
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



A CONNECTIONIST/CONTROL
ARCHITECTURE FOR
WORKING MEMORY

Technical Report AIP - 23 }

Walter Schneider & Mark Detweiler

Learning Research and Development Center
and Psychology Department

University of Pittsburgh
Pittsburgh, PA. 15260

29 September 1987

This research was supported by the Computer Sciences Division, Office of Naval Research
and DARPA under Contract Number N00014-86-K-0678; the Army Research Institute
under Contract Number MDA903-86-C-0149 and Personnel and Training Research
Programs, Psychological Sciences Division, ONR Contract Number N-0014-86-K-0107.
Reproduction in whole or in part is permitted for purposes of the United States
Government. Approved for public release; distribution unlimited.



ABSTRACT

A connectionist/control architecture and simulation are described. The
model is detailed at three levels of scale. The system-scale includes regions
that specialize in different classes of processing. The activity of the regions is
coordinated by a central control structure that routes control signals among
regions and sequences transmissions among regions to limit message
interference. One region serves as a context storage mechanism that can
reactivate messages contained on a innerloop of processing. At the macro
scale, each region is devided into a number of levels that sequentially or
spatially input or output the patterns to other levels. Each level has a control
structure that monitors the activity of all the modules in its level and controls
the signals to coordinate the sequential storage and processing of information.
At the micro scale, each level includes multiple modules. Each of these
modules involves a connectionist network that processes vectors of
information. A module can store, categorize, maintain, and prioritize a
received vector. This architecture provides an interpretation of working
memory phenomena including the magic number 3 or 4, acoustic confusions,
sequential processing, problems with digit cancelling, difficulty maintaining
order information, elaborative versus maintenance rehearsal, episodic versus
semantic memory, release from proactive interference, long-term memory
recency effects, robut processing during short-term memory overload, and
proactive and retroactive effects.
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Introduction

The past 30 years have witnessed a number of important movements in the study of short-term
memory (STM). In the 1950s Miller (1956) introduced the magic number 7 +/- 2, Broadbent (1958)
drafted the first serious information processing model of STM, and Brown (1958) and Peterson and
Peterson (1959) rediscovered the technique of using an interpolated task to prevent rehearsal. In the
1960s Melton (1963) advanced the view of Interference as the source of all forgetting, Keppel and
Underwood (1962) demonstrated the reality of proactive Inhibition, and Waugh and Norman (1965) and
Atkinson and Shiffrin (1968) proposed what must now be regarded as the modal models of STM. In the
1970s Baddeley and Hitch (1974) developed and elaborated the idea of a working memory system. And in
the 1980s research and theory building are continuing to further differentiate the phenomena and
mechanisms behind working memory systems, e.g., Baddeley (1986) & Chase & Ericsson (1981, 1982).

In the last 10 years the modal model of short-term memory has come under Increasing criticism
(Baddeley, 1976, 1986; Crowder, 1982; Klapp, Marshburn, & Lester, 1983; Klapp, In press). Short-term
memory appears to be both much more limited, e.g., of size 2 In digit cancelling (Klrchner, 1958) and
much larger, e.g., of size 80 In a skilled memory task (Chase & Ericsson, 1981) than suggested by the
magic number 7 + / - 2. More importantly, most real-world tasks could not be completed if working
memory had only five to nine items. For example, production system models used to simulate real-world
tasks such as ACT* (J.R. Anderson, 1983) typically require a working memory of 20 items to maintain
variable Information and the goal stack. Further, consider a task such as electronic troubleshooting. To
troubleshoot effectively one must at any point have in working memory the fault, the good state, the
position in the circuit, the critical Input and output signals, the expected signal and the current
hypothesis. If a technician Is temporarily interrupted while tracing a fault, s/he does not have to start all
over. After a few seconds, s/he continues as if the interruption had never occurred. Consider next that
practitioners interested in human workload have long sought to Identify the "red line* at which
performance undergoes catastrophic failure, e.g., an air-traffic controller being interrupted and completely
losing his/her ability to direct air traffic. Such failures are very rare. Humans tend to become slower an-d
somewhat more error prone with increases in task loading, but there is no "red line" and catastrophic
failures do not occur when the task requires remembering more than seven chunks of information.

In this paper we will trace some of these developments and offer a view of working memory situated
within a 1980s connectionist framework. We 'will* also discuss a number of phenomena which do not fit
neatly into the textbook treatments of the modal model. And while we nevertheless endorse the core Idea
of some buffer-like processes of the modal model, we seek to draw attention to the need for a new class of
models that can handle a range of working memory phenomena, not just the standard digit-span task.

In this paper we will describe one architecture from a class or space of architectures for working
memory. We use the term architecture as It is used in computer science (see J. R. Anderson, 1983; Laird,
Rosenbloom, & Newell, 1986), meaning a systematic approach to the configuration of computational
components to accomplish some Information processing tasks. The proposed architecture Illustrates both
the limitations and capacities of human information processing. We will also discuss human phenomena
that identify qualitative features of human Information processing and that should exhibit qualitative
features of an architecture of working memory.

The connectionlst/control architecture assumes processing occurs In a set of modules organized into
levels and regions, e.g., vision, speech, semantaic. The reglns communicate with each other on an
innerloop of connections. This loop allows Information to be transferred between input, output and other
regions, e.g., semantic or context. The information transfer within and between regions is modulated by a
control processing system that controls the maintenance and output of Information from modules. A new
feature of this architecture Is a proposed context-storage module that associates the content of messages
In the Innerloop with the temporal context. The context storage system Is able to reload modules after
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short-term Information decays or is displaced. In addition, It provides a means of achieving stable, robust
processing under conditions of high workload.

We will define working memory In a manner similar to Baddeley (1986, p.34) "as a system for the
temporary holding and manipulation of Information during the performance of a range of cognitive tasks
such as comprehension, learning, and reasoning." To more temporally bound the range of working
memory, we will examine tasks In which the expected time to load an element Into or retrieve It from
working memory Is less than a brief time (operationally defined as 10 seconds). We will not be overly
concerned with categorizing something as long- or short-term memory, but rather, we will define memory
based on temporal dimensions and discuss experimental data and examples in terms of this new model.

We begin by reviewing the traditional models of short-term and working memory. We will then
describe a connectlonlst/control architecture for cognitive processing that details the types of memory and
processing strategies that exist in such a system. The new architecture will relate three modeling themes.
First, the connectlonlst structure draws heavily from the concepts of connectlonlst modeling (Rumelhart <fc
McClelland, 1986b). Second, the control structure Is based on that of automatic and controlled processing
theory (Shlffrln & Schneider, 1977; Schneider, 1985; Schneider & Mumme, 1987). And third, the
combination of connectlonlst and control structures enables the architecture to accomplish many of the
Information processing operations associated with production systems (J. R. Anderson, 1983). We will
review a variety of literature on short-term memory and provide an Interpretation of It within the
proposed architecture.

Traditional Views of Short-Term Memory

Two of the most Influential models of short-term memory were developed Independently by Waugh
and Norman (1965) and by Atkinson and Shlffrln (1968; 1971). Borrowing from James' (1890)
terminology, Waugh and Norman proposed a model exhibiting independent primary and secondary
memories. Primary memory was cast as a brief storage system markedly limited In capacity. This
capacity can be roughly equated with a hypothetical buffer composed of a fixed number of slots. All
information entering primary memory is either rehearsed or forgotten. In addition, information is
characterized as being lost from short-term store (STS) both as a function of delay over time and/or as a
function of new Items displacing old Items. In other words, the longer an Item resides In a slot without
being rehearsed, the greater Its degree of decay; and, an old Item Is thought to be displaced as a new item
enters STS and occupies Its slot. Note that in spite of the presumed rotational character of STS, early
items from a list might not be lost if they make it Into long term store (LTS).

In the same year that Waugh and Norman published their model, Atkinson and Shlffrln described
mathematical models of learning and memory that formed the basis for the Atklnson-Shlffrln model of
memory (1968, 1971). Theirs too Is a dual-component concept of memory, albeit one comprising a sensory
register In addition to a short-term store (STS) and long-term store (LTS). This model was more
differentiated than previous models, seeking to account for the richness of attention and memory
phenomena, e.g., Atkinson and Shlffrln wanted to specify how comparisons are made, how retrieval is
controlled, and how Items are transferred from the STS to the LTS. To attempt this they made the
distinction between features of processing structure and control processes. The structure refers to the
aforementioned register and stores, treated as a serial set of stages through which information is
processed. The control processes refer to components of processing such as decision rules, organizational
schemes, retrieval strategies and problem solving techniques. In contrast to the permanent structural
components, control processes are characterized as optional, I.e., under the subject's direct control.

Baddeley and Hitch (1974) proposed a more complex short-term memory system than those reflected
in the unitary- or multiple-system theories of the late 1980s and early 1970s. They elaborated the Idea of
a working memory system comprising separable subsystems. The articulatory loop is one of the

Schneider-working memory architecture 1 April 1987



subsystems, cast as a passive mechanism resembling a tape loop of limited duration used to store
articulable information. In its later form (see, e.g., Baddeley, 1983, 1986) it Is characterized as more
active and made up of a phonological input store and an artlculatory rehearsal process. A second
subsystem is the vlsuo-spatlal scratchpad, or as Baddeley (1986) now prefers, the visuo-spatlal sketchpad.
This subsystem is described as being specialized to maintain and manipulate vlsuo-spatlal Images. It
resembles the articulatory loop in that it is basically an input store. Further, it too is regarded as active
in the sense that memory traces are thought to be regenerated by a process outside the store itself.
Finally, the central executive is the subsystem assumed to coordinate information from the artlculatory
loop and vlsuo-spatial sketchpad. It serves the role of deploying attentlonal resources and of selecting and
operating central control processes and strategies.

A Connectionist/Control Architecture for Working Memory

Architectural Principles
In this section we examine working memory from the perspective of a new architecture. Rather

than using a traditional computer metaphor for the structure, we propose a commingling of Ideas from
neurophysiology, connectionist modeling, and controlled and automatic processing theory. Five principles
suggest architectural constraints. First, we assume processing occurs in a network of modules having a
similar structure, but differing In their Inputs and outputs. This is suggested by the similarity of structure
of cortical hypercolumns from neurophysiology (see Mountcastle, 1979), except that they differ in the
input and output connections.

Second, we assume local specialization of function, i.e., that a given module specializes in a
particular class of processing. Evidence from neurophysiology suggests that a small region of cortex
specializes in processing a small set of stimuli from a specific class, e.g., a 1 mm area of V4 visual cortex
processes lines of given angles and colors from a 2 degree area of the visual field (Desimone, Schein, Moran
& Ungerlelder, 1985). Semantic modules may process words from a given semantic class. Cortical maps
of the connection anatomy between regions of cortex are becoming very detailed In function (see Van
Essen, 1985), suggesting there Is a great deal of specialization of the connections among small areas, e.g.,
10 square millimeters and localization of function.

Third, we assume that the knowledge is stored in the connection weights between neural-like units in
the system. Physiologically the connection weights are likely to be the synaptlc dendrite connections
between neurons. The strength of the connection or the size of the weight is assumed to change with
learning. The greater the weight between the input and output unit, the more the Input unit activates the
output. Storing information in connection weights is the defining characteristic of connectionist modelling
(see Rumelhart & McClelland, 1986b; Schneider, 1987) and connections are very prevalent in the cortex.
The connections provide an associative memory, such that a pattern in one module can evoke a pattern In
another module. Associations are stored dlstrlbutively-typically with many patterns In the same set of
connections (see Hlnton, McClelland, & Rumelhart, 1980). We assume that input to a module is a vector
of activation, e.g., the letter *A" might be coded as 0,1,1,1,1 where the O's and l's represent the absence
and presence of the features, e.g., vertical lines, horizontal lines, backward slant, and forward slant. The
set of connections, I.e., association matrix, can store only one association per input vector, yet it can store
approximately half as many random association pairs as there are connections. If Input vectors are
correlated, there Is greater Interference between the output associations (see below).

Fourth, we assume the connection weights may change with a variety of rate constants. The rate
constants determine how rapidly the connections change as a function of Interpolated learning and the
retention Interval. Hinton and Plaut (1987) have demonstrated that having fast and slow rate constants
In connectionist models can speed learning, reduce retroactive Interference, and speed recovery of
previously learned material. They refer to connections with large rate constants as fast weights because
they change quickly. Connections with low rate constants are called slow weights. At first glance one
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might react to multiple-speed weights as being unparslmonious, however, neurophyslologlcal evidence
currently points to the existence of over 50 neuro-messengers, with time courses ranging from milliseconds
to 30 minutes (Slgglns & Gruol, 1986); and even a simple motor ganglion synapse exhibits three time
constants (Barrett & Mangleby, 1976). Consequently, it seems prudent to assume that multiple-speed
weights exist, rather than a single weight.

Fifth, we assume a modulatory control system exists that regulates the flow of Information among
modules. This system has limited memory relating to control processes. It Is the mechanism that
produces attentional phenomena, in effect, facilitating the sequencing and refreshing of information In the
network. The control processing system is a version of the system (CAP1) for implementing automatic
and controlled processing (see Shiffrin & Schneider, 1977; Schneider, 1985; & Schneider & Mumme, 1987).

We will describe the architecture for working memory at three levels of detail. The micro-level
represents a potential neural-like network that can produce associative processing and attentional
phenomena, e.g., how visual features are associated to a code for a letter. The macro-level represents the
attentional control and message transmissions within the system, e.g., how memory scanning occurs. The
system-level represents the Interactions among regions, e.g., how visual and auditory message
transmissions are coordinated and how contextual biasing of message association occurs. The micro- and
macro-levels of the model are the same as those used In the CAP1 model (see Schneider & Mumme, 1987).
It Is important to understand the relationship among the three levels. We recommend you first get an
overview of the three levels by examining Figures 1-3 and reading the captions and then reading the text.
Readers who are more familiar with buffer models rather than connectlonlst models might benefit from
examining the figures In a top-down order of: the system level (Figure 3) Illustrating regional processors
and levels of processing; the macro-level (Figure 2) Illustrating buffer phenomena and sequential
processing; and the micro-level (Figure 1) Illustrating how a neural-Uke system could store, categorize and
transmit Information. The following text will go bottom up, I.e., micro, macro, and system, Illustrating
how each level Is built from elements of the previous level of detail.

Micro-level Structure

Figure 1 Illustrates the micro-level structure of the model. Information processing Is assumed to
occur In modules, e.g., M3 In Figure 1. The message Is represented by the state of the output units of the
module. The set of activities of the output units Is the message vector (MV) for that module, e.g., a code
of 0,1,1,0,0,1,1. Each output unit sums the activity of Its Inputs. Associative knowledge Is stored In the
connections between the message vector and output units. Learning Involves changing these connection
weights. The activation of each output unit Is a logistic function of Its Input. The logistic function
produces a graded output as a function of the Input, with minimum, e.g., no firing, and saturation, e.g.,
maximum firing, levels of output. The output of the whole module Is modulated by an attenuation unit.
This unit modulates the vector messages as a whole. If the attenuation unit Is fully activated all of the
output units are Inhibited and no message vector Is output from the module. If the attenuation unit Is not
activated there Is no Inhibition and the output units output the message vector at full strength to the
modules at the next level of processing. In the CAP1 simulation, this Is Implemented by multiplying all
the output units of the module by the attenuation level to determine the strength of the message vector.
Within each module, report cells send scalar Information to controlled processing. The activity report
from the module to the control level communicates the module's assessment of the activity and
Importance of the current vector within the module.1 The control level uses the activity report to
determine whether an Input Is recognized, If there Is a match between Inputs, or that a module has

In the CAPl simulation there are two types of report units. The activity report is a measure of how active the module is,
e.g., the sum of the squared activity of all output units. The priority report is a within-module association between the
vector message and a priority tag; it indicates how important the present message is for further processing. A local circuit
allows the priority cell to automatically transmit the vector, i.e., without modulation by external control processes. This
provides the mechanism for automatic processing which is the main topic of the Schneider and Mumme (1087) paper.
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Figure 1. Micro-level structure of the CAPl simulation. Processing Is assumed to occur In networks
of neural-llke units. Units are organized Into modules (the box labeled M3 outlines the third module) that
process a particular class of Inputs. Information between modules Is transferred as a message vector (MV)
on fibers connecting the output of one module to the Input of the next. In the diagram Information flows
from left to right (e.g., the top left MV might encode visual features, the two left modules letters, and the
right module words). Each module contains a vector of output units. The output units receive Input from
other modules and connect autoassoclatlvely to themselves. The recurrent connections from the bottom
of each output unit going up and connecting to the other output units In the same module represent the
autoassoclatlve connection. Each of the crossing points above the output units (to message vector or
autoassoclatlve fibers) represents an associative connection that can change the strength of connection
with learning. In the rest of the diagram the reverse arrow-type connections represent excitatory
Influences and the flat connections represent Inhibitory Influences. A module's output Is controlled by an
attenuation unit within the module. The attenuation unit regulates Information flow from the module.
Each module's activity Is regulated by a control structure (the box labeled C3 represents the control
structure for the third module). Each module reports Its activity to the lower-level control structure via
activity report and priority report units. The lower units (labeled 1. 2, 3) Illustrate a potential control
circuit. Unit 1 receives the activity reports from the module and Inhibits the activity of neighboring
modules. Unit 2 Inhibits Unit 3, reducing the attenuation activation, thus reducing Inhibition of the
output units, thus enabling a message vector to transmit. Unit 2 Is assumed to habituate resulting In a
burst of output and sequential switching of attention.



LEVEL (N)CONTROL

MESSAGE VECTOR

CONTROL SIGNALS:

\ LOAD ^ NEXT

LEVEL (N*l) CONTROL

ACTIVITY REPORT f FEEDBACK f TRANSMIT

Figure 2. Macro-level structure. Each square of this diagram represents a module In Figure l (e g
M3). The thick lines represent message vectors that output an activity vector from one module to the
next. The message vector output nows from left to right. The thin lines represent control Information
between the level control and modules and between level control structures. The arrows Indicate the
direction of control Information now. The output of modules Is modulated from a level control structure
(This Is similar to the control circuit C3 of Figure 1.) The control structure receives an ACTIVITY report
from each module and outputs a FEEDBACK and TRANSMIT signal to the module. The FEEDBACK
signal determines the autoassoclatlve feedback within the module. The TRANSMIT signal reduces
activation of the attenuation unit to allow output of the vector to other modules. Processing Is assumed
to occur In a series of levels. Each level communicates two control signals to the next level. The LOAD
signal Indicates a message should be loaded at the next level, the NEXT signal Indicates the next level
recognizes the message sent from the previous module and Is ready for the next Input. The Hgure
Illustrates how the sequentially-loaded letters "C.A.T" can be transmitted as a group to the nrst word-
level module of the word "CAT".
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something to transmit.2 The control processing for the system provides a method to sequence message
transmissions' in the network The micro-level structures Is based on general features of cortical
neurophyslology. The- output cell anlts have connections similar to cortical-cortical pyramidal cells, the
report cells to cortlcal-subcortlcal cells, the attenuator cells to chandelier cells (see Schneider & Mumme,
1987; i l i d l " 7

The bottom of Figure 1 (see box labeled (M3)) Illustrates a simple circuit that allows messages from
a setrof modules-to-bto^put sequentially, as might occur In a memory scanning experiment (Sternberg,
196fi)-3 The control structure coordinates the activity of multiple modules. If multiple messages are
transmitted concurrently, Interference results and Information Is lost. The above circuit Illustrates how
the control system can enable one module's message transmission, while inhibiting neighboring modules'
transmissions (see Schneider and Deslmone, 1987 for details). The proposed micro-level structure shows
some parallels with the available evidence of cortical hypercolumn anatomy (see Schneider & Mumme,
1987).

Insert Figures 1 and 2 about here

Macro-level Structure

Figure 2 illustrates the macro-level Interactions of a set of modules. The macro-level of the model
has two types of processing—a message type and a control type. Message type processing Involves sending
Information messages, i.e., message vectors of activation from one module to another. The thick lines in
Figure 2 represent message vectors (as MV In Figure 1). A message vector would represent a large vector,
e.g., of size 200 In the simulation. Control type processing involves monitoring the message traffic,
clearing modules, and modulating the transmission of messages. These functions can be implemented with
a circuit similar to that shown at the bottom of Figure 1 (C3). Observe (see Figure 2) that there are three
lines between the message vector and the control level. These lines carry scalar information and represent
only a single fiber. The control region receives an activity report regarding the activity of the current
message (see Figures 1 and 2). The FEEDBACK signal sets" the autoassociative feedback within the
module (see Figure 2; this Is not shown In Figure 1). The TRANSMIT signal (Figure 2) enables the
message vector to be output by reducing the amount of attenuation of the output units (see Figure 1).
The modules are arranged in levels and regions. Levels represent different processing stages, e.g., visual
dots, lines and bars, letters, and words, In which one level feeds Information to the next. Each level
communicates to the preceding and succeeding levels with two control signals. The LOAD signal between
level control structures Indicates that a level Is transmitting to the succeeding level. The NEXT signal
indicates to the preceding level that a signal has been recognized and that the preceding level can reset
Itself In preparation for additional Input from its predecessors. Regions represent sets of levels specializing
In a particular type of processing, e.g., visual, auditory, motor, semantic, and lexical. Modules at one level
of processing transmit vector messages to the next level of processing.

The outputs from a region can occur in several modes. Modules can be loaded sequentially and then
transmit as a set to buffer Input. Figure 2 Illustrates how one might hear the letters "CV BAB, mTn

sequentially buffer each Input and transmit the set BCAT - to the next level of processing. To buffer

2
For details of monitoring activity reports using external control process modulation and the development of automatic

processing, see Schneider k Mumme (1087).

In the control circuit (see C3 in Figure 1), memory is implemented by the state of habituation of cell 2. If two modules
need to transmit, they will both inhibit each other. The module with the higher activity/priority will win, blocking the
transmission of its neighbors. While the higher activity message is being transmitted, cell 2 will habituate (see Figure 1
bottom). After habituation the second module will transmit its message and inhibit the transmission of the first module's
message, thus enabling a sequential readout of messages.
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output, the modules can be loaded as a set and then transmitted sequentially. The Inhibition among the
modules within a set (see Figure 1 C3) would produce the sequential behavior. This scheme is capable of
implementing a sequential output system similar to the typing model proposed by Rumelhart and Norman
(1982) (see also section Vli A below). The sequential output mechanism can also be used to accomplish
tasks such as memory comparison and visual search (see Schneider & Mumme, 1987).

Insert Figure 3 about here

System-level Structure
Figure 3 illustrates the system-level interactions of regions of modules. Each region of processing

may be a series of levels of modules and control structure as depicted in Figure 2. Two types of
processing exist at the system-level (Figure 3B) which are analogous to the macro-level. The central-
control structure receives activity reports from each region and modulates the transmission of messages in
the central Innerloop. The five control signals between the regions and the central control structure are
analogous to those within a level, i.e.. ACTIVITY, RESET, TRANSMIT, LOAD, and NEXT, except that
the RESET signal Involves resetting the control sequencing within a region, rather than changing the
feedback within levels. The Innerloop of processing refers to the communication between modules from
each region that have connections to other regions. The central control system can be Implemented using
hardware similar to that used for controlling a single module (see Figure 1 C3). The difference between
the two is that the central control system receives the control signals from each region and routes the
control signals among regions, e.g., if the motor region requests the next message the central control
structure may route the request to the speech transmitting module. In contrast, within a region the
LOAD and NEXT signals come from the next level within a region.

The central control structure modulates the output of regions transmitting on the Innerloop. As a
result of preprocessing In each region, the central control structure need only process a single scalar value
(the activity report) from each region and not directly deal with vector messages. The distribution of
control among modules, regions, and the central control system avoids the homunculus problem, I.e.
delaying all complex processing to a later stage that cannot be specified.

An important feature of the system-level Is that there Is no central executive through which the
messages pass. A simplified system might have a single region receiving Input and output from all other
regions (cf., Baddeley, 1986; Barnard, 1085; & Broadbent, 1984). The advantage of the current cross-
connection system is that each region can communicate with other regions without passing through
another module. This enables faster single-message transmission and allows multiple regions to Jointly
activate a region. If regions automatically transmit their high priority messages (see Schneider &
Mumme, 1987) small numbers of high priority messages can be rapidly processed without requiring
controlled processing. The disadvantage of a cross-connection system is that concurrent message
transmissions can cause interference. To avoid such interference the central control structure sequences
the transmissions serially. This forced sequencing can result In delay or omission of messages, e.g., if too
many messages wait for transmission, the regional activity report may decay before the central controller
enables the transmission.

The message vector connections among modules are not a single pathway or bus. Each region has
its own set of fibers to other regions. In Figure 3A, the darkened line from context illustrates how each
module has its own pathway to the other modules. Interference Is not based on whether a vector is being
transmitted, but rather on whether the receiving module receives competing messages. Note, there is an
independent association matrix between each input and output module, i.e., a set of connections between
the transmitting vector and each receiving module. Thus the auditory region might transmit a vector for
the sound of the word 'PEN1 to the semantic region (evoking the meaning of the object) and to the
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Figure 3A. System-level description of the model. This is a top-down view of the regions of
processing within the system. Each region represents a series of processing levels as in Figure 2. The first
or last level of a region (last level for Input regions and first Tor output regions) is assumed to input to the
Innerloop of connections between regions. The modules on the Innerloop have separate message vectors to
each of the other modules they connect to. All the lines In Figure 3A represent message vectors (as MV In
Figure 1). The context module sends a message vector to all the other modules on the Innerloop. The
output for the context module Is highlighted to Illustrate this connection pattern. This figure represents a
simple view of one of many possible connection patterns for regions on the Innerloop. Figure 3B. Side
view of the system-level architecture. All of the regions of the innerioop connect to a central control
system that routes control signals between regions on the Innerloop. The system manages message traffic
on the Innerloop to maintain reliable communications across regions.
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speech region (evoking the speech output of the word). At the same time, the visual system might
transmit a vector representing the visual features of a left arrow, evoking a left motor movement In the
motor region, and a change in orientation in the spatial region. A neural system with large vectors could
support many dissimilar concurrent transmissions without substantial degradation of performance.4 This
system contrasts with Broadbent's (1984) Maltese cross view of memory in which all messages must flow
through a single central processing system. It also contrasts with single-bus architectures such as
(Barnard, 1985). It is not the number of messages transmitted, but rather, the number of competing
messages received that determines limits on the number of concurrent message transmissions. If the
region can determine when it is receiving interfering messages and signal the central controller, the central
controller could then begin sequencing transmissions of regions waiting to transmit.

Context Storage

Context plays a critical role In maintaining working memory in a system with many connections.
For purposes of illustration we have labeled one of the regions in the Innerloop as context (see Figure 3
left side). We assume context is a continuously varying representation of the internal state of the
Individual. It could be implemented In several ways, for instance, it could be the current state of the
system, e.g., time of day, emotional state, hunger, etc., or It could be a randomly varying vector, e.g.,
with each unit of the vector having a probability .5 of changing state every minute. The context vector
can output its message to the innerloop. As with the other regions, an association matrix exists between
the context vector and each region to which the context vector connects. Within a region the context
vector may connect to many modules. The context associations provide the potential for a very large
working memory storage. To illustrate, assume one has R regions and N modules connecting to the
Innerloop from each region. The context vector could then be associated to (R-l)N modules. Assume
further that there are 20 regions In the Innerloop and 30 modules in each region that connect directly to
the innerloop. A single context vector and its association matrices could store 570 codes (one per module).
It would be unlikely that all the regions would ever have an association to a specific context code (see
below). However, the system would certainly have the potential for storing much more then the 5 + / - 2
typically associated with short-term memory (Mandler, 1967).

Storage Is dependent on where learning takes place and what code is active In the receiving module.
In the CAPl model, associative learning occurs whenever a vector Input Is followed by a TRANSMIT
activated release of the vector that was previously stored In the module.5 Using the same learning rule
here, the only connections modified after a transmission are those that were activated by the Input and
were connected to a module that received a TRANSMIT control signal shortly after the Input
transmission. For example, assume a transmission occurs from a module in the auditory region and the
context region, followed by a controlled-processlng release of a vector from the motor system module that
controls the hand. The only connections that would be modified would be those on Incoming auditory and
context fibers In the motor module controlling the hand. Although many modules may receive the
auditory transmission (see Figure 3A), only connections In the transmitting modules are changed.

Attention In this architecture Is the TRANSMIT activated output of the message vector (see
Schneider & Mumme, 1987). Attention allocation is limited and varies with subject strategies. What is
actually associated to the context is limited by what Is attended (see FIsk & Schneider, 1984).

an order of magnitude of 10,000 would seem reasonable based on the physiology of hypercolumn interactions
(Mountcastle, 1070).

If CAPl were to allow associative learning to occur after an automatic transmission, the association matrices would
deteriorate and the network could no longer perform comparison tasks (Schneider & Mumme, 1087). Limiting learning to
only modules that are attended, i.e., receive TRANSMIT signals, coincides with experimental data suggesting that learning
occurs only after controlled processing and not after automatic processing (see Fisk and Schneider, 1084).
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The availability of stored information is dependent on the learning constant and decay rate for
connection weights. Most connectlonlst models use some type of delta learning rule In which the
connection strengths are changed In some proportion of the difference between the output vector and the
input vector (see Hinton and Sejnowskl, 1986). The proportion ranges from 0 to 1.0, with values less than
.1 being typical. The larger the constant, the smaller the number of learning trials needed. However, the
larger the learning constant, the more serious is the problem of retroactive Interference (see below).

The decay rate of connection weights determines how long the previous associations influence the
output of a vector. Fast decay weights are advantageous because the association matrices can be used to
provide a working memory that Is unaffected by the Information stored, say five time constants earlier.
For example, If the weight were to decay to half strength In one minute, there would be no proactive
Interference from any vectors stored five time constants earlier—the connections would have decayed to
only .03 of their original strength. Fast decay weights are disadvantageous because the decayed
Information can no longer be retrieved, e.g., an association learned five constants earlier cannot be
retrieved.

A system with multiple iearnlng and weight decay rates can substantially enhance the performance
of the network. Hinton and Plaut (1987) have found that having both fast and slow weights can
substantially speed learning. Typically one set of weights has a high learning rate and decays rapidly. A
second set of weights has a lower learning rate and decays more slowly. The fast weights learn quickly so
that after a small number of trials the input can evoke the output. During the same trials the slow
weights change gradually. After a large number of trials the fast weights have less Influence due to the
effects of retroactive Interference, weight decay, and the buildup of the slow weights (see Hinton & Plaut,
1987, and below). This multiple-weight scheme allows the network to temporarily alter the connection
weight space so that older memories can be recovered. For example, assume someone has learned a
foreign language as a child but does not speak It regularly. The connection weights between the semantic
and speech modules are modified as a result of practice with the current language. If the person is placed
In a situation In which s/he must switch to his/her first language, the fast weights change during the first
few minutes of conversation. This alters the connection space so that it more closely approximates that of
the first language. Note that although much of the previous first language knowledge returns, no
significant change occurs In the long-term weights. As the person resumes use of his/her current language,
the short-term weight changes may temporarily reduce availability of the current language. However,
after a change In context or waiting five time constants, the person should be able to operate In the
current language with no deficit.

For the present discussion of working memory we will assume that the context region connections
have fast learning and fast decay rates compared to the rates of the other regions in the system. It may
be the case that all of the connections In the system have both fast and slow change rates. Nevertheless,
for purposes of Illustration It will be easier to refer to: 1) the context weights, Implying that these are the
fast learning rate and fast decay connections, and 2) the Information weights (connections other than
context weights), implying that they have relatively slow learning and decay rates. To help Illustrate
these Ideas consider a simple learning example. If one were to try to associate a visual shape to a word
presented auditorily, a fast-weight change would occur between the context and the speech output region,
and a slow-weight change would occur between the vision and speech systems. After learning a single
paired-associate, one could perform twenty reaction time tasks, e.g., saying the word for the shape using
primarily the context associations. However, if one had to remember the shape-word pairing after an
hour, or learn five sets of pairs, the context associations would be of little value due to the effects of
weight decay or proactive Interference with the other learned codes.

The issue of working memory in this architecture is multlfaceted, consisting of many memories
within the system. At the micro-level, the activity level of each output unit decays with some time
constant. Each module is assumed to have feedback connections that result in the categorization and

Schneider-working memory architecture 1 April 1987



10

maintenance of codes. The combination of feedback and decay may allow a module to maintain a well
known code Indefinitely5 assuming there are no new Inputs to the module. In order for information Inside
of a module to influence the rest of the network. It must be transmitted out of the module. This depends
on the activities of the regional controller. This controller is assumed to have memory concerning which
modules have been transmitted and of the activity and priority of the messages waiting to transmit. The
regional controller may function as a buffer memory allowing the storage of a few vectors. In this form
the regional controller Illustrates phenomena similar to the buffer models of short-term memory, e.g.,
(Atkinson and Shiffrln, 1968). In addition to the memory resulting from dynamic activity, a great deal of
knowledge can be stored In the connection weights In the network. Much of this probably represents slow
weights and should be considered long-term memory. However, we assume there is at least one set of fast
weights connected to a context vector that is broadly connected at least to the innerloop of processing
regions. This vector facilitates one form of intermediate storage, and enables context storage of
Information. By associating vectors to context, working memory can be reloaded by transmitting the
context vector.

Simulation Methods
The simulation results described in this paper were run using the CAP1 simulation program

described in detail In Schneider and Mumme (1987). The model Includes the associative and
autoassociative models of J. A. Anderson's (1983) brain-state-in-a-box model. The model is a
connectionist model with a control structure. The results reported in this paper represent robust
characteristics of the architecture and are not dependent on detailed parameter searches.

The components of the model are Illustrated In Figure 1. Each module is made up of a 200-element
vector of output units. Each output unit sums its input linearly with the decayed value (typically 0.9) of
the activity of the unit on the previous Iteration. The output of a unit is a logistic function of the Input
with limits of +1.3 and -1.3 activity. Each output unit connects autoassociatively to half the other output
units in the module. Autoassoclation provides feedback; the strength of feedback varies between 0 and .6,
depending on the level of control feedback Input (see Figure 2) to the module.

Each output unit connects to half of the other output units In the same module and to half of the
units In other modules. With 200-element vectors a single output unit connects to 100 output units in Its
own module and 100 units In every other module that receives the message vector. The autoassociative
and associative connection matrices are each 20,000 connections per module.7 The associative matrices
between modules were initiated with a zero strength of connection between all elements. Learning was
accomplished using a Hebb-type learning rule that modified the strength of connections so the Input
pattern would come to evoke the output pattern. CAP1 uses a delta or Wldrow-Hoff learning rule (see
J. A. Anderson, 1983; Kohonen, 1984). The strength of connection between the input and output Is
updated by a learning constant multiplied by the differences between the desired output and the output
evoked by the Input. In terms of matrix algebra the change rule was: delta A = C(R-AS)ST where A Is
the associative matrix, R the response vector, S the stimulus vector, ST the transposed stimulus vector, C
the learning constant, and delta A the change in strength of association.

The output of the module Is determined by the attenuation unit. To transmit a message from a
module, the level control would activate the TRANSMIT signal (see Figure 2). This signai inhibits the
attenuation unit (Figure 1), allowing the output units to transmit the message vector to the modules at

The feedback only helps for patterns the module has previously learned (see Schneider and Mumme, 1087).

The results described here will generalize to much larger matrices. The physiological data suggest a much larger number
of connections are involved even in small regions of cortex (Mountcastle, 1070). Simulations with small matrices do not
generalize due to the effects of spurious correlations with small numbers of elements.
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the next level of processing. The attenuation Is a multiplication of the activity of the output units (when
transmitting the strength is 0.3 or 70% attenuation, when It Is not, it is 0 or 100% attenuation).

All input codes are random 200-element binary vectors with a specified correlation. All the output
codes had a 0.0 correlation. The sequential context vectors were correlated to the previous context vector
(typically .9). For example, between trials 10% (20 elements) of the context was changed from trial to
trial, selected output units.

Before a simulated experiment was begun, the autoassociatlve matrices within the modules were
taught the ensemble of target patterns. This Is analogous to testing subjects in a short-term memory
experiment and assuming they enter the room with knowledge of English and will be tested using high
frequency words. Typically the system was taught 50 random vectors presented 10 times each. This
modified the autoassociative matrix on each presentation with a decaying learning constant of .1 on pass
1, .00 on pass 2, .081 on pass 3,... to 0.039 on pass 10. After this procedure the autoassociatlve matrices
would produce positive feedback that matched (correlation above .99) the input for all the patterns (see
J. A. Anderson, 1983; Schneider & Mumme, 1987).

When a module transmitted to another module it transmitted a short burst, typically 8 Iterations of.
output to the the next module.8 This produced a short burst of output to the next stage. The next
module performed autoassociative processing during and after the burst to receive and clean up the vector
message.

The dependent measure for memory retrieval for the simulations Is the percent of vector match
between the retrieved vector and the desired vector. An output unit could be in one of three states: high
-- activity above .5, neutral — activity between .5 and -.5, and low — activity below .5. The degree of
vector match was based on how many elements matched between the retrieved and desired vector using a
three-state city-block metric. By chance vectors should have an average error of one per output unit.
The percent of vector match metric is the percent above chance that the retrieved vector matched the
desired vector. A 100% match is a perfect match, a 50% match implies an exact match on half the
vector and chance match on the rest, a 0% match Implies only a chance match. The probability of
recalling an item would be a monotonic function of the percent of vector match. The actual recall rate
would depend on the number of vectors learned, feedback, and similarity of vectors. The reader should
treat the percent match as a simple approximation of the expected recall.

All simulated recall trials were run until the network settled on a vector representation. This
typically required less than 10 iterations. Each Iteration Involved four components. First, the activity of
the output vector was decreased by the decay rate, e.g., each output unit's activity was set to .9 of what
It was on the last Iteration. Second, the input vector was multiplied by the associative connection matrix
(see Figure 1 cross connections between message vector and output units). This produced the input
activity vector (one element of the vector for each output unit). This vector was multiplied by the
feedforward (or associative) constant and added to the vector of output units. This occurred for the first
five Iterations after the stimulus was presented. Third, the output vector of the previous iteration was
multiplied by the autoassociative connection matrix (see M3 Figure 1 cross connection between the output
units to themselves with the module). This was multiplied by the feedback (or autoassociatlve) constant
and added to the Input of the output units. Fourth, the activity of each output unit was set to a logistic
function (a sigmoidal transformation) of the input to the unit. In memory the Input for each unit level 2
would be:

8
This bursting can be accomplished by having the control cells habituate. For example, if control cell 2 in Figure 1

habituates the system will tend to output in bursts.
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2m
(2)L . = m +

21 1 + txp(-aI2./m)

where the first subscript represents the level of processing, the second the unit within the level. The
constants are d—decay; f--feedforward associative Input; m--the maximum absolute value of the activity
level; a—the slope of the logistic function; and b--feedback autoassoclatlve Input. I Is the Input activity; O
the output activity, W the connection strength.

In the following discussion we will describe only changes from the above parameters. The default
parameters were: feedback, b=.6; feedforward to the next stage, f=.3; decay, d=.O; slope of logistic
function, a=2; number of Iterations of a burst 5, correlation of context vectors 0.9; correlation of response
vectors 0.0, number of Iterations before match determination 8, and learning constant 0.1. Typically four
to twenty-four simulation runs were sufficient to produce stable data.

A typical free recall sequence Involves presenting a list of vectors to be learned and then having the
network recall the vectors. On each trial the connection weights between the Input and output vector are
modified using the delta rule. The matrix is then presented the input and the output Is evoked and
categorized via autoassociatlve feedback. The percent of vector match Is calculated and this Is considered
the measure of learning. At the end of learning a series of vector pairs, all of the inputs are represented to
the matrix and the end-of-llst vector match Is calculated. The end-of-llst percent of vector match is a
metric for retention.

Interpretation of the Working Memory Literature

The present architecture provides an approach for representing a class of models of working
memory. Within this architecture the modeling process Is one of weaving together a set of parameters,
modules, and connections to produce specific models for particular phenomena of working memory. We
hope that a very similar structure can be used to represent many regions of processing. However, the
brain Is not a parsimonious processing system. We expect the human processing architecture to Include
many variants of one, or perhaps several architectures. In this section we will describe how the major
phenomena of working memory can be interpreted within the connectionlst/control architecture.
Illustrative simulations of some of the core concepts will be presented. The full elaboration of this system
will require extensive research and modeling which we hope will be accomplished by a variety of
researchers.

The architecture includes a variety of processing elements to accomplish stable processing of real-
world input. Context-based storage is critical to prohibit catastrophic failures of memory. For example,
If one Is distracted In the midst of writing by a phone call, one can reengage the Ideas focussed on when
Interrupted, even though the phone call may have required temporarily storing 20 chunks of information.
The control of module transmissions is necessary to allow one to attend to information in situations with
multiple stimuli, or information overload (see Schneider & Mumme, 1987). The sequential loading and
transfer from regions Is necessary to handle sequential Input or output. The use of the central controller Is
necessary to allow multiple regions to evoke common codes while limiting message Interference so that
critical messages are not blocked, e.g., either seeing a red light or hearing the work "BRAKE" can cause

We are currently developing computer modeling tools we can provide other researchers to help expedite explorations of
and extensions to this architecture.
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ones foot to press the break pedal, but one can also selectively Ignore, or at lease reduce the Influence of
one of the modalities. We will now examine how particular features of the architecture can be used to
interpret working memory phenomena.

Buffer Phenomena

As mentioned at the outset of this paper, the classic or 'modal model" (Baddeley, 1986) of short-
term memory Is a buffer model of the type exemplified In the Atkinson and Shlffrln (1968) model. Three
major phenomena are often cited in support of buffer models. These phenomena are very stable and have
probably been replicated hundreds of times (see Baddeley, 1976, 1986 for reviews). The first is the
recency effect in free recall. When subjects are given a list of words to recall, the last few Items are
recalled dramatically better than the rest of the items (see Postman & Phillips, 1965). Items in the buffer
are lost due to displacement rather than due to time delay. For example, Baddeley and Hitch (1977) had
subjects classify a list of 12 names as male or female followed by either Immediate free recall, a 30 second
blank delay, or 30 seconds of copying digits. In the first two conditions recall of the last Item was over
90%, in the filled delay it was only 52%. The lack of a delay effect in the blank Interval indicates that
trace decay was not a major factor in producing the recency effect. A second related phenomenon Is the
short-term memory decay effect caused by interference. Peterson and Peterson (1959) showed that the
probability of recall dropped from 80% to 10% In an exponentially decreasing function If subjects counted
backward by threes for 3 to 18 seconds respectively. A third related phenomenon is a span effect based
on studies of digit and word span. When presented a string of digits, letters, or words, subjects can
typically recall an average 8.2 digits, 7.2 letters, and 6.3 words when span Is defined by the length of list
recalled correctly 50% of the time (Crannell & Parrlsh, 1957).

The present architecture includes buffers In the regional controllers and potentially at multiple levels
within the regional controllers (see Figure 4). Many such buffers exist and they are essential for the
sequential input and output of information. For example, In speech perception typically one to three
phonemes make up a syllable, one to four syllables make up a word, one to four words make up a phrase,
and two to four phrases make up a sentence. The storage capacity for a specific task depends on the
specific codes, stages and regions involved. If the higher-level representations have codes for the lower-
level sets of buffers, a region may be able to store as many words as consonants, because there may be as
many modules for words as there are modules for consonants. Human short-term memory is essentially
equivalent whether it is measured in number of consonants or words (see Murdock, 1961).

Insert Figure 4 about here

To Implement a buffer scheme in the proposed architecture there must be methods to clear a
module, maintain a code within a module, and to output the code from a module. Clearing a module can
occur by several methods; these methods include: 1) inhibiting all the units to zero activity, or 2)
increasing the decay rate and reducing the feedback. To clear memory In the simulations we used a decay
time of .07 seconds in the absence of feedback, i.e., with feedback set to zero. This effectively clears the
memory for a module in about .2 seconds.

Maintaining a code in a module is accomplished by a combination of activation decay and feedback
within the module. Within each module an autoassociatlve matrix (see J. A. Anderson, 1983) associates
each previously learned vector to Itself. This has the benefit of cleaning up and categorizing noisy Inputs
(see Schneider & Mumme, 1987; & Anderson & Mozer, 1981). With a feedback parameter of .4 and a
decay of .9 the system can maintain a well-learned code indefinitely. Note, however, due to the critical
role of feedback, the module cannot maintain novel codes unless they are similar to previously learned
codes; this Is because the net feedback Is zero for novel codes dissimilar to the learned codes.
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INNER LOOP

CENTRAL CONTROL

Figure 4. Levels of processing from Input to output. This diagram represents the activity of
patterns In the network that would occur after sequentially reading the letters for the word •CAT1 and
outputtlng the motor movement to reproduce the word. The codes In the boxes show the state at the
time of the last motor movement. At the top level, the features of the last letter are active. At the
second level, visual feature sets code the letter positions. At the third level, the three letters have been
combined Into a single visual word code. This visual word code is transmitted as a single visual message
to all the modules on the innerloop. The level 4 motor unit receives the visual code "CAT" and translates
It into a motor code for the task of reproducing the word 'CAT". The motor task code is transmitted to
the motor sequence modules which store each set of movements for each letter. The "T1 motor code is
transmitted to the motor movement modules converting the code Into three separate movements. The
motor movement modules are sequentially output, causing the sequential strokes to produce the letter
•TV The dotted boxes in the center of the diagram represent other regions on the Innerloop not Involved
in this specific message transmission. Note the context storage mechanism could enable reloading of the
modules on the innerloop. The control signals are the same as those described In Figures 2 and 3.
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In order to buffer and hlerarchally code Information, all of the modules at one level of processing
must feed Into each of the rnnrini -s "t the next level of processing (see Figure 4). If the Input "CV 'A 1 ,
•T" enters sequentially while reading, It Is critical that the module containing the first letter not be
displaced by the second or third letters. One method to Implement this Involves multiplexing the Input
from the previous stage. If the feature level could selectively gate Input to each letter module, loading the
second letter would not Interfere with the code In the first letter module. However, this requires
substantial hardware at the front end of each stage of processing and is unnecessary. An alternative
scheme can use feedback locking to lock codes In buffers so that the Input to a second module at a level
will not Interfere with the code contained In the first module. If a code is loaded Into a module and
maintained by high feedback, the combination of the feedback and the non-linearities of the output
function can block the Interfering effects of Input codes that are dissimilar from the loaded codes. In the
simulation, Increasing feedback to .6 after the module is loaded will maintain the code within a few
percent, even if other dissimilar Input codes are activated to load neighboring modules. To illustrate, we
loaded vectors A, B, C into three modules each of which could store any of the vectors (see also Figure 5).
The accuracy of storing the first vector in module 1 was .964 after A was loaded into the first vector, .947
after storing B into module 2, and .943 after storing C into module 3. An easy method to eliminate the
effects of loading a vector on the to-be-loaded modules involves clearing the module in the process of
loading the current module. This is the scheme we use in the simulation. When a level receives a LOAD
signal It sets the feedback of the modules storing the information to zero. This causes the old vector to
decay and the new vector to be activated, then the feedback is Increased, locking the code in the module.

The proposed sequential loading scheme has trouble loading similar codes Into neighboring modules,
thus predicting human problems with similar input. The reason for this is that the feedback effect can
easily block an orthogonal code but it has difficulty blocking a similar code. Sequentially storing two
similar vectors, e.g., with half the elements equal into neighboring modules at the same level can cause
several times the error of storing random vectors. The size of the disruption depends on factors such as
the degree of similarity of the input and output codes, the number of codes, and the duration and strength
of feedback.10 Storing similar codes disrupts the non-common portions of the code. This Increases the
probability of confusions but generally does not result in omissions.

To appreciate the influence of code similarity on processing, recall that Conrad (1964) has shown
that most errors in short-term memory are acoustic confusion errors even if the information is presented
visually. This would be expected if the vector code for the information were acoustic and should be more
likely if the the other items in the remainder of the list were acoustically similar. Baddeley (1966)
Illuminated this effect further by conducting an experiment to assess whether short-term memory would
be more disrupted by acoustic or semantic similarity. Here subjects were presented sequences of five
acoustically and five semantlcally similar or dissimilar words and asked to recall each sequence
Immediately following Its presentation. The Influence of acoustic similarity was striking; subjects
correctly recalled only 9.6% of the similar sequences as opposed to 82.1% of the dissimilar ones. The
Influence of semantic similarity was much smaller; In this case subjects correctly recalled 64.7% of the
similar sequences and 71.0% of the dissimilar ones.

The last step of sequential processing involves having all active modules output as a set to the next
stage of processing. For example, after the elements "C", •A", and BTB are sequentially loaded Into the
letter level, the entire set can be transmitted In parallel to activate the word "CAT" at the next level.
This can be accomplished by reducing the activation of the attenuation units of all the active modules In a
level (see Figure l). As long as there are few Interconnections among modules at the same level,
transmitting Information out of a module will not disturb the contents of the other modules at the same
level. This Is Important because It allows one level to output to the next level with every new Input until

We are in the process of investigating these relationships. Currently, presenting the module related codes reduces the
likelihood of the module retaining the non-common portions of the code, resulting in more confusions.
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the next level recognizes the set of Inputs. In this way higher-level modules can detect matches even
without a blank. For example, for the input " C \ "A". "T" the outputs would be " C \ "CA", and
•CAT", at which point the next level would attempt to recognize the input via autoassociatlon (see
J. A. Anderson, 1933; Schneider & Mumme, 1987). After recognition at level N + l . that level would
return a NEXT signal (see Figure 2) to reset level N so the next set of elements could be buffered.

Sequential information can be encoded and stored in several ways. The first scheme involves
positional coding. If the modules at a level are filled in a prescribed order, the connections for each
module can provide positional markers, i.e., we assume that each module has separate fibers to the next
level, and that each set of fibers codes positional information. The disadvantage of this scheme is that the
level must always know which position it is in, and the later modules In a level are rarely used.

A second scheme for sequential storage is to have each module use a context-sensitive code to code
its Information (see Wickelgren, 1969). Rumelhart and McClelland (1986a) have used such a scheme to
code Wickelfeatures (Wickelgren, 1969) to encode speech sounds. For context-sensitive coding each
module must Include In its code the present input plus at least some features of the previous and following
input items. For example, to code the input "C", "A", "T" in a context-sensitive code, each module
would code "-Ca" BcAt - and "aT-" (where the - Indicates a terminator and the lower-case letters
degraded or course coding of the neighboring letter). With context-sensitive coding the letters can be
represented in any module and the next level would detect the word "CAT*.

The advantage of a context-sensitive coding scheme Is that the Inputs can be In any position as long
as the same context-sensitive code does not reappear In the Input. In speech production such a coding
scheme allows a position-independent representation of nearly all the words In spoken English and can
predict many speech errors (Wickelgren, 1969). For the purposes of the present model, such a code could
allow sequential storage without requiring specific sequential positions to always occur In specific modules.
Thus "CAT* could be represented In many spatial positions, or perhaps In an ambiguous context that
could not otherwise be interpreted, e.g., "XCAT1.

A third scheme for sequential storage Is a dynamic reallocatlon scheme. In this scheme all of the
memory at one level of processing is allocated for storage of the first input and the modules are
reallocated to store additional information-as needed. For example, assume the sequential string ABCD Is
stored In four modules. Input A would be stored In all the modules, AAAA, B In one-half, AABB, C In
one-fourth, ACBB, and D in another one-fourth, ACBD. Position Information could be encoded either by
position markers, e.g., with module 2 encoding position 1, 1, 3, 3 If there were 1, 2, 3, or 4 codes stored In
the level, or by a context-sensitive code. The advantages of dynamic reallocation are the following: 1) all
of the memory is always used, thus producing more reliable and faster processing for smaller numbers of
items; 2) the system need not know the sequence length at the beginning of the sequence; and 3) the
system degrades gradually with list length, rather than processing without an error and then always
falling, as In a fixed slot buffer memory.

With dynamic reallocation or context-sensitive coding the modules at one level of processing can be
treated as a ring buffer, rather than as a set of fixed positional slots. In a ring buffer the first element of
the ring Is the position next to the last, and given that It Is a ring, there Is always a next element to store
into. After all of the slots have been stored once, the next Item stored replaces the oldest code in the ring.
In a ring buffer of size M one can store the last M sequential inputs. For example, assume the buffer has
7 slots. As the sequential Input "CATCH" is entered, the codes "-CAT" and "-CATCH-" could be
Identified. By varying the number of elements back that are activated, groups of one to seven letters
could be output to the next stage of processing. Having information stored in a ring allows higher levels
of processing to review the previous input until the limits of the ring are exceeded. Baddeley (1986, p. 80)
suggests that the articulatory loop can store the last 1.67 seconds of reading time for short words.
Assuming it is always the last 1.67 seconds, this suggests a ring buffer type of allocation, rather than fixed
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slots which are r*«n after each punctuation mark.

The process of sequencing Items serially followed by a parallel output to the next level is Illustrated
In the Figure 5. The activation of each code and the changes In the control parameters are shown. The
simulation Incorporates feedback locking to lock codes In modules. Observe that the feedback parameter
Is used to clear modules (by being set to zero) and to maintain the modules' codes while neighboring
modules are loaded. Dynamic reallocatlon Is used, I.e., modules are cleared, when needed. The code CAT
Is stored as CCC, CAC, CAT for each Input. The LOAD signal from the letter-feature level (line 1,
Iterations 1-8) causes the letter-level controller to deactivate feedback (lines 3, 6, 0, Iterations 1-8), loading
C into all the modules. In Iteration 9 the letter-level LOAD signal is deactivated, activating feedback
(lines 3, 6, 9), and Increasing the activity in modules 1, 2, and 3. The rapid activity increase (Iterations
9-12) Indicates to the level controller that the code has been recognized. The letter-level controller sends a
NEXT signal (not shown) to the letter-feature level, causing the letter-feature level to be cleared. The
letter-level controller sends TRANSMIT signals (lines 4, 7, 10 iterations 10-16) to the letter modules,
outputting the *Cn code to the word level. It also sends a LOAD signal to the word-level controller.

On iteration 16 the LOAD signal (line 1) Is activated for the second set of letter features. The
letter-level controller dynamically reallocates a portion of the modules to store the incoming information
and reduces the feedback of a module (line 6, Iteration 17). With no feedback and new Input, the old code
is replaced with the new code ("A11 replaces "C* in module 2).

Notice that the transmission of the "A icode did not significantly influence the activity of modules
for which the feedback was still activated. The slight decrease In activity (lines 2 and 8, Iterations 17-24)
shows the minor impact of the modules receiving the "A1 code while the "C 1 code is maintained by the
feedback within the mddule. All the modules transmit their contents ("CAC1) on iterations 26-32. The
third letter Is allocated to module 3 and replaces the "C" code. On Iteration 47 the word-level module
recognizes the code and returns the NEXT signal, causing the letter-level to reset.

The dynamics illustrated in Figure 5 show how the architecture in Figures 1 and 2 performs
sequential input processing. Information is buffered at each level producing asynchronous input
processing. Each level can hold or retransmit its information if the next level does not respond. The next
level can detect patterns even without explicit boundary terminators, e.g., in the previous example,
"CAT" was recognized because It was the first meaningful code encountered In the pattern •C", BCA",
•CAT1 , not because there was a blank afterwards.

Insert Figure 5 about here

Multiple Buffers

The number of buffers available at a level of processing may vary depending on the nature of the
material. Some buffers may be organized sequentially as In audition, some spatially as in vision, or some
based on content as In semantic memory. As a single level Is dynamically reallocated for greater numbers
of buffers, the quality of the coding degrades. We assume there Is a limit to the number of buffers at a
given level or processing. In addition to the limited number of buffers, we also assume the control region
can manage only a small number of modules. For example, 50 semantic modules might exist, each
specializing In a given class of words, e.g., for categories such as animals, vehicles, etc. Nevertheless, if
the controller can remember only the four most active buffers, the number of active semantic buffers

The NEXT signal could automatically cause the level to prepare to clear all modules with the next LOAD signal from a
preceeding input. By delaying the act of clearing information it would be possible for the level to retransmit information if
needed.
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Figure 5. Sequential Input dynamics. This diagram shows the activity levels and control signals for
sequentially loading three vectors In a CAPl simulation. This represents the activity of levels 1, 2 and 3
of Figure 4. The ACTIVITY signals (lines 2, 5, 8) show the activity of all of the output units of the
vector. The maximum points on the line represent an absolute value of 1.1 units of activation. The
FEEDBACK signals (lines 3. 6, 9) control the autoassoclative feedback within the module. The high state
represents a feedback constant of .6, the low state a feedback constant of 0. The LOAD signal (line 1)
Indicates the letter feature modules transmitting a control signal to the letter-level modules (lines 2,5,8).
This causes the letter level to reduce the FEEDBACK (lines 3, 6, 9) so the letter-level modules accept the
transmitted message. The vertical dashed lines represent a causal Influence In the diagram. The
downward lines represent the LOAD signal altering feedback. The upward lines represent feedback
changing the activity of the appropriate module. The TRANSMIT signal (lines 4. 7, io) represents the
outputtlng of the message vector to the next module In the sequence. At the same time that the
TRANSMIT signal Is activated, a LOAD signal Is transmitted to the next level (not shown). As the next
level recognizes an input pattern (for the pattern 'CAT'), it returns a NEXT signal to the letter level
causing the letter level to clear its memory and send a NEXT signal to its predecessor level.
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would be effectively only four buffers, regardless of the total number of modules.

Based on our Interpretations of empirical literature, the number of active buffers seems to be In the
range of three to four elements. In his reviews of how well Miller's (1956) magic number had withstood
the succeeding decade and a half, Broadbent (1975) marshalled strong converging evidence to suggest that
the magic number is closer to three than seven items. Here we will highlight only a select sample of such
evidence. First, when people are asked to group common objects together, the modal category size is two
or three. Second, when people are asked to divide strings of letters or digits Into smaller groups,
rehearsing In groups of three speeds learning better than other group sizes (cf. McLean & Gregg, 1967;
Wickelgren, 1964, 1967). Third, pauses during free recall suggest that Items are chunked into groups of no
more than three or four items. Finally, mathematical analysis of hierarchical organizations suggests that
chunks of three or four Items provide the most efficient hierarchy for variable-order searches (Dirlam,
1972).

The present view is compatible with Baddeley and Hitch's (1974) concept of multiple buffers or slave
processors. If material Is presented so that some of the Information can be stored In the articulatory loop,
visual-spatial store, and motor system, then the working memory system will exhibit a larger memory and
a lack of competition among memories. Two recent sets of experiments Illustrate the benefit of utilizing
multiple buffers. Frlck (1984) tested subjects' digit spans auditorily, visually, and using a combined
auditory and visual presentation. When the first four digits were presented visually and the remaining
digits auditorily, subjects' digit spans exceeded an auditory baseline measurement by three digits. In a
second set of experiments, Reisberg, Rappaport, and O'Shaughnessy (1984) demonstrated how motor
memory can be used to increase the overall holding capacity of the working memory system. Subjects
were taught a simple coding scheme that enabled them to store numbers In a finger-based motor program.
In the first of six experiments, subjects were able to use this coding scheme to Increase their digit spans by
33% over baseline. In subsequent studies these authors extended these findings and showed that by
having subjects practice the coding scheme they were able to Increase their digit spans by nearly 50%.
We feel these studies offer strong support for the Idea that multiple buffers can be exploited to enlarge the
effective workspace of working memory. The present architecture requires an explicit mapping out of
these buffers, and we hope that emerging physiological data concerning the structure and function of
cortical regions may help guide subsequent Inquiries Into the nature of the regional processing systems.

A system with multiple buffers provides a touch more robust processing system. If one buffer Is
disturbed, Information can be reloaded from the previous buffer. For example In Figure 4, the stimulus
code for "CAT" Is buffered at four levels. Even If three of the four levels are cleared, the system can still
reload the output buffers to output the Information.

Coding Item and Order Information

In the present architecture Item and order Information are coded in different ways resulting In
differential sensitivity of the two types of Information. In short-term memory experiments, order
information Is often lost more rapidly than item information, and there Is some systematlcity to what Is
lost when (see Estes, 1972). In his pioneering work on short-term memory, Conrad (1959, 1960, 1964) was
among the first to systematically document errors of omission, transposition, substitution, and serial order
Intrusion. However, only recently did Healy (1974, 1982) devise methods to experimentally separate the
retention of item and order information. Healy (1974) showed, e.g., that the relationship between order
errors and serial position differs from that between Item errors and serial position. Order errors
(transpositions) reflect both primacy and recency effects; item errors (Intrusions and omissions) reflect
mostly a primacy effect. In addition, Healy showed that when a temporal sequence was to be recalled,
subjects made a large number of phonemic confusion errors. In contrast, when a spatial sequence was to
be recalled subjects made no more phonemic confusion errors than expected by chance. More recently
Healy (1982) extended this methodology and provided additional evidence in support of independence of
item and order information.
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Order Information may be coded by the buffer position, memory In the controller, or as a small part
of the code If the module Is storing a context-sensitive code. Item information Is stored In the vector of
the module. The learning mechanisms Implemented In the present model can only associate vector code
Information. There Is no long-term memory of control-type Information. For example, a context vector
may, through the use of fast weights, associate the vectors In a set of modules to the context but not to
the control-type information encoding the arrival order. This would enable context-based vectors to be
reloaded (see below). However, the sequential order information coded in the control regions may not be
restored. This results In the expectation that order information may be lost rapidly. The loss of order
information is not a serious problem if the next level of processing has a code for the full set of Items
including order. To illustrate, consider that at the word level 'CAT 1 is a single code which could be
associated t j the current context, remembered, categorized, and maintained via the autoassoclatlve
processing within the module (see Schneider & Mumme, 1987). Now consider a novel letter string,
"CET*; it docs not have a stable code and Its order Information Is more dependent on the state of the
control memory of the letter level which is not reset by context.

Order of Output
The retrieval of information from buffers Is likely to occur only In a forward sequential order. In

order for the central control structure to request the next Item, it would need to send a "NEXT" signal.
This could be communicated with a single binary signal, requiring no memory in the central control
structure. We assume the local controller can maintain information concerning the last item transmitted
and respond to the "NEXT" request by transmitting the next most active element. In order to support
random-access retrieval of one of N buffer elements, there must be at least log2 N + 1 request signals (the

extra 1 Indicates a random-address request). In addition, the central control structure would have to
maintain information about which modules were active and which had already been read. These sorts of
requirements begin to make the central control structure a homunculus, with little processing benefit given
how rarely random access Is needed. A more likely architecture would Include "TRANSMIT", "NEXT",
and "RESET" control signals (see Figure 3B). This would require little memory In the central control
structure and allow retransmission of messages or sequences of messages that were not well received, e.g.,
as in the case after a message is transmitted and no other module in the network recognizes the message.

The forward sequential coding of information at a level of processing can account for the difficulty
humans have with digit cancelling and reverse digit span tasks. In a standard digit-cancelling task a series
of digits Is presented one at a time, typically at a rate of one digit every .5, 1, or 1.5 second(s). The
subject's task Is to cancel a digit either when It first appears (Immediate digit cancelling), or some number
back In the series. In a one-back task, e.g., the subject might see a sequence such as 7, 3, 8, 2, 4, and 5.
His/her task would Involve pressing (cancelling) the number 7 when the 3 appeared, 3 when the 8
appeared, etc. Similarly, In two-, three-, and four-back conditions, the subject responds by cancelling the
appropriate digit back In the series while updating his/her memory.

Within the current architecture, the one-back task is easy. Whenever an Input occurs, the digit Is
stored In the speech output buffer. When the next digit occurs, the previous digit Is output from the
speech bufrer while the current digit Is entered Into the auditory buffer. The two-back task becomes much
more difficult. When the third digit is input, the buffer pointer must be reset to the first position and the
first digit output, then that position must be cleared (without clearing the second position In the buffer),
and the third element must be added to the buffer. This would be a very difficult task for a control
structure that evolved to handle forward sequential coding. Errors of loosing track of position would be
very common. Humans frequently loose track of Item and order information In digit cancelling tasks.
Generally, the further back In the series they must cancel, the more frequently they loose track of such
Information. For example, In an early variation of a cancelling task using lights rather than digits, Kay
(1953, in Welford, 1968) found that at the rate of one new light every 1.5 seconds, subjects average
correct performance declined from 95% (one-back), to 67% (two-back), to 47% (three-back), to 35% (four-
back). Furthermore, when Mackworth (1959) used this same procedure and established presentation rates
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on the basis of acuity to achieve a 80% accuracy criterion, she found subjects needed progressively more
time to perform as they cancelled farther back In a series, e.g., at one-back they required 1 second
between Items, at two-back 16 seconds, at three-back 2.4 seconds, and at four-back 3.8 seconds. We
encourage the reader to get a sense of the difficulty of this task by having a colleague read a series of ten
random digits at a rate of one per second and then try to respond to the digits two-back in the series.

The use of forward sequential coding would also explain the difficulty of outputting sequential
Information in reverse order as in reverse digit span. The last item could be output by retransmission of
the last input. However, to get to the second to the last Item, the list would have to be output from the
beginning until the second to last item were reached. Normal forward digit span is typically about 7
Items (Lyon, 1977), whereas reverse digit span is typically two items less (Starr, 1929; Anders & Llllyquist,
1971). The current control structure could do reverse digit span by outputting the last Item, then
outputting from the start of the list until the next item to be output matched the last Item output before
the reset. With a buffer size of 4, plus another single storage buffer, a reverse digit span of 5 would be
possible. However, the reaction time to output the items in reverse order would be slow, particularly for
the items near the end of the Input list but not the last Item (see Anders & Lillyqulst, 1971).

Rehearsal Loops

In the present architecture a rehearsal loop can be implemented if a message can be passed between
a series of modules and the message transmission results In invertlble codes. For example, in Figure 3 a
rehearsal loop could be established between the auditory Input buffer and the speech output buffer. A
vector code for a word could be transmitted In the Innerloop to the speech buffer. Then the speech buffer
could transmit the word to the auditory input buffer. In order for rehearsal to be successful, the code
must be Invertlble. An invertible code is one in which a one-to-one mapping exists between each code set.
This Is the case for speech; for every auditory representation of a spoken word there Is a motor
representation of the spoken word. Hence, given each code is associated uniquely to the other, It is
possible to map to the other. Invertible codes are probably not the norm for communications in the
Innerloop. Most communications probably involve many-to-one mappings, e.g., there are many color
patterns that map to the word "red". The speech buffer might be able to bias the visual system, but it
cannot produce a clear code. One would expect to be able to develop rehearsal loops where the codes are
invertlble. For example, training might allow one to build an auditory-to-motor rehearsal loop by
mapping each word to a specific motor movement and each motor movement to a unique auditory code.

The present architecture illustrates many of the buffer memory phenomena associated with working
memory. There are buffers In many levels, and In many regions of processing. The primary purpose of
these buffers Is not to provide a short-term memory store, but rather, to enable the robust processing of
sequential Input and output of temporal or spatial Information. Different regions may have different
numbers of buffers, levels and time constants.

Context Effects, Proactive Interference, and Release from PI

A system having only a short-term buffer memory and a permanent long-term memory would
probably not survive in a world with interruptions. The buffer memory would work well as long as the
Incoming stimuli were continuously being processed, and these buffers were enough to contain and operate
on relevant information. If the buffers were ever flushed, however, the system would loose Its orientation
In time and place and would have to search the environment to determine where it was and what it was
doing. Having a system with only buffer memories would be like operating a computer system with only
active memory and no backup tapes or disks. If the power were ever lost, the system would have to begin
from scratch. Long-term memory would help, but It Is Important not to use long-term memory as a
working memory. This Is because the faster long-term memory Is changed, the greater the likelihood that
retroactive Interference will distort all the previously stored long-term memory making it useless (see
below and Figure 6).
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Episodic Memory
A system that inclu ies a context or episodic memory Is a much more stable system. As an analogy,

consider how computer centers use periodic backup procedures. Every night the system backs up all of
the files stored In the system. If there is a failure, such as a system disk crash, the most that Is lost Is one
day's work. The context module in the present system provides an analogous sort of backup. Every time
a new vector Is stored In the innerloop of modules, the connections between the context vector and the
message vectors change so that the context vector can reevoke the message vectors. The context vectors
may be changing continuously and providing a time-stamp of the current contents of the system.
Therefore, it might be possible to reestablish past contexts that occurred at various previous states, e.g.,
30 seconds, 5 minutes, 1 hour, 1 day earlier.

A context or episodic memory provides three critical benefits to the system. First, it makes the
system much more robust. If the active memory buffers are Hushed to process some critical event, the
buffers can be reloaded as a result of the context vector reestablishing the previous contents of the buffers.
Second, it provides the features of temporal orientation that Tulvlng (1972,1083,1084) cites as benefits of
episodic memory. These Include maintaining space-time orientation, allowing time-tagged Judgment and
retrieval, and providing autobiographical memory. Third, the episodic memory may allow the use of
remlndings, i.e., remembering a previous sequence of actions, (see Ross, 1984; Schank, 1982) to enable the
performance of procedures before procedural knowledge has developed.

Additional evidence for the potential value of context comes from the study of memory deficits.
Some amnesiacs, such as HM, can perform short-term memory tasks and learn procedural tasks, but they
cannot recall or recognize words presented a few minutes before (Cohen & Squire, 1980; Cohen,
Elchenbaum, Decacedo, & Corkln, 1985). Perhaps HM's pathology Illustrates how debilitating processing
might be If one had only a short- and long-term memory system without any type of time-tagging to
maintain temporal orientation. If HM Is distracted from a simple task, the task must be reexplalned to
him again from the beginning. HM cannot survive in the normal world and must be under close
supervision at all times. Because he cannot remember where or why he Is somewhere, he is prone to
wondering and getting lost.

Proactive and Retroactive Interference

In a context memory system, storing knowledge in fast connection weights will show rapid
knowledge acquisition, but It will also exhibit severe proactive and retroactive Interference. By using the
fast learning rate, knowledge Is quickly acquired but quickly forgotten. Figure 6 illustrates this
relationship for a simple simulation. The network was trained to associate four random output vectors to
a changing context vector. The context vector was a 200-element binary vector. From one trial to the
next 10% of the elements were resampled resulting in the context vectors having a correlation of .9. The
learning curves (Figure 6A) show how accurately the context vectors reproduced the desired response
vectors. Figure 6A shows the information available at the end of each trial. This is similar to what would
be expected In a short-term memory experiment with a long period of distracting material, e.g., as in the
Peterson & Peterson (1969) experiment with 18 seconds of counting backwards by threes. Figure 6B
shows end-of-llst recall for all 4 associates. The system presented the four context vectors for the four
previous trials and compared the output to the originally learned vectors to determine the percent of
vector match. This would be similar to a free recall experiment for a four-Item list with a distracting task
to eliminate any retrieval from buffer memories.

The first association Is learned nearly perfectly over a wide range of learning patterns. This Is
because in a new connection matrix there are no previously learned associations that activate Incorrect
connection patterns. In the present architecture a pattern activation Involves evoking a pattern and then
categorizing the pattern (via autoassociatlve feedback) to be one of the previously learned patterns. A
vector only one one-twentieth as strong as another association, e.g. a learning constants of .05 and 1.0,
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produces nearly i-.lSiUiral recall on trial 1, e.g., 92.5% match after a learning trial with a .05 learning rate,
95% for .1, 98.5% tot .4, and 100 % for .8. Performance resembling a first trial occurs when either the
previous connection weights are all zero or when the current retrieval vector Is orthogonal to the
previously learned vector (see below and Figure 8). For example, In the current simulation waiting 20
trial periods reduced the correlation to .12 and produced learning performance very similar to trial 1
performance.

Smali learning rates, i.e., slow changing weights show serious proactive Interference effects (See
Figure 6A). This Is because the previously learned patterns Interfere with the current pattern. If these
patterns point the vector toward previously learned patterns the feedback will retrieve combinations of old
patterns as opposed to the current pattern. With a large learning rate the current learning trial will
swamp the effects of the previous learning trials, e.g., Figure 6A .4 learning rate condition. If the purpose
of the memory Is to reload the contents of the last trial, a high learning rate Is beneficial.

Large learning rates, I.e., fast changing weights show retroactive Interference effects. Figure 6B
shows the retention after learning four patterns. For a large learning constant, e.g., .8, trial 1 retention Is
nearly at chance after only 3 Intervening learning trials. Note the ordering of retention conditions on trial
1 and 4 are opposite. The highest learning constant, i.e., 0.8 produced the worst trial 1 and best trial 4
retention, Figure 6B. Fast learning develops the association In a single trial but at the expense of
forgetting everything learned previously. Trial 4 was the last trial and hence retroactive Interference was
not a problem. In sharp contrast to the condition with a large learning constant, the condition with the
smallest learning rate, I.e., 0.1 showed the worst trial 4 retention and the best trial 1 retention of any of
the learning rates. All conditions show a recency effect, with the effect being larger and Involving fewer
trials with the larger learning rates. The smallest learning rate condition shows some evidence of a
primacy effect. The retention data show that If the purpose of the memory Is to retrieve Information
learned many trials previously, smaller learning rates are preferred.

The differences In proactive and retroactive Interference for smali and large learning rates illustrate
the benefit for evolving a system with multiple learning rates. The large learning rates provide for quick
acquisition and allow the system to perform the task, while the small rates encode Information for later
retrieval. If the learner practices the task extensively, the small learning rate connections (slow weights)
will acquire the information before the large learning rate connection associations deteriorate due to
retroactive Interference.

Insert Figure 6 about here

The literature on proactive Interference effects in short-term memory research Is consistent with the
existence of a context memory with fast weights. Recall that the first trial of a short-term memory
experiment Is nearly perfect (Keppel & Underwood, 1902). Baddeley and Scott (1971) found effectively no
decay for the first short-term memory trial for delay Intervals ranging from 5 to 36 seconds. Subjects
performance declines markedly from the first to the fourth trials In a short-term memory experiment, e.g.,
reducing from 68% to 25% (Goggln & Wlckens, 1971). This proactive Interference Is a temporary
phenomenon. In the present architecture, the longer the delay between trials, the more the context
connection weights decay and the context vector changes, resulting In a greater release from the effects of
proactive interference.

12
There is a floor effect in that very low learning rates do not modify the association matrix and illustrate poorer learning

and retention. For example in the current simulation a learning constant of .1 showed better learning and retention than
that of a learning constant of .05.
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Figure 6. Retention and recall. This diagram shows the effects of proactive Interference on the left,
and retroactive Interference on the right. The numbers refer to the learning rate for the delta-learning
rule used during acquisition. The vector match Illustrates how accurately the retrieved vector matches
the to-be-learned vector (0% Is chance, 100% a perfect match). In contrast, the learning curve shows
retention for that pattern on that trial before the next trial Is begun. The retention curves represent
recall of all four patterns after four learning trials. The context vectors were correlated .0 between trials.
The Input pattern was activated for a burst of five Iterations. Autoassoclatlve feedback was on for all
Iterations and the output occurred on Iteration 8.
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Release from Proactive Interference

Research on release from proactive Interference (see Wlckens. 1070) may Illustrate the local nature
of proactive Interference effects. If subjects are required to remember sets of three words from a single
taxonomic category In a short-term memory task, accuracy drops dramatically between the first and
fourth Items'of the list. However, If the next word Is selected from a new category, performance Increases
substantlally-almost to the level seen on the first trial. This Improvement Is called the release from PI.
Figure 7A Illustrates data from Loess (1968) showing this effect. Subjects were presented sets of 6 words
from one of 4 taxonomic categories. Group 4A received Items alternately from the 4 categories, whereas
group 4S received six Items sequentially. Notice the dramatic peaks in the solid lines whenever the
category was changed In the 4S condition, I.e., on trials 7, 14, and 19. These peaks Illustrate how
switching categories can produce a release from PI. Figure 7A also shows a strong proactive interference
effect as a result of repeating the same category, even when three other sets of category Items are
interspersed between the repetitions, as shown by the dropoff in the 4A condition on trial 5.

Insert Figure 7 about here

The connectlonlst/control architecture will produce a category release from PI If different semantic
categories are represented in different modules within the network. The buildup of PI Is a result of storing
multiple patterns In one set of connection weights. To Illustrate, if one module codes vehicle information
and another codes animal information, then there are two sets of connections (or association matrices)
between the context and the modules containing the semantic Information. In our current simulations,
storage results when a transmission is succeeded by a follow-on transmission from the receiving module
(see above and Schneider & Mumme, 1987). Hence learning only occurs at the intersection of those fibers
which input a message Just before the module outputs a message. In a release from PI experiment, all of
the modules could potentially receive a context message, yet only the module containing the rehearsed
item would output a message. This means that only connections within that module would be changed.
In the simulation of the category learning experiment, the model was presented 24 Items from 4
categories. The 4 categories were represented by 4 sets of different association matrices. A word
rehearsal was assumed to involve a transmission of the word from the auditory module to the semantic
module, and a transmission of the semantic code to the auditory module. Prior to every transmission the
context vector was transmitted. To simulate time delay, 10% of the context vector was changed
randomly on every trial. The learning constant was .1. On each trial the word and the semantic vector
were associated to the context. The context was then used to retrieve the vectors. Figure 7B plots the
percent of match between the retrieved and the to-be-learned vector. Both the word and the semantic
vectors were retrieved. The percent of vector match plotted in Figure 7B represents the maximum of the
word and semantic vector. This produces slightly higher recall for the first few items than when only the
semantic vectors are used. The probability of recall is a monotonic function, e.g., logistic function, of the
percent of vector match. The actual probabilities depend on vector size, number of vector codes,
feedback, and noise level. With appropriate parameters a 50% match could produce a 20% recall, making
the simulation data comparable to the Loess data.

The simulation produces five qualitative features of release from PI as seen in the Loess (1968) data.
First, there is a marked proactive interference effect for repetitions of words In the same category. This
occurs both for the 4S condition, e.g., difference between trials 1,2,3,..6 and the 4A condition, e.g.,
difference between trials 1-4,5-8,..21-24. The proactive interference is a result of Interference from the
previous learning trials (see discussion Figure 6 above). Second, there is a sharp Increase In accuracy or
release from PI when the category Is changed in the 4S condition, i.e., trials 7,13,19,23. This is because a
new category is assumed to be stored in a different semantic category with a different set of connections
to context. Third, excluding the release from PI trials, the 4A condition showed better recall then the 4S
condition (trials, 2-6, 8-i2, 14-18,20-24). This occurs In the simulation because the context vectors are
correlated .65 In the 4A condition and .9 In the 4S condition. Remember In the 4A condition a category is
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repeated every fourth trial l*\dlng to an average correlation of 94 and 91 In the 4S condition. Fourth,
the second exemplar from *ach category In the 4S condition (trials 2,8,14,20) shows particularly poor
performance relative c~ the Hrst, and third exemplar of the category. This occurs as a result of the very
good learning of the first exemplar causing more proactive interference on the second trial. The poorer
second trial learning causes less proactive Interference on the third exemplar producing better performance
on trials 3,9,15,and 21 relative to the predecessors.1 Fifth, the second repetition of the categories (trials
5-8 in the 4A condition) Is Inferior to the preceeding of succeeding set of categories. This is again due to
overshoot from learning the first item of the category.

The release from PI results provide an indication of how large the effective working memory might
be. Each association matrix between the context module and every other module could store one or more
vectors. If the context module were to produce orthogonal codes (see Kohonen, 1984), a matrix could
store as many vectors as there are fibers. To Illustrate, if there were 100 modules in the Innerloop and 10
fibers from the context module to the other modules, the theoretical capacity could be as high as 1000
codes. To the extent that the codes are not orthogonal, capacity would be reduced accordingly. Human
data suggest that probably only one vector can be tied to the context vector for each module In the short
term; and over extended periods (minutes), it may be possible to store several sets of vectors. Data from
three sets of experiments are compatible with this view. Peterson and Gentile (1965) showed no effects of
PI for the first items of a block when the blocks were separated by 91 seconds; Loess and Waugh (1967)
showed no effects of PI beyond 120 seconds; and Kincaid and Wickens (1970) showed the greatest
reduction of PI after 45 seconds and a reduction of about 74% after 120 seconds. In sum, these data
suggest that a combination of a changing context vector and perhaps decaying weights allow the system
to store a new set of codes every few minutes.

The present connectionist model has some similarities to the context retrieval procedures present In
the search for associative memory model SAM (Raaljmakers & Shiffrln, 1980,1981). In the SAM model
retrieval is based heavily on having items associated with a list context and interltem associations. The
model predicts a variety of long-term memory phenomena, Including serial position effects, list-length artd
presentation time effects, temporal aspects of free recall, part-list cuing, and cued recall of paired-
associates. The current connectionist model provides a mechanism by which a cuing model such as SAM
might be implemented in neural-llke hardware.

Recency and Primacy Effects
The use of context storage also provides an interpretation of recency and primacy effects In long-

term memory. Tzeng (1973) had subjects perform a free recall task in which subjects learned four 10-
word lists. Each word was presented for 1.5 seconds followed by 20 seconds of counting backwards by 3s.
Tzeng's data showed a clear recency effect at end-of-llst recall and the end-of-session recall. The existence
of a recency effect following 20 seconds of Interfering activity violates expectations of basic buffer models.
The result would be expected, however, if the context at the time of recall were used as a retrieval cue.
Retroactive interference would produce a positive recency effect as is Illustrated in Figure 6B. Since there
is typically a delay between the end of one list and the beginning of the next, there will be less
information stored with the context vectors active at the ends of the lists, resulting in both primacy and
recency effects. Some authors tend to interpret such long-term recency effects as data against the
existence of a short-term memory buffer, e.g., Tzeng, 1973; Crowder, 1982, primarily on the basis of
parsimony. With the connectionist/control architecture we expect both short- and long-term recency
effects to exist and to have quite different mechanisms. These two mechanisms make different predictions
that can be tested. First, increasing the duration of the interfering task should increase the recency effect
for long-term retrieval and decrease it for short-term retrieval. Second, combining a short interfering task
at a normal presentation rate in a free recall task, e.g., performing four digits of a two-back digit

13
This learning overshoot effect on exemplar 2 does not occur for larger learning rates (see Figure GA trial 2 versus 3).
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cancelling task, should greatly attenuate short-term recency effects.

Overloading Short-term Memory

Context storage enables the network to perform reasonable well, even In situations In which the
short-term or buffer memory Is heavily loaded. Klapp, Marshburn, and Lester (1983) present compelling
evidence that such loading can occur without catastrophic effects. When subjects were required to retain
letters In a span task this activity did not Interfere with their abilities to Judge the correctness of greater-
than/less-than statements (experiment #6) , nor did It Impair performance on a modified Sternberg-type
scanning task (experiment #7) . Similarly, Klapp and Philipoff (1983) found that subjects could retain
letters and concurrently process digits in a missing digits task. Logan (1979) has similarly loaded short-
term memory with six digits and found little interaction with number of letters searched in a visual search
task. These results are quite incompatible with the view that working memory has only seven slots.
However, in the connectionist/control model a context storage mechanism can account for these effects.
The subject first rehearses the short-term memory list. This connects the context vector to the rehearsed
codes. The subject then performs the embedded task, perhaps processing information in the same buffers,
but not rehearsing Information in the buffers. After the embedded task is completed the subject activates
the context vector that was present at the time of rehearsal and activates the rehearsed Items for
sequential output. If subjects are required to rehearse similar material in the same modules, interference
should occur due to the retroactive Interference effects of the second set of material. Klapp (1987) does
find that mutual Interference might still occur, despite early rehearsal, if the embedded task requires item
and order information to be retained. Recall (see above) that context coding may provide only weak
coding of order Information.

In summary, the present architecture can accommodate many of the effects of context and proactive
interference. Moreover, we submit that some type of context-based storage Is needed to guarantee robust
information processing, since a system with only active buffers and a slowly changing long-term memory
Is inherently labile and unlikely to survive in the real-world. The proposed context storage system
provides Interpretations for: 1) how episodic memory might function; 2) how the effective working
memory might be far larger than 4 to 7 elements; 3) why there is a high level of retrieval and lack of
Interference effects on the first trial of a short-term memory task; 4) why release from PI is expected If
different semantic categories are represented In different modules; 5) how long-term memory recency
effects might arise; and 6) how an information processing system might still perform even when short-term
memory is heavily loaded.

Skilled Memory, Mnemonics, and Levels of Processing

If working memory Includes a large number of regions, levels, and buffers, plus context storage and
attentional control, then there are likely to be good and bad strategies for using it. The skilled use of
working memory involves allocating and substituting resources to maintain Information. We assume the
overall resource pool is quite differentiated, with different resources varying In terms of what type of
material can be stored, the time required to store the material, proactive interference effects, retrieval
time, trace decay, and the robustness of the storage. In terms of the model, we propose that storage Is
dependent on which modules are active, what the input vectors are to the modules, what codes are in the
modules, and whether a module transmits messages after an input.

A real-world example of the use of skilled memory comes from the study of a waiter, dubbed JC, by
Ericsson and Poison (In press). JC was reported to be able to remember over 20 complete orders without
using an external memory aid. In a set of controlled experiments, Ericsson and Poison found that JC was
indeed able to perform simulated order tasks with high accuracy. They speculated that JC used retrieval
structures analogous to those used by experts In digit span (see below). To remember a sequence of orders
JC rehearsed the first four orders and developed a well Integrated structure for them before trying to
remember the next four in the sequence. Ericsson and Poison characterize this structure in terms of a
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matrix with one dl.-c^iun representing the relations among Items comprising an order. JC associated the.
customer's entree to context features (a customer's face) by constructing an Interactive representation.
The other dimension represented the Items into categories, I.e., Into entrees, meat temperatures, kind of
salad dressing, and kind of side dish (starch). To create a unique retrieval cue for salad dressings, JC
encoded them by their first letter, e.g., to remember four different salad dressings, JC encoded blue
cheese, oil and vinegar, oil and vinegar, and thousand islands as "B-O-O-TV To remember the Items In
the other three categories JC relied on different encoding schemes. Temperatures were encoded as spatial
patterns, starches as serial patterns, and entrees in terms of repetitions and patterns that resulted from
partitioning orders according to cost. JC developed within-category relationships dynamically, i.e., as he
was given a new order he used the different category labels to know where to put a new Item and then
proceeded to order the old and new items Into a coherent structure. Finally, it should be noted that when
JC recalled dinner orders he always did so categorically. In the following section we will offer a
rudimentary framework of rules for thinking about how to develop skilled memory such as JC's within the
proposed architecture.

Rules for Skilled Memory

The connectionlst/control architecture suggests five rules for the skilled use of working memory.
These rules describe methods of capitalizing on the relative strengths of different types of memory to
maximize storage.

Rule # 1 : Use multiple buffers to Increase the skilled use and capacity of short-term memory. If a
subject Is required to perform two tasks, X and Y, and task X can be performed in buffer A, and task Y
can be performed in buffers A or B, then task X should be put In A and task Y In B. Many of the
experiments on short-term memory load suggest this type of allocation scheme. To be able to use
buffering strategies effectively, one must first learn how to alter them depending on situational demands.
Different task mixtures will be performed better with some allocation policies than others. For example,
digits In a spatial relationship might be stored spatially, e.g., as a visual Image of a grid, or verbally, e.g.,
as the proposition 5 left of 8. If the subject must perform a concurrent tracking task It would be better to
store the the digits verbally. But when the concurrent task requires auditory processing, It would
probably be better to store the digits spatially (Baddeley, Grant, Wight, & Thomson, 1974).

If a buffer Is likely to be disrupted by Irrelevant Input, the Information should be shifted to a buffer
Isolated from that Input. The unattended speech effect (Salame & Baddeley, 1982) and the suffix effect
(Crowder & Morton, 1969) suggest that irrelevant Input can disrupt auditory Input buffers. To achieve
the unattended speech effect Salame and Baddeley had subjects perform a visual digit span task with an
irrelevant auditory word presented with each visual digit. The Irrelevant words reduced digit recall by 46
%. In contrast, bursts of white noise produced a much smaller decrement of 19%. To achieve the suffix
effect a subject reads an Irrelevant verbal Item at the end of a string of digits or words In a span task.
The Irrelevant verbal Item Invariably reduces recall of the last few Items of the list. In one such
experiment Ayres, Jonldes, Reltman, Egan, and Howard (1979) showed that accuracy of the last Item
dropped from 88% to 32% due to the addition of a word suffix. These effects Illustrate that with a
continuous verbal Input stream It would be beneficial to recode information spatially and to maintain It In
a spatial buffer Insulated from the Input stream.

There are also alternatives to storing Information in the form of active codes In buffers. Two
alternatives are to associate codes to context vectors or other Information vectors. These two types of
associations may store Information at different rates, show differential effects of proactive and retroactive
interference, and may decay at different speeds. The speed with which the context vector can be changed
is probably slow relative to the speed with which other vectors can be changed.

Context storage provides a method for rapidly associating Information to the current context. It has
the potential of being an automatic mode (in the sense of Hasher and Zacks, 1979) of storing Information.
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If the context vector is transmitted periodically, the connection weights can change such that transmitting
the context vector cm reload • T,e vectors that were present in the network at the time of the last context
transmission. If the context vector involves fast changing weights, learning will be quick but proactive
and retroactive Interference will limit the usefulness of the storage.

Rule #2 : Store codes in unique modules that will not be reused until the context changes. This
typically Involves coding information elaboratlvely. Storage In the network occurs after a module receives
and transmits a vector. To store information in the connection weights of the low reuse module, the code
from the low reuse module must be transmitted. The benefit of elaboratlve rehearsal Illustrates this type
of storage. A subject could learn a word list by verbalizing the words of the list repeatedly. In this case
the context weights would be altered for every word. The buildup of proactive and retroactive
Interference would eliminate any benefit from context-based recall after the first few trials. In contrast. If
the subject were to code each word semantlcally, different modules would code different words.
Remember, storage occurs after the transmission of a message. To associate the context vector to the
semantic module, the network must transmit the semantic code. To semantically code the word "CAT"
the subject might activate and transmit the concepts "a warm furry object that purrs". Context would
now be associated with that code In the semantic module coding animal-like features. If no other word
were stored in that module with the same context vector there would be no problems with proactive and
retroactive Interference. Therefore, to use context memory skillfully, one should try to code each word in
a unique module. If a second word were to evoke a code In a module that had already stored a code, then
that vector should not be transmitted; and perhaps the second most activated semantic module should be
transmitted.

From the present perspective elaborative encoding and release from PI illustrate the same effect.
Simple verbal repetition of items is like Loess' (1968) 4S condition (see Figure 7A trials 2-6) in which the
same module Is reused for all the words. Elaborative encoding is like the 4A condition (see Figure 7A
trials 2-4) in which different modules are used on different trials. The differences between the 4A and 4S
conditions (69% versus 34%) are comparable to the differences between elaborative and verbal rehearsal.

Training may be necessary to establish strategies of the central control system to identify unique
modules to transmit, and hence, to store context Information. To later retrieve context-stored
Information, the context vector would have to be transmitted, activating codes in a series. The context-
activated semantic vectors could then be transmitted to the speech region for verbalization of the words.
Note this system codes order information poorly. There is no inherent coding of order; the system simply
has a list of codes associated to a context vector. However, if the context code changes in some
continuous manner over time, the strength of connection to different contexts may provide a course time-
stamping.

Rule # 3 : Develop retrieval cues that are clear, distinct, active, and related to the material to be
retrieved. The problem of proactive Interference results from associating several output vectors to a
single, or several highly related input vectors. We have assumed that the context vector is a slowly
changing vector requiring perhaps two minutes to change substantially-recall that most proactive
interference effects in short-term memory procedures dissipate in less than two minutes (cf. Peterson &
Gentile, 1965; Kincaid & Wickens, 1970). By switching attention among a list of well known items, the
subject could rapidly alter what vectors are active in the network. If these vectors were dissimilar, I.e.,
orthogonal, there would not be a buildup of proactive or retroactive Interference.

Mnemonic techniques generally provide a list of well known Items to associate Information to (see
Bower, 1970; Bellezza, 1981, 1982). For example, In the peg word system the subject activates a series of
concrete objects In a list, e.g., one-bun, two-shoe, three-tree, etc., while the method of loci Involves
committing well known places to memory. The subject then associates each new word or phrase to one of
the objects in the list. At recall, the subject sequences through the peg words or locations and retrieves
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the words associated with each retrieval cue.

Using mnemonic strategies would result in better memory in the connectlonlst/control architecture.
To associate a word to a peg word requires transmitting the peg word code, and then transmitting the
to-be-remembered code. If the subject only repeats the to-be-remembered words, then the only retrieval
code would be the context and perhaps the previous word on the list. Since the context is a slowly
changing code, multiple associations build up proactive interference. This Interference makes retrieval
unlikely if more than a few words are associated to one context, e.g., learning more than three words
every two minutes. The advantage of using a mnemonic is that the learner can alter the code rapidly by
changing what object s/he is attending to. To the extent that these cues provide orthogonal codes,
proactive Interference should be greatly reduced. If the learner uses a well learned sequence, as in the peg
word or method of loci mnemonics, the learner could retrieve the ordered set of retrieval cues. Then, the
prelearned retrieval cues and the context could be used to retrieve the newly learned codes.

Figure 8 illustrates the importance of using dissimilar retrieval cues in recall. In the simulation we
associated a list of 4 input vectors to 4 output vectors. Then the model recalled the output vectors using
the input vectors as retrieval cues. Note the marked recency effect when the vectors are correlated. If
context Is a slowly changing vector it would have a high correlation from one word to the next, and It
would show Interference effects similar to the curve with a correlation of .9 between vectors. In contrast,
If the peg words were uncorrelated vectors, they would provide recall similar to the curve with a
correlation of 0.0.

Reducing the similarity of retrieval cues both reduces the buildup of proactive interference (Figure
8A) and increases retention (Figure 8B). This suggests that the effectiveness of spacing in producing a
release from PI (Wickens, 1970) and mnemonics have a common mechanism of Increasing performance by
providing more dissimilar retrieval cues.

Insert Figure 8 about here

The use of mnemonics for both intermediate and long-term retrieval suggests that the association of
Information messages involves both fast and slow weights. The ability to quickly associate new material
to a loci retrieval structure or to a peg word system and to have those associations decay over a period of
hours suggests the presence of fast weights between the information vectors. Using the method of loci to
remember long stories months later suggests the Involvement of slow weights. The SAM model
(Raaljmakers & Shlffrin, 1980,1981) illustrates how rapidly modified associations in long-term memory
might be used. In this model, every time a word Is attended, the strength of association of the word
context and other words active in short-term memory is increased.

Retrieval cues that are related to the to-be-retrieved information allow easier recall of information
than unrelated cues. For example, if a category name were used as a retrieval cue, the preexisting
associations between the category and the exemplar will greatly reduce the amount of learning that needs
to occur. The category name will evoke most of the semantic features of the word and In so doing
identify which module contains the associated Information. The context Input need only bias the module
to resolve which member of the category to retrieve. The fact that words from a given category are
clustered In free recall (Bousfield, 1953; Bousfleld & Cohen, 1955; 1956) suggests that multiple words
benefit from the same retrieval cue, or that they reside in the same module. Humans can quickly
associate a few exemplars to a numb;: of categories with little evidence of interference (Mandler, 1967).
They can also learn to retrieve lists of hierarchically organized material after short study times, e.g.,
learning up to 112 words after an average study time of 2 seconds per word (Bower, Clark, Lesgold &
Wlnzenz, 1969).
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Rule # 4 : Use multiple retrieval cues and distribute practice. Most connectlonlst models use some
variant of an error-correction irarrlng rule (see Hlnton & Sejnowskl, 1986; Rumelhart, Hlnton & Williams,
1986). In the present model, we use a delta learning rule which changes the strength of association In
proportion to the error between tiie vector evoked by the Input and the desired vector (generally the
vector already In the module as a result of previous processing). If there is no error, there Is nothing to
correct and hence no learning. Repeated associations to the same vector will typically result In an
exponential reduction in amount of learning. The marginal utility of continued rehearsal of the same
association decreases as a function of repetitions. Although, if the subject switches to a new retrieval cue,
the new cue, which is not associated to the output, will cause a large error and a learning trial will
produce more connection change. Associating an output to multiple Input cues provides alternative
retrieval paths for later recall.

Distributing practice enhances learning because of the nature of changing connection weights with
an error-correction rule. Rosenberg and Sejnowskl (1986) have shown that a connectlonlst learning model
will learn a set of 1024 patterns with better retention under spaced (going through the entire set one a a
time) than massed practice. Massing practice Is equivalent to learning with a large learning rate. As
mentioned above, large learning rates are problematic because they produce greater retroactive
Interference (see Figure 6). If practice Is distributed, the network searches the connection space to find a
set of connection weights that provide the minimum error for the total ensemble of patterns to be learned.
Because the connection spaces generally Involve a large number of connections there are many possible
sets of changes In the set of connections that will produce nearly the same output for a given Input. By
distributing practice, the error-correction rule moves the weight space to a more global minimum for the
entire ensemble. In contrast, massing practice moves the weight space toward a minimum for that one
pattern (see Rosenberg & Sejnowskl (1986) for discussion).

The presence of context storage Increases the Importance of spacing practice and provides an
Interpretation for the generation effect (Cuddy & Jacoby, 1982). If the context vector Involves fast-
weight changes, repetitions of an Item to the same context will result In a lower marginal utility for each
repetition. Fast weights are valuable because they enable context-based recovery of information within
the same temporal context (see above). Fast context weights might be potentially detrimental In that the
majority of learning occurs In these weights and context may not be a good retrieval cue, either because It
changes, or due to problems of retroactive Interference. The generation effect Illustrates how context
association can harm learning. Cuddy and Jacoby (1982) used a crossword puzzle task to Investigate how
memory for an earlier solution would influence subsequent puzzle solving. Here subjects were presented
combinations of reading and construction tasks. In a reading task the subject read each of two related
words, e.g., LAWYER, COURT, while in a construction task the subject read the Intact word, and then
solved the puzzle and reported the solution, e.g., LAWYER C _ _ RT. Using this procedure, Cuddy and
Jacoby found that a subject's memory for an earlier presentation of an Item can Influence subsequent
problem solving at least a few minutes later. In addition, they found when a problem was repeated so
that its repetition resulted In greater processing, memory for an earlier presentation was less accessible. In
the present model presenting the word early would build an association between the context and the
puzzle word. The prior presentation of the word would reduce the amount of attention the word received,
and the amount of ncn-context learning the word received, even if It were attended. This type of learning
effect produces overshadowing phenomena similar to the Rescorla and Wagner (1972) model.

Rule # 5 : Use well-learned codes in the receiving modules. Within each module we assume an
autoassociative matrix exists that associates each learned code to Itself. As mentioned above, the
autoassoclatlve mechanism is Important for cleaning up noisy input and categorizing the Input (see J.A.
Anderson, 1983; Schneider & Mumme. 1987). The autoassociative effect provides non-linear feedback
such that similar inputs can produce dissimilar outputs (see Schneider & Mumme, 1987). This feedback
also helps to maintain information In buffers (see above). This autoassociative effect Is the basis of the
interaction between long-term and short-term memory. In the simulation the effect can be removed by
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setting the autoassociative feedback to zero, thereby simulating the absence of within-module long-term
knowledge for the trace. The recall of 4 paired-associates with a learning constant of .1 had a 18% vector
match for a feedback of 0 and 42% with with a feedback of .4 (see Figure 6B). To learn arbitrary
material, such as digit strings, it should be beneficial to recode the material In a representation that Is
already well-learned. For example, in Smith's classic recoding of each sequence of three binary digits Into
one octal digit, it was possible to Increase immediate memory span from about 12 to 40 digits (see Miller,
1956). Similarly, Slak (1970) has shown that by acquiring a recoding scheme to translate strings of digits
Into groups of CVCs, one can Improve performance markedly on a wide range of digit-based tasks,
including serial learning, free recall, recognition, and span tasks.

The research on practice effects In the development of skilled memory (Chase and Ericsson, 1981,
1982; Ericsson & Chase, 1981) Illustrates the use of all five rules of skilled memory. Chase and Ericsson
had their subject SF perform a digit span task for 230 hours. SF was presented digits at a rate of one per
second and then asked to recall the digits in serial order. Digit span was defined as the number of digits
the person could repeat back correctly 50% of the time. Over the 230 hours of practice SF's digit span
increased from 7 to 79 digits. Chase and Ericsson argued that this skill was accomplished as a result of: 1)
associating new material to the material in long-term memory, 2) storing Information In a "retrieval
structure", and 3) increasing the speed of encoding and retrieving items with practice. SF's strategy was
to buffer the Input stream and to try to associate the Information in groups of 3 or 4 digits.

The digit-buffering Illustrates rule 1 of storing Information In multiple buffers and moving the
Information to a lower-activity buffer, while trying to associate It to new Information. SF would passively
store a group of three or four digits then encode the digit group into a well-learned code, e.g., track
running times such as a world record mile running time set by a specific runner. This recoding Illustrates
rule 5 of recoding new information into stable long-term memory codes. SF stored and retrieved
Information In an elaborate retrieval structure. He would recode digits Into sets of three- or four-digit
groups. And these groups were organized In a hierarchical retrieval structure of groups and "supergroups"
of groups of digits. This retrieval structure provided both differential locations In which to store
Information (rule 2: store In unique buffers) and unique retrieval cues (rule 3: use different associations to
retrieve the Information). For example, storing four-digit mile running times would not interfere with
storing three-digit times for half-mile runs. Observe that If the same buffer were not reused within a short
period of time, retroactive and proactive interference would not be a problem. With extended practice,
e.g., 230 hours, it may be possible to specialize additional buffers, e.g., mile running times for the first part
of the list, and thus provide more storage capacity. The retrieval structure also provides unique retrieval
cues, e.g., associating In a hierarchical structure of groups and supergroups. After a year of practice these
cues may have become very salient and recoded Internally as more orthogonal vectors.14

The human working memory system embodies subsystems that are capable of being deployed In a
variety of strategies. In the current connectlonist/control architecture different strategies will exhibit a
wide range of effective capacities. If the subject only uses one set of buffers, then capacity is limited from
three to five codes. If, on the other hand, the subject uses multiple buffers, then capacity may be limited
by the decay time of the buffers, or it may be limited to a capacity of four codes per buffer. If the subject
uses context as a retrieval cue, the capacity may be limited to one code per module within the same
context. If the subject attends to orthogonal retrieval cues, the capacity may be limited to one code per
module for each orthogonal retrieval cue. To develop skilled use of working memory may require
extensive training to utilize the best mix of learning strategies In the face of task-specific conditions.

14
An important feature of multi-layered connection networks is that they build internal representations, such that codes

similar in one representation can be very dissimilar at higher levels of representation (see Hinton, 1086; Ackley, Hinton, &
Sejnowski, 1085).
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Serial Outputs and Chunking

Sequential Hierarchical Output

Lashlcy (1951) stressed that sequential output Is a very fundamental and common form of human
processing. In this section we provide an Interpretation for sequential output, chunking, pause boundaries,
and chunk-based information retrieval. Up to this point our discussion has focused on how information
reaches the lnnerloop of processing. Now we will discuss how the higher-level codes are converted Into
sequences of actions. The codes feeding into the Innerloop are highly compressed codes that are buffered
for transmission on the Innerloop. The output of a code may Involve sequentially outputting a code that
Is expanded at each level of processing.

Sequential hierarchical output Involves one module activating a set of modules at the next stage of
processing. A module at level N-l transmits a vector, loading 3 to 5 modules at level N; the modules In
level N transmit sequentially, loading multiple modules at level N + l . The architecture for sequential
output Is the same as that for input (see Figure 2). However, to accomplish sequential output the
sequences of control signals between the level controller and the modules must be altered. For output the
system must load the buffers in parallel and output sequentially.

Figure 9 shows a simulation of sequential output. This figure Illustrates the output of a sequence of
motor movements to write the word "CAT1. Assume that a module In the lexical region transmits a code
for the letter pattern of "CAT" in the innerloop (see Figure 3). In the motor system the central controller
first sets the feedback parameter to zero, thus clearing the contents of the buffer. Then the feedback Is
Increased to latch the input for the pattern •CAT 1 in the module. Note, since the module buffers the
output code, other messages can be sent on the Innerloop while the motor region Is outputting the "CAT*
stimulus.15 After the multiple buffers BC", "A", "T" are loaded In parallel, feedback Is maintained at a
high level to maintain the traces. Level N now begins to sequentially output the active modules to level
N + l . Since the modules at a given level of processing do not interconnect, the modules within a level of
processing can transmit their messages without distorting the Information of neighboring modules.
Sequentially activating the TRANSMIT control signals will sequentially output the contents of buffers.

Insert Figure 9 about here

The order of output can be determined In the same ways that sequential input can be maintained
(see above). Potential methods for doing this Include: location-specific coding, e.g., module 1 of the stage
would always be the first out; context-sensitive coding, e.g., the module with a code indicator at the front
of the list, code "-Ca1, would be the first Item out, and context would determine the next Item, "cAt"
then •aT-1; or strength-coding, e.g., the first module would have the highest strength, and Inhibit the gain
control of all the other modules until it is output (see Rumelhart & Norman, 1982). Order could be
determined by any one of these methods within a level of processing. The module with the highest
priority would Inhibit the output of the other modules at Its level and output Its message, e.g., set the
TRANSMIT signal to transmit the "C1 code (Figure 9 line 4), and the LOAD control signal to the N + l
level of processing. Level N + l begins the same sequence of events as in level N. At level N + l the code of
the "C1 would be converted Into the sequence of motor movements to produce the line strokes for the
•CV When level N + l finished outputting all Its active modules, it would send a NEXT signal (Figure 9

As with sequential input, latching input to a module by using feedback will block other dissimilar messages from
distorting the code within the buffer. This implies that non-related messages can be transmitted on the innerloop.
However, if related codes are transmitted, interference will result, e.g., in the Stroop task (see Dyer, 1073) both the print and
color codes are transmitted; since these are similar codes, the feedback latching mechanism will be distorted by these
multiple transmissions.
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Figure 0. Sequential output in CAP1 simulation. This diagram represents converting a code for the
word Vat1 to the Individual motor sequences for levels 4. 5, and 6 In Figure 4. See Figure 5 for detailed
caption description. The "CAT" LOAD signal (line 1) causes parallel loading for the modules for each
letter (lines 2, 3, 5, 6, 8, 0). These modules are then sequentially output by serially activating the
TRANSMIT signals (lines 4, 7, 9) of the modules containing each letter. The sequential outputs load the
next level buffers, sequentially activating the letters C, A and T (line 11). These messages are sequentially
transmitted to the next level of processing (line 13). When the letter output module returns the third
NEXT signal (line 14, Iteration 52), the letter-sequence level clears its buffer and issues a NEXT signal to
the previous level.
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line 14) to the level N controller requesting the next Input. At level N, the next highest priority module,
e.g., 'A1 , would be transmits (Figure 9 line 7). This process would continue until all the active modules
at N had been output. Th*n level N would send a NEXT signal to level N-l. If the module sending the
NEXT signal were on the innerloop, the NEXT signal would be routed through the central controller to
the module originating the transmission to the Innerloop.

This sequential output scheme provides a robust method of outputting Information. Should an error
occur at any level of processing, the previous stage would have sufficient Information to reload the next
stage. A module would not clear its contents until the next level had Indicated that the Information was
received, decoded, and successfully transmitted to th£ next level all the codes from the previous level, I.e.,
In Figure 9 the "C" is not cleared until after level N + l reports back that the T code was successfully
transmitted. This system is asynchronous, meaning that each stage can operate at its own temporal scale,
where information at a previous stage of processing Is buffered until it is needed at the next stage. If a
later stage were to alter Its output, e.g., pressing the shift key to type certain characters, the later level
could take more or less time for each of Its sequential outputs. An additional level of robustness is
provided by the context storage process of the Innerloop modules. For example, assume an interrupt were
to occur, halting all output and flushing all the modules. Once the network resumed outputting
sequentially, the context vector could be transmitted; this would allow the Innerloop modules to be
reloaded. The network could then begin to output by resuming activity at the point of the Innerloop
transmissions which preceded the last context storage event.

The process of sequencing Information is very similar throughout the system (see Figure 4). In the
input region, modules send a LOAD signal to the next level when Information Is ready for the next level of
processing. The LOAD signal indicates to the next higher level that it should try to recognize (via the
process of increasing feedback) a code Incorporating the active input at the previous level. The higher
input level sends back a NEXT control signal when It recognizes the total pattern of the previous level.
The NEXT signal results in the next input to that level flushing the Information at the previous Input so
that new information can be loaded at that level of processing. In the output regions each level sends a
LOAD control signal to load a series of modules at the next level of processing. The next level returns a
NEXT control signal back when it has completed all the processing for the previous LOAD signal. The
processing in the innerloop is similar except that the source and destination of the control signals are not
limited to a single set of modules. Within the input and output regions the control LOAD and NEXT
signals come from the next level in the same region. In the Innerloop, the motor region may get input
from any of the regions on the Innerloop. The control signals must be routed through the central control
structure. The working memory within the central control structure must maintain information Indicating
where to route the NEXT signal when it Is Issued by a module In the Innerloop.ia

Chunking

The proposed architecture produces many of the chunking effects that Neal Johnson (1966a, 1966b,
1970. 1972) has described. Four phenomena are of special Interest. First, subjects will naturally group
Input and output sequences In groups of three to four elements with longer pauses between groups. In the
present model codes for a given level of processing should not contain more Information than the control
level can handle, suggesting a need for grouping and Increased delays when levels are reloaded. Second,
the probability of outputting the first element of a sequence Is dependent on the number of chunks at each

A simple implementation of the central-control routing might involve having the central controller passively monitor
the traffic in the innerloop by using changes in activation to specify the intended routing path. For example, if the visual
system were to transmit the code on the innerloop, the central control monitoring would be able to detect the sequential
change in activity in the visual region and the region that responded to the visual transmission. Assuming the motor system
were activated by the "CAT" transmission, the central controller could infer the modules to which the the visual system was
outputting. Then, if the motor system were to send a NEXT signal, the central controller would route the NEXT signal to
the visual region.
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level of processing, bat, not on the size of chunks other than the first one at each level of processing. To
output a 3, 3, 3 sequence requires decoding three elements at the top level and three at the next level, or
six altogether. To output a 3, 2, 2, 2 sequence requires outputting four elements at the top level and two
at the next level for a total of seven. Human recall of the first Items of a nine-element list is better for a
2, 4, 3 than it Is for a 3, 3, 3 or 3, 2, 2, 2 code.

In the present architecture, the first elements of every chunk must be output before the first
bottom-level code produces output. A failure at any level will terminate the output process. However,
the number of elements in unexpanded chunks should not influence the probability of output of the
elements of a chunk, i.e., whether the next chunk at a level to be output codes two or five chunks should
not Influence the probability of output of the elements of the present chunk.

The third chunking phenomenon centers on the fact that subjects tend to pause longer between
chunks than within chunks (cf. Broadbent, 1975; McLean & Gregg, 1967; Reitman & Rueter, 1980). This
is illustrated in skilled memory studies in which SF outputs digits while performing the digit span task.
By analyzing SF's verbal protocols, Chase and Ericsson (1981) determined that his speech patterns nearly
always followed the same pattern. Digit groups were recalled at a rate of about 3 digits per second, with
pauses of about 2 seconds between groups. The processes of LOAD and NEXT that occur when one level
transmits to the next level will produce longer pauses In the outputs. This would be the case particularly
when innerloop transmissions are involved, due to time added waiting for other Inncrloop traffic to be
stopped and the NEXT signal to be routed.

The fourth chunking phenomenon Involves Johnson's (1970, 1972) characterization of chunks as
•opaque containers". Johnson characterizes a chunk as an opaque container that must be treated as a
complete pattern at a given level of processing and not Just as the concatenation of the codes of the
previous level. According to Johnson (1970, p. 213) a container "Is opaque In the sense that recovery from
memory of the code container does not allow the S to evaluate the Information he has recovered."
Johnson found that if a subject learns multiple strings and repeats elements of a chunk, but not the full
chunk, accuracy does not improve. If, however, the full string or the first chunk Is repeated, performance
does Improve, e.g., if one repeats the string 94 487 3587 then 39 687 3932, repeating the 87 3 sequence on
every other list produces no greater recall than random digits. In the present architecture the higher-level
codes are encapsulated codes containing a distributed representation of the total Information that Is not
divided into Individual elements until the next level decodes it. If most of the learning occurs in the
Innerloop, there Is little benefit for repeating portions of the lower-level codes.

In summary, the connectionist/control architecture can perform robust sequential output which
exhibits many of the phenomena associated with serial output and chunking. Each level of processing
buffers and encodes information. Control signals between levels, e.g., the NEXT and LOAD signals,
provide a single mechanism for accounting for chunking effects In Input, Innerloop, and output processing.

Workload and Working Memory

The current architecture can perform multiple tasks concurrently. The system has a variety of
resources that can be allocated in different ways to meet the demands of different task combinations.
When multiple tasks compete for limited resources, processing will either be delayed or errors will result.
This architecture includes many types of resources, e.g., buffers, regions, control structure, and connection
weights, and contrasts sharply with the Kahneman's (1973) proposal that attention is a single
undlfferentiated resource. The present architecture is consistent with the Wicken's (1980) view that
resources are differentiated by modalities. However, in addition to competition for specific regions as In
the Wicken's model, the present architecture emphasizes the Importance of competition for the control
structure. This architecture and simulation model are also used to account for human attention
phenomena and the acquisition of component skills (see Schneider & Mumme, 1987). In the present
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section we will limit our discussion to how the connectionlst/control architecture can account for workload
effects in memory tasks.

The connectionlst/control architecture can employ five strategies to perform concurrent tasks. The
first strategy is to buffer and delay messages for one of the tasks until the other task Is completed. Recall
that the system Is asynchronous, with buffers at every level of processing. If two tasks require the same
set of modules on the Innerloop, the central controller can sequence the transmissions on the Innerloop to
time-share the use of critical modules. Since both the Inputs and outputs are buffered, the time-sharing
generally results In longer reaction times, but not greater errors. Research on the psychological refractory
period (see Smith, 1967) Illustrates such slowing. If the subject must respond to two stimuli presented
successively, the response to the second stimulus Is delayed by about the time required to complete the
response to the first signal. The second strategy is to move a task into low-use buffers. For example, If a
subject were to maintain three digits in auditory buffers while performing a visual task that utilizes the
visual system, both the Innerloop and motor system would show little speed or accuracy deficits.
Baddeley and Hitch (1974) have found that Increasing the short-term digit load from one to three digits
results In no change In accuracy and little change In speed of processing, e.g., a 5% (0.07 seconds) slowing
In Judging sentences such as "canaries have wings1 to be true. However, loads that exceed the capacity of
buffers result In substantial errors and Increases In reaction time, e.g., with an 8-dlgit loading the Baddeley
& Hitch (1974) sentence Judging task resulted In a substantial Increase In errors (from 3% to 14%) and a
slowing of the response (44%, 0.67 seconds).

The third strategy to deal with high workload Is to use context storage to temporarily associate
Information to the current context and utilize the context to load modules. The ability of subjects to
perform embedded tasks after a brief rehearsal period suggests this type of strategy. For example, Klapp
and his colleagues (Klapp et. al., 1983) allowed subjects 5 seconds to rehearse letter strings 0, 6, and 9
items long before they performed an embedded task such as visual scanning. In the connectionlst/control
architecture the short rehearsal would associate the letters to the context, next the search task could be
performed without rehearsing the letter task, and finally the context could be used to retrieve the letters.
This context storage strategy can explain the use of brief review rehearsal periods before performing
critical events. For Instance, In both athletic competition and military combat situations, individuals
often review their Intended actions Just prior to entering the critical situation. This process of review
could be used to associate the Impending actions to the context. Attending to the context, I.e.,
transmitting the context vector, could then simultaneously load modules In many regions and initiate
many concurrent processes.

The fourth strategy Is to develop automatic processes to reduce the load on the central and regional
controllers. We assume that the control processing system can control only a very small proportion of the
modules In the network. The regional controllers generally only buffer three to four elements at a level of
processing. To reduce the load on the control architecture, each module can gate Information locally. A
model for the development of local automatic gating Is detailed In Schneider and Mumme (1987). Briefly,
Schneider and Mumme assume the autoassociatlon matrix within each module associates the message
within the module with a priority tag. Transmissions from the module that result In a positive event
(determined at the system level) Increase the priority tag, negative transmissions decrease It. If a module
receives a high-priority message, the module transmits the message In the absence of control input. If the
system consistently responds to particular messages, those messages will be automatically transmitted,
i.e., as a result of the local priority tag. The benefit of priority-based transmission Is that it allows the
limited control processing resources to be used elsewhere In the system. The model of priority-tag
learning (Schneider & Mumme, 1987) Illustrates how consistent practice develops fast, parallel, and
difficult to alter automatic processing.

The fifth strategy for dealing with high workload Is to reduce the message Interference for
concurrently transmitted messages. Message interference is a limiting factor for communications on the
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innerloop. Each module on the Innerloop has Its own fibers allowing multiple messages to be transmitted
concurrently. However, If two Incoming messages activate competing vectors In a receiving module,
Interference results. Assume a typist seeks to perform copy typing while concurrently comprehending
conversations. Normally the visual transmission of text codes activates semantic processing (for
comprehension as In reading) and motor processing (for typing). The auditory transmission of speech
codes normally activates semantic processing and artlculatory codes. Initially concurrent auditory and
speech Input cause Interference and the central control system only allows the transmission of visual codes
during typing. As the subject practices typing, I.e., transmitting messages from the visual system and
releasing messages in the motor system, the vision to motor connections are strengthened. The lack of
releasing responses in the comprehension system weakens these connections. With time the visual to
semantic connections weaken such that visual Input no-longer interferes (at least in a typing context) with
the auditory input to semantic processing. If the visual transmissions become automatic, the central
contoller need not be Involved in copy typing. At this stage the typist could attend to the auditory input
and comprehend speech while typing. Copy typists' lack of memory for the material typed is suggestive
of this kind of change of connection weights.

Working Memory in Learning and Skill Acquisition

Working memory plays a critical role in learning and acquiring knowledge. All long-term memory is
stored In the connection weights in the network. The change in connection weights is determined by what
is active in working memory. In the process of learning a task, controlled processing is generally used to
compare the Input pattern to a rule, and to perform the appropriate response based on the match. One
could view this as a process of acquiring productions (J. R. Anderson, 1983). However, since many
patterns are stored in any single connection matrix, there will be Interactions among patterns, depending
on the total set of productions to be acquired (see Rumelhart & McClelland, 1086a).

Acquiring a skill necessitates keeping instructions and task-relevant information in working memory
while performing at least some components of the task. For example, to learn to specify the output of an
AND electronic gate, the system must store the verbal rule "if all the Inputs are high, then the output is
high", activate the input patterns, compare the input patterns to the pattern "all high," and respond
•high output" if true and "low output" if false. The first step of skill acquisition is to rehearse the verbal
rule to enable the context to load the buffers. The context would preload modules for the target state
(e.g., a high on all inputs), the response on a m.atch (e.g., a prediction of a high on Its output), and the
response on a nonmatch (e.g., prediction of a low on the output). By associating these patterns to the
context vector with fast weights, the context could be reevoked to reload the buffers. If the subject were
distracted, the Instructions could be reloaded by activating the context vector. When a problem, (e.g.,
What Is the output if the Input Is 1111?) Is presented, a controlled comparison would occur between the
input and the target output. On a match the yes response would be released. As a result of controlled
processing operations, the Input pattern, e.g., 1111, would be transmitted, followed by the output pattern,
i.e., a high response, being transmitted. This would associate the input to the output. With sufficient
training trials the long-term connections between the Input and output would be modified such that the
Input could directly activate the output (see Schneider & Mumme, 1987 for a simulation for such
learning). When this occurs context preloading and the controlled comparison process are not needed.

Distributing Practice

The Importance of context storage for learning to perform a task raises serious Issues concerning
how problems should be sequenced and spaced. Initially it is beneficial to mass a number of executions of
the task. For example, In learning electronic troubleshooting, it is better to start with a block of trials for
a single gate type before moving on to the next gate type. This is preferred because the context storage
maintains the working memory. In procedural learning tasks subjects learn to perform Individual
procedures quickly during massed practice of single tasks, but then show poor performance when the trial
types are intermixed. Due to proactive interference between codes, context cannot be used to maintain or
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retrieve codes when training Is distributed. Hence more errors are expected during distributed training
than massed training. To be able to perform a variety of procedures In random order, training must
progress to distributing practice. The marginal utility of massed practice decreases with time. If the
context vectors eliminate most of the error between the activated output and desired output there is less
learning (with a delta type learning rule). Also, If the subject must randomly execute the procedures at
different times, context-basrd learning may show poor transfer. In sum, a tradeoff exists between the
advantages of massing practice early to maintain Information In working memory, and the disadvantages
of the context-learning showing poor transfer and reducing long-term learning. Procedures which expand
the distribution of practice with training are likely to be optimal (Landauer & BJork, 1978).

Phases of Skill Acquisition

Within the present architecture there are five Identifiable phases of skill acquisition. The movement
between these phases Is a gradual, continuous transition. The use of working memory and controlled
processing varies at each phase of processing. The rate of movement between stages depends on the
nature of the task to be learned. We will illustrate the transitions using numbers based on subjective
impressions of learning logic gates for electronic troubleshooting (Carlson & Schneider, 1087). These
numbers are included only to give the reader an impression of the expected time course of these changes.

Phase one of skill acquisition, e.g., trials 1-4, Involves loading all the Information for performing the
task into buffers. The task is performed by comparing information in buffers to the incoming stimuli and
releasing a response If a match occurs (see Schneider, 1985; Schneider & Mumme, 1987 for details). If the
subject is interrupted the buffer information may be lost resulting in errors. We train our subjects with a
mini-lecture on six gate types. In learning logic gates our subjects' response times are between 2-3 seconds
on the first trial with subjects requesting help about 40% of the time. Phase two of skill acquisition, e.g.,
trials 5-20, involves performing the same task as phase one, but by trial 5 the context storage mechanism
can maintain and reload working memory. Performance for blocked trials of the task is accurate and
reasonably fast. By trial 5 subjects accuracy is near perfect and response times are down to .7 seconds for
massed trials. During massed practice in phase 2 controlled processing resources are required to compare
the Input to the rules and to release output vectors, but they are not necessary to maintain the traces in
the buffer. However, if alternative procedures are Intermixed, accuracy decreases and responding slows
considerably. Whenever the task switches, the subjects reevokes the verbal rule and context to reload the
buffers In order to perform the task.17 On early Intermixed trials subjects' response times increase to 2-3
seconds and they request help about 40% of the time. Phase three of skill acquisition, e.g., trials 21-100,
occurs when the associations to the goal state are strong enough to load working memory without the use
of context storage, such that attending to an AND gate loads the input pattern to be checked and the
possible output responses. In this phase performance is accurate and rapid even if tasks are intermixed.
However, the subject must still attend to the task and perform control process comparisons.

In phases four and five of skill acquisition a substantial reduction occurs In the use of controlled
processing resources In performing the task. Phase four, e.g., 101-200 trials, Is Identified when the
associations between the Input, the goal state, and the output become strong enough so that the Input will
evoke the output directly, e.g., Input of 111, and a goal of AND, the output would evoke a 1 output via
associative retrieval. In this phase controlled processing comparison drops out, reducing workload (see
Schneider & Mumme, 1987 for simulation). Note, controlled processing is still required to transmit
messages on the lnnerloop and to route the NEXT and LOAD signals. In learning electronic
troubleshooting we find small speedups between 100-200 trials of practice, e.g., 100 msec in predicting the
output of single gates, but dramatic speedups (from 8 to 4 seconds) in problem solving In circuit
troubleshooting. This Improved ability to use the rule in the problem-solving context suggests that the
learning during phase 4 eliminates the control processing comparisons as In phases 1-3. Phase five, e.g.,

This is similar to J. R. Anderson's (1083) use of interpretive execution of productions.
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after about 200 trials per rule, occurs when the modules develop local automatic processing so that the
message Is transmitted ever In tho absence of controlled processing input. At this phase of processing,
controlled processing resources need a vt be allocated in the gate identification task. The task can be
performed reliably even If the subject ujes controlled processing resources to perform other tasks. Some
alternative tasks do interfere due to message Interference.

In the connectionist/control architecture the extent to which working memory Is used varies,
depending on the task and the phase of skill acquisition. The combination of context storage and
controlled process comparison enables the network to accurately perform novel tasks after only a few
trials. This contrasts with traditional connectlonist learning systems that typically require thousands of
trials to acquire a novel set of associations (see Schneider, 1987). The first few trials of performing a task
are very attention-demanding, difficult to perform In mixed trials, and error prone under high workload.
With practice the system modifies the long-term memory associations such that automatic processing
develops which enables fast, accurate, and low resource -oad processing.

Final Comments

The connectionist/control architecture details a computational system that exhibits many of the
phenomena of human working memory. The system-level of the architecture (see Figure 3) Includes
regions that specialize in different classes of processing. The activity of the regions Is coordinated by a
central control structure that routes control signals among regions and sequences transmissions among
regions to limit problems of message interference. One of the regions serves as a context storage
mechanism that can revoke (via fast-weight connections) messages contained In the Innerloop of
processing. Each region Is divided into a number of levels that sequentially or spatially Input or output
patterns to other levels (see Figure 2). Each level has a control structure that monitors the activity of all
the modules In Its level and controls the feedback and transmission of that level. The level control
structure sends and receives control signals to coordinate the sequential storage and processing of
Information. Each level Includes multiple modules (see Figures 1 and 2). Each of these modules Involve a
connectlonist network that processes vectors of Information. A module can store, categorize, maintain,
and prioritize a received vector. This architecture is sufficiently detailed that It can simulate a wide
variety of human learning and attentional phenomena. The architecture Is physiologically plausible and
shows some intriguing parallels to modular systems In the cortex (see Schneider & Mumme, 1987).

Any model of human working memory must first be evaluated as to whether It provides a robust
processing architecture that could survive In the complex and dynamic world In which humans have
evolved. Buffers are needed because much of the processing must be sequential and asynchronous.
Attention Is needed to deal with resource competition and message Interference. A context storage
mechanism is needed to recover from Interruptions, to Increase the effective size of working memory, and
to acquire rudimentary skills after only a single stimulus presentation.

We feel the traditional models of working memory, e.g., Atkinson & Shlffrin (1968) and Baddeley
(1986) do not provide a robust processing architecture. These buffer-oriented systems do not provide
mechanisms to allow information to be recovered after an interruption that flushes the buffers. They
provide a limited model for a subset of working memory phenomena. A system limited to only such
buffer memories and a slowly changing long-term memory is likely to exhibit severely unstable processing,
perhaps similar to the amnesiac patient HM. The buffer models do account for classic short-term memory
phenomena, e.g., interference effects. However, they do not account for many other important
phenomena, e.g., lack of short-term memory decay on the first trial, proactive Interference effects, reliable
processing despite severe loading, and the critical dependence on long-term memory for what can be
stored in short-term memory.

We have described an architectural class of models for working memory. There are many possible
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configurations of modules, levels, regions and control structures that might exist. For example, the
lnnerloop of processing might be a ring as depicted in Figure 3, or It could be some complex lattice of
processing regions. A great deal of theoretical and simulation work needs to be performed to determine
the computational capacities of this architecture. Human empirical research is required: 1) to evaluate
how well models within this architecture predict human data; and 2) to Identify specific details of the
architecture.

The present architecture can account for a wide range of human working memory phenomena as
emergent properties of the system. Most of the predictions follow from the process of developing a robust
processing system, rather than from trying to model specific phenomena. The proposed multi-leveled
buffer scheme provides an interpretation of: the magic number 3 or 4, acoustic confusions, sequential
processing, problems with digit cancelling and reverse digit span, the difficulty of maintaining order
Information, and the nature of rehearsal. Context storage was Included to enable the system to cope with
Interruptions and to expand working memory. This storage mechanism provides a way of Interpreting the
distinction between episodic and semantic memory, retroactive and proactive Interference effects and
trade-offs, the buildup of proactive Interference, the benefit of elaboratlve rehearsal over maintenance
rehearsal, the release of practice Interference either by time or switching content, long-term memory
recency effects, and the ability to continue processing Information after traditional short-term memory
capacity is exceeded.

The present processing architecture can be operated with different levels of effectiveness depending
on how the resources in the system are utilized. The skilled uses of working memory provide
Interpretations of the unattended speech effect, levels of processing, mnemonics, category clustering,
distribution of practice, generation effects, and skilled memory. The control processing for sequential
output of information makes predictions regarding chunking, chunk-based retrieval, and pause boundaries.
The control processing management of Information enables the system of deal with conditions of high
workload and produces psychological refractory period phenomena, sequential attending, and the use of
context to facilitate priming. Context storage enables Information to be acquired rapidly during massed
practice of procedures and illustrates that using an expanding practice schedule results In better retention
for later distributed testing. To reduce workload on the limited control processing system, the control of
information is localized within modules. This localization takes place gradually and illustrates different
phases of skill acquisition.

This architecture represents a hybrid of many previous models and frameworks for memory. It
Includes buffers (Waugh & Norman, 1965; Atkinson & Shlffrin, 1068), a system to perform automatic and
controlled processing (Shlffrin & Schneider, 1977; Schneider, 1985; Schneider & Mumme, 1987), multiple
processing regions (Baddeley, 1976; Wlckens, 1970, 1972), a distributed connectlonlst approach to
associative memory (McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986), autoassoclatlve
categorization (J. A. Anderson, 1983), automatic context storage (Tulvlng, 1972, 1983, 1984; Raaljmakers
& Shlffrin, 1980, 1981; Hasher & Zacks, 1979) and the use of fast connection weights (Hlnton & Plaut.
1987).

The understanding of working memory is critical to the understanding of human cognition. We
must know its capacity, structure, strategies of use, and limitations. It Is important to examine a variety
of architectures that incorporate the complex diversity of working memory phenomena seen In humans.
The present connectlonlst/control architecture provides a potential architecture that could be
Implemented In a physiologically feasible manner and predicts a variety of the phenomena and potential
structure of human memory.
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