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Abstract 

We consider the problem of extracting retrodictive knowledge from scientific laws used 
ordinarily only to predict. In particular, a method is developed which synthesizes rules of 
experiment-interpretation from the basic law of chemical kinetics. 

Previous work in AI on transforming predictive knowledge into convenient retrodictive 
knowledge has been within the subfield of diagnosis. The current work extends the idea to 
the domain of elucidation of causal mechanism. 

Refutation rules are synthesized by discovering invariants within a parameterized system of 
equations. The choice of invariants to look for is guided by four criteria. A principle of stable 
refutation, based on the character of experimental data, is derived from the non-rescindible 
nature of refutation. Three other criteria contribute to the practicality, generality, and reliability 
of the rules. 

The invariants chosen are tested by systematic sampling of a system parameter-space. Hence, 
the rules, which check that an invariant holds for experimental data, are established by induction 
from simulation data. 

The synthesized rules serve in practice as reliable disconfirmatory evidence, rather than 
refutations, due to their inductive origin as well as to the uncertainty of experimental data. 
The rules will be applied within the context of ongoing work on elucidation of chemical-reaction 
networks. 
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1. In troduc t ion 

How can one extract convenient retrodictive knowledge from scientific laws used ordinarily only 
to predict? In particular, given' laws that characterize observable manifestations of a physical 
mechanism, how can one turn those laws to use for the purpose of elucidating the structure of that 
mechanism? 

This report addresses these questions in the context of the scientific laws of chemical kinetics. 
Parsimonious rules tha t interpret da ta from chemical-reaction experiments are synthesized auto
matically from the kinetical equations. These rules could be used as refutations of mechanistic 
hypotheses in the case of noiseless data, and as reliable contrary evidence in the case of noiseful 
data . For example, on the hypothetical set of concurrent reactions: 

A + B -+ T + X 
B + X -» 2T 

the following rule was synthesized: 

If the concentration of B exceeds that of A at any time, refute (or disconfirm) the 
hypothesis. 

Our method involves: 

• Discovery of invariants within a parameterized system of ordinary, non-linear, differential 
equations ( the kinetical equations). 

• Development of several criteria to guide the choice of the invariants to look for. One criterion 
is derived from the non-rescindibility of refutation. 

• Sampling the parameter space of the kinetical equations, followed by numerical integration 
to obtain the solution, as a means for discovery of invariants. Our chosen invariants are not 
generally inferrable analytically directly from the kinetical equations. 

• Formulation of experiment-interpretation rules based on the invariants, which test experi
mental da ta for violation of particular invariants. A violation serves to refute (or disconfirm) 
any hypothesis for which the invariant holds. 

The sequel is organized as follows. Our motivation and context are discussed in the next section. 
Then we sketch some chemistry knowledge helpful to understand the role of the equations in this 
report. We next present related ideas from structural diagnosis (of satellite subsystems, linear 
accelerators, and the human heart) . Then, our method is developed in detail on the equations of 
chemical kinetics, and practical use of the synthesized experiment-interpretation rules is discussed. 
Finally, the last section recapitulates the present contribution, and points out the limitations. The 
appendices develop a technical point useful to reduce computation time, give further examples of 
program output , and relate the kinetical equations to theorems of differential equations. 

2. M o t i v a t i o n and C o n t e x t 



to be used for elucidation. 

The chemistry problem of reaction-network elucidation is to find the actual set of constituent 
reactions underlying a given, overall reaction. For example, suppose tha t a chemist reads or 
discovers that the reagents H2 and Br2 yield HBr, i.e., H2 + Br2 ~> HBr. He might then study 
the reaction experimentally in his laboratory, to determine the set of elementary reaction steps, or 
reaction network, which constitute the overall reaction: 

Br2 ^ 2Br 
Br + H2 ^ HBr + H 
H + Br2 -> HBr + Br 

Determining the reaction network is a complex problem of inductive inference. The space of 
candidates is huge, and even verifying with certainty tha t a particular candidate is the "true" one 
is problematic, because more than one network may give rise to similar experimental data . 

The best way to elucidate reaction structure would be to appeal to a scientific theory tha t states 
uniquely the course of reactions, given only the initial start ing materials and reaction conditions. 
Unfortunately, no such theory is currently available, so other means are employed. 

Our approach is to automate the elucidation of reaction structure via laboratory experimentation. 
The intent is to embrace the complete cycle of experiment design, execution, and interpretation, 
in order to advance our understanding of how best to design an assistant experimental-scientist. 

The motivation of the work presented in this report , then, is to extract rules of experiment inter
pretation from chemical laws themselves, where by "experiment interpretation" is meant inference 
having theoretical bearing on the problem at hand: elucidation of a particular structure. The rules 
obtained are not available in chemistry textbooks and journals, nor readily from chemists, hence 
the question of comparison with human knowledge-acquisition is not an issue. 

3 . R e l e v a n t C h e m i s t r y K n o w l e d g e and Def ini t ions 

A modest knowledge of chemistry concepts helps to understand the role of the synthetic rules, as 
well as the chemical laws from which they are derived; this section presents these concepts. Also, 
some chemical terminology is not precise enough for our purposes, so we introduce definitions to 
be followed throughout. 

To describe how substances are transformed into new substances, chemists use notation such as 
A + B -+ T + X, to summarize a process, or reaction, by which two chemical substances A and B 
are transformed into new substances T and X. 

Next are some definitions. The target reaction is the reaction, such as A + B ^ T , whose structure 
is to be elucidated. We may also call this the aggregate reaction, to emphasize the likelihood that 
the reaction has underlying structure. The reagents are the chemicals tha t are placed in a reaction 
vessel to s tar t an experiment; A,B are reagents of the target reaction just shown. A chemical 
species is a distinct molecular substance having a particular chemical behavior. 1 

1 Two species may have the same molecular formula, yet exhibit different chemical behavior, due to different atomic 
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An important distinction is tha t between an aggregate reaction and an elementary reaction (the 
lat ter term is standard; we have introduced the first term). An elementary reaction is regarded as 
a single act: one or more molecules re-arrange themselves into new products, but no constituent 
reactions underlie the elementaxy reaction. If the reaction involves two or more molecules, they 
must meet in physical space for the reaction to occur. An aggregate reaction, on the other hand, 
may be composed of any number of steps, either on a pa th to the target product , or off it. We allow 
the class of aggregate reactions to include that of elementary reactions, i.e., an elementary reaction 
is an aggregate reaction, by our definition. We remark that the arrow notation for reactions implies 
nothing about whether a reaction is elementary. For example, the aggregate reaction A + B —• T 
may be composed of two elementary reactions: A + B —• X and X —» T. 

A reaction network is (ordinarily) a set of elementary reactions; if the network reactions are ag
gregate, and not elementary, that will be stated explicitly. Each reaction of a reaction network is 
called a step. 

The scope of our work is restricted to chemical reactions tha t occur entirely in one phase, e.g., if a 
reaction occurs in liquid solution, no mass is transformed into solid or gas phase. Reactions occur
ring in a single phase are termed homogeneous. Furthermore, we make the s tandard assumption 
tha t the volume of solution hosting the reaction remains constant. 

The field of chemical kinetics studies the rates of chemical reactions. The basic law of kinetics 
asserts tha t , under certain conditions, the rates of change of concentrations can be characterized 
by a set of ordinary, non-linear, differential equations derived in a straightforward manner from 
the elementary reaction steps. For example, if the reaction A + B —> C is elementary and occurs 
a t constant volume, and if the solution is well-stirred, then the law asserts the following: 

d[A]/dt = - h[A][B] 
d[B]/dt = - ki[A][B] 
d[C]/dt = h[A][B] 

where brackets denote the instantaneous concentration of the enclosed species. This reaction, 
like all elementary reactions, has a characteristic rate k\ which is constant for fixed temperature, 
pressure, catalyst, and solvent. I t is noteworthy tha t this law does not depend on the identity of 
the species, although the rates certainly do. 

For the case of concurrent chemical reactions, the derivation of equations is well illustrated by 
example. T h e species concentrations undergoing the two reactions A + B —• C and 2C —• D evolve 
as follows: 

d[A]/dt = - h[A][B] 
d[B]/dt = - h[A][B] 
d[C]/dt = k1[A][B)-2k2[C)2 

d[D]/dt = fc2[C]2 

For each species, the effect of a reaction involving the species becomes a term on the right-hand 

side of its equation - positive for productive reactions, and negative for consumptive reactions. 

A reversible reaction is one tha t can proceed in either direction, e.g., A + B C. There is 

a rate constant associated with each direction. If the reactants and products of a reversible, 

connectivity, or to different spatial configuration. Such molecules are called isomers. 



elementary reaction are involved in no other reaction, then a dynamic equilibrium is reached at 
concentrations dependent on the two rate constants. Reactions still occur in both directions, but 
without observable effect on concentrations, which are in equilibrium at non-zero values. 

A set of concurrent, elementary reactions at constant ambient conditions determines a system of 
differential equations having fixed rate constants. A network, as defined above, corresponds to a 
system of parameterized differential equations, i.e., the rates appear as symbolic constants in the 
system of equations. 

A network, then, is an abstraction over an infinitude of fully-specified reactions (i.e., reactions-with-
rates). These networks aggregate over instances whose concentration-versus-time trajectories are 
very dissimilar, due to the effect of variations in the rates. Therefore, these networks make much 
weaker predictions than the reactions-with-rates; for example, they may predict certain equilibrium 
points, such as tha t the final, asymptotic concentration of a reactant species is zero. In contrast, 
the reactions-with-rates predict unique trajectories over all time. 

Finally, the single-phase chemical reactions tha t we study conserve mass, as well as number and 
type of atoms of each element. This implies tha t the system is stable, in the sense tha t any solution 
to the kinetical system is bounded. 

4. R u l e s from P r e d i c t i v e K n o w l e d g e 

The data-driven synthesis of retrodictive rules from predictive knowledge involves first carrying 
out predictions over a wide range of conditions. The da ta are then processed to form rules that 
associate predictions (i.e., observations) with a set of possible conditions or causes. 

We next present the idea as developed within the subfield of diagnosis, and then show how structure 
elucidation can benefit from the same theme. 

4 . 1 . R u l e s for d iagnos i s 

Diagnostic rules are synthesized via the repeated simulation of a predictive model under a wide 
range of model inputs and faults, to obtain outputs of the model. 2 These simulations yield triples of 
input , faults, output , which are processed to learn rules tha t associate inpu t /ou tpu t (mis)behaviors 
with possible faults. 

This idea has been exploited in the AI diagnosis li terature for models of: 

• A satellite electrical-power subsystem [1] 

• A particle-accelerator beam line [2] 

• The human heart [3,4] 

*By 'model' is meant any formal (e.g. computational, mathematical) means to infer a system's outputs from 
inputs, without actuaUy exciting the system. 
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Figure 1: Simple Logic Circuit 

An earlier advocacy of the idea is in [5]. 

To illustrate the technique in more detail, imagine tha t we have a model of the simple circuit of 
Figure 1. This circuit tests equality between its two inputs I l 9 I 2 : output Y is 1 exactly when 
equality holds. There are five logic gates: two two-input AND-gates, one two-input OR-gate, and 
two inverters. Let 's assume tha t experience has taught that the only possible fault within such 
circuits is a permanent input-stuck-at: the input a t a gate is stuck at logic 1 or 0, regardless of the 
logic value along its feeding connection. A complete set of diagnostic rules, expressed in terms of 
controllable values ( the two inputs) and observable values ( the output ) obtains by simulating the 
circuit model on the cross-product of the set of possible inputs (2x2=4) with the set of gate-input 
states ( 3 3 ' 2 + 2 1 = 8 ) , because each gate-input is functioning, stuck at 1, or stuck a t 0), and calculating 
the circuit output . In this way, four rules are synthesized, which associate a set of faulty gate-inputs 
with the four possible instances of incorrect output: a Y-output bit-flip for each of four possible 
inputs . Here is what a rule might look like: 

// // = 1,h = 0 , and the output Y is discrepant, then 

( inputt{OR) is stuck at 1 
V 

inputf(OR) is stuck at 1 
V 

input(INVt) is stuck at 0 A input(INVs) is stuck at 0 
V 

Within a rule, each disjunct of the right-hand-side disjunction is a distinct, consistent, and complete 
explanation of the misbehavior covered by tha t rule. 

Often the assumption is made tha t only a single fault (or say, a t most two) occurs at one time, 
thus greatly reducing the size of the disjunctive right-hand-side of the synthesized rules. Distinct 
explanations arising from use of the rules on several, actual device tests can be intersected, to 
narrow the space of candidates still more. 

This method presupposes a model of the mechanism of interest, and a catalogue of possible faults. 
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In the general case, there arises the difficulty of dealing with analog inputs , or with faults expressed 
over a continuous domain. Since not all points can be simulated, a sampling policy must be selected, 
and then the comprehensiveness of the derived rules becomes uncertain. Even discrete variables 
of infinite extent pose these problems. A plausible recourse is an empirical test of the synthesized 
rules, possibly by simulation, in which values not corresponding to any sample from the training 
set are tried. If the rules reliably include the true fault(s) in their diagnosis, then the rules are 

validated. 

4.2 . A n a l o g y of s t ruc ture e luc idat ion w i t h diagnosis 

The goal of diagnosis is a physical explanation of misbehavior in terms of a deviation from a working 
model. In practice, those explanations postulating fewer deviations are entertained earlier. 

The goal of structure elucidation is to find the true mechanistic structure, or reaction network in 
our case. This goal is similar to the diagnostic goal, except tha t a space of mechanisms is searched, 
rather than a space of faults. Simpler mechanisms are preferred, although what constitutes sim
plicity depends on the domain. In reaction chemistry, networks having fewer steps or fewer species 
are simpler. 

4 .3 . R u l e s for s t r u c t u r e e luc idat ion 

Elucidation rules are synthesized via the repeated simulation of many structural models under 
a range of model inputs , to obtain outputs of the model. These simulations yield triplets of 
input , structure, output , which are processed to acquire rules tha t associate inpu t /ou tpu ts with 
s t ructures . 3 

Our method learns rules tha t refute a single structural hypothesis. For a finite hypothesis space, 
a set of such rides having identical tests could be combined into a single rule tha t tests the same 
condition, but infers the list of unrefuted hypotheses, just like the diagnostic example of Figure 1. 
Our presentation will not take tha t second combination step; we merely remark on the equivalence 
here. 

3Ours is not the first instance of rule induction for structure elucidation. The Meta-DENDRAL work induced 
rules for molecular-structure elucidation (distinct from reaction-network elucidation) from empirical, molecule/mass-
spectral-data pairs [6,7]. We propose to induce them from uniquely predictive scientific laws, which were not available 
for the Meta-DENDRAL task. 
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Figure 2: Course of the Reaction Concentrations 

5. D e v e l o p m e n t o f t h e M e t h o d 

5 . 1 . E x a m p l e ne twork 

We shall illustrate our method always with reference to the following reaction network (we shall refer to it as 

A + B -> T + X 
B + X -> 2T 

for which the basic law of kinetics implies this system of differential equations (we shall refer to the system by E) : 

d[A)/dt = -kx[A][B] 
d[B)/dt = -kt[A][B] - k2[B][X] 
d[T]/dt = kt[A][B] + 2k2[B][X] 

d[X)/dt = kt[A][B] - k2[B][X] 
which characterizes the concentrations over t ime (trajectories) for each of the four species. The 
reference experiment is the reaction of the reagents A,B a t equal, initial concentrations of 1 unit. 

Figure 2 shows the course of the reaction on the reference experiment under the following reaction rates: 

A + B ™X T + X 
B + X ^ 2T 

5.2 . A granular i ty m i s m a t c h 

Experimental da t a from a reaction consist of numerous concentration measures over time. However, 
our hypotheses are reaction networks, which correspond to a system of parameterized differential 



equations, such as E. Therefore, a hypothesis does not in general make unique, detailed predictions 
of concentration. This gives rise to a granularity mismatch between experimental da ta and what 
hypotheses predict . 4 

Our solution here is to extract predictions for the reference experiment tha t are unique over the 
entire span of the system parameters, i.e, network invariants. We have seen tha t such invariants 
cannot be the detailed concentration trajectories, but other, more abstract invariants are possible. 

If a network invariant is violated by experimental da ta on the reference experiment, then the 
network predicting the invariant cannot be the t rue network. 

From the network equations, derived from the basic law of chemical kinetics, we will synthesize 
convenient retrodictive knowledge: rules tha t test experimental concentrations da ta in order to 
refute the hypothesis tha t a certain network gave rise to the data . 

5.3 . D e c i d i n g o n appropr ia te invariants 

Our parameterized systems may make several invariant predictions on the reference experiment. 
For example, system E predicts tha t the equilibrium value for [B] is zero, and that d[B]/dt + 
d[T]/dt vanishes a t t ime 0. Are these invariants interesting for our purpose? 

To determine what are good invariants, we first establish some criteria, part ly by examining more 
closely the character of experimental data . 

5 .3 .1 . L a b o r a t o r y sampl ing and cut-off 

Discrete, simulated da t a on species concentrations look like Figure 3; experimental da ta are not 
ordinarily as smooth. Noticeably, the curves are not dense; there are significant time gaps between 
measurements, due to the manipulations required to extract a sample of the reaction solution and 
analyze it. Also, the reaction is cut off after a time, either when the chemist believes equilibrium 
is reached, or when the resources (e.g. space, apparatus) are needed. 

These realities affect refutation in the following way. Let's consider the noiseless case. A refutation, 
by definition, is decisive: it cannot be rescinded. If a refutation is based on da ta such as in Figure 
3, then it cannot be the case tha t filling in the curve with more da ta , as well as extending it until 
equilibrium, invalidates the refutation. Therefore, our invariants must permit stable, or monotonic 
refutations, according to the following Principle of Stable Refutation: 

Pr inc ip l e 1 The absence of an invariant is stable with respect to more data from increased reaction 
sampling or extent in time. 

An invariant tha t violates this principle due to cut-off is the equilibrium concentration for a species. 
One never knows whether by allowing a reaction to proceed longer, the species concentration might 

4 A network hypothesis does predict that there exist values for the unknown parameters that entail the experimental 
data, with allowance for noise and experimental uncertainty. 

8 



« 

Time (s) 

Figure 3: Typical Concentrations Data 

reach zero. Note tha t it is only the failure of the invariant to hold, not its fulfillment, tha t must 
be stable in the sense of Principle 1. 

An invariant t ha t violates Principle 1 due to sampling would be tha t two trajectories [Xi] and 
[X2] always cross a t some time. To illustrate why with an extreme case, consider two sampled 
trajectories tha t appear as parallel lines. Between two consecutive sample times, the trajectories 
could cross and resume their seemingly straight pa th in t ime for the next sample. Hence, basing 
a refutation on the seeming absence of crossings would be unjustified, so the crossing invariant 
violates the principle. 

5.3 .2 . Op erat iona l i ty 

experimental da ta . S O m e ^ n d ^ « d knowledge of the accuracy of 

5 .3 .3 . G e n e r a l i t y 

It would very inconvenient if there were needed a separate batch of rules to interpret these two experiments: 

• Combine reagents a t equal concentrations of .01 moles/liter. 

• Combine reagents a t equal concentrations of .005 moles/liter. 

Part icular reagents may not easily be monitorable a t low concentrations, others a t higher concen
trations, bu t the same rules should apply to the experiment where both reagents have equal initial 
concentrations. 

To assure tha t experiment interpretation does not depend on the magnitude of initial concentra
tions, we require tha t an acceptable invariant not depend on any absolute level of concentration, 



only on relative levels. 

5.3 .4 . Re l iab i l i ty 

There can be invariants of a system of differential equations which are not easily proven analytically, 
because the mathematical techniques called for are not available. A recourse is to test for a 
proposed invariance by sampling the system's parameter space, performing numerical integration 
of the equations on the reference experiment, followed by testing whether the property holds for 
the concentrations trajectories. If the property holds at all tested points in the parameter space, 
then it is a plausible invariant of the system. Of course, the sampling procedure may miss a region 
in which the property fails to hold. If we lack analytical tools, our confidence tha t the system 
sample has discovered a persistent invariant relies on the extent of sampling, together with any 
background knowledge about system behavior. 

Our systems of differential equations possess the strong constraint of conservation of mass: ex
actly tha t reagent mass present at the s tar t of an experiment remains in the reaction, only being 
distributed among the new products . 5 Hence, the stability (i.e. boundedness) of these dynamical 
systems is guaranteed. Also, as discussed in Appendix 3, the solution to a chemical-kinetic system 
is an analytic function of the initial conditions and parameters, so tha t a certain smoothness is 
assured. This makes sampling a more credible tactic. 

However, to increase further our confidence tha t the samples adequately capture the behaviors 
spanned by tha t space, we shall require tha t the behavior found at a sample point S not change 
under certain mappings of S to other points in the parameter space, as discussed next. 

One convenient mapping is tha t of uniform multiplication: If the coordinates of a sample point 
(i.e. values for the system parameters) are uniformly multiplied by a constant , then the fulfillment 
of system invariants shall not change. In this way, a single sample of the parameter space gives at 
no cost an infinitude of other system samples, including parameter values of much greater or lesser 
magnitude than the "root" sample. How to guarantee fulfillment under such a mapping is the next 

issue. 

We note that the equations of the differential system are linear in the parameters, for example: 

d[T]/dt = h[A][B] + 2k2[B][X] 

This means tha t uniform multiplication of the parameters fct- by a constant is equivalent in effect 
to changing the units of t ime used, say from seconds to milliseconds, or to megaseconds. 

Therefore, to assure tha t uniform multiplication by a constant not change fulfillment of an invariant, 
we shall require tha t an acceptable invariant not depend on the time units. We obtain in this way 
the mentioned infinitude of "free samples." 

5As stated in section 3, the scope of our work is limited to homogeneous reactions, e.g., loss of mass from 
undetectable precipitation is excluded. Also, phenomena such as evaporation are ignored. 
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5.3 .5 . P r o p o s e d invariants 

We recapitulate here the four criteria for acceptable invariants developed in the previous subsections. These are: 

• Invariants must permit stable refutation in the face of da ta from more frequent reaction 
sampling, or from extending the experiment longer. 

• Invariants must be operational within the context of particular experimental apparatus. 

• Invariants should depend only on relative concentrations, not on their absolute levels. 
• Invariants should not depend on the units used for time. 

The invariants used currently are the following: 

1. A species trajectory never increases. 

2. A species trajectory never decreases. 

3. The trajectory for one species dominates (i.e. is always > ) the trajectory for a second species. 

These invariants satisfy the four criteria listed. In general, the presence of these invariants in 
a kinetical system of equations having fixed initial conditions seems not inferrable analytically. 
Hence, the fourth criterion, of independence of time units, is critical to augment the sampling 
coverage. 

5.4. Invariants o f e x a m p l e network 

Our example network, 

exhibits the following invariants: 

• A,B monotonically decrease 

• T monotonically increases 

• A dominates B 

• T dominates X 

A+B ^ T+X 
B + X ^ 2T 

These invariants were discovered by sampling the parameter space fci, k2 a t 7 x 7 = 49 points, using 
a 7-level factorial design of the parameter space at values of successive powers of ten. 
The invariants found for this case are seen correct by reasoning at the level of reaction steps. For 
example, T dominates X because they are produced equally by the first reaction step, whereas an 
X is consumed to produce 2T a t the second step. However, reasoning a t the reaction-step level 
is not powerful enough to account for the invariants found in many cases, as will be seen on the 
examples in Appendix 2. 
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If concentrations da ta from an experiment violate any of the invariants of the example network, 
then the network could not have given rise to the data (assuming no noise). To be explicit, the 
rule derived from the second invariant above is: 

If the trajectory for species T ever decreases, then the network is refuted. 

5.5 . P a r a m e t e r - s p a c e sampl ing 

The purpose of sampling is to discover system invariants. Each parameter represents the speed 
of a reaction step; for instantaneous reactant concentrations, it determines the step's contribution 
to instantaneous rate-of-change of the species in the step. Reaction speeds are positive quantities, 
and vary over huge ranges, with little constraint a priori on possible values. 

One reasonable sampling policy varies the reaction speeds in a systematic manner, so that each 
step has a chance to dominate with regard to speed. Our current approach is a full 7-level factorial 
design in the parameter space, in which each parameter assumes a value from the set i o * ' * = 1 ' " ' ' 7 . 
According to the factorial-design regimen, the number of points tested is 7 ^ , where N is the number 
of factors (parameters in our case). 

Appendix 1 points out redundance in the factorial design tha t can be exploited to reduce the 

amount of computation. 

6. Pract i ca l U s e o f R e f u t a t i o n R u l e s 

The preceding sections developed a method for synthesis of idealized refutation rules with no 
at tent ion to their practical use. This section discusses the practical aspects, and illustrates the 
potential discriminatory power on a real chemical reaction. 

6 . 1 . T h e rules are exper iment - spec i f i c 

The invariants currently used result in rules that interpret the reference experiment, in which the 
two reagents are combined at equal concentrations. The rules are applicable regardless of the 
initial magnitudes of concentration. However, the rules are sensitive to the ratios of the reagent 
concentrations; an experiment a t a 2:1 ratio cannot be interpreted with the rules synthesized on 
the reference experiment. Although it would be very convenient to apply the same rules regardless 
of the reagent ratios, much fewer invariants would be detected over such a wide range of conditions. 

In this report we only consider the reference experiment, in which only the reagents are present 
at the reaction's s tar t . Synthesizing rules for other reaction experiments is conceptually identical, 
and only involves sett ing different initial conditions for the numerical integrations. 
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6.2 . Disconf lrmat ion versus refutat ion 

Because noise is present in any experimental d a t a , 6 definitive rejection of a hypothesis when da ta 
do not satisfy its predictions is risky. Therefore, to decrease the risk of rejecting the correct hypoth
esis, any single evidence based on experiment should only disconfirm, i.e., augment inconclusively 
disbelief in the hypothesis. 

Our rules interpret experimental da ta , so it follows tha t they should not be used to refute, only 
to disconfirm. The reason for stressing refutation in their development is to localize to the extent 
possible the sources of uncertainty at tending their use. 

Moreover, even on idealized da ta our rules are not certain, since they are derived by induction on 
simulated data; the rules themselves nevertheless have a high degree of confirmation, because the 
invariants tha t they test proved true on all the parameter points examined. 

Rules have already been generated for all networks having two reaction steps, to be used as dis-
confirmatory evidence within our reaction-structure elucidation programs. 

6 .3 . D i s c r i m i n a t o r y p o t e n t i a l 

We illustrate the potential of the rules to discriminate among hypotheses by the following real 
example. The synthesis of C3\H37N2I within the following scheme: 

C13B1SNI + C17Hl6N2 - N * C31H37N2I + C24H27N2I + C6H7N 

from the two reagents C\3H\&NI and C\7HieN2 involves also the formation of the two products shown a t the right, above. 

Three networks for this reaction were hypothesized by a separate program, which generates initial 
hypotheses based only on the molecular formulas of reagents and known products, and on simplicity. 

6For our purpose, noise is any deviation from the concentrations that are predicted by the equations of the "true" 
reaction network. It is not necessarily any fault of measurement or data collection, e.g., the solution might not have 
been stirred adequately, so that the basic law of kinetics is obeyed only approximately. 
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Schematically, these networks are as follows: 

A + B -> X + Y 
2X T+Z 

) ^(A,B) fT (T ,y ,Z) ={AB,TZ) > (Y/TXZ) 
(-^) H(A,B) l T ( T , y , Z ) = (AByTZ) > (Y/TXZ) 
0=*-) M A, B) 1 t (T ,y ,Z) = ( A 5 , T Z ) > ( Y / r X Z ) 
( ^ ) * ( A , 5 ) 1^(T,y,Z) = (AJS,TZ) > ( y / T X Z ) 

— X + y 
£ + X T + Z 
(_>_>) ^ ( A , £ ) 1 t (T ,y ,Z) = ( T Z ) >(A/BTZ,Y/TXZ) 
(-^) $(A9B) 1t(Y) = (TZ) >(A/BTZ,Y/TXZ) 

J| ( 5 ) ft (T, Z) = ( T Z ) > (A/BTZy Y/TXZ) 
( ^ ^ ) = ( T Z ) > (A/BTZ, Y/TXZ) 

A + B -+ X + Y 
A + X T + Z 

^ ( 5 , A ) t T ( T , y , Z ) = ( T Z ) > ( 5 / A T Z , y / T X Z ) 
( _ ^ ) ^ ( 5 , A ) f t ( y ) = ( T Z ) >(B/ATZ,Y/TXZ) 
( ^ - ) tT (T ,Z) = ( T Z ) >(B/ATZ,Y/TXZ) 
(^±^±) = ( T Z ) > (B/ATZ, Y/TXZ) 

Below each network is a list of possible reaction-step directions, together with the invariants found 
on the reference experiment for each direction pair. An entry involving indicates tha t between 
two species each dominates the other, hence their trajectories are coincident. 

The three hypotheses, even after aggregating over possible directions, predict different relations 
between reagents A and B. The first network predicts coincident trajectories; the second and third 
networks predict respectively tha t A dominates B , and vice versa. If the t rue network is one 
of these three, then the reference experiment can partially rule out two others, in case tha t the 
concentration of one reagent is a t any time significantly greater than the other. 
Note that if the two reagent trajectories cross, so tha t neither dominates the other, then all three 
hypotheses are disconfirmed. 

7. Conc lus ion 

This work has extended the idea of synthesizing convenient, retrodictive knowledge from predictive 
knowledge to the domain of s tructure elucidation, within the context of chemical kinetics. The 
emphasis was on synthesis of refutation-style rules for the interpretation of experiments, which in 
practical use would serve as reliable, disconfirmatory evidence. 

The possibility of refutation arises from discovering invariants in a parameterized system of or
dinary, non-linear, differential equations, via induction over many instances of simulated da ta 
obtained by numerical integration using different parameter values. 

Four criteria were developed to guide the selection of invariants. The Principle of Stable Refuta-
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tion uses the logical non-rescindibility of refute,™ • 
for »amp,ed, c » , - „ f f e x p e r i m e n t ^,o7^Z^tT\ ** i,,Varii""S *re s°»*°" 
reliability were presented. The invariants choTe*mol ? g t o operationality, generality, a n d 

f r °m data. 1 0 n e x P e nments are done to discover them by induction 

The reliability of the invariants, and of the rules derived from them, is supported by choosing 
invariants that do not depend on the units of time. By so doing, behaviors at an infinitude of 
points in parameter space are captured by examining a single point in the space. Hence, the 
synthetic rules achieve a considerable degree of confirmation, although they are not proven true. 
An advantage of the rules is that they are crisp and intelligible to the human chemist, who might 
be asked to judge whether a gross violation of an invariant has occurred. 

7 « 1 . L imi ta t ions 

The limitations to the method are several. First, the invariants are established by a factorial 
design on the parameter space, so computation time increases exponentially with the number of 
parameters. The run time for our example network, which involves 13 numerical integrations, is 
about 1 minute on an IBM RT-PC with floating point accelerator. On the other hand, calculations 
need be done only once for all time, because the reaction networks are expressed in terms of 
variables A,B,T, etc., which abstract the identities of molecules. 

A second issue to be addressed is the stability of the invariants with respect to errors in the 
experimental initial conditions. It is not possible experimentally to combine two reagents in exactly 
equal concentrations, so that rules developed for the reference experiment are subject also to that 
uncertainty. One remedy to this problem could be to verify during simulations that the invariants 
persist despite slight perturbations in initial conditions. Instead, we prefer to apply the rules 
conservatively, i.e., to decide that an invariant has been violated experimentally only when the 
violation is gross. 

Appendix 3 shows that the solution to a chemical-kinetic system is stable, in the sense that small 
perturbations of the initial conditions lead to bounded perturbations of the solution, for any finite 
time interval. This fact lends some credibility to the stability of our invariants with respect to 
perturbations in the initial conditions. 

8. A c k n o w l e d g m e n t s 

Thanks are due to Prof. Herbert Simon for technical suggestions on this work. Any shortcomings remain the responsibility of the author. 

Profs. Jonathan Lindsey (Chemistry), Tom Mitchell, and Herbert Simon have regularly guided 
the larger network-elucidation effort. Prof. Bruce Buchanan (Univ. of Pittsburgh) has also made 
several valuable suggestions. Frangois Lecouat was an early collaborator on the elucidation problem. 
Dr. Scott Clearwater (Univ. of Pittsburgh) made helpful comments on a draft of this report. 
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Numerical-integration Fortran programs were contributed by Dr. Patrick McCroskey, now of the 
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A E x p l o i t i n g r e d u n d a n c e wi th in t h e factorial des ign 

Section 5.3.4 showed tha t the behavior of a system of kinetical equations with respect to our 
invariants is not changed by uniform multiplication of each system parameter by a constant. Hence, 
there is some redundance in the factorial design which can be eliminated. 

For example, using the levels i o * ' * - 1 — ' 7 on a network having two parameters k i ,k 2 , the case 
(ki = 10 2 , k 2 = 10 3 ) is identical to the case (k i=10 , k 2 = 10 2 ) . Exploitation of this redundance 
reduces the number of trials within the factorial design from qn to qn — (q — l ) n , where 4 q' is the 
number of levels, and 'n ' is the number of parameters. For us, q = 7 , so the fraction of computation 
needed 1 - ( 6 / 7 ) n . 

One implements this savings within an algorithm as follows. If during an iteration all the parameters 
have values greater than the lowest level, then tha t case need not be done. 

B E x a m p l e s o f invariants o f o t h e r ne tworks 

Here is a two-step, undirected network of five species: 

A + B « X + Y 
Y « 2T 

where the symbol 4 « ' abstracts with respect to the direction of the reaction (forward, backward, 
or reversible). T h e invariants for each assignment of directions on this network turn out identical, 
so tha t the invariants are also invariants of the undirected network. The invariants are: 

• A,B never increase. 

• T,X never decrease. 

• A dominates B and vice versa (i.e., A = B ) . 
• X dominates Y. 

Next we consider the example network used in this report , in which the invariants are not identical 
over the different assignments of direction. The undirected network is: 

A+B « T+X 
B + X * 2T 

The invariants, grouped by reaction directions and using a more concise notation, are: 

) BUT],A> B,T> X 
•) A[,X},B>A,X>T 
•) A[,B [,T\,A>B,T>X 

«-) Al,X1,B>A,X>T 
- ) A I 
**) 0 

For example, <B j ' means tha t the t raier tnrv nt • D 
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C M a t h e m a t i c a l observat ions on chemical -k inet ic s y s t e m s 

We refer here to the basic theorems as formulated in the appendix to a treatise on the theory of 

differential equations [8]. 

First , we note tha t the right-hand sides of the kinetical equations are everywhere analytic functions 
of their arguments (state variables and parameters), because their derivatives exist everywhere. 

Below, let an initial-value problem refer to a chemical-kinetic system of equations together with 

initial conditions. 

From the conditions of Theorem II on page 796, which are weaker than analyticity, one deduces 
tha t the solution to an initial-value problem is stable, in the sense tha t a small perturbation in the 
initial conditions issue in a small perturbation in the solution, over any finite time interval. 

From the analyticity condition of Theorem VII on page 800, one deduces tha t the solution to an 
initial-value problem is an analytic function of the initial conditions and of the parameters. 

A theorem from complex analysis[9] states tha t if a function is analytic at all points, then its 
derivatives of all orders are also analytic functions at all points. 

18 


