paradigm shift has a substantial social and political
impact on a field. Connectionism is certainly having such
an impact. First, there is a great deal of excitement and
interest in the topic. Many young and older researchers
are exploring such modeling. Connectionists seminars are
probably occurring in a hundred universities in the coun-
try this year. Established researchers, such as Walter
Kinsch, Earl Hunt, Danny Kahneman, and Gordon
Bower, are examining or applying connectionist models
to their work. The sales of the Parallel Distributed
Processing books have been phenomenal. The books liter-
ally sold out (6,000 copies) before they went to press.
One wonders if psychology has ever before had a two-
volume advanced textbook sell-out. The rapid growth of
connectionist talks at the Cognitive Science Society meet-
ings illustrates this exciting interest: in the years 1984,
1985, and 1986, the percentage of connectionist talks were
17%, 23%, and 31%, respectively. In a period of about
5 years, connectionism went from being neariy nonexis-
tent to being one third of the program of the Cognitive
Science Society.

Granting agencies have also shifted toward connec-
tionism. The Sloan Foundation, the National Science
Foundation, the Office of Naval Research, the Defense
Advanced Research Project Agency, and the Air Force
Office of Scientific Research all have initiated programs
to fund this type of modeling. This modeling has caught
the interest of basic researchers who wish to understand
cognition and biological computing, as well as of applied
researchers who want to build better weapon systems.
Note this shift in cognitive science has in some cases
reduced funds available for experimental research. Thus
there is a shift in the research base for the future.

In the summer of 1986 there was a connectionist sum-
mer camp. Under Sloan Foundation sponsorship, Sej-
nowski, Hinton, and Touretzky brought together 50
graduate students for an 11-day workshop on connec-
tionism. The goal was explicitly to seed the world with
connectionists. The workshop brought these researchers
together so they could exchange techniques and develop
substantial enthusiasm for changing the field.

More important than changing the social climate, con-
nectionism is altering the conceptual environment.
McClelland, for example, describes sentence processing
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as not being grammar processing, but rather as being the
unitization of a set of clues to interpret meaning. Rumel-
hart describes ‘‘representations as being built not speci-
fied.”’ The ability to use large quantities of information
in an interactive manner allows conceptualization of
processing in a manner very different from that of serial
computers.

The impact of connectionism is likely to go well be-
yond the psychological laboratory. Hammerstrom (1986),
a computer architect, predicts that *‘it will be possible
within 5-10 years to build a silicon-based system that emu-
lates a network of a billion connections between millions
of nodes,’’ and these systems ‘‘will be relatively cheap’’
(approximately $300 for production costs) and compact
(size of a floppy disk), simulating neural systems at
roughly two orders of magnitude faster than real time.
Think of the implications, perhaps in 20 years, of having
the processing capacity of our speech processing avail-
able for a $300 device that can be connected to a personal
computer. If these learning systems can perform percep-
tual and learning activities that we currently associate with
humans, this connectionism movement will cause a sec-

ond computer revolution that would be more significant
than the first.

THEORETICAL IMPACT

The theoretical impact of connectionism on psychology
is strong and likely to be great. Connectionism is making
theonies of learning much more explicit. For these models
one must describe the number of elements at each level,
the internal codes, the problem sequencing rules, and the
learning algorithms.

Connectionism allows new types of studies. Most con-
nectionist modelers are examining the psychology of non-
human intelligence systems. The typical procedure is to
build a network-type robot to see what it learns on its own.
This is an engineering approach with simulation provid-
ing existence proofs. It should be noted that this method
of existence proofs has been very productive in computer
science by developing a basis of algorithms and proce-
dures. It may help the psychology of cognition to become
a more cumulative endeavor.

Connectionism has introduced a variety of new (im-
proved) concepts and language. We can now discuss rep-
resentations in terms of vector spaces. Learning is
described as a method of gradient descent or learning by
approximation. We can categorize the type of supervision
of the learning process and how the problems should be
sequenced to maximize learning. All of these issues can
now be tested with simulations providing quantitative data.

Connectionism has provided a new emphasis to a num-
ber of psychological phenomena. McClelland and Rumel-
hart (1981) emphasized the importance of top-down in-
fluences in the word superiority effect. Ackley, Hinton,
and Sejnowski (1985) described mechanisms that enable
unsupervised learning to acquire complex relationships.
Hinton and Plaut (in press) illustrated how relearning can

be much faster than original learning and can even trans-
fer to material that was not explicitly taught. For exam-
ple, if one has not used a foreign language for many years,
learning to use a subset of the words of that language can
show substantial transfer to words that were not explicitly
relearned. Hinton refers to this process as compensating
for the defocusing of memory across time. Hinton and
Nowlan (in press) recently described how a learning
mechanism can greatly speed evolution. In this system,
genes can either be in one of two states or be in a modifi-
able/learnable state. He shows that with learnable states,
individual learning trials can be substituted for genera-
tions. Given that learning trials are very cheap compared
with spawning a new generation, this learning mechanism
can greatly speed evolution.

CONNECTIONIST REFORMULATION
OF PSYCHOLOGICAL CONCEPTS

There are three formulations of psychological concepts
provided by connectionism that I find particularly interest-
ing and exciting. All of these concepts existed before con-
nectionism, but the concepts have become more concrete
and elegant within the connectionist framework.

The concept of a semantic network can be recast within
a connectionist framework. In a semantic network one
typically has ‘‘Is-A’’ links between nodes in a network.
For example, in a semantic network of family relation-
ships, one might have the names of family members con-
nected with ‘‘Is-A son,’” ‘‘Is-A father,”’ ‘‘Is-A daugh-
ter,”’ and so forth. One of the problems of the semantic
network is that if the network is taught only a subset of
the links, it must use some complex strategies to find new
relationships. For example, if the system is taught that
Jim is the son of Jack and that Sue is the daughter of Jack,
the system does not directly generalize that Jim and Sue
are siblings. This can be done with complex postretrieval
processing where various alternative link combinations
are examined to infer whether the sibling relationship
holds. Hinton (1986) taught a connectionist network to
learn family relationships. The system was required to
learn 100 relationships among 24 names from two fami-
lies. There were 24 input names, 12 family relationships.
and 24 output names. In addition there were 12 hidden
units representing the input family, 12 hidden units
representing the output family, 6 hidden units for the rela-
tionship, and 12 central representational units. The sys-
tem was taught 100 of the 104 instances of relationships
(e.g., father, mother, husband, wife, son, daughter, etc.).
The 12-name hidden units learned to code relationships.
The hidden units recoded input names in terms of their
generation level and family type. Note that this recoding
rule was developed by the network as a result of present-
ing family relationships and the network applying a sim-
ple (i.e., back propagation) learning rule to change the
weights of the hidden units. The hidden units encode in-
dividual names in terms of family relationships (e.g.,
generation, sex). If the system is " "imoic the



son of Jack and that Sue is the daughter of Jack, the sys-
tem will infer (via generation and relational coding) that
Jim is the brother of Sue. This is done without any com-
plex postprocessing, but rather is a side effect of build-
ing an internal representation for the family codes. This
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ing was viewed as a slow, typically serial, and effortful
form of processing. At that time we could not provide a
mechanism of these two qualitatively different forms of
processing. Recently, Schneider and Mumme (1987) re-
cast the concept of automatic and controlled processing

kind of coding might explain why a parent may make ' onnectionist architecture (see Figure 3B). Con-
verbal slip of calling a child by the name of one of his trolled pr ing involves an external source that modu-

or her siblings. Connectionism provides a very simple in-
terpretation of these phenomena and how both the encod-
ing and retrieval processes can be accomplished with a
simple parallel distributed operation.

Connectionism enables recasting schemata within the
concrete representational framework. The concept of
schemata has been around for a long time and is felt by
some researchers to be a major building block of recog-
nition (Rumelhart, 1980). Generally the representations
of schemata have been vague specifications of a group-
ing of elements that co-occur in some expected fashion.
In the connectionist framework, schema theory can have
an explicit form that can predict the interrelationships of
objects (Rumelhart, Smolensky, McClelland, & Hinton,
1986). The elements of the schema can be represented
as individual units in a connectionist network. The
strengths of the connection between the units are deter-
mined by the co-occurrence frequency of the various ob-
jects of the schema. For example, Rumelhart had sub-
jects list the objects that one would typically find in a living
room, bathroom, study, etc. The strengths of connections
between the elements were determined by the co-
occurrence frequency of the elements. Accordingly, book-
shelf and desk would have a very strong co-occurrence
frequency, whereas bookshelf and oven would not. The
connections between the units for bookshelf and desk
would have a strong weight; bookshelf and oven would
not. In a simulation, two of the 40 units would be acti-
vated, and the activation of the others would be measured.
This activation represented the filling in of the schema
elements. For example, the activation of desk and ceiling
would activate the terms computer, books, bookshelf, type-
writer, doors, and walls. In contrast, activating bathtub
and ceiling would result in the activation of scale, toilet,
very small, and walls. If such unexpected combinations
as sofa, bed, and ceiling were activated, novel configu-
rations of rooms would be activated including television,
aresser, drapes, fireplace, books, and large. This connec-
tionist network illustrates how schemata can be built up
and can fill in missing information, as well as misinter-
pret information, to make it more consistent with the cur-
rent schema. All of the current operations occur through
the simple mechanism of the parallel distributed activa-
tion of the elements that might occur in a room.

The third example of connectionism’s recasting of a
vague concept into an explicit form is one of my own.
In 1977 Shiffrin and Schneider described a dual processing
model in which the two forms of processing were called
automatic and controlled. Figure 3A illustrates the origi-
nal figure. Automatic processing was viewed as fast, par-
allel, and fairly effortless. In contrast, controlled process-

lates the output of all of the elements from a module. Au-
tomatic processing involves a local circuit (through the
priority report cell), which enables the output of a module
in the absence of an external attentional input. Within each
module there is a connectionist association of the input pat-
terns to a priority tag for that message. If that message
is of high enough priority, the message is automatically
transmitted in the absence of controlled processing input.
The priority mechanism produces the four phenomena of
automatic processing as emergent properties. That is, as
automatic processing develops, performance becomes fast,
effortless, and difficult to control, and it resuits in reduced
ability to modify memory (see Schneider & Mumme, 1987;
Schneider & Detweiler, 1987). The connectionist model
predicts how performance shifts from a serial to a parallel
processor as practice continues in a consistent search
paradigm. The simulation also illustrates that even though
the mechanisms of controlled and automatic processing are
qualitatively different, the transition is a continuous process.

The connectionist simulation of automatic processing
learns to perform visual search tasks. First, the model
makes a few errors as it sets its performance criterion,
then executes a slow serial search. As practice proceeds,
it gradually acquires a fast parallel search. Connectionist
autoassociative processing allows the network to gener-
alize learning to similar patterns and provides an interpre-
tation for why consistency is an important factor. The
simulation of the model illustrates how a process can be
both automatic and controlled and how the processes inter-
act. It also has produced some novel predictions about
cortical thalamic neural activity that are being examined
physiologically.

EMPIRICAL IMPACT OF
CONNECTIONISM

Although the theoretical impact of connectionism has
been large, the empirical impact has been minimal and
may remain limited. There is a very serious problem of
the nonuniqueness of connectionist predictions. This
problem is well illustrated by the modeling of the word
superiority effect. McClelland and Rumelhart (1981) pro-
vided the archetype of a connectionist model that had three
levels (a visual feature, a letter level, and a word level)
to predict the word superionity effect. This model sug-
gests that as an empiricist, one might try to perform ex-
periments to examine the existence of each of these stages.
However, Golden (1986) presented a model for the word
superiority effect that had only a single level. In essence,
he could predict the word superiorty effect assuming only
a visual feature level. The model did not even require a
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visual letter level, much less a word level. The second
connectionist model substantially countered the take-home
message of the first connectionist model. The first model
suggested that we should think in terms of top-down in-
fluences from the word level to the letter and visual fea-
ture level. The Golden model shows that we can have
much the same effect, assuming there is nothing but a
visual feature level of processing.

It is likely that within S years we will have a prolifera-
tion of connectionist models with very different architec-
tures predicting the same empirical phenomena. Massaro
(1986) presented a connectionist model that could predict
a variety of effects in speech perception. Given the input
and expected output, this system found connection weights
that produced human-like data. Unfortunately, given
slightly different output patterns, this system produces data
that have never been observed in humans. It is critical
to remember that connectionist models use very powerful
curve firting procedures to map the input to the output.
Typically these models search in a several-thou-
sand-parameter space of connections. These are powerful
search techniques, and it is not surprising that they find
solutions. This may be great for computer science, but
causes a real problem for psychology. In general, psy-
chologists seek to understand how humans perform
processing. If 10 very different connectionist architectures
can be built to model the same phenomenon, it is difficult
to have much confidence in any one of the architectures.
As connectionism matures, it will be critical to examine
how it deals with this multiple-model problem. Mathemat-
ical psychology somewhat lost its enthusiasm because of
its inability to resolve issues between models. In Norman's
(1970) Models of Human Memory there were at least 12
different models for the recall curve. After the book was
published, most of the contributors went on to perform
different types of research, never coming to a consensus
on the true underlying cause for the free recall effect.

When a connectionist model fails, there are many in-
terpretations or outs for why it failed. Connectionist
models are sensitive to the initial state, structure, num-
ber of elements, specific problems, learning sequence,
learning rule. and coding patterns of the initial model.
Given so many degrees of freedom and a very powerful
learning rule, it is difficult to identify the limits of con-
nectionist modeling. If the system fails to learn, there is
always the possibility that given more units and more iter-
ations, the system would have learned. Clear disconfir-
mation of a particular class of connectionist models is very
hard to achieve.

WILL CONNECTIONISM FIZZLE?

[t i1s important to note that perceptrons did fizzle. There
was a great deal of early excitement, but after extensive
analysis it was found that the learning systems were, in
fact, far too limited. Connectionism is currently enjoy-
Ing a very explosive growth, and it is hard to be rational
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during this period. To be viable, connectionism must deal
with the problem of scaling well. The problem of scale
is the bane of artificial intelligence. Many learning rules
learn very well with small or toy problems but fail, due
to a combinatoric explosion, with more complex prob-
lems. The scaling of connectionist models is not under-
stood. Hinton indicates that they appear to scale by a fac-
tor of about N to the number of connections. If it takes
10* learning trials to fill up a 100-connection network (as
in NET-TALK), it would take 107 trials (or 14 man years
of effort at 10 sec/tnial) for a thousand-connection net-
work. Cortical connection inputs can easily reach a mil-
lion connections in a region. Connectionism must deal
with procedures that allow problems to be decomposed
so that the learning can occur in realistic time scales. Ar-
tificial intelligence started by generating great enthusiasm
about general problem-solving methods. During this stage
of artificial intelligence research, the mind was viewed
as a tabula rasa. However, this approach quickly fell off
a combinatoric cliff, making it untenable. Artificial in-
telligence started to solve real-world problems once it be-
gan trying to represent limited task domains via expert
systems approaches. Some practitioners of connectionism
feel that connectionism can solve the tabula rasa learning
issue. My view is that eventually we will see some com-
promise between the position of restricted domain
knowledge as an expert system and that of connectionism
modeling to remove the brittleness of those systems. Nor-
man (1986) comments that connectionism must deal with
sequential processing, which is typical in human problem
solving. To some extent, connectionist modeling can be
viewed as modeling of events that typically occur in less
than 1 sec. Much production system modeling (e.g., J. R.
Anderson, 1983) looks at processing well above the 1-sec
period. There is presently a great deal of interest in con-
nectionism; however, one must be cautious that part of
this enthusiasm may be coming from being tired of old
concepts. Psychology dropped box models for semantic
networks and production systems. It is now dropping those
perhaps to embrace connectionism.

IS IT GOOD FOR THE FIELD?

Yes, but it may be another field. I generally think of
psychology as being the study of human or animal sys-
tems. Connectionism studies learning systems that can be
simulated in computers and may occur in amumals. Hu-
man learning systems are a small sample of the possible
learning systems that could exist. To make an analogy,
think of the study of aerodynamics. To some extent, the
study of aerodynamics began with the study of natural
flight. Birds provided an existence proof of how an ob-
ject could fly through the air under its own power.
However, as the principles of aerodynamics began to be
understood. researchers studied artificial man-made sys-
tems of flight. In cognitive science something similar may
occur. Connectionist models may prove to be very effec-
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tive learning systems that greatly advance the computa-
tion of learning. However, they may not perform those
operations in a manner analogous to human learning.

CAUTIONS ON CONNECTIONISM

In a presidential address it is appropriate to comment
about the status of the field. Although I view the connec-
tionist movement with great enthusiasm, there are some
factors that give me pause. Connectionism will produce
some loss of the empirical tradition of psychology and
perhaps promote an animosity toward other views. It is
now acceptable to test learning concepts by running com-
puter models as opposed to human subjects. This loosen-
ing of the paradigm is important and good for the field.
However, I see developing signs of animosity between
the modelers and the empirical researchers. If we are go-
Ing to experience a paradigm shift, I hope that we can
do it without the animosity that occurred as a result of
Chomsky’s linguistic theories. Chomsky’s influential
work caused many linguists to abandon the empirical study
of linguistic processing in favor of the purely theoretical
representation of that processing. The established connec-
tionist modelers clearly have a strong regard for empiri-
cal data. I am, however, concerned by the younger gener-
ation of modelers, many of whom have only a passing
interest in empirical data. [ feel that if we wish to model
human cognition, it is critical that we generate testable
predictions so that we can limit the set of models that we
search for.

HOW BIG A PARADIGM SHIFT?

[ believe connectionist modeling does represent a sig-
nificant paradigm shift in psychology. It is certainly be-
yond the level of a shift of the transition from box models
to semantic nets in the early 1970s. Perhaps it is a shift
approaching that of the shift from behaviorism to infor-
mation processing in the late 1950s. It may be on a scale
comparable to transformational grammar in linguistics.
The current enthusiasm and exciting developments sug-
gest that it may be the largest paradigm shift that most
psychologists will see during their careers.

Connectionism is certainly changing the perspective that
psychology has of human cognition. I end with a quote
by Kuhn (1970, p. 121): ‘‘though the world does not
change with a change in paradigm, the scientist afterward
works in a different world.’’
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