
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Unified Approach For Showing
Language Containment and Equivalence Between

Various Types of co-Automata

E.M. Clarke LA. Draghicescu R.P. Kurshan1

September 1989

CMU-CS-89-1922

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1 AT&T Bell Laboratories, Murray Hill, NJ

ABSTRACT

We consider the language containment and equivalence problems for six different types of co-automata:
Biichi, Muller, Rabin, Streett, the L-automata of Kurshan, and the V automata of Manna and Pnueli. We
give a six by six matrix in which each row and column is associated with one of these types of automata.
The entry in the z , th column is the complexity of showing containment between the fi1 type of automation
and 7th. Thus, for example, we give the complexity of showing language containment and equivalence
between a Buchi automaton and a Muller or Streett automaton. Our results are obtained by a uniform
method that associates a formula of the computation tree logic CTL* with each type of automaton. Our
algorithms use a model checking procedure for the logic with the formulas obtained from the automata.
The results of our paper are important for verification of finite state concurrent systems with fairness
constraints. A natural way of reasoning about such systems is to model the finite state program by one
co-automaton and its specification by another.

Copyright © 1989 Clarke, Draghicescu, Kurshan

This research was partially supported by National Science Foundation grant CCR-87-226-33. The views and conclusions

contained in this document are those of the author and should not be interpreted as representing the official policies, either

expressed or implied, of the National Science Foundation or the U.S. Government.

1- Introduction

Background

u-Automata were first used by Biichi in a paper on the decision problem for the logic SIS
[7]. A short time later Muller showed that such automata were also useful for modeling the
behavior of asynchronous circuits [11]. Like a conventional automaton on finite words, an
u>-automaton consists of a set of states, an input alphabet, a transition relation and a start
state. The difference between the two occurs in the definition of what it means for a word
to be accepted by an automaton. Since the notion of a final state is not appropriate for a
machine that accepts infinite words, another method must be used for defining acceptance.
In Buchi's definition, some states were specified as accepting states. In order for a word to
be accepted, these states must occur infinitely often during a run of the machine on the
word. The definition that Muller used was somewhat more complicated. His acceptance
condition consisted of set in which each element was a set of states. In order for a word to
be accepted by an automaton, the set of states that occur infinitely often during a run of the
machine on the word must be one of the elements of the acceptance set. Other acceptance
conditions have been given by Rabin [13], Streett [16], Kurshan [9], and Manna and Pnueli
[10]. It can be shown that each type of automaton accepts the same class of languages (i.e.
the cj-regular langauges x) ; however, the translation from one type of automaton to another
may be quite complex [14].

The language containment and equivalence problems for un-automata are defined in ex
actly the same way as for automata on finite words. Let Mi and M2 be two automata on
infinite words with the same alphabet S. £ (M t) will be the language accepted by Mi. The
language containment problem (or simply the containment problem when this is unambigu
ous) is the problem of determining whether C(MX) C C(M2). The equivalence problem, on
the other hand, is the problem of deciding whether C(Mi) = C(M2). Given an algorithm for
the containment problem, we can easily obtain an algorithm for the equivalence problem,
since C(Mi) = C(M2) iff C(MX) C C(M2) and C(M2) C C(MX). If M2 is nondeterminis-
tic, then determining whether C(M\) C C(M2) will in general be PSPACE hard, since the
corresponding problem for ordinary automata on finite words has this complexity 2 . Con
sequently, in this paper we will only consider the case in which M2 is deterministic. M x ,
however, can be either deterministic or nondeterministic.

In recent years the study of u>-automata has experienced a somewhat surprising rebirth.
The renewed interest is apparently due to several factors. First of all, there has been a sig
nificant amount of research during this period on abstract models for concurrent programs.
An important part of this research has been the study of various notions of fairness. Several
of these notions involve some event holding infinitely often. Because of the similarity to the

x I n s o m e cases the a u t o m a t a m u s t b e nondeterminis t ic t o achieve th i s result. For example , determinist ic
Bi ichi a u t o m a t a are s tr ict ly less powerful t h a n nondeterminis t ic Bi ichi a u t o m a t a .

2 T h i s c o m p l e x i t y is reversed in t h e case o f V - a u t o m a t a . S e e S e c t i o n 4.

way that acceptance is defined for Buchi automata, it is natural to use such automata in
modeling programs with this type of fairness constraint. Some automatic verification tech
niques for finite state concurrent programs have exploited this similarity with considerable
success. The approach used by Kurshan [9], models both the program and its specification
by u;-automata. To show that a program is correct, he uses an algorithm for testing con
tainment between the two such automata [8]. A second reason for interest in u;-automata
comes from research on temporal logic. There is a close relationship between u-automata
and the models for a formula of linear temporal logic. Specifically, given a formula / of lin
ear temporal logic, it is possible to construct a Buchi automaton that accepts those infinite
sequences that are models for / . This relationship has also been exploited in an approach
to automatic verification called temporal logic model checking ([2], [3]). In this case the
specification of a finite state program is given by a temporal logic formula. By the property
mentioned above it is possible to extract a Buchi automaton from the temporal logic formula
and show containment in the same way that Kurshan does. Finally, research in VLSI on
problems like clock skew has led to increased interest in asynchronous circuits. Models for
such circuits like the one originally proposed by Muller have been resurrected in hopes of
obtaining a better understanding for this class of circuits [4].

1.2. N e w R e s u l t s of t h i s p a p e r

We consider the problem of deciding containment between all of the various types of a/-
automata mentioned in the first paragraph. We give a 6 x 6 matrix where each row and
column corresponds to one of the types of automata (See the figure at the end of Section
5.). The entry in the ith row and j t h column is the complexity of showing containment
between the ith type of automata and j t h . The entries on the diagonal of the matrix give
the complexity of deciding containment of two automata of the same type. We give a single
uniform framework for establishing all of these results. We show how each entry in the matrix
can be reduced to the problem of determining whether a certain temporal logic formula is
true of a Kripke structure obtained from the two automata. We can efficiently determine
whether the formula is true of the structure by using a model checking algorithm for the
logic.

The particular logic that we use is called CTL* ([2], [3], [5]). It combines both branching-
time and linear-time operators and is quite expressive. The syntax includes path quantifiers,
A ("for all paths") and E ("for some path") , that are used as prefixes for formulas containing
arbitrary combinations of the usual linear time operators G ("always"), F ("sometimes"),
X ("nexttime"), and U ("until"). Although the model checking problem for full CTL* is
PSPACE-complete [15], Emerson and Lei [6] give a restricted class of CTL* formulas (called
fair-CTL) for which there is a model checking algorithm with polynomial complexity in the
size of the CTL* formula and also in the size of the Kripke structure. We use a modification
of this algorithm to obtain our results.

Our strategy for all of the cases in the matrix is essentially the same. We first express the
acceptance conditions for the two automata by a formula in CTL*. Then we manipulate the

3

formula to obtain one that can be handled by the model checking algorithm of Emerson and
Lei. Since we are able to solve the containment problem by using an an efficient algorithm
with practical complexity, the algorithms that we obtain for the entries in the matrix have
practical complexity as well and are reasonably easy to implement. Moreover, since we use
a uniform approach for obtaining our results, it is relatively simple to understand how the
differences in the complexity among the various entries arise.

Although some of our results were previously known (See [8] for instance.), most of our
results are new, because no one else has considered the hybrid cases (Biichi contained in
Streett, etc.) that we consider. Even some of the cases on the diagonal are new. For example,
we give a low order polynomial algorithm for deciding containment between deterministic
Muller automata. As far as we know, no polynomial algorithm has been given for this case
before. A naive algorithm to solve this problem would probably have exponential complexity.

1.3. Outl ine of paper

Our paper is organized as follows: In Section 2 we give formal definitions for the various
types of u;-automata that we consider in this paper. In Section 3 we give the syntax and
semantics for the branching-time temporal logic CTL*, and briefly discuss the model check
ing algorithm of Emerson and Lei. We precisely state the problem that the algorithm solves
and give its complexity in the size of the CTL* formula and the size of the Kripke structure.
Section 4 is the heart of the paper. In this section we show how to describe the various
types of automata in CTL* and tell how to use the fair-CTL model checking algorithm for
deciding containment between different types of machines. The paper concludes in Section
5 with a discussion of our results and some directions for future research.

2. u;-Automata

A (nondeterministic) UJ-automaton over an alphabet E is a tuple (5 , s 0 , 8 , F) where 5 is a
finite set of states, s0 is an initial state, 8 : 5 x E —• V(S) is a transition relation and F is an
acceptance condition. The automaton is deterministic if Vs 6 5, Va 6 E : | 6(s,a) | < 1. The
automaton is complete if Vs € 5 , Va € E : | 6(s, a) | > 1. In this paper we will always assume
that the automata are complete. It is easy to see that this does not affect the complexity of
containment.

A path in M is an infinite sequence of states S0S1S2 . . . 6 5 that starts in the initial state
and has the property that Vt > 1,3a t 6 E : £(st,a f) 3 A path s0Sis2 . . . 6 5 w i n M i s
a run of an infinite word axa2 . . . € E " if Vz > 1 : 6(siy a,-) 3 s t+i-

An infinite word is accepted by a Biichi, Muller, Rabin, Streett or L automaton if it has
an accepting run in the automaton. An infinite word is accepted by a V-automaton if all its
possible runs in the automaton are accepted.

4

C(M) = {a\a2 . . . G E w | a\<i2 . . . is accepted by M}.

The infinitary set of a sequence s0sis2 . . . € 5 W , inf(s0Si...), is the set of all the states
that appear infinitely many times in the sequence.

If M is a Buchi automaton then F C S is a set of states (as in the case of automata on
finite words) and a run r is accepted by M if inf(r) fl F ^ 0.

The acceptance condition of a Muller automaton is a set F C V(S) of sets of states. A
run is accepted by the Muller automaton if inf(r) G F.

Lemma 1 A run r is not accepted by a Muller automaton (S,s0,6,F) if and only if one of
the following conditions holds :

1. VA € F : inf{r) g A or

2. 3A e F, 3t e A such that:

(a) V 5 6 F, B C A : inf(r) % B and

(b) mf(r)CA\{t}

Proof The direction is proved by the following argument: Suppose that inf(r) # F.
Then either inf(r) is not contained in any set of F, and in this case 1 holds, or inf(r) is
contained in some set in F. Let A be a minimal set in F such that inf(r) C A. Then 2a
holds and as inf(r) must be strictly contained in A, there exists a t 6 A for which 2b holds.
The direction is equally simple. If case 1 holds then clearly inf(r) £ F. Suppose 2
holds. As inf(r) is strictly included in A and is not equal to any of the subsets of A that
are in F it follows in this case also that inf(r) £ F.

In the case of Rabin automata, the acceptance condition has the form F = {(C î, V i) , . . . ,
(̂ m K)}> where (7t, ^ C 5 . A run is accepted by M if there exists i 6 { 1 , . . . , n} such that
inf(r) C Ui and inf(r) n V{ ^ 0.

The Streett acceptance condition has the same form as that of Rabin, but the semantics
is different. A run is accepted by a Streett automaton with F = {(U^ K) , . . . , (C/n, Vn)} if
for every ¿ 6 { 1 , . . . , n } , inf(r) C Ui or inf(r) n ^ 0.

If M is an L automaton, the acceptance condition is a pair F = (Z, V"), where Z C P (5)
and V C 5 . A run is accepted by the automaton if either inf(r) C U for some f/ £ Z or
m / (r) fl V ^ 0.

The acceptance condition of a V-automaton is F = (£/, V) C 5 x 5 . A run is accepted by
the automaton if either inf(r) CUov inf(r) fl V ^ 0.

5

3. T h e C o m p u t a t i o n T r e e Logic C T L *

as.

a.

as.

There are two types of formulas in CTL*: state formulas (which are true in a specific state)
and path formulas (which are true along a specific path). Let AP be the set of atomic
proposition names. A state formula is either:

• A, if A G AP.

• If / and g are state formulas, then ->/ and / V g are state formul.

• If / is a path formula, then E / is a state formul

A path formula is either:

• A state formula.

• If / and g are path formulas, then ->/, / V g, X / , and fJJg are path formul

CTL* is the set of state formulas generated by the above rules.

We define the semantics of CTL* with respect to a structure M = (5,7£, £) , where

• 5 is a set of states.

• ^ Ç S x S is the transition relation, which must be total. We write Si —* s 2 to indicate that (si , 5 2) G

• £:«£—• V(AP) is a function that labels each state with a set of atomic propositions true in that state.

Unless otherwise stated, all of our results apply only to finite Kripke structures.

We define a path in M to be a sequence of states, IT = SQS\ . . . such that for every i > 0,
—• 7T* will denote the suffix of 7r starting at s t .

We use the standard notation to indicate that a state formula / holds in a structure:
M, s f= / means that / holds at state s in structure M. Similarly, if / is a path formula,
M, 7T (= / means that / holds along path 7r in structure M. The relation |= is defined
inductively as follows (assuming that / 1 and / 2 are state formulas and g\ and g2 are path
formulas):

Si

6

1 . s (= A iff A 6 L(s).
2 . * | = - / i iff
3 . 5 h /i V / 2 i # 3 h / i o r 5 (= / 2 .
4 . 5 |= E(#i) iff there exists a path x starting with s such that TT \= gx.
5 . 7r f= / ! iff s is the first state of 7r and s (=/1.
6 . 7T =̂ -i^i iff 7C ft gx.
7 . 7T |= ^ V 52 7T [= ̂ Or 7T |= ff2.
8 . 7T |= iff 7T1 =̂ ^
9 . 7r (= <7iU<72 iff there exists a k > 0 such that 7r* |= <j2 and for ail 0 < j < k, TTJ (= glm

We will also use the following abbreviations in writing CTL* formulas:

• /A 5 = -(-/V-<7) # A (/) = - E (- /)
• F / = frueU/ %Gf = -iF--/.

Let AT = (5,72., £) be a finite Kripke structure. The model checking problem for a logic L
is the problem of determining which states in S satisfy a given formula / of L. This problem
is PSPACE-complete for CTL* [15]. However, for restricted CTL* formulas of the form

E[V(A(PG f t j VGP,«))]
t=i j=i

where p t J and qij are propositional formulas, Emerson and Lei [6] give a polynomial model
checking algorithm.

T h e o r e m 1 Let K = (5,1Z, C) be a Kripke structure and f be a CTL* formula of the above
form. There is an algorithm for finding the states of S where f is true that runs in time

OCtni\1Z\+Ytn2

i\S\+T)
1=1 t=l

where T is the time necessary to label the states satisfying p t J and for i G { l , . . . , n } ,

j e { l , . . . , n f } .

In this paper we will use a class of CTL* formulas of a somewhat more complicated although
equivalent form in order to obtain tighter time bounds. The new formulas have the form

E[\/ (A (FG P t i V GFqij) A (A GFr t j) A FG f t)].
¿=1 j=i i=i

In this case the complexity of the model checking problem is

0{(£(ni + l) + l)\H\+ ¿(11, + l)(n< + m i + l)\S\+T)
¿=1 *=i

where T is the time required to find the sets of states satisfying p t J , <jrtj, and p t for all
i e { 1 , . . . , n} and j E { 1 , . . . , n t } . Although this complexity result is strictly tighter than
the one mentioned in the previous theorem, its proof can be obtained by directly rewriting
the proof of Emerson and Lei for this particular type of CTL* formula.

4. C o m p l e x i t y R e s u l t s for Var ious T y p e s of u>-automata

Our approach for computing the complexity of containment between various types of o>-
automata is to transform these problems to model checking problems and then use Emerson
and Lei's polynomial time algorithm. Alternatively, we could transform Emerson and Lei's
algorithm to one that deals only with automata and avoid the use of temporal logic alto
gether. We decided to use the former approach because the containment problems can be
expressed in temporal logic in a clear, succinct, and uniform manner. Moreover, by adopting
this approach we could use an existing algorithm that has been efficiently implemented and
thoroughly debugged.

4 . 1 . R e d u c i n g t h e c o n t a i n m e n t p r o b l e m t o m o d e l check ing

Let M = (5, SQ,S, F) be a Biichi, Muller, Rabin, Streett, L or V-automaton. Let <F>p be a
linear formula over 5 that expresses the acceptance condition of M , more precisely, <F>P is a
linear formula over 5 that has the property: an infinite pa th in M is accepted by F if and
only if it satisfies (PP. Let -<<?i>/r be a linear formula over 5 that expresses the negation of the
acceptance condition, i.e. has the property: an infinite word in S w satisfies -^<F>F if and only
if it does not satisfy <F>P. We will show in the next subsection that for any of the six types
of u-automata there are formulas <J>F and ^<i>F of the form

i=i j=i i=i

where p t J , 9 ,̂ r t J and p t are prepositional formulas.

We now describe how to compute the complexity of the containment problem by using
the formulas for <F>p and -«^jr. Let M = (5, s0,6, F) and M 1 = (S ' , SF

Q, 6', F ') be two complete
Biichi, Muller, Rabin, Streett, L or V-automata over S such that S n 5' = 0.

Let K { M , M F) = (5 x 5 ' , (s 0 , ^) , £ , f t) be the Kripke structure over 5 u 5 ' for which
C{S,S') = { 3 , 3 ' } and (s,s')Tl(t,t') (3a € E : 6{s,a) 3 t and 6'(s',a) 3 tf).

If M is a (nondeterministic) Buchi, Muller, Rabin, Streett, L or a deterministic V-automaton and M 1 is a deterministic Buchi, Muller, Rabin, Streett, L or a (nondeterministic) V-autmaton, then

C (M) C C{M') & ^ (M , M ;) |= - E (0 F A ^<t>F>)

where <J>F expresses the accefptance condition of M and -»<£f' expresses the negation of the
acceptance condition of M1 . Note that the above equivalence holds if M accepts an infinite
word if and only if there exists an accepting run in the automaton and if M' accepts an
infinite word if an only if all its runs are accepting. (Since deterministic automata always
have exactly one possible run, a deterministic automaton will satisfy the conditions for both
M and Af'.)

Suppose that <f>f and -^f' have the form :
71 Tl, 771»

<t>p = V (A (f g p o v G F ? . i) A A G F r o A f g p «)
«=i >=i j=i

F> = V (A (F G P < j v G F ? . ' i) A A G F ^ A f gp'«)-
¿=1 j=i j = i

Then K(M, M') |= E(<j>F A -.fov) if and only if

K (M , M ') \= e [V V (A (F G P u v G F ? . i) A A (F G P f c / v G F 9 «) A A G F r « i A A G F r « A F G (p < A P f e))]
1=1 k=i j=i '=i i=i '=i

and therefore, as shown in Section 3, the inclusion C(M) C C(M') can be checked in time

f > « + < + !)d ^ II I + I 5 II S ' I («.- + »* + m,- + m'k + 1) + T) .
t=l Jt=l

where T is the time required to find the sets of states satisfying pij, p'ijy etc.

4 .2 . D e t e r m i n i n g <t>p a n d -xfor for Bi ichi , M u l l e r , R a b i n , S t r e e t t , L a n d V au

t o m a t a

Let M = (S, s 0 , 6 , F) be a Biichi, Muller, Rabin, Streett, L or V-automaton. With each
of these six different types of u -au tomata , we first give the acceptance condition and its
negation as CTL* path formulas. Then we state the values of n, n,-, and m, that show why
the formulas have the general form above.

• Buchi

4>F = G F (V *)
seF

n = 1, n i = 0, mi = 1

- ^ F = FG(V s)

n = 1, ni = 0, mi = 0

• Muller

9

<i>F = v (F G(V 3) A A G F s) o r

A€F seA s€A

n =| F | and for every A G f : n A = 0, mA =\ A \
Although it is possible to obtain a correct formula for ^<j>p by simply negating 4>p and
converting the result to the desired form, exponential growth can occur. Therefore, a
formula is produced using Lemma 1:

^ f = (A G F (V *)) v V V(A G F (V *) A F G (V *))

n = 1 + E . 4 6 F I A |, n x = 0, m t = | F |
and for every A € F, t 6 A : n A , (= 0, = | {B C A |

• Rabin

<pF = V (F G (V *) A G F (V *))

n = | F |, ri([/fv) = 0, m(uy) = 1

-»*f = A (G F (V 3) V F G (V s))
(uy)eF 3 e v

n = 1, n x = | F |, m x = 0

• Streett

<f>F = A (FG(V a) V GF(V)̂)
(U,V)eF a£U s€V

n = 1, ni = | F |, mi = 0

-<£F = V (GF(V 5) A F G (V)̂)
(u,v)€F a € u ,eV

n = | F |, n(tr,v) = 0, m,({jy) = 1

• L

4>F = v F G (V 5) v G F (V *)

n = 1+ | Z |, n x = 0, mi = 1 and for all (7 € 2 : = 0, mt/ = 0
= FG(V«)A A GF(V)̂

j € F (/6Z a 6l7
n = 1, n x = 0, mi = | Z |

• V

^ F = F G (\ / a) V G F (V s)

10

n = 1, n i = 1, mi = 0

^<f>F = GF(\J s) A FG(V s)

n = 2, ri! = 0, mx = 1, n 2 = 0, m 2 = 0

4.3. T h e complex i ty of the containment problem

The complexity of the containment problem for all possible combinations of cj-automata
considered can now be obtained from the general result stated in 4.1. It is easy to see that
the time required to label the states with the propositional subformulas p t J , q^, etc. is
dominated by the other terms of the complexity formula. To obtain each entry in the matrix
we substitute the values of n, n,-, and rat- for the acceptance condition of the first automaton
and n', nf

k, and m'k for the negation of the acceptance condition for the second automaton.

5. Direct ions for Future Research

An obvious question is whether there are any reasonable acceptance conditions for w-
automata that we have not considered. Certainly we have included all of the models that
are commonly discussed in the literature, but are there any that don't fit in our framework?
One possibility is to use a formula of linear-temporal logic as the acceptance condition for
an automaton. For example, given an arbitrary formula / of linear-temporal logic one can
define an / -au tomaton that accepts an infinite word iff the word satisfies the formula / . The
same question can be posed for Wolper's logic ETL [18] and, in fact, for any temporal logic
with models that are sequences of states. This notion of acceptance at first appears more
general than the previous ones that we have discussed, but it is really not. Assume that the
alphabet for / is S. By using a construction of [17] it is possible to obtain a nondeterministic
Biichi automaton with alphabet V{H) that will accept an infinite word iff the word satisfies
the formula / . Consequently, this problem is essentially the same as the problem of showing
containment between some (possibly nondeterministic) u^-automaton and a nondeterministic
Biichi automaton.

The question of how to handle the containment problem when both automata are nonde
terministic, is another important problem for research. In this case, the problem is at least
PSPACE hard, since the containment problem for conventional automata on finite words
has this complexity. In some cases it is possible to show that the containment problem for
certain types of u;-automata is also in PSPACE. We conjecture that this is true for all of
the cases in the complexity matrix, but we have not been able to prove this result yet. Of
course, to say that a particular problem is in PSPACE is not really very useful in practice.
Concrete time bounds like 2 n or 2nlogn are much more useful. We have already obtained
some results of this type and we hope to complete the matrix for the nondeterministic case
with bounds of this sort in the near future.

11

M*
M

Buchi
dee Muller

det Rabin
dee Streett

der
L

det
Büchi
nondec

V
nondet

eef + v\/

w'g

Muller , , eéfs! eefff

nondet eeff+wf ee'fg' + vv'fftf eef ff + Wff2 eeftf ee'f+vïff ee'f + vïf

Streett , , eeffg'
. . ee'f + v»//2 ' * nondet +vv'/(• ee'(f+f) I I

det I + v v >

Time compie*,,, 0 f , h e coniammo ^ ç W)

where e =| <$ j ^ -i x/ i , n ,

_ J i , ^ - , u m n ^ i , / h , , , , h , , , a n d , . ^ M (] , m ^ autoniaton is a Müller

Finally, although our algorithms for testing containment are the best that we know, we
are currently unable to show that many of them are optimal. In fact, we suspect that some
are not optimal and may be improved in the future. We believe that additonal research
would be valuable in this direction. To aid in the search for better algorithms, it would be
quite helpful to have lower bounds for the non-optimal cases in the matrix. A related ques
tion that we have not fully considered is the usefulness of our present complexity measure.
Currently, the entries in our matrix are worst case execution times. While this measure is
certainly an important factor in evaluating the efficiency of our algorithms, it is not the only
factor of interest. Since the automata may have many thousands of states, the amount of
memory available is frequently the limiting factor rather than the execution time. Com
plexity measures that take this into account, are probably more useful than time complexity
alone. Devising such measures and finding algorithms that are efficient with respect to the
new measures are also important directions for research.

Refe rences

[1] A. Arnold and P. Crubille. A Linear Algorithm to Solve Fixed-Point Equations on
Graphs. Technical Report 1-8632, Universite de Bordeaux, November 1986.

[2] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching
time temporal logic. In Dexter Kozen, editor, Proc. Workshop on Logic of Programs,
pages 52-71, Springer-Verlag: LNCS 131, Yorktown Heights, NY., 1981.

[3] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Program
ming Languages and Systems, 8(2):244-263, 1986.

[4] D. L. Dill and E. M. Clarke. Automatic verification of asynchronous circuits using
temporal logic. IEE Proceedings, 133, part E(5), Sep 1986.

[5] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the tem
poral logic of branching time. JCSS, 30(l) : l -24, 1985.

[6] E. A. Emerson and C. L. Lei. Temporal reasoning under generalized fairness constraints.
In Springer LNCS 210, STACS86, Orsay, France, January 1986.

[7] J. R. Buchi. On a decision method in resticted secon-order arithmetics. In Proceedings,
International Congres on Logic Method and Philosophy of Science, 1960, pages 1-12,
Stanford University Press, 1962.

[8] R. P. Kurshan. Complementing Deterministic Buchi Automata in Polynomial Time.
JCSS, 35:59-71, 1987.

[9] R. P. Kurshan. Testing Containment of u>-Regular Languages. Technical Report 1121-
861010-33-TM, Bell Laboratories, 1986.

13

[10] Z. Manna and A.Pnueli. Specification and verification of concurrent programs by V-
automata. In Proceedings - Fourteenth Annual ACM Symposium on Principles of Pro-
grammxng Languages, 1987, pages 1-12, ACM, 1987.

[11] D. E. Muller. Infinite sequences and finite machines. In Switching Cicuit Theory and
Logical Design: Proceedings, Fourth Annual Symposium, pages 3-16, 1963.

[12] M. Nivat. Behaviours of Synchronized Systems of Processes. Technical Report 81-64,
Universite Paris 7, November 1981.

[13] M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions, American Mathematical Society, 141:1-35, 1969.

[14] S. Safra. On the complexity of u;-automata. In Symposium on Foundations of Computer
Science, IEEE, Oct 1988.

[15] A. P. Sistla and E. M. Clarke. Complexity of prepositional temporal logics. Journal of
the Association of Computing Machinery, 32(2):733-749, 1986.

[16] R. S. Streett. Propositional dynamic logic of looping and converse is elementary decid-
able. Information and Control, 54:121-141, 1982.

[17] M. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifi
cation. In Proceedings of the Conference on Logic in Computer Science, Boston, Mass.,
June 1986.

[18] P. Wolper. Temporal logic can be more expressive. Inf. Control, 56:72-79, 1983.

14

