
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T R E S T R I C T I O N S :
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Interact ive D y n a m i c s

Andrew Wit kin
Michael Gleicher
William Welch
December 1989
CMU-CS-89-2133

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This paper will be presented at the 1990 Symposium on Interactive
3D Graphics, March 25-28, 1990, Snowbird, Utah. The proceedings
of the symposium will be published as a special issue of Computer
Graphics.

This research was sponsored in part by Apple Computer. The views and conclusions contained in
this document are the authors' and should not be interpreted as representing the officical policies, either
expressed or implied by Apple Computer.

A b s t r a c t

Our goal is to use physical simulation as an interactive medium for build
ing and manipulating a wide range of models. A key to achieving this goal
is the ability to create complex physical models dynamically by snapping
simple pieces together, integrating the process of model creation into the
ongoing simulation. We present a mathematical and computational formula
tion for constrained dynamics that makes this possible, allowing encapsulated
objects, constraints, and forces to be combined dynamically and simulated
efficiently. The formulation handles arbitrary objects, including nonrigid
bodies. We describe an implementation for interactive dynamics, and dis
cuss applications to mechanism construction, geometric modeling, interactive
optimization data fitting, and animation.

1 Introduction
Physical simulation by computer has traditionally filled a niche as a useful,
if cumbersome, tool for quantitative analysis and prediction. The skill and
labor required to set up a simulation, followed by hours or days of run time,
have restricted its practice to a hard core of dedicated specialists.

The increasing availability of high-performance computers with fast 3D
graphics has for the first time made it feasible to perform non-trivial physical
simulations—and see the results—at fully interactive speeds. This develop
ment opens the door to a host of new and exciting uses for the machinery of
physics—for example, virtual worlds in which a user performs physical ex
periments, or builds and tinkers with simulated machines, or even visualizes
and manipulates abstract mathematical objects with physics serving as the
user interface. Such systems could be of value to a broad range of users, who
need not necessarily understand the underlying mathematics. Because all of
us are skilled at manipulating the physical world around us, it makes sense
to use simulated physics as a medium for interaction even where the physical
model is just an analogy to something more abstract.

Raw performance is a prerequisite to interactive physics, but creating a
truly interactive physical medium entails much more than just making simu
lations run faster. Traditionally, the model creation phase is completely sep
arate from the actual execution of the simulation. The former often involves
manual derivation and coding of the system's equations of motion. Speeding
up the simulation can provide the ability to manipulate a pre-defined model,
but this capability is of limited use without the ability to dynamically cre
ate new models and modify existing ones. For example, a tinkertoy world
for assembling and experimenting with virtual mechanisms would be of little
interest if adding new pieces, making and breaking connections, and so forth
entailed exiting the program, writing code, re-compiling and re-linking. To
maintain the virtual world illusion, the pieces must snap together and apart,
transparently and dynamically, while the simulation is running.

A key to dynamically creating virtual physical objects lies in the proper
treatment of constraints. Constraints provide the glue that combines simple
objects to form complex ones, by representing the bolts, joints, sliders, etc.
that turn a bag of parts into a mechanism. Constraints also permit a user to
define objects' form and behavior by stating what is desired, rather than by
explicit specification of shape or motion.

Incorporating constraints into an interactive setting poses a difficult prob
lem: the addition (or deletion) of a constraint on a physical system struc
turally changes the system's equations of motion, reflecting the exchange of
forces that causes the constraint to hold. An interactive medium must re
spond to these changes, forming and solving the new equations of motion,
automatically and without noticeable delay. The challenge becomes still more
difficult if we insist on preserving the generality of the solution. In particular,
we wish to avoid restricting its scope to collections of rigid bodies, as, for
example, do [1, 12, 5, 11]).

In this paper we present a solution to the problem posed above, describe
its implementation, and discuss several interactive applications. First, we
develop a mathematical formulation for constrained dynamics, similar to
that of [9], and more loosely related to [3]. A constraint force that is a linear
combination of constraint gradients is imposed, projecting the system's accel
eration onto the subspace of "legal" accelerations. Calculating the constraint
force is a linear problem, even when the constraints are nonlinear. The gen
eral constraint equations are intrinsically global, dealing with all the objects,
forces, and constraints comprising the physical model. We next develop a
decomposition of these equations in terms of the contributions of individ
ual elements, without loss of generality. This allows us to reconcile their
inherently monolithic nature to the requirements of dynamic construction
and encapsulation. We also describe the more general system for dynamic
function composition on which our implementation of this structure is based.

We conclude by describing several applications of interactive dynamics
The first is a "tinkertoy world," a virtual 3-D environment in which the
user is able to create and manipulate pre-defined parts, dynamically at tach
them using a variety of constraints, and experiment with the resulting struc
tures and mechanisms. The second is a two-dimensional system in which
parametric curves are manipulated and attached together using constraints.
We then demonstrate the use of dynamics as a medium for the interactive
solution of non-linear problems in constrained optimization, image interpre
tation and model fitting. Finally, we describe the use of interactive dynamics
as a medium for creating keyframe animation of characters built by pinning
together elastic pieces.

2

2 Constrained Dynamics
In classical mechanics, constraints play a role as a means of describing phys
ical systems. Taking the standard example of a bead sliding freely on a rigid
wire, an important aspect of the bead's behavior can be summarized just by
observing that "the bead stays on the wire, no matter what."

Constraints such as the bead-on-wire have physical consequences. Treat
ing the bead as a particle whose motion is governed by / = ma gives a
relation between its motion and the total force on it: the force and acceler
ation lie in the same direction, with their magnitudes scaled by m. But the
bead-on-wire constraint implies that the bead will never accelerate in a way
that moves it off the wire, whatever force is applied. In the special case of a
straight wire, this just means that the bead's acceleration, and therefore the
total force, must lie tangent to the wire, even if the force we apply to the
bead points in some other direction. An immediate consequence is that the
applied force, / a , cannot be the total force. Rather, there must also be some
other force, a constraint force / c , such that the total force

f = fa+fc = kt, (1)

where t is the wire's tangent and k is some scalar. In words, the force fc

is whatever force needs to be added to the applied one to make the bead
accelerate in a manner consistent with the constraint. 1

Constrained dynamics is concerned with making objects' behavior consis
tent with the forces of constraint. The mathematics of constrained dynamics
are hardly new (see any standard classical mechanics text, such as [6],) al
though they have begun to appear only recently in the Computer Graphics
literature [2, 10, 9, 7, 3, 14, 13]. In this section we address the problem of
constrained dynamics in light of the requirements of interactivity: that we be
able to freely add or delete constraints in an ongoing simulation, with mini
mal restrictions on the form of the constraints or the nature of the objects.

2.1 Restoring forces
Curiously, the constraint force of equation 1 depends on the applied force, as
if the bead and wire were somehow sensing the applied force and responding

E q u a t i o n 1 obviously doesn't determine fc uniquely. T h i s will be dealt with later.

3

actively to our attempts to pull them apart. Obviously, no such mechanism
exists. We begin by understanding where this dependency comes from.

Naturally, the bead-on-wire constraint is an idealized approximation. A
more accurate physical description would show the bead and wire deforming
a tiny bit as we tried to pull them apart, inducing a restoring force that
cancels the applied force. To simplify things, we can think of this restoring
force as a rubber band connecting the bead to the wire, with force — kc,
where c is the displacement of the bead off the wire, and k is the stiffness
of the rubber band. In order for the constraint to hold approximately at
equilibrium, i.e. c < e, the stiffness k must be sufficiently large that the
restoring force —Are cancels any applied force, i.e. k = / m a l / e , where fmax is
the largest force we plan to apply. To make t ^mall, we must make k large.

The difficulty with making k large is that doing so produces differential
equations that are numerically intractable, appropriately called stiff equa
tions. To understand the problem's origin intuitively, consider what happens
when the bead is at rest on the wire and you try to pull it off with constant
force /max- The applied force begins to displace the bead, and the rubber
band begins to exert a restoring force proportional to the displacement. The
restoring force balances the applied one when c = e. When we solve this
system using simple numerical methods, the distance traveled by the bead
accelerating from rest under force f m a x in a single timestep At must plainly
be on the order of e to avoid substantial overshoot and instability. In short,
the step size must be so small that the largest permitted applied force fmax

makes objects move only a negligible distance e in a single timestep, which
means you never get anywhere. So, although stiff rubber bands may be a
good description of what really happens, they are not a good way to enforce
constraints numerically.

2.2 Constraint forces
Ironically, the problem of stiffness is avoided by letting e go to zero (and the
stiffness k to infinity.) In this limiting case, the rule c = 0 really does govern
the system exactly. Since there are no displacements, and hence nothing
to restore, the restoring force is renamed a constraint force. In addition
to depending on the state of the system and on time, as most forces do,
constraint forces depend on other forces. In this section we develop a system
of linear equations that yield constraint forces which, added in to the ordinary

4

applied forces, lead the system to accurately satisfy the constraints.
To make this result general, we switch at this point from the specific case

of a bead on a wire to the generic one of a system whose equations of motion
have the form

MM = Cj + Qj (2)
where M is a mass matrix, q is the vector of the system's independent vari
ables, Q is the vector of (known) applied forces, and C is the vector of
(unknown) constraint forces.2 This equation is just / = ma in generalized
form. Ultimately, our goal is to solve for <jf, given q1 and allowing us to
integrate the differential equation forward through time.

Rather than a single constraint, we have a vector of constraint functions
ct-(<7j, <), depending on the state g, and possibly directly on time. The con
straints are met when C{(qj,t) = 0. The constraint equation itself provides
another condition on C. For c to remain at 0 from some initial time it
suffices that c(to) = 0, c(to) = 0, and c = 0 from to on. If c depends on time
directly and also through the state 9 , we have from the chain rule

d , , N x dc{ , dc{
« = = +-at >

and differentiating again gives

dci „ dii . d2Ci

noting that
d6j _ d2a ,

dqj dqjdqk

<lk' ±J ' J.J ' * n

If W is the inverse of mass matrix M, then equation 2 becomes

qj = W3k{Ck + Qk).

Substituting into 3 and setting c to zero yields the condition

2 I n index notation, an unsubscripted quantity is a scalar, one subscript denotes a vector,

and two denote a matrix . Under the summation convention, the appearance of any index

twice in a term implies summation, so that Mijqj means £ \ Mijqj, which is matr ix M
times vector q.

5

which is a system of linear equations with only the constraint force vector C
unknown. In words, equation 4 just says that the constraint force, added into
the applied force, must cause the second time derivative of the constraints
to be zero. This condition is generally too weak: if the system is under-
constrained, as is usually the case (otherwise nothing can move at all!) we
have fewer equations than unknowns, and there exist many values for C that
satisfy equation 4.

2-3 Virtual work
The ambiguity of equation 4 is easy to understand. The equation states
that the system's acceleration must not move the constraint functions from
zero, but in an underconstrained system, a whole subspace of such "legal"
accelerations exist. Given a constraint force that satisfies equation 4, nothing
said so far prohibits us from adding to it any additional force we like, as long
as the acceleration it induces lies in that legal subspace. To remove this
ambiguity it suffices to add one reasonable restriction: that the constraint
never add or remove energy from the system, which is to say that it may do no
work. To guarantee this we require that the the work done by the constraint
force vanish, under any small displacement of the system consistent with the
constraints. Thus, for every legal displacement dq, C must satisfy Cjdqj = 0,
which simply requires the constraint force to point in a direction in which
the system is forbidden to move. This requirement, known as the principle
of virtual work, is not derived from anything else. It is a restriction, albeit a
reasonable one, on the class of constraints to be considered.

In the case of a single scalar constraint c, the "legal" displacements are
those lying in the tangent plane to the surface c = 0. Because the gradient
dc/dq is normal to the tangent plane, this means that every legal displace
ment must satisfy (dc/dq)dq = 0. The forbidden displacements are those
that satisfy dq = X(dc/dq) for any scalar A. The multidimensional general
izations of the tangent plane and the gradient direction are the null space
and null space complement of the constraint Jacobian matrix. The null space
contains the displacements satisfying

6

while the null space complement contains those that satisfy

dqi=lXiWj
for some vector A,. Viewing the constraint vector as a collection of scalar
constraints, the null space is the set of vectors which lie in every constraint's
tangent plane, while the null space complement is the set of linear combina
tions of the constraint gradients.

To lie in the null space complement, the constraint force must therefore
satisfy

dq3

for some vector A. Enforcing the virtual work principle is simply a matter of
replacing Ck by \rdcrjdqk in equation 4, and solving for A. The components
of A are known as Lagrange multipliers. This substitution, with some re
arrangement, yields

\ dc{ dii , d2Ci —w k—
[dqj Jkdqk\

in which the entire right hand side is known, and the matrix on the left
hand side—a product of the constraint Jacobian, the inverse mass matrix,
and the Jacobian transpose—is a square matrix with the dimensions of the
constraints. 3 Once the linear system is solved, the constraint force is com
puted as Cj = \{dci/dqj, and the total force C3 + Q3 is plugged into equation
2 to obtain the acceleration, q3.

2.4 Feedback
In principle, it suffices to begin with legal initial conditions, in which c = 0
and c = 0, and ensure that c = 0 thereafter by solving equation 5 for the
constraint force. In practice, an extra feedback term is needed to bring the
system into a legal state initially, and to inhibit drift. Including the damped
feedback term, the total force becomes

^ ^ dci dci
dq3 dq3

3 I f it is not desired to invert the mass matr ix explicitly, a larger but sparser linear

system may be formed that involves the mass matrix M instead of W. See [9].

where a and j3 are constants. This additional term is effectively a damped
spring pulling the system back towards a legal state. Because it vanishes
when the system is in a legal state, with c = 0, and c = 0 the feedback is not
a true force. Feedback may be incorporated into the constraint force directly
by making a small modification to equation 4, as described in [9]. However,
we have not found this to be advantageous, particularly in obtaining least-
squares solutions to overconstrained systems.

2.5 First order systems
When the machinery of constrained dynamics is to be used as a tool for
manipulating purely geometric or otherwise non-physical objects, it is often
desirable to replace the second order equations of motion with a first order
system of the form

qi = WnQ^
in effect replacing / = ma by / = mi;, approximately modeling the behavior
of a highly damped system with negligible mass. The effect of this change
is simply that things stop moving the moment forces are withdrawn, which
facilitates accurate positioning in geometric modeling applications. One such
application will be described later. The form of equation 5 changes only
slightly when first order equations are adopted: the term dc/dq disappears,
and instead of the second direct time derivative, we have the first, dc/dt.
The derivation of the first-order constraint equation follows closely that of
equation 5, except that c rather than c is being held at zero, and first order
equations of motion are used,

3 Decomposit ion
Equation 2 and equation 5 of the previous section are "universal," in the sense
that the equations of motion and the constraints are represented in generic,
anonymous form, rather than representing any particular constrained sys
tem. The equations are also intrinsically global: all the objects, constraints,
and forces in a system are coupled, with each constraint force generally de
pending on every other, as well as on the applied forces, and on the positions,
velocities, and mass matrices of all the objects.

8

How are these monolithic equations to be applied to specific systems of
interacting objects and constraints? Tackling a toy problem by hand, as
in most textbook examples, we would simply use the generic equations as
a template, filling in the blanks with the problem specifics. One such toy
problem is a dumbbell, represented as two unit-mass particles constrained
to lie a distance r apart. This system's state vector, 9, holds six elements,
representing the two particles' positions,

q = [xi,yuZi,x2,y2,Z2]i

and its mass matrix is the identity. The equations of motion, expressed in
terms of the three components of force on each particle, are just

The single scalar constraint, to be held at zero, can be written

c = r - ((xx - x 2) 2 + (y i - y 2) 2 + (zx - z2)2)l'\

or, in terms of ^-components

c = r - ((gi - q4)2 + (q2 - q5f + (q3 - qe)2)^.

Having written out these expressions, and by elementary differentiation pro
duced a moderately ugly expression for dc/dq, one may then flesh out the
skeletal constraint equation 4 and solve for the constraint force, which is then
plugged back into the equations of motion, along with the applied force and
the feedback term.

On a small-scale example such as this, it would not be difficult to complete
and implement the exercise. It should be obvious, however, that this kind
of substitution and expansion is not the way to build large-scale constrained
models interactively. Each time an object or a constraint is added, modified
or deleted, algebraic manipulations must be performed to derive the new
equations, and the results somehow put into a form that supports efficient
numerical evaluation. Obviously, a system in which attaching or detaching

4 N o t e that in this instance dc/dq and d2c/dt2 are both zero, and that the inverse mass
matrix, W, is the identity.

9

constraint vector

constraint constraint

connector connector connector

object

connector

object object

State Vector

Figure 1: A schematized model. The three objects' state vectors are concate
nated to form the global state vector, and the two constraints' outputs form
the global constraint vector. The constraints depend on state through con
nectors, which represent outputs of the objects. The whole structure defines
the global constraint function Ci(qj). Each constraint-object pair defines a
block in the constraint Jacobian matrix. The block may be non-zero only
when the constraint depends on the object.

11

3.2 Constraints and Connectors
The global constraint vector, like the state vector, is formed by concatenat
ing the contributions of each constraint. In order to evaluate the constraint
functions, and the Jacobian matrix that relates the constraints to the state,
a new layer of structure must be introduced. In the global equations, the
constraint vector c was given as a function of the state q and of time. Gener
ally, though, the dependence of constraints on state is indirect, mediated by
quantities, such as coordinates of points on the surfaces of objects, that may
be viewed as "outputs" of the objects, pieces of geometry that "move with"
the object in the sense that their values depend on state. For example, a
point on a circle, with coordinates [r cos 9 + xQ, r sin# + t/o] for a constant 0,
tracks changes in the radius r and the center [xo, J/o]- A connector is any such
fragment of geometry, encapsulated with any constant information (such as
6 for the circle point) that is required to define it. In addition to representing
points on surface, connectors can also represent surface normals, areas and
volumes, or anything that might be subjected to a constraint, or to which a
force might be applied.

The benefit of introducing connectors is that they allow us to formulate
generic constraints—e.g. attaching two points together—without the need
to know anything in advance about the objects being constrained. Consider
an arbitrary equality constraint c on a pair of points a and 6, which could be
written

Ci(qj) = fiMqj),bk(qj))
where / is whatever function defines the constraints (just subtraction in the
case of an attachment constraint,) using whatever formulae determine a and
b as functions of their respective objects' state. From the standpoint of
decomposition and encapsulation, it is significant that the function / (a , 6)
is only a property of the constraint, not the constrained objects, while the
position functions a(q) and b(q) are properties only of the two constrained
objects, not of the constraint. We can write the constraint's Jacobian as

d ^ = ^ ^ + d c ^ d b ^ ^
dqj dak dqj dbk dq3

by simple application of the chain rule, and again each of the four derivative
matrices appearing in expression belongs to exactly one object or constraint.

12

Each pairing of a constraint with an object generates a block in the global
Jacobian matrix. Only if the constraint depends on the object may the block
be nonzero (figure 1).

In a similar vein, the matrix dci/dqj appearing in equation 5 may be
written

dii dii dak dc, dak dbi dbk dc t dbk

dqj ~ dak dqj dak dqj dbk dqj dbk dqj
which once again preserves modularity. If the constraint depends directly
on time, this dependence is by definition encapsulated within the constraint,
and so involves no composition. Finally, it remains to evaluate the constraint
vector itself and its time derivative, as required in the feedback term. This
is a simple matter of function composition, given as

Ci = M*k(qj),bk(qj))

and
. dci ^ dci . ^ dci ^

dt dak dbk

The generalization to constraints with any number of inputs is straightforward-
all the above expressions become summations over the inputs.

3.3 Forces
Finally, a force / may be applied to any connector output x using the simple
universal formula

Q, = f,%. (8)

which is the formula for transforming an applied force into a generalized force
on the state. The total generalized applied force is obtained by summing each
applied force's contribution.

3.4 Summary
The formulae given require that only a very few distinct quantities be com
puted by each object and each constraint. An object must be able to report
its s tate length L, get and set its state q and velocity q, and compute its
inverse mass matrix W. A connector on an object must be able to compute

13

its output the time derivative i , and the two derivative matrices dx/dq
and dx/dq. A constraint must be able to evaluate its output, c, given its
inputs, the direct time derivatives dc/dt and d2c/dt2, and, for each input .r,
the derivative matrices dc/dx, dc/dx, and dc/dx.

Provided that each part is able to perform these evaluations, construct
ing the constraint equations and equations of motion governing an arbitrary
system of objects, constraints, and applied forces is a comparatively sim
ple operation, easily performed dynamically. The operations required to
assemble the global equations are are just global index assignment, function
composition, and matrix multiplication. The next section addresses some
aspects of the efficient implementation of the process.

4 Implementation

4.1 Function blocks
The assembly of constraint equations is an instance of a larger class of prob
lems, involving the dynamic composition of mathematical functions, and
evaluation of the outputs and of their derivatives with respect to inputs.
Our implementation of constrained dynamics is built on a facility, called
function blocks, designed to handle this broader class.

A function block encapsulates a real-valued mathematical function that
maps some inputs to some outputs. Each block supports operations that eval
uate its outputs given its inputs, and also its Jacobian matrix—the derivative
of its outputs with respect to its inputs.

The implementor's task in creating a new block type is to provide code
that computes the function and its Jacobian. This task is sufficiently regular
that we have automated the process to the degree that only the mathematical
form a block embodies need be specified, the rest being generated by symbolic
differentiation, simplification, and conversion of the expressions to code.

Complicated functions are built by creating directed acyclic graphs whose
nodes are function blocks, and whose arcs, connecting inputs to outputs,
denote function composition. At runtime, the function block library provides
a variety of support services for creating and deleting connections, doing the
bookkeeping associated with global indexing, etc.

Evaluation of an output of the graph can be a simple recursive descent,

14

each block instructing the blocks that provide its inputs to compute their
outputs, then computing its own. The recursion bottoms out at special
nodes that hold the system's state. Caching is used to avoid the redundant
computation of shared quantities.

The evaluation of Jacobians involves a recursive application of the chain
rule. If a block implements a function fi{xj), then, by the chain rule, its
derivative with respect to a vector of variables qk, on which the block's inputs
presumably depend, is

dfj _ dfj dxj
dqk dxj dqk'

which is just the product of the block's internal Jacobian with the Jacobian
of its inputs with respect to the qr's. Thus the Jacobian may be computed
recursively, each block instructing its inputs to compute their Jacobians, then
multiplying the collected input Jacobian by its internal one. The recursion
bottoms out at the state nodes, where

dxj = dqj _
dqk dqk

 Jk'

which is the identity matrix.
In practice, efficient Jacobian evaluation is far more complicated than the

recursive evaluation of the function itself, because the matrices are typically
sparse, and it is vital that their sparsity be preserved and exploited. Other
complications arise involving, for example, issues of the allocation of storage
for intermediate matrices. The naive recursive descent algorithm, even with
caching, is therefore not necessarily the best. See [4] for a general discussion
of sparse matrix techniques.

4.2 Physobs
Our implementation of interactive constrained dynamics employs a more
specialized layer, called physobs, built on the generic machinery of func
tion blocks. The classes that make up this layer correspond to the elements
described in the previous section: physical objects, connectors, and con
straints. In addition, behaviors apply forces to connectors, implementing
springs, dampers, motors, and the like, and a world structure performs such
global functions as solving the linear system and the resulting constrained
differential equation.

15

The function block machinery automatically handles the maintenance of
global coordinates for the state and constraint vectors; the dynamic compo
sition of the constraint functions and their derivatives with respect to state:
and a variety of bookkeeping and support functions.

5 Applications
We are developing a number of applications of interactive dynamics. In this
section we describe several of these. A major purpose in developing these
experimental systems has been to explore the range of problems to which
interactive dynamics applies.

5.1 Tinkertoys
A basic motivation of our research has been the desire to build and manip
ulate virtual 3D mechanisms. The tinkertoy system allows the user to build
contraptions, using constraints to snap together pre-defined parts, with no
artificial distinction between model construction and simulation. The user of
the system need have no understanding of the underlying mathematics and
physics.

5.2 Geometric Modeling
Another experimental system is concerned with the interactive construction
and manipulation of models composed of arbitrary parametric curves. The
idea is to convert parametric curves, which are purely geometric objects,
into pseudophysical objects that respond in an intuitive way to user input.
The user moves and reshapes curves by freely pushing and pulling on them,
providing a consistent mode for direct manipulation of all shapes.

Each curve drawn on the screen is interpreted as a physical object by as
signing it negligible mass, with uniform viscous drag along its length. Under
this model, a curve responds to forces by changing shape and position in ac
cordance with the equations that define it. For example, a circle may change
radius and position. Because the user controls the object directly through its
appearance on the screen, the underlying parameterization is hidden, making

16

it easy for the user to control curves whose parameters are nonintuitive or
interact nonlinearly.

Attachment constraints serve to nail curves together, while springs and
other forces permit the user to express preferences that are weaker than con
straints. Because they are dynamic simulations, the models created are more
than static drawings: the system is proving useful as a tool for experimenting
with planar mechanisms, as well as a tool for constraint-based drawing.

The steps that go from the parametric equations that define the geometry
of a curve or surface to the compiled code that allows a user to interact with
it as a physical object involve rote differentiation, simplification, and code
generation. We have fully automated these steps as an off-line compilation
process, allowing a user to add a new curve type to the system just by entering
the pure mathematical equations that define it.

5.3 Interactive Optimization
An additional area of interest is the use of dynamics as a medium for the
interactive solution of non-linear problems in constrained optimization. The
idea is to convert local minima in the objective function into attractors, so
that the model is continuously "pulled" toward some local solution. The user
exercises global control by dragging the model toward the desired solution,
then letting go, allowing the local attractor to take over.

An earlier application of interactive optimization to computer vision is
described in [8]: a dynamic 2-D curve, called a snake is superimposed on
an image and attracted to points of high contrast. The curve's behavior
approximates that of a springy, stretchy wire. Placed near an edge, the
curve locks on to it and is able to track its motion. At any time, the user
may grab the curve and pull it toward features of interest.

In addition to continuing the investigation of vision applications, we are
exploring other tasks involving the manipulation of nonlinear models and
optimal data fitting. One experimental system allows the user to define a
collection of variables, enter algebraic expressions representing constraints
on the variables, functions to optimize, or user-accessible outputs. The user
may then directly manipulate the system subject to the constraints, using
sliders to pull on the outputs. Related investigations include the dynamic
fitting of parametric models to scatter data.

17

5.4 Troids
Troids are simplified linearly deformable bodies. A 2-D troid may be viewed
as an affine transformable sheet containing mass in some distribution. Troids
are imbued with internal elastic forces that make them tend toward a rest
state, and tend to preserve their original area. Because the deformations they
undergo are linear, troids are extremely simple objects, simpler in fact than
rigid bodies. In the case of a collection of troids that are attached together
or nailed in place, the constraint matrix on the left hand side of equation 5
is constant. This simplification allows us to pre-invert the constraint matrix,
eliminating the need to solve a linear system at each evaluation of q. The
simulation of models built from troids is therefore very fast.

Because they are defined in terms of deformations, troids may be rendered
by transforming arbitrary curves, drawings, etc. created in body coordinates.

We are using troids as a means of rapidly creating physical keyframe
animation. Control is accomplished by constraining specified points to move
along user-defined trajectories. The desired acceleration of the control point
along the trajectory appears as the d2c/dt2 term of equation 5. Subject to
the keyframe constraints, and the attachment constraints that hold pieces
together, the system moves with passive nonrigid physics. The resulting
behavior is best compared to that of stretchy puppet whose hands, feet, etc.,
are directly controlled. By adjusting the stiffness and drag of the internal
forces it is possible to create behaviors ranging from highly non-rigid jello-like
motion to nearly rigid forms.

References
[1] William W. Armstrong and Mark W. Green. Visual Computer, chap

ter The dynamics of articulated rigid bodies for purposes of animation,
pages 231-240. Springer-Verlag, 1985.

[2] Ronen Barzel and Alan H. Barr. Topics in Physically Based Modeling,
Course Notes, volume 16, chapter Dynamic Constraints. SIGGRAPH,
1987.

[3] Ronen Barzel and Alan H. Barr. A modeling system based on dynamic
constaints. Computer Graphics, 22:179-188, 1988.

18

[4] J. S. Duff, A. M. Erisman, and J.K. Reid. Direct Methods for Sparse
Matrices. Oxford University Press, Oxford, UK, 1986.

[5] Micharl Girard and Anthony A. Maciejewski. Computational Modeling
for the Computer Animation of Legged Figures. Proc. SIGGRAPH,
pages 263-270, 1985.

[6] Herbert Goldstein. Classical Mechanics. Addision Wesley, Reading, MA,
1950.

[7] Paul Issacs and Michael Cohen. Controlling dynamic simulation with
kinematic constraints, behavior functions and inverse dynamics. Com-
puter Graphics, 21(4):215-224, July 1987. Proc. SIGGRAPH '87.

[8] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Ac
tive contour models. Int. J. of Computer Vision, 1(4), 1987.

[9] John Piatt . Constraint Methods for Neural Networks and Computer
Graphics. PhD thesis, Caltech, 1989.

[10] John Piat t and Alan Barr. Constraint methods for flexible models.
Computer Graphics, 22:279-288, 1988.

[11] Peter Schroeder and David Zeltzer. Dynamic simulation with linear
recurive constraint propogation. Computer Graphics, 1990. In press.

[12] Jane Wilhelms and Brian Barsky. Using dynamic analysis to animate
articulated bodies such as humans and robots. Graphics Interface, 1985.

[13] Andrew Witkin, Kurt Fleischer, and Alan Barr. Energy constraints on
parameterized models. Computer Graphics, 21(4):225-232, July 1987.
Proc. SIGGRAPH '87.

[14] Andrew Witkin and Michael Kass. Spacetime constraints. Computer
Graphics, 22:159-168, 1988.

19

