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ABSTRACT

We consider the language containment and equivalence problems for six different types of w-automata:
Biichi, Muller, Rabin, Streett, the L-automata of Kurshan, and the ¥ automata of Manna and Pnueli. We
give a six by six matrix in which each row and column is associated with one of these types of automata.
The entry in the i column is the complexity of showing containment between the i type of automation
and jM. Thus, for example, we give the complexity of showing language containment and equivalence
between a Biichi automaton and a Muller or Streett automaton. Qur results are obtained by a uniform
method that associates a formula of the computation tree logic CTL* with each type of automaton. Qur
algorithms use a mode! checking procedure for the logic with the formulas obtained from the automata.
The results of our paper are important for verification of finite state concurrent systems with faimess
constraints. A natural way of reasoning about such systems is to model the finite state program by onc
w-automaton and its specification by another.
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1. Introduction

1.1. Background

w-Automata were first used by Biichi in a Paper on the decisiop problem for the logic S1§
(7). A short time later Muller showed that such automats were also usefy] for modeling the
behavior of asynchronous circyijtg (11]. Like a conventional automaton on finite words, ap
w-automaton consists of 5 set of states, ap input alphabet, a transition relation and a start

Machine on the word must be one of the elements of the acceptance set. Qther acceptance
conditions have beep given by Rabin [13], Streett (16], Kurshag (9], and Manna and Pnueli
[10]. Tt can be shown that each type of automatop accepts the same clags of languages (i.e.
the w-regular langauges '); however, the translation from ope type of automaton to another
may be quite complex [14].

The language containment and equivalence problems for w-automata are defined in ex-
actly the same way as for automata op finite words. Let M and M, be two automata on
infinite words with the same alphabet ¥ L(M;) will be the language accepted by M., The

since L(My) = L(M,) iff L(M) C L(M,) and L(M,) C L(My). 1f M, is nondeterminis.-
tic, then determining whether L(M) C L(M,;) will general be PSPACE hard, since the




way that acceptance is defined for Bichi automata, it is natural to use such automata in
modeling programs with this type of fairness constraint. Some automatic verification tech-
niques for finite state concurrent programs have exploited this similarity with considerable
success. The approach used by Kurshan [9], models both the program and its specification
by w-automata. To show that a program is correct, he uses an algorithm for testing con-
tainment between the two such automata [8]. A second reason for interest in w-automata
comes from research on temporal logic. There is a close relationship between w-automata
and the models for a formula of linear temporal logic. Specifically, given a formula f of lin-
ear temporal logic, it is possible to construct a Biichi automaton that accepts those infinite
sequences that are models for f. This relationship has also been exploited in an approach
to automatic verification called temporal logic model checking ([2], [3]). In this case the
specification of a finite state program is given by a temporal logic formula. By the property
mentioned above it is possible to extract a Biichi automaton from the temporal logic formula
and show containment in the same way that Kurshan does. Finally, research in VLSI on
problems like clock skew has led to increased interest in asynchronous circuits. Models for
such circuits like the one originally proposed by Muller have been resurrected in hopes of
obtaining a better understanding for this class of circuits [4].

1.2. New Results of this paper

We consider the problem of deciding containment between all of the various types of w-
automata mentioned in the first paragraph. We give a 6 x 6 matrix where each row and
column corresponds to one of the types of automata (See the figure at the end of Section
5.). The entry in the it» row and j* column is the complexity of showing containment
between the i* type of automata and j**. The entries on the diagonal of the matrix give
the complexity of deciding containment of two automata of the same type. We give a single
uniform framework for establishing all of these results. We show how each entry in the matrix
can be reduced to the problem of determining whether a certain temporal logic formula is
true of a Kripke structure obtained from the two automata. We can efficiently determine
whether the formula is true of the structure by using a model checking algorithm for the
logic.

The particular logic that we use is called CTL* ([2], (3], [5] )- It combines both branching-
time and linear-time operators and is quite expressive. The syntax includes path quantifiers,
A ("for all paths”) and E ("for some path”), that are used as prefixes for formulas containing
arbitrary combinations of the usual linear time operators G ("always”), F ("sometimes”),
X ("nexttime”), and U ("until”). Although the model checking problem for full CTL* is
PSPACE-complete [15}, Emerson and Lei (6] give a restricted class of CTL* formulas (called
fair-CTL) for which there is a model checking algorithm with polynomial complexity in the
size of the CTL* formula and also in the size of the Kripke structure. We use a modification
of this algorithm to obtain our results.

Our strategy for all of the cases in the matrix is essentially the same. We first express the
acceptance conditions for the two automata by a formula in CTL*. Then we manipulate the
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Although some of our resuits were previously known (See (8] for instance.), most of our
results are new, because no one else has considered the hybrid cases (Bichi contained in

2. w-Automata

A (nondeterministic) w-automaton over an alphabet T is a tuple (5, 30,6, F') where S is a
finite set of states, s is an initial state, § : Sx % — P(S) is a transition relation and F is an
acceptance condition. The automaton is deterministic if Vs S,Vag T :| 8(s,a) [< 1. The
automaton is complete if Vs €S,YaeX :| 6(s,a) |> 1. In this paper we will always assume
that the automata are complete. It is easy to see that this does not affect the complexity of
containment,.

A pathin M is an infinite sequence of states 30815;... € S that starts in the initial state
and has the property that Vi > 1,34, ¢ ¥ . 8(si,a;) 3 Si+1. A path sgs,s,. .. €E5YInMis
a run of an infinite word Gaz...eZ¥ifvi > . 8(siya) 3 Si41.

An infinite word is accepted by a Biichi, Muller, Rabin, Streett or I, automaton if it has
an accepting run in the automaton. An infinite word is accepted by a V-automaton if all its
possible runs in the automaton are accepted,



C(M) = {a1a;... € Z¥ | a1a;... is accepted by M}.

The infinitary set of a sequence sgs182... € S“, inf(sgsy-..), is the set of all the states
that appear infinitely many times in the sequence.

If M is a Biichi automaton then F C S is a set of states (as in the case of automata on
finite words) and a run 7 is accepted by M if inf(r) N F # 0.

The acceptance condition of a Muller automaton is a set FF C P(S) of sets of states. A
run is accepted by the Muller automaton if inf(r) € F.

Lemma 1 A run r is not accepted by a Muller automaton (S, 30,6, F) if and only if one of
the following conditions holds :

1.VAEF : inf(r) L A or
2. dA € F, 3t € A such that:

(o) VBEF, BCA : inf(r)Z B and
(b) inf(r) C A\ {t}

Proof The ”=" direction is proved by the following argument: Suppose that inf(r) € F.
Then either inf(r) is not contained in any set of F, and in this case 1 holds, or inf(r) is
contained in some set in F. Let A be a minimal set in F such that inf(r) € A. Then 2a
holds and as inf(r) must be strictly contained in A, there exists a t € A for which 2b holds.
The "<«” direction is equally simple. If case 1 holds then clearly inf(r) € F. Suppose 2
holds. As inf(r) is strictly included in A and is not equal to any of the subsets of A that
are in F it follows in this case also that inf(r) & F.

In the case of Rabin automata, the acceptance condition has the form F = {(U;, W),.. .,
(Un, Va)}, where U, V; € S. A run is accepted by M if there exists ¢ € {1,...,n} such that
inf(r) CU; and inf(r)NV; # 6.

The Streett acceptance condition has the same form as that of Rabin, but the semantics
is different. A run is accepted by a Streett automaton with F' = {(Uy,Vi),...,(Ua, Va)} if
for every i € {1,...,n}, inf(r) C Ui or inf(r)NV; # 0.

If M is an L automaton, the acceptance condition is a pair F' = (Z,V), where Z C P(S)
and V C S. A run is accepted by the automaton if either inf(r) C U for some U € Z or
inf(ryNV # 0.

The acceptance condition of a V-automaton is F'= (U, V) C §x §. A run is accepted by
the automaton if either inf(r) C U orinf(r) NV # 0.



3. The Computation Tree Logic CTL*

There are two types of formulas in CTL* state formulas (which are true j
and path formulas (which are true along ‘a specific path).
proposition names. A state formula is either:

1 a specific state)
Let 4P be the set of atomi

¢ 4. if4e ap,

® If f and g are state formulas, then ~fand fVg are state formulas,

® If f is a path formula, then Ef is a state formula.

A path formula is either

® A state formula,

¢ If fand g are path formulas, then ~f, fVg, Xf, and fUg are path formulas.

CTL* is the set of state formulas generated by the above rujes.

We define the semantics of CTL* with respect to a structure M = (8, R, L), where

¢ 5 is a set of states,

that (31, 52) € R

* L:S5— P(AP)is a function t

hat labels each state with a set of atomijc pPropositions
true in that state.

Unless otherwise stated, all of our resuits apply only to finite Kripke structures.

We define a path in M to be a Sequence of states, v = $081 ... such that for every 1 > (,
Si = Sit1. 7 will denote the suffiz of r starting at s,.

ucture M. Similarly, if f is a path formula,
in structure M. The relation k= is defined
and f, are state formulas and %1 and g; are path

M, 7 = f means that f bolds along path r

inductively as follows (assuming that h
formulas):



sEA iff A€ L(s).

sE-f iff s¥ A

sEfiVf if sEhosEf

s = E(g) iff thereexists a path = starting with s such that 7 = g;.
TEfi iff s is the first state of * and s F fi.

T Eq iff ¥

rEave f rEgoTEg

mEXq ff ©Ea.

r=qUg, iff thereexistsa k20 such that 7* |= g, and forall 0 < 7 < &, 7 = g

W w1 DN W

We will also use the following abbreviations in writing CTL* formulas:

-E(~f)
~F-f.

S(-fv-g)  eA(S)
trueUf oGf

ofAg
oF f

m

Let K = (S, R, £) be a finite Kripke structure. The model checking problem for a logic L
is the problem of determining which states in & satisfy a given formula f of L. This problem
is PSPACE-complete for CTL* [15]. However, for restricted CTL* formulas of the form

non

Ef\/ ( A\ (FGp;; V GFg;))]

=1 =1

where p;; and ¢;; are propositional formulas, Emerson and Lei [6] give a polynomial model
checking algorithm.

Theorem 1 Let K = (S, R, L) be a Kripke structure and f be a CTL* formula of the above
form. There is an algorithm for finding the states of S where f is true that runs in time

O3 ni | R|+3 02| S| +T)
=1 =1

where T is the time necessary to label the states satisfying p;; and qi; for i € {1,..., n},
] E {1,...,1’1.‘}.

In this paper we will use a class of CTL* formulas of a somewhat more complicated although
equivalent form in order to obtain tighter time bounds. The new formulas have the form

E[\/ (A (FGps; v GFai)) A (A GFryj) AFGp)].

i=1 j=1 =1
In this case the complexity of the model checking problem is

O3 (ni + 1)+ 1) | R |+ 3o+ )i+ mi +1)| S 14T)

=1 =1
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this approach we coylgd use an existing algorithm that has been efﬁciently implemented and

4.1, Reducing the containment Problem to mode] checking

Let M = (S, 80, 8, F) be a Biichj, Muller, Rabin, Streett, [, or V-a.utoma,ton. Let ¢p be a
linear formula over S that €Xpresses the acceptance condition of jr » Iore precisely, #F is a
linear formula over S that hag the PIoperty: an infipjte Path in Af s accepted by F if and
only if it satisfies g ., Let ~g; be a linear formula over S that expresses the negation of the
acceptance condition, e, has the Property: an infinjte word in S« Satisfies —g . if and only

\/(/\ (FGpl'j v GFQIJ) A (/\ GFrij) A FGP:)
t=] j= J=1

where Pij, gijy iy and Pi are propositiona] formulas.

We now describe how to compute the complexity of ¢he containment Problem by using
the formulas for ¢z and “dr. Let M = (S, sy, 6. F) and Af — (S’ 54, 6, F') be two complete
Biichj, Muller, Rabin, Streett, L op V-automnata Over X such that SNS' =g

If M is 5 (nondetermjnistic) Biichi, M
automaton and A’ Isa determinist;e Biichj,
V-autmaton, then

LM)C LMy o K(M, M) = ~E(4, A ~ )
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where ¢p expresses the accefptance condition of M and - expresses the negation of the
acceptance condition of M’ . Note that the above equivalence holds if M accepts an infinite
word if and only if there ezists an accepting run in the automaton and if M’ accepts an
infinite word if an only if all its runs are accepting. (Since deterministic automata always
have exactly one possible run, a deterministic automaton will satisfy the conditions for both

M and M'))

Suppose that ¢F and —¢é g have the form:

ér = V(A (FGpi; vV GFg;) A \ GFri; AFGpi)
=1 j=1 j=1
~6r = V(AFGH; vV GFg;) A \ GFr; AFGp)).
=1 j=1 j=1

Then K (M, M') = E(¢r A ~¢p) if and only if

n n n'k mi my
k(M MY EENV V(A (FGpi;VGFgi)AN (FGRVGFg)A N\ GFri;A\ GFriyAFG(pirpi))]
=1 =1

=1 k=1 ;=1 =1

and therefore, as shown in Section 3, the inclusion L(M) C L(M’)} can be checked in time

O(ZZ(n;+nL+l)(]5]l6'|+|S||S'|(n,~+n§,+m;+m§¢+1)+T).

=1 k=1

where T is the time required to find the sets of states satisfying pij, pi;» etc.

4.2. Determining ¢r and —¢r for Biichi, Muller, Rabin, Streett, L and V au-
tomata

Let M = (5, 30,6, F) be a Biichi, Muller, Rabin, Streett, L or V-automaton. With each
of these six different types of w-automata, we first give the acceptance condition and its
negation as CTL* path formulas. Then we state the values of n, n;, and m,; that show why
the formulas have the general form above.

¢ Buchi
¢r = GF(V )

seF
n=1, n1=0, m1=1

-¢r = FG(V 3)
seF
n:l, n1=0, m1=0

e Muller



¢r= V (FG(\/ s)A A\ GFs) o

AeF SEA sEA

n=|F|and forevery Ac F . na=0, my=|4|

Although it is possible to obtain a correct

converting the result to the desired form,
formula is produced using L

formula for ~¢r by simply negating ¢z and
exponential growth can occur. Therefore, a

emma ];
~ér={ A\ GF(\/ s))v V Vi A GF(V s) AFG( Vo os)
AEF sed AEF ted BcA 'ry:3 sEA
BeF EE3

n:1+24eFlAl, n]=0, m1=]F|
and for every AE F, te A

D nge =0, ma:={{BCA | BEF}]
e Rabin

°r =V (FG(V s)AGF(V o))

(UV)eF sely eV
=l onwyy =0, myy, =1

~¢r= A (GF(\ s) VFG(Y/ s))

(UV)eF 34 U
n=l, ny =IF|, m1‘=0

¢ Streett
¢r= A (FG(V s)VGF(V/ s))
(U VyeF sel/ seV
n=lLm=F{,m=0

~¢r= \/ (GF( V os)a FG(V/ s))
aEU

(UVier sV
n=|F| uvy =0, myyy =1
o [

or =\ FG(\/ s)vGF(\/ s)

UeZ el seV

n=1+]2Z] n =0, My =1landforallUg 7 -
~6=FG(V 9n A GE(\ s)

seV Vez Fr34

n=1lnm=0m=|Z7|

ny =0, my =0

oV

¢r =FG(\/ s)VGF(\/ s)
selJ

13
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n=1,nm=1m=0

—¢r = GF(V $) AFG(V 3)
13 €V
n=2,n1=0,m1=1,n2=0,m2=0

4.3. The complexity of the containment problem

The complexity of the containment problem for all possible combinations of w-automata
considered can now be obtained from the general result stated in 4.1. It is easy to see that
the time required to label the states with the propositional subformulas p;;, ¢;;, etc. is
dominated by the other terms of the complexity formula. To obtain each entry in the matrix
we substitute the values of n, n;, and m; for the acceptance condition of the first automaton
and n', n}, and m;} for the negation of the acceptance condition for the second automaton.

5. Directions for Future Research

An obvious question is whether there are any reasonable acceptance conditions for w-
automata that we have not considered. Certainly we have included all of the models that
are commonly discussed in the literature, but are there any that don’t fit in our framework?
One possibility is to use a formula of linear-temporal logic as the acceptance condition for
an automaton. For example, given an arbitrary formula f of linear-temporal logic one can
define an f-automaton that accepts an infinite word iff the word satisfies the formula f. The
same question can be posed for Wolper’s logic E TL (18] and, in fact, for any temporal logic
with models that are sequences of states. This notion of acceptance at first appears more
general than the previous ones that we have discussed, but it is really not. Assume that the
alphabet for f is £. By using a construction of [17] it is possible to obtain a nondeterministic
Biichi automaton with alphabet P(X) that will accept an infinite word iff the word satisfies
the formula f. Consequently, this problem is essentially the same as the problem of showing
containment between some (possibly nondeterministic) w—automaton and a nondeterministic
Bichi automaton.

The question of how to handle the containment problem when both automata are nonde-
terministic, is another important problem for research. In this case, the problem is at least
PSPACE hard, since the containment problem for conventional automata on finite words
has this complexity. In some cases it is possible to show that the containment problem for
certain types of w—automata is also in PSPACE. We conjecture that this is true for all of
the cases in the complexity matrix, but we have not been able to prove this result yet. Of
course, to say that a particular problem is in PSPACE is not really very useful in practice.
Concrete time bounds like 2" or 29" are much more useful. We have already obtained
some results of this type and we hope to complete the matrix for the nondeterministic case
with bounds of this sort in the near future.
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eef + iy

Time complexi ¥ of the containment LM)YC cm

where e =} § | ¢ =| &

hv=s), V=8| f
automaion.

Rabin
det

ee'f + 2

W+ g

e’ + wif ’ ecfy + wffg I eeff + wip? I

ee'f + wp? ’ eefs’

ee'(f + )

+W(f + )2

eef + wf I eefy + wipy ’ eeff + wm? I

ecf + wf
ee +

eef +wf

FELLAF L and g =54, g =

Streert L
det det

’ ee’f’ + wy , ee + /[

eeff’ + wim ’

I ecff +welp I eef + wWf(f +f)

ee’ff + wip ’ eef + wip

)

v
nonde;

I ed v+
ee' + wyg I eefs’ ety

’ ee’fj’+vlfgf’ I ee’+vV(fj‘+g) I

eef +wig

eef + wip I ee'’f + wif

ee' + wf

ee +y/

Lace | A If the automaton is a Muyller



Finally, although our algorithms for testing containment are the best that we know, we
are currently unable to show that many of them are optimal. In fact, we suspect that some
are not optimal and may be improved in the future. We believe that additonal research
would be valuable in this direction. To aid in the search for better algorithms, it would be
quite helpful to have lower bounds for the non-optimal cases in the matrix. A related ques-
tion that we have not fully considered is the usefulness of our present complexity measure.
Currently, the entries in our mairix are worst case execution times. While this measure is
certainly an important factor in evaluating the efficiency of our algorithms, it is not the only
factor of interest. Since the automata may have many thousands of states, the amount of
memory available is frequently the limiting factor rather than the execution time. Com-
plexity measures that take this into account, are probably more useful than time complexity
alone. Devising such measures and finding algorithms that are efficient with respect to the
new measures are also important directions for research.
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