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Barak A. Pearlmutter
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July 24, 1988

Abstract

We describe a procedure for finding dE/dwij where £ is an arbitrary func-
tional of the temporal trajectory of the states of a continuous recurrent network
and wij are the weights of that network. An embellishment of this procedure
involving only computations that go forward in time is also described. Com-
puting these quantities allows one to perform gradient descent in the weights to
minimize £, so our procedure forms the kernel of a new connectionist learning
algorithm.

1 Introduction

Pineda [2] has shown how to train the fixpoints of a recurrent temporally continuous
generalization of backpropagation networks [3]. Such networks are governed by the
coupled differential equations

^ « - * + *(*) + /,. (1)

at

where
j

is the total input to unit i, yt is the state of unit z, T, is the time constant of unit /, a is
an arbitrary differentiable function1, wly- are the weights, and the boundary conditions
y(to) and driving functions I are the input to the system. See figure 2 for a graphical
representation of this equation.

<r(O = (1 + «-<)-», in which case <r'(O = <T(OO -



Consider £(y), an arbitrary functional of the trajectory taken by y between t0

and ti.1 Below, we develop a technique for computing dE(y)/dwtJ and dE(y)/$Tlt

thus allowing us to do gradient descent in the weights and time constants so as to
minimize £. The computation of dE/dwtJ seems to require a phase in which the
network is run backwards in time, but a trick for avoiding this is also developed.

2 The Equations

Let us define

(2)

In the usual case where £ is of the form £(y) = J^f(y{f),t)dt this means that
= 5/(y(0, 0 /dyM- Intuitively, ait) measures how much a small change to yi at

time t effects £ if everything else is left unchanged. We also define

(3)

where y('•'^ is the same as y except that dfyjdt has a Dirac delta function of magnitude
<J added to it at time f. Intuitively, z,(0 measures how much a small change to yt

at time t effects £ when the change to yi is propagated forward through time and
influences the remainder of the trajectory.

Figure 1: The infinitesimal changes to y considered in e\(t) (left) and z\(t) (right).

We can approximate (1) with the difference equation

or
At) » 1 - (4)

which is exact in the limit as At —• 0.
2For instance, E = f l (yo(O—/(O)2^ measures the deviation of yo from the funtion/, and minimizing

this £ would teach the network to have yo imitate/.



Figure 2: A lattice representation of (4).

Consider incrementing y,-(0 by e and letting this change propagate forward. The
differential of £(y) w.r.t. e is thus the sum of the differentials of E(y) w.r.L the other
values that y,-(0 influences, weighted by the magnitude of its influence. By examining
all the outgoing lines from node yt(t) in figure 2 we are led to a difference equation
for z,(0,

WiJ(T'(Xj(t))zj(t

where the (1 - At/Ti)zi(t) term is due to the linear influence >t(r) has upon y,-(f+40,
the Ysjterm i s d u e to ^ e effect that changing yi(t) has upon the other y/r+^f) through
their nonlinear coupling, and the AteM term is due to the effect that changing yL

between times t and t + At has directly upon £. By rewriting (5) as

40

assuming this to be of the form z,(0 = z,(/ + 4 0 - Atdzi/dt(t + 4 0 , and taking the
limit as At —• 0 we obtain a differential equation,

dt (6)

Let

at£ = 0 (7)

where jK '̂*'0 is the same as y except that w^ is increased by £ from r through t\.
Again examining figure 2, we see that the appropriate difference equation for v is

At)



which leads to the differential equation

IF /
which we can integrate from r0 to t\. By substituting IUJOI) = 0 and
into the resulting equation we eliminate i and end up with

dE 1
/ ^ ) ^ (8)

If we substitute pt = Tf ! into (4), find dE/dpt by proceeding analogously, and
substitute 7\ back in we get

We will find a way to compute dzi(h)/dzj(to) useful. Let us define

(10)

and take the partial of (6) with respect to zy-(fo). substituting in Q where appropriate.
This results in a differential equation for C>,

and for boundary conditions we note that

One can also derive (6), (8) and (9) using the calculus of variations and Lagrange
multipliers (Dr. William Skaggs, personal communication).

3 Utilization

The most straightforward way to use (6), (8) and (9) is to simulate the system y
forward from to to t\, set the boundary conditions Zi(t\) = 0, and simulate the system
z backwards from t\ to to while numerically integrating Zj<r'(xj)yi and z^yi/dt thus
computing <9£/<9wiy and dE/dTi. Aside from the practical problems of simulating
the system backwards in an actual learning application, the backwards simulation
of z as well as the integrals being computed require that y also be run backwards,
necessitating either remembering the trajectory of y, which can require prohibitive



amounts of storage, or the backwards simulation of y itself, which is typically ill
conditioned.

However, running the system backwards can be avoided. Given guesses for the
correct values of zt(t0)y one can simulate y, z and C forward from t0 to t\ and then
update the guesses in order to minimize B where

by making use of the fact that

dB

For notational convenience, let £, = dB/dzi(to). We can use a Newton-Raphson
method with the appropriate modification for the fact that B has a minimum of zero,
resulting in the simple update rule

B

llbl
During our simulation we can accumulate the appropriate integrals, so if our guesses
for ZJ(/O) were nearly correct we will have computed nearly correct values for dE/dwy
and dE/dTi. If the w,y change slowly the correct values for Zi(t0) will change slowly,
so tolerable accuracy can be obtained by using the dE/dw^ computed from the
slightly incorrect values for z,(fo) while simultaneously updating the Zi(to) for future
use, eliminating the need for an inner loop which iterates to find the correct values
for the z,(fo). This argument assumes that the quadratic convergence of the Newton-
Raphson method dominates the linear divergence of the changes to the wy9 which
can be guaranteed by choosing suitably low learning parameters.

4 Future Work

We are planning on performing the following experiments in the immediate future:

• Learn a simple xor problem, with the functional requiring the output to be
correct after 2 time units.

• Follow a square trajectory in state space, where the desired trajectories of two
visible units are specified explicitly using a functional of the form

(16)

where dx is the desired trajectory for y% and si is the importance of yi attaining
di at time /. For this functional, the instantaneous error takes on the particularly
simple form et = 5,(y, - di). Note that following a square trajectory requires
the use of hidden units.



Teach two visible units to follow a circular trajectory in state space, but rather
than specifying the trajectory explicitly, require that the trajectory be on the cir-
cle with center {cx, c2) and radius r and that the velocity be v using a functional
like

2 - r 2 ) 2 + (yf+ji2 v1)1* CV2-c2)2-r2)2+ (y f+ j i 2 - v1)1 dt. (17)
h

Assuming that these simulations are successful, we are planning on using this
procedure in the domain of control as part of the author's thesis work on learning to
control robot manipulators using connectionist networks [1],
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