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1. Introduction 

A formal method is a mathematically-based technique used in Computer Science to describe properties of hardware 
and/or software systems. A formal method provides a framework within which large, complex systems may be 
specified, developed, and verified in i systematic rather than ad hoc manner. 

A method is formal if it has a sound mathematical basis, typically given by a formal specification language. 
This basis provides the means of defining precisely notions like consistency and completeness, and more relevandy, 
specification, implementation, and correctness. It provides the means of proving that a specification is realizable, 
proving that a system has been implemented correctly, and proving properties of a system without necessarily 
running it to determine its behavior. 

A formal method is only a method, rather than an isolated mathematical entity in itself, because of a number 
of pragmatic considerations: who uses it, what it is used for, when it is used, and how it is used. Most commonly, 
system designers use formal methods to specify a system's desired behavioral and structural properties. However, 
anyone involved in any stage of system development can make use of formal methods. They can be used in the 
initial statement of a client's requirements, through system design, implementation, testing, debugging, maintenance, 
verification and evaluation. Formal methods are used to reveal ambiguities, incompleteness, and inconsistencies 
in a system. If used early in the system development process, they can reveal design flaws that otherwise would 
only possibly be discovered in the costly testing and debugging phases. If used later, they can help determine the 
correctness of a system implementation and the equivalence of different implementations. 

For a formal method to be formal, it must have a well-defined mathematical basis; it need not address any 
pragmatic considerations, but one that does not would be a pretty useless method. Hence, a formal method should 
come with a set of guidelines, or "style sheet," that tells users under what circumstances the method can and should 
be applied and how most effectively to apply i t 

One tangible product of the application of a formal method is a (formal) specification. A specification serves as a 
"contract" between the client and the implementor. A specification serves as a valuable piece of documentation and 
as a means of communication between clients, specifiers, designers, and imple men tors. Because of the mathematical 
basis of a formal method, formal specifications are more precise, and usually more concise, than informal ones. 

Since a formal method is a method, not just a computer program or language, it may or may not have tool 
support. If the syntax of a formal method's specification language is made explicit then it would be straightforward to 
provide standard syntax analysis tools for formal specifications. If the language's semantics are sufficiently restricted, 
varying degrees of semantic analysis can be performed with machine aids as well. Thus, formal specifications have 
the additional advantage over informal ones of being amenable to machine analysis and manipulation. 



We begin by first defining those elements necessary to give a formal basis to a formal method and then address 
pragmatic concerns. We then draw examples using a few of the more well-known or commonly-used methods. See 
the accompanying survey article in this issue for a more comprehensive listing of example methods, plus citations. 

2. What is a Specification Language? 

A formal specification language provides a formal method's mathematical basis. We borrow the following terms 
and definitions from Guttag, Horning and Wing [33]. 

A formal specification language consists of two sets, Syn and Sem, and a relation, Sat, between them. The 
first set is called its syntactic domain; the second, its semantic domain; the relation is called satisfies. For a given 
specification language, if Sat(syn, sem), then syn is a specification of sem, and sem is a specificand of syn. The 
specificand set of a specification is the set of all its specificands. 

Somewhat less formally, a formai specification language provides a notation (its syntactic domain), a universe 
of objects (its semantic domain), and a precise rule defining which objects satisfy each specification. A specification 
is a sentence written in terms of the elements of the syntactic domain. It denotes a specificand set, a subset of the 
semantic domain. A specificand is ar object satisfying a specification. The satisfies relation provides the meaning, 
or interpretation, for the syntactic elements. 

BNF is an example of a simple formal specification language, with a set of grammars as its syntactic domain 
and a set of strings as its semantic domain. Every string is a specificand of each grammar that generates i t Every 
specificand set is a formal language. 

In principle, a formal method is based on some well-defined formal specification language; in practice, however, 
this language may not have been explicitly given. One could say that the more explicit the specification language's 
definition, the more "well-defined" the formal method. 

Formal methods differ because their specification languages have different syntactic and/or semantic domains. 
Even if they have identical syntactic and semantic domains, they may have different satisfies relations. 

2.1. Syntactic Domains 

A specification language's syntactic domain is usually defined in terms of a set of symbols, e.g., constants, variables, 
and logical connectives, and a set of grammatical rules for concatenating these symbols into well-formed sentences. 
For example, using standard notation for universal quantification (V) and logical implication (=>), let x be a logical 
variable and P and Q be predicate symbols. Then this sentence, Vx.P(x) => Q(x), would be well-formed in predicate 
logic, but not this one, Vx P(x) =• Q(x), because is a binary logical connective. 

A syntactic domain need not be restricted to text; graphical elements such as boxes, circles, lines, arrows, and 
icons can be given a formal semantics just as precisely as textual ones. A well-formedness condition on such a 
visual specification might be that all arrows start and stop at boxes. 

2.2. Semantic Domains 

Specification languages differ most in their choice of semantic domain. Some examples: 

• "Abstract data type specification languages," have been used to specify algebras [25,20], theories [11,61], and 
programs [31]. Though specifications written in these different specification languages range over different 
semantic domains, they often look syntactically similar. 
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• "Concuirent and distributed systems specification languages," have been used to specify state sequences 
[12,56], event sequences [37,56], state and transition sequences [21], streams [9], synchronization trees [58], 
partial orders [68], and state-machines [55,48]. 

• Programming languages are used to specify functions from input to output [70], computations, predicate 
transformers [18], relations [15], and machine instructions. 

Note that each programming language is a specification language, but not vice versa because specifications in 
general do not have to be executable on some machine whereas programs do. The advantage gained in using a 
more "abstract" specification language is that one is not restricted to expressing only computable functions. It is 
perfectly reasonable in a specification to express notions like "For all x in set A, there exists a y in set B such that 
property P holds of x and y" where A and B might be infinite sets. 

When a specification language's semantic domain is over programs or systems of programs, the term implements 
is used for the satisfies relation, and the term implementation is used for a specificand in Sem. One says that an 
implementation prog is correct with respect to a given specification spec if prog satisfies spec. 

23. Satisfies Relation 

One often would like to specify different aspects of a single specificand, perhaps using different specification 
languages. For example, one might want to specify the functional behavior of a collection of program modules as 
the composition of the functional behaviors of the individual modules. One might also want to specify a structural 
relationship between the modules such as what set of modules each module directly invokes. 

In order to accommodate these different possible "views" of a specificand, one can associate with each speci­
fication language a homomorphism, A, called a semantic abstraction function, that maps elements of the semantic 
domain into equivalence classes. One can choose the semantic abstraction function so that there exists an induced 
relation ASat, called an abstract satisfies relation, such that 

Vspec € Syn, prog £ Sem[Sat(spec, prog) = ASat(spec, Aiprog))] 

Different semantic abstraction functions make it possible to describe multiple views of the same equivalence 
class of systems, or similarly, impose different kinds of constraints on these systems. It can be useful to have 
several specification languages with different semantic abstraction functions for a single semantic domain. This 
encourages and supports complementary specifications of different aspects of a system. 

For example, in Figure 1 there is a single semantic domain, Sem, on the right. One semantic abstraction 
function partitions specificands in Sem into a set of equivalence classes, three of which are drawn as blobs in 
solid lines. Another partitions specificands into a different set of equivalence classes, two of which are drawn as 
blobs in dashed lines. Via the abstract satisfies relation ASatl , specification A of syntactic domain Synl maps to 
one equivalence class of specificands (defined by a solid-lined blob), and via ASat2, specification B of syntactic 
domain Syn2 maps to a different equivalence class of specificands (defined by a dashed-line blob). Note the overlap 
between the solid-lined and dashed-lined blobs. To be concrete, suppose Sem is a library of Ada program modules. 
Imagine that A specifies (perhaps through a predicate in first-order logic) all procedures that sort arrays, and B 
specifies (perhaps through a call graph) all procedures that call functions on a user-defined enumeration type E. 
Then a procedure that sorted arrays of £*s might be in the intersection of ASatl(A) and ASat2(B). 

Two broad classes of semantic abstraction functions are those that abstract preserving each system's behavior 
and those that abstract preserving each system's structure. In the example above, A specifies a behavioral aspect 
of the Ada program modules, but B describes a structural aspect 

Behavioral specifications describe constraints only on the observable behavior of specificands. A system's 
required functionality, i.e„ mapping from inputs to outputs, is the behavioral constraint addressed by most formal 
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Figure 1: Abstract Satisfies Relations 

methods. Current research in formal methods addresses other behavioral aspects such as fault-tolerance, safety, 
security, response time and space efficiency. Often some of these behavioral aspects, such as security, are included 
as part of, rather than separate from, i system's functionality. If the overall correctness of a system is defined so 
that it must satisfy more than one behavioral constraint, then a system that satisfies one but not another would 
be incorrect For example, if functionality and response time were the constraints of interest, a system producing 
correct answers past deadlines would be just as unacceptable as a system producing incorrect answers in time. 

Structural specifications describe constraints on the internal composition of specificands. Module interconnec­
tion languages [17] are examples of structural specification languages that capture "uses" relations such as those 
that procedure call and data flow graphs represent Systems that satisfy the same structural constraints do not 
necessarily satisfy the same behavioral constraints. Moreover, the structure of a specification need not bear any 
direct relationship to the structure of its specificands. 

For the most part, we will confine our discussion in this paper to behavioral specifications of specificands that 
are programs or systems of programs. 

2.4. Properties of Specifications 

Each specification language should be defined so that each well-formed specification written in the language is 
unambiguous. A specification is unambiguous if and only if it has exactly one meaning. This key property of 
formal specifications means that any specification language based on or that incorporates a natural language (like 
English) is not formal since natural languages are inherently ambiguous. It also means that a visual specification 
language that permits for multiple interpretations of a box and/or arrow is ill-defined, and hence not formal. 

Another desirable property of specifications is consistency. A specification is consistent (or satisfiable) if and 
only if its specificand set is non-empty. In terms of programs, consistency is important because it means that 
there exists some implementation that will satisfy the specification. If one views a specification as a set of facts, 
consistency implies that one cannot derive anything contradictory from the specification. If one were to pose a 
question based on a consistent specification, one will not get mutually exclusive answers. It is obvious that one 
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wants to have consistent specifications, since an inconsistent specification means one has no knowledge at all, as 
the specification negates on one occasion what it asserts on another. 

Specifications need not be "complete" in the sense used in mathematical logic, though certain "relative-
completeness" properties might be desirable (e.g., sufficient-completeness of an algebraic specification [30]). In 
practice, one will not write or deal with "complete" specifications. Why not? One may intentionally leave some 
things unspecified, giving the impiementor some freedom to choose among different data structures and algorithms. 
Also, one cannot realistically anticipate all possible scenarios in which a system will be run, and thus, perhaps 
unwittingly have left some things unspecified. Finally, one typically develops specifications gradually, and hence 
works more often with unfinished products, rather than finished ones. 

There is a delicate balance between saying just enough and saying too much in a specification. One wants to 
say enough so that implementors do not choose unacceptable implementations. Specifiers are responsible for not 
making oversights; any incompleteness in the specification should be an intentional incompleteness. On the other 
hand, saying too much may leave little design freedom for the impiementor. A specification that overspecifies will 
be accused of "implementation bias" [41]. 

2.5. Proving Properties of Specificands 

Most formal methods are defined in terms of a specification language that has a well-defined logical inference 
system. A logical inference system defines a consequence relation, typically given in terms of a set of inference 
rules, that maps a set of well-formed sentences in the specification language to a set of well-formed sentences. 

One uses this inference system to prove properties about specificands through the specification. Again taking a 
specification as a set of facts, one derives new facts through the application of the inference rules. When one proves 
a statement inferrable from these facts, then one proves a property that a specificand satisfying the specification 
will have-a property not explicitly stated in the specification. An inference system gives users of formal methods 
a way to p red ic t " the behavior of a system without having to execute or even build i t It gives users a way to 
state questions, in the form of theorems, about a system cast in terms of just the specification itself. Users can then 
answer these questions in terms of a formal proof constructed through a formal derivation process. The inference 
system gives users a way to increase their confidence in the validity of the specification itself since if one were 
able to prove a surprising result from the specification, then perhaps the specification is wrong. 

Formal methods with explicitly defined inference systems usually have the further advantage that these systems 
can be completely mechanized, e.g., if they have a finite set of finite rules. Theorem provers and proof checkers 
are example tools that assist users with the tedium of deriving and managing formal proofs. 

3. Pragmatics 

3.1. Uses 

Formal methods can be applied in all phases of system development Such application ought not to be considered 
as a separate activity, but rather as an integral one. The greatest benefit gained in applying a formal method is 
often in the process of specifying rather than the end result. Gaining a deeper understanding of the specificand by 
forcing oneself to be abstract yet precise, about the desired properties of a system can be more rewarding than in 
having a one hundred-page specification document 

Let us consider more specifically uses of formal methods in the different phases of system development 

Requirements analysis. Applying a formal method helps to clarify a client's set of informally stated requirements. 
A specification helps to crystallize the client's vague ideas and helps to reveal contradictions, ambiguities, and 
incompleteness in the requirements, A specifier has a better chance of asking pertinent questions and evaluating the 
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client's responses through the use of a formal specification rather than through an informal one. Both the client and 
specifier can pose and answer questions based on the specification to see whether it reflects the client's intuition 
and whether the specificand set has the desired set of properties. 

System design. During design, one decomposes a system into smaller modules. Formal methods can aid in the 
process of design by capturing precisely the interfaces between these modules. Each interface specification provides 
the module's user all the information needed to use the module without knowledge of its implementation. The 
interface specification simultaneously provides the module's implementor all the information needed to implement 
the module without knowledge of its users. Thus, as long as the interface remains the same, the implementation 
of the module can be replaced, perhaps by a more efficient one, at some later time without affecting its users. The 
interface provides the place for the designer to record design decisions; moreover, any intentional incompleteness 
can be succinctly captured as a parameter in the interface. 

System refinement. During refinement, one works at different levels of abstraction, perhaps refining a single 
module at one level to be a collection of modules at a lower level or choosing for an abstract data type its 
representation type. This process generates proof obligations for showing that the refinement "satisfies" the higher-
level specification. A formal method provides a way to state and discharge these obligations. Formal methods, 
such as Refine [26], that incorporate program transformation, derivation, and verification techniques are applicable 
during system refinement 

System validation. Formal methods can be used to help in testing and debugging systems. Specifications alone 
can be used to generate test cases for black-box testing. Specifications that explicitly state assumptions on the 
module's use clearly identify test cases for boundary conditions. Specifications along with implementations can be 
used to do other kinds of testing analysis such as path testing, unit testing, and integration testing. Testing based 
solely on an analysis of the implementation is not sufficient; one must take the specification into account For 
example, a test set may be complete for doing a path analysis of an implementation, but may not reveal missing 
paths that the specification would otherwise suggest The success of unit and integration testing depends on the 
precision of the specifications of the individual modules. Testing tools that take formal specifications as input 
include test case generators and symbolic execution tools [57,46]. 

System verification. Formal verification is impossible without a formal specification. Though one may never 
completely verify an entire system, one can certainly verify smaller critical pieces of a system. The trickiest part 
is in stating explicitly the assumptions about the environment in which each critical piece is placed. (Section S 
elaborates on this point) 

System documentation. A specification serves as an alternative description of the system. It serves as a 
communication medium-between a client and a specifier, between a specifier and an implementor, and among 
members of an implementation team. Nothing is more exasperating to hear in reply to the question "What does 
it do?' 9 than the answer "Run it and see." One of the primary intended uses of formal methods is to capture 
in a formal specification the what rather than the how. One can then read the specification, rather than read the 
implementation or worse, execute the system, to find out the system's behavior. 

System analysis and evaluation. In order to learn from the experience of building a system, one should do a 
critical analysis of its functionality and performance once it has been built and tested. Does the system do what 
the client wants? Does it do it fast enough? If formal methods were used in its development then they can help 
system evaluators formulate and answer these questions. The specification serves as a reference point In the case 
that the client is unhappy, but the system meets the specification, then the specification can be changed and the 
system changed accordingly. 

Indeed much recent work in the application of formal methods to non-trivial examples has been in specifying 
a system already built, running, and used, rather than in specifying one yet to be buil t Some of these exercises 
revealed bugs in published algorithms [10] and circuit designs [8]-serious bugs that had gone undiscovered for 
years. Most revealed, as expected, unstated assumptions, inconsistencies, and unintentional incompleteness in the 
system. 

Example medium-sized systems that have been specified formally include hardware [23,14], microprocessors 
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[39,16], operating systems kernels [5], and secure systems [59]. Most formal methods have not yet been applied to 
specifying large-scaled software and/or hardware systems; most are still inappropriate for specifying a wide range 
of behavioral constraints beyond functionality, e.g., fault-tolerance and real-time. 

This problem of scale exists in two different, often confused, dimensions: size of the specification and complexity 
of the specificands. Tools can help address specification size since managing large specifications is just like managing 
other large documents. The problem of dealing with a specificand's inherent complexity remains, since no magic 
will make it disappear. However, by providing a systematic way of thinking and reasoning about specificands, 
formal methods are precisely what can help humans grapple with such complexity. 

3.2. Users 

The audience of a specification includes two not necessarily disjoint classes of users: writers and readers. Specifiers 
write, evaluate, analyze, and refine specifications. They prove that their refinements preserve certain properties and 
prove properties of specificands through specifications. 

Most people need only read specifications, not develop their own from scratch. There are many classes of 
readers. Besides specifiers, there are clients, those people who may have hired the specifiers; impiementors, those 
people who realize a specification; verifiers, those people who prove (by hand or with machine assistance) the 
correctness of implementations; and finally, machine tools, some of which might blindly manipulate specifications 
without regard to their meaning. 

One point of tension in many formal methods is that the language of the method may be accessible to one class 
of users and not another. Most languages will try to be accessible to at least two, e.g., clients and specifiers, or 
specifiers and implementors. Some specification languages have a lot of syntactic sugar to make the specifications 
more readable by clients. Some have a minimal amount because the intent of the method is to do formal proofs by 
machines or because the meaning of a rich set of cryptic mathematical notation is assumed. 

It is important that users are told the domain of applicability of a given method. For example, a formal 
method might be applicable for describing sequential programs, but not parallel ones; or, for describing message-
passing distributed systems, but not transaction-based distributed databases. Without knowing the proper domain 
of applicability, a user may unknowingly inappropriately apply a formal method to an inapplicable domain. 

Part of a formal method's pragmatic concerns is to identify what different classes of users the method is 
targeted for and what the abilities of each should be. Some methods expect that the users know modern algebra, 
set theory, and/or predicate logic in order to be applied correctly. Domain-specific methods may require knowledge 
of additional mathematical theories such as digital logic, e.g., if specifying hardware, or probability and statistics, 
e.g., if specifying system reliability. 

3 3 . Style 

someTf d £ styJeT y C- r" *° n C X t S e C t i 0 n ' w e ^ samples of methods that illustrate 

3 J . l . Model- Versus Property-Oriented 
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structures such as tuples, relations, functions, sets, and sequences. In the property-oriented style, one defines the 
system's behavior indirectly by stating a set of properties, usually in the form of a set of axioms, that the system 
must satisfy. What often matters in a property-oriented specification is not what one explicitly says, but what one 
does not say, thereby permitting for a larger number of possible implementations. 

Example methods supporting a model-oriented style used in the domain of sequential programs and abstract 
data types include Pamas's state-machines, [65], Robinson and Roubine's extensions to them with V-, 0 - , and 
OV-functions [69], VDM [42] and Z [71]. Example methods used in the domain of concurrent and distributed 
systems include Petri Nets [66], Milner's Calculus of Communicating Systems (CCS) [58], Hoare's Communicating 
Sequential Processes (CSP) [37], Unity [12], I/O automata [55], and TSL [53]. The Raise Project represents more 
recent work on combining VDM and CSP [62]. 

The property-oriented style can be further broken into two categories, sometimes referred to as axiomatic and 
algebraic. The axiomatic style stems from Hoare's work on proofs of correctness of implementations of abstract 
data types [38], where first-order predicate logic pre- and post-conditions are used for the specification of each 
operation of the type. Iota [61] and Anna [54] are example specification languages that support an axiomatic style. 
In the algebraic style, objects such as data types and processes are defined to be heterogeneous algebras [6]. This 
approach uses axioms to specify properties of systems, but the axioms are restricted to equations. Much work 
has been done on the algebraic specification of abstract data types [25,30,76,11,19,72,43] including the handling 
of error values, nondeterminism, and parameterization. The more widely-known specification languages that have 
resulted from this work are CLEAR [11], OBJ [24], ACT ONE [20], and Larch [31]. 

Examples of property-oriented methods for specifying concurrent and distributed systems include extensions 
to Hoare-axioms [63,4], temporal logic [67,56,64], and Lamport's state functions [48]. The LOTOS specification 
language [1] represents more recent work on the combination of ACT ONE and CCS (with some CSP influence). 

33 .2 . Visual Languages 

Visual methods include any whose language contains graphical elements in its syntactic domain. The most prominent 
visual method is Petri Nets [66], and its many variations, used most typically to specify the behavior of concurrent 
systems. 

More recent visual language work includes Harel's statecharts based on higraphs [34], used to specify state 
transitions in "reactive" systems. Figure 2 gives a simple example of a statechart that describes the behavior of a 
one-slot buffer. Roundtangles represent states in a state machine and arrows represent state transitions. Initially, 
the one-slot buffer is empty; in the event that a message arrives and gets put in the buffer, the buffer becomes 
full; when the message has been serviced and removed from the buffer, its state changes back to being empty. 
The example shows one of the more notable features of statecharts that distinguish them from "flat" state-transition 
diagrams: A roundtangle can represent a hierarchy of states (and in general, an arrow can represent a set of state 
transitions), thereby letting users "zoom-in" and "zoom-out" of a system and its subsystems. 

Harel's higraph notation inspired the design of the Mir6 visual languages, which are used to specify security 
constraints [36]. Like statecharts, the Mir6 languages have a formally defined semantics and tool support. 

Some methods use visual notation but are not formal. These informal or semi-formal methods allow for the 
construction of ambiguous specifications, perhaps because English text is attached to the graphical elements or 
because multiple interpretations of a graphical element (usually different meanings for an arrow) are possible. 
Many popular software and system design methods such as Jackson's method [40], HIPO [45], Structured Design 
[74] and SREM [3] are examples of semi-formal methods that use pictures. 
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Figure 2: Statechart Specification of a One-Slot Buffer 

3.3.3. Executable 

Another class of methods falls under the term executable. Specifications written using these methods can be run 
on a computer and thus, by definition are more restricted in expressive power than a non-executable specification. 
As long as users realize that the specification may suffer from implementation bias, executable specifications can 
play an important role in the system development process. One can use them to gain immediate feedback about 
the specification itself, to do rapid prototyping (the specification serves as a prototype of the system), and to test a 
specificand through symbolic execution of the specification. For example, Stalemate [35] is a tool that lets users 
run simulations through the state transition diagram represented by a statechart. 

Besides statecharts, executable specification languages include OBJ [24], an algebraic specification language; 
Prolog [15], a logic programming language, which supports a property-oriented specification style where properties 
are stated as logical relations on objects; and PAISley [75], a model-oriented specification language, based on a 
model of event sequences and used to specify functional and timing behavioral constraints for asynchronous parallel 
processes. 

3.3.4. Tool-Based 

Some formal methods evolved from the semantic-analysis tools that were built to manipulate specifications and 
programs. Model checking tools let users construct a finite-state model of the system and then show a property 
holds of each state and/or state transition of the system. These tools such as EMC [8,13] are especially useful for 
specifying and verifying properties of hardware circuits. 

Proof checking tools that let users treat algebraic specifications as rewrite rules include Affirm [60], Reve [49], 
the Rewrite Rule Laboratory (RRL) [44], and the Larch Prover [22]. Tools (and their associated specification 
language) that handle subsets of first-order logic include the Boyer-Moore Theorem Prover (and the Gypsy specifi­
cation language) [7,27], FDM (and Ina Jo) [51], and HDM (and SPECIAL), [50]. Finally, tools that handle subsets 
of higher-order logics include HOL [28] and LCF [29]. 
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4. Some Examples 

We present and compare six different formal methods, three applied to one simple example, and three applied 
to another. All six methods have been used to specify much more complex systems. First, we will specify a 
symbol table data type using Z, VDM, and Larch, which are formal methods especially appropriate for specifying 
sequential programs modules like procedures, functions, classes, and packages. Then we will specify the behavior 
of an unbounded buffer process using temporal logic, CSP, and state functions, which are formal methods especially 
appropriate for specifying properties of concurrent and distributed systems. 

4.1. Abstract Data Types: Z, VDM, Larch 

Z is formal method based on set theory. Though Z can be used in both model-oriented and property-oriented 
styles, Figure 3 gives a model-oriented specification of a symbol table. The state of the table is "modeled" by 
a partial mapping from keys to values. The initial state of the mapping, and hence the symbol table, is empty. 
By convention, unprimed variables in Z stand for the state before an operation is performed and primed variables 
for the state afterwards; we will use the same convention in the VDM and Larch specifications. There are three 
operations on the table, UPDATE, LOOKUP, and DELETE. UPDATE modifies the table by either adding a new 
binding to the mapping st, or, if the key is already in the mapping st, overriding the value assigned to that key 
( © is an overriding operator). LOOKUP requires that the key being looked up be in the domain of the mapping, 
returns the value to which a given key is mapped, and does not change the state of the symbol table (st* = st). 
DELETE also requires that the key being looked up be in the domain of the mapping, and modifies the table by 
deleting the binding associated with the key k from st « is a domain subtraction operator). The machine tool B 
[2] has been used for proving theorems based on Z specifications. 

The Vienna Definition Method (VDM) supports a model-oriented specification style. VDM defines a set of 
built-in data types, e.g., sets, lists, and mappings, from which specifiers define other types. The VDM specification 
in Figure 4 defines a symbol table also in terms of a mapping from keys to values. The INTT function initializes 
the symbol table to be empty. The INSERT function, which adds a new binding to the mapping, is different 
from the UPDATE function in the Z specification since the pre-condition requires that the key to be inserted not 
already be in the symbol table; only new bindings are inserted and old ones are never overridden. LOOKUP'S and 
DELETE's pre-conditions are the same as in the Z specification, but made more explicit in the VDM specification. 
Their effects, as stated in the post-conditions are also similar. Different notation is used for the mapping difference 
operator ( \ ) . The fact that LOOKUP does not modify the symbol table (hence st = st\ but INSERT and DELETE 
do, is annotated by using r d (for "read only" access) instead of wr (for "write and read" access) in the declaration 
of the external state variables accessed by each operation. 

The Larch Family of Specification Languages uses a property-oriented style, combining both axiomatic and 
algebraic styles into a "two-tiered" specification [31]. The axiomatic component specifies state-dependent behavior, 
e.g., side effects, of programs; the algebraic component specifies state-independent properties of data accessed by 
programs. Figure 5 gives a Larch specification of the symbol table example. 

The first piece of the Larch specification, called an interface specification, looks similar to the Z and VDM 
specifications. For each operation, the requires and ensures clauses specify the pre-and post-conditions for the 
symbol table's operations. Instead of placing a pre-condition on the insert and lookup operations as was done in 
the Z and VDM specifications, a signals clause is added. Hence, insert may terminate by either inserting a new 
key-value binding or by signaling to the invoker that the key to be inserted is already in the symbol table. Similar 
remarks hold for the lookup operation. It is assumed that the target programming language supports signals; if not, 
then the specification could be modified to have explicit pre-conditions as in the delete operation. The modifies 
clause lists those objects whose value may possibly change as a result of executing the operation. Hence, lookup 
is not allowed to change the state of its symbol table argument, but insert and delete are. 

The second piece of the Larch specification, called a trait, looks like an algebraic specification. It contains a 
set of function symbol declarations and a set of equations that define the meaning of the function symbols. The 
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ST = KEY 4 . VAL 

St/MT^ {} 
UPDATE 

st, st' : KEY 4* VAL 
k : KEY 
v : VAL 

st' = st © {k ^ v } 

LOOKUP 

1 st, sV : KEY 4* VAL 
k : KEY 
v : VAL 

k € dom(st) A 
V = st(k) A 
st* = st 

DELETE • 
j st, st ' : KEY 4> VAL 

k : KEY 

k € dom(st) A 
st' * { k } st 

Figure 3: Z Specification of a Symbol Table 
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Slate:: ST :Mkv 
Mkv = map Key to Val 

INITO 
ext ST :wr Mkv 

post st = Q 

ENSERT(K: Key, V: Val) 
ext ST :wr Mkv 

pre k g dom st 
post st = stu [*»-• v] 

LOOKUP(K: Key) V: Val 
ext ST :rd Mkv 

pre k € dom st 
post v/ = st(k) 

DELETE(K: Key) 
ext ST :wr Mkv 

pre k € dom st 
post st = st\{k} 

Figure 4: VDM Specification of a Symbol Table 
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symboLtable is data type based on S from SymTab 

init = proc 0 returns (s: symboLtable) 
ensures s' = emp A new (s) 

insert = proc (s: symboLtable, k: key, v: val) signals (already J n ) 
modifies (s) 
ensures if isin(s, k) then signal already J n else s' = add(s, k, v) 

lookup = proc (s: symboLtable, k: key) returns (v: val) signals (not in) 
ensures if ->isin(s, k) then signal no t in else v ' = find(s, k) 

delete = proc (s: symboLtable, k: key) 
requires isin(s, k) 
modifies (s) 
ensures s' = rem(s, k) 

end symboLtable 

SymTab: trait 
introduces 

emp: —• S 
add: S, K, V — S 
rem: S, K -+ S 
find: S, K — V 
isin: S, K —• Bool 

asserts 
S generated by (emp, add) 
S partitioned by (isin) 
for all (s: S, k, k l : K, v: V) 

rem(add(s, k, v), k l ) = if k = k l then s else add(rem(s, k l ) , k, v) 
find(add(s, k, v), k l ) = if k = k l then v else find(s, k l ) 
isin(emp, k) = false 
isin(add(s, k, v), k l ) = (k = k l ) v isin(s, k l ) 

implies 
exempting (rem(emp), find(emp)) 

end SymTab 

Figure 5: Larch Specification of a Symbol Table 
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equations determine an equivalence relation on sorted terms. Objects of the symbolJable data type specified in the 
interface specification range over values denoted by the terms of sort S. The generated by clause states that all 
symbol table values can be represented by terms composed solely of the two function symbols, emp and add. This 
clause defines an inductive rule of inference and is useful for proving properties about all symbol table values. The 
partitioned by clause adds more equivalences between terms. Intuitively it states that two terms can be considered 
equal if they cannot be distinguished by any of the functions listed in the clause. In the example, we could use this 
property toT show that order of insertion of distinct key-value pairs in a symbol table does not matter, i.e., insertion 
is commutative. The exempting clause documents the absence of right-hand sides of equations for rem(emp) 
and find(emp); the pre-conditions and signals clauses in the interface specification deal with these "error values". 
The exempting clause together with the generated by clause is used to show that this algebraic specification is 
sufficiently-complete. 

Syntax analyzers exist for Larch traits and interfaces. The Larch Prover has been used to perform semantic 
analysis on Larch traits. 

The user-defined function symbols in a Larch trait are exactly those used in the pre- and post-conditions of the 
interface specification; they serve the same role as the built-in symbols like ® in the Z specification or \ in the 
VDM specification. Unlike Z and VDM, Larch does not come with any special built-in notation nor any built-in 
types. The advantage is that the user does not have to learn any special vocabulary for those concepts and is free 
to introduce whatever symbols he or she desires, giving them exactly the meaning suitable for the specificand set 
Exactly and only those properties of a data type being specified need to be stated explicitly and satisfied by an 
implementation. The disadvantage is that the user may often need to provide a large set of user-defined symbols, as 
well as the equations that define their meaning. Since we modeled symbol tables in Z and VDM in terms of finite 
mappings, we did not need to state explicitly that insertion is commutative since this is a property of mappings, 
i.e., this property came "for free." The Larch Handbook [32] serves as a compromise between the two extremes: it 
provides a library of traits that define many general and commonly-used concepts, e.g., properties of partial orders, 
sets and sequences. 

Larch is property-oriented, not model-oriented, because nothing in a Larch specification specifies a particular 
model or class of models for the data type being defined. The implementor is free to represent symbol tables as 
binary trees, hash tables, sets of pairs, or finite mappings, just as long as the implementation satisfies the more 
abstract properties of symbol tables. Of course, the implementor has the same design freedom if starting from 
the VDM or Z specification, but he or she must prove the behavioral equivalence between the representation type 
chosen and the model used in the VDM or Z specification. 

4.2. Concurrency: Temporal logic, CSP, State-Functions 

When specifying properties of concurrent and distributed systems, properties of interest fall into two general 
categories, safety and liveness [48]. Safety properties ("nothing bad ever happens") include functional correctness 
and liveness properties ("something good eventually happens*9) include termination. 

Temporal logic is a property-oriented style for specifying safety and liveness properties. For a given temporal 
logic inference system, modal operators such as • and O are used to state concisely predicates about state (or 
event) sequences and allow one to talk about past, current, and future states (or events). Temporal logic notation 
tends to be terse and a temporal logic specification is simply a unstructured set of predicates all of which must be 
satisfied by a given implementation. A temporal logic specification of the behavior of an unbounded buffer in an 
asynchronous environment is given in Figure 6 (adapted from [47] and [67]). A buffer has a left input channel 
and a right output channel. The expression (dm) denotes the event of placing message m on channel c. The first 
predicate states that any message transmitted to the right must have been previously placed on the left channel. 
The second predicate states that messages are transmitted in a first-in-first-out fashion: If a message m currently 
placed on the output channel is preceded by some other message ml (also on the output channel), then there must 
have been a preceding event of placing m on the input channel, and moreover, an even earlier event that placed 
mf on the input channel ahead of m. The third predicate states that all messages are unique. This property is not 
a property of the buffer, but an assumption on the environment. This assumption is essential to the validity of the 
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(rightlm) => O(leftlm) (1) 

((rightlm) A ®Q{right\m')) => ((te/r!m) A ®<&(leftlm')) (2) 

A ®Q{left\rri)) =» (m ^ m') (3) 

((leftlm)) =><> ((rightlm)) (4) 

Figure 6: Temporal Logic Specification of an Unbounded Buffer 

where P<> = leftlm — /><m> 

and = (leftln — | rightlm — P) 

BUFFER sat (rzg/tf < /ef f) A ( if right = te/f then left g ref else right & ref) 

Figure 7: CSP Program and Specification of an Unbounded Buffer 

specification. Without it, a buffer that outputs duplicate copies of its input would be considered correct. Whereas 
the first three predicates state safety properties of the system (and its environment), the fourth states a liveness 
property: each incoming message will eventually be transmitted. 

CSP supports a model-oriented style of specifying concurrent processes and a property-oriented style of stating 
and proving properties about the model. CSP is based on model of traces, or event sequences, and assumes that 
processes communicate by sending messages across channels. Processes synchronize on events so that the event 
of sending an output message m on a named channel c is synchronized with the event of simultaneously receiving 
an input message on c. Figure 7 gives a CSP specification of an unbounded buffer (adapted from [37]). BUFFER 
itself is specified to be a process that acts as an unbounded buffer. If the buffer is empty and in the event that there 
is a message m on the left channel (leftlm), it will input i t If the buffer is non-empty, then either the buffer will 
input another message n from the left channel, appending it to the end of the buffer, or output the first message in 
the buffer to the right channel. 

Within CSP's underlying formalism, one can treat BUFFER as a CSP "program," and then state and prove 
properties about the traces it denotes. Using algebraic laws on traces one can formally verify that a given CSP 
"program" satisfies a specification on traces. In the example, BUFFER is the CSP "program" that describes a set of 
traces each of which satisfies the predicate given on the right-hand-side of sat. The predicate's first conjunct says 
that the sequence of (output) messages on the right channel is a prefix of the sequence of (input) messages on the 
left channel. The prefix property of sequences guarantees that only messages sent from the left will be delivered to 
the right, only once, and in the same order. The second conjunct says that the process never stops: it cannot refuse 
to communicate on either the right or left channel. This implies that input messages will eventually be delivered, 
which is similar to the fourth predicate in the temporal logic specification. 

The aforementioned tool, B, used for proving theorems from Z specifications, has also been used to prove 
properties about CSP specifications [73]. Occam is a programming language derivative of CSP that has been 
implemented and used on transputers [52]. 
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module BUFFER with subroutines PUT. GET 

state functions: 

buffer: sequence of message 
parg : message or NULL 
gval: message or NULL 

initial conditions: 

| buffer | = 0 

safety properties 

1. (a) af(PUT) => parg = PUT.PAR 
(b) after(PUT) => parg = NULL 

2. (a) a/(GET) =>gvai = AWLL 
(b) a/ter(GET) =» GET.PAR = gva/ 

3. allowed changes to buffer 
parg when //i(PUT) 
gva/ when in(GET) 

(a) Q [BUFFER] :zn(PUT) A parg ^ NULL — 
parg ' =s A buffer1 = 6w#er * parg 

(b) a [BUFFER]: m(GET) A gval = NULL A | fatffcr |> 0 — 
gvat £ NULL A buffer = gvai * buffer* 

liveness properties 

4. w(PUT) A | buffer |< min ~+after(PUT) 
5. /n(GET) A | bitffer |> 0~*qfter(GET) 

Figure 8: Slate-function Specification of an Unbounded Buffer 

Lamport's state function approach to specifying concurrent program modules is illustrated in Figure 8 (adapted 
from [48]). It combines an axiomatic-style specification for describing the behavior of individual operations with 
temporal logic assertions for specifying safety and liveness properties. For a module's set of operations, invocations 
of different operations can be active concurrently, but at most one invocation of a given operation can be active at 
once. 

In the example, the functions, buffer, parg, and gval define the state of the buffer, which has two operations, 
PUT and GET, and an initial size of 0. The predicates at(OP), in(OP\ and after(QP) state whether control is at 
the point of calling the operation OP, within the execution of the OP, or at the point of return from OP. The first 
pair of safety properties states that the value of the state function parg is equal to the input parameter to PUT 
at the time of call and equal to NULL upon return. The second pair states similar properties for GET. The third 
pair of properties indicates how the state functions change as a result of executing PUT and GET: If control is in 
PUT, buffer gets updated by appending the non-NULL message to its end; if control is in GET and the buffer 
is non-empty, buffer gets updated by removing its first message, which is GET's return value gval. The fourth 
and fifth properties axe liveness properties requiring that PUT return whenever there are fewer than min messages 
in the buffer and that GET return whenever the buffer is non-empty. (The operator ~ * stands for "leads to.") 
These requirements ensure that progress is made: that once control is within the PUT (or GET) operation, control 
will reach its corresponding return point The fifth implies that messages received (through PUT) are eventually 
transmitted (through GET) since if control is in GET, it must eventually return. 

Most methods that focus on the specification of behavioral properties of concurrent and distributed systems pay 
attention to only the formal specification language part of a formal method and not at all to the pragmatics. In fact, 
most pay attention to defining carefully the satisfies relation for a given semantic domain. What many of these 
methods lack are the niceties that formal methods for sequential systems provide: the syntactic sugar and software 
support tools. For certain specific theories or models for concurrent and distributed systems more "user-friendly" 
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specification languages, e.g., LOTOS [1] and RAISE [62], are just beginning to 

5. Bounds of Formal Methods 

5.1. Between the Ideal and the Real Worlds 

Formal methods are based on mathematics but are not entirely mathematical in nature. There are two important 
boundaries between the mathematical world and the real world that users of formal methods must acknowledge. 
These boundaries are not unique to formal methods, but are common to all engineering disciplines by virtue of the 
fact that formal methods involve human users attempting to model the physical, real world. 

The first boundary is crossed in the codification of the client's informally stated requirements. This mapping 
between informal to formal is typically achieved through an iterative process not subject to proof. A specifier 
might write an initial specification, discuss its implications with the client, and revise it as a result of the client's 
feedback. The formal specification is always only a mathematical representation of the client's requirements. On 
the one hand, any inconsistencies in the requirements would be faithfully preserved in the specifier's mapping. On 
the other, the specifier might incorrecdy interpret the requirements and formally characterize the misinterpretation. 
For these reasons, it is important that specifiers and clients interact. Specifiers can help clients clarify their fuzzy, 
perhaps contradictory, notions; clients can help specifiers debug their specifications. 

The second boundary is crossed in the mapping from the real world to some abstract representation of i t The 
formal specification language encodes this abstraction. For example, a formal specification might describe properties 
of real arithmetic, abstracting away from the fact that not all real numbers can be represented in a computer. The 
formal specification is only a mathematical approximation of the real world. The existence of this boundary should 
not be surprising since it is ubiquitous in all fields of engineering and applied mathematics. 

5.2. Assumptions About the Environment 

There is another kind of boundary that is often neglected by even experienced specifiers: the boundary between 
a real system and its environment. A system does not run in isolation; its behavior is affected by input from the 
external world which in turn consumes the system's output 

Given that we can formally model the system (in terms of a specification language's semantic domain) then 
if we can formally model the environment, we can formally characterize the interface between a system and its 
environment. Most formal methods leave the specification (formal or otherwise) of the environment outside of the 
specification of the system. An exception is the Gist language [21] used to specify closed-systems. In theory, a 
"complete" Gist specification includes not only a description of the system's behavior, but also of its users and 
other environmental factors like hardware. 

A system's behavior as captured in its specification is conditional on the environment's behavior: 

Environment => System 

This implication says that if the environment satisfies some precondition, Environment, then the system will 
behave as specified in System. If the environment fails to satisfy the precondition, then the system is free to behave 
in any way. Environment is a set of assumptions. Whereas a system specifier places constraints on the system's 
behavior, he or she cannot place constraints on the environment, but can only make assumptions about its behavior. 
For example, in the temporal logic specification of the unbounded buffer, the assumption that messages are unique is 
an obligation expected of the environment to satisfy, not a property expected of the buffer to satisfy nor a constraint 
that the system specifier can place on the environment 
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Implicitly assuming something about a system's environment is typically done when specifying something small 
like a procedure in a programming language because the environment is usually fixed or at least well-defined. A 
procedure's environment is defined in terms of the invocation protocol of the programming language. A procedure's 
specification will typically omit explicit mention of what the parameter passing mechanism is, or, for a compile-
time type-checked language, that the types of the arguments are correct The specifier presumably knows the 
details of the programming language's parameter passing mechanism, and assumes the programmer will compile 
the procedure, thereby do the appropriate type-checking. 

Such (implicit) assumptions are not so grave an omission for specifications of program modules like procedures, 
functions, classes, and packages because one assumes the programming language's semantics is well-defined and 
that the language is correctly implemented. However, when what one is specifying is a large, complex, software 
and/or hardware system, one should take special care to make explicit as many assumptions about the environment as 
possible. Unfortunately, too often when one specifies a large system, one forgets to state explicitly the circumstances 
under which one expects the system to behave properly. Leave something unsaid now and you pay for it later. 

In reality, one may not be able to model formally many environmental aspects such as natural castastrophes 
(lightning, hurricanes, earthquakes) or to anticipate completely all possible environmental behavior. Formal methods 
provide a means for systematically and precisely specifying what cases are covered and reasoning about how each 
case is handled; such reasoning holds only for those system input parameters that are made explicit. Unpredictable 
events and human error are difficult to incorporate as parameters in a formal model. At best, one might assume 
that the probability of a natural castastrophe is low or assume that no faults occur, in which case these assumptions 
should be made explicit 

6. Conclusions and Future Work 

In a strict mathematical sense, formal methods differ greatly from one another. Not only does notation vary, but the 
choice of the semantic domain and definition of the satisfies relation both make a tremendous difference between 
what one can easily and concisely express in one method versus another. An idiom in one language might translate 
into a long list of unstructured statements in another or might not even have a counterpart 

But in a more practical sense, formal methods do not differ so radically from one another. Within some well-
defined mathematical framework, they let system developers couch their ideas in a precise manner. The more rigor 
applied in system development, the more likely one gets the requirements stated "correctly," the more likely one 
gets the design "right," and of course the more precisely one can argue the correctness of the implementation. 

One can conservatively, but justifiably conclude that existing formal methods can be used: 

• To identify many, but not all, deficiencies in a set of informally stated requirements, to discover discrepancies 
between a specification and an implementation, and to find errors in existing programs and systems; 

• To specify "medium-sized" and "non-trivial" problems, especially the functional behavior of sequential pro­
grams, abstract data types, and hardware. 

• To gain a deeper understanding of the behavior of large, complex systems. 

Many challenges remain. Researchers in the formal methods community are actively pursuing the following 
goals, spanning theory and engineering: 

• To specify non-functional behavior such as reliability, safety, real-time, performance, and human factors; 

• To combine different methods such as a domain-specific one with a more general one, or an informal one 
with a formal one; 
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• To build more usable and more robust tools, in particular tools to manage large specifications and tools to 
perform more complicated semantic analysis of specifications more efficiently, perhaps by exploiting parallel 
architectures and parallel algorithms; 

• To build specification libraries like the Larch Handbook [32] so that systems and their components can be 
reused based on information captured in their specification; 

• To demonstrate that existing techniques scale up to handle real-world problems and to scale up the techniques 
themselves; 

• To integrate formal methods with the entire system development effort. 
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