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1 Introduction

The Mir6 visual languages are used for specifying security configurations. By “visual language.” we mean
a language whose entities are graphical. suck as boxes and arrcws. By “specifving.” we mean stating
independently of any implementation the desired properties of a system. Finally, by “security.” we mean
file system protection: ensuring that files are protected from unauthorized access and granting privileges to

some users, but not others.

1.1 Motivation

Why visual specifications?

Pictures, diagrams, graphs, charts and the like are commonly used to aid one’s understanding of control
information, data structures, computer organization. and overall system behavior. With the advent of new
display technology they have become more feasible as a means of communicating ideas in general. Visual
concepts have even infected our terminolegy: for example, the basic unit of security in Multics i1s a “ring.”

Our work differs from other work in visual languages in three impotrtant ways: First, unlike many
languages based on diagrams where boxes and lines may fail to have a precise meaning. or worse. have
multiple interpretations, we are careful to provide a formal semantics for our visual languages. Second.
in contrast to visual programming languages such as C? or Forms/2 [KG88.AB89], we are interested in
specifications, not executable programs. Third. we do not use visualization just for the sake of drawing
pretty pictures: instead, we address a domain. security, that lends itself naturally to a two-dimensional

representation.

Why security?

Computer security is a central problem in the practical use of operating systems. File system protection
has always been a concern of traditional operating systems, but with the proliferation of large. distributed
systems, the problem of guaranteeing security to users is even more critical. In order to provide security
in any one system, it is important to specify clearly the appropriate security policy (those for a university
would be different from those for a bank) and then to enforce that policy. We address the first of these two
issues by providing a way to express these policies succinetly, precisely, and visually.

As opposed 1o previous approaches to specifying security which use simple, fixed policies [NBF *80,Ben84],
our emphasis is on providing the users at a site with the ability to tailor a security policy to their needs
and to support the use of that policy in a working file system. Mcreover, we are interested in helping users
navigate through a specification as a means of understanding a specific system’s security configuration.

Security lends itself naturally to visualization because the domains of interest are best expressed in terms
of relations op sets, easily depicted as Venn diagrams, and the connections among objects in these domains
are best expressed as relations (e.g., access rights), easily depicted as edges in a graph (where the nodes
consist of objects in a Venn diagram). The Miré languages extend Harel's work on higraphs [Har88|, an
elegant visual formalistn which depicts relations on Venn diagrams.



1.2 Overview of the Miré Languages

We model security for a file system in terms of a set of users, a set of files, and a set of access modes (ways
that users may access files). There are two types of questions we need to be able Lo answer to fully specify
a file system security policy: First, “Which users have which kinds of access to which files?", and second.
“Which of all possible user-file accesses are realizable by the operating system and acceptable according
to our site’s security policy? . Miré consists of two visual specification languages that allow a specifier to
answer these questions for a given security policy by drawing pictures. The instance language specifies the
accesses of particular users to particular files' [TW87), and the constraint language specifies restrictions cn
the kinds of instance pictures that are permitted [HMT*89a].

The semantics of the instance language is defined in terms of an underlying security model. The basis
for this model is the Lampson access matrix [Lam71], in which one axis is labeled with user names and a
second axis is labeled with file names.2 The (i,j}*? entry in the matrix is the set of modes by which user
i may access file j. The range of access modes varies from one operating system to another. In Unix. for
example. access modes on files include read, write. and execute.

The instance language uses boxes and arrows to specify an access matrix. A box that does not contain
other boxes represents either a user or a file. Boxes can be contained in other boxes to indicate hierarchical
groupings of users and directories of files. Labeled arrows connect one box to another to indicate the granting
of access rights. The relationship represented by an arrow between two boxes is also inherited by all pairs of

boxes contained in those two boxes. Artows may be negated, indicating denial of the specified access rights.

fusr/Alice/mail

read

read

& J

Figure 1: A sample instance picture

For example, Figure 1 shows an instance picture that reflects some aspects of the Unix file protection
scheme. The outermost left-hand box depicts a world, World, of users, three (out of possibly many not
explicitly shown) groups, Groupi, Group2, and Group3, and two {out of many not explicitly shown) users,

'In some previous papers {namely [TW8?] and [MTWB89]), the instance language was simply called the Mird language.

2In fact, we do not need to limit curselves merely with the protection between users l._nd files. We could easily extend ocur
access matrices, and the Miré domain, to include any number of unary and binary relations between operating system objects;
an example is process-to-process operations such as the right for one process to communicate with another.
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dlice and Bob. The containment and overlap relationships between the world, groups. and users indicate
that all users are in the world, and users can be members of more than one group. The right-hand box
denotes Alice’s mail file. The arrows indicate that Alice, and no other user, has read access to her mail file
That is, the direct positive arrow from Alice overrides the negative arrow from World.

The access matrix (and hence the instance language) provides the ability to represent all possible secu-
rity configurations. A major challenge for a security specification scheme is to restrict the set of possible
configurations to only those that are realizable and acceptable. Sin:e an operating system can only support
certaip configurations, some access matrices must be disallowed. For example, in Unix. a configuraticn in
which one group of users has permission to read a file and a second group of users has permission to write
that file cannot be realized {unless one group is either the set of all users or the singleton set of the file's
owner) [RT87]. Other access matrices must not be allowed because specific security policies may make some
situations unacceptable. For example, in the military Bell-LaPadula security model [BL73,Dep85], usets and
files in the operating system are assigned linear security levels (i.e.. top secret, secret. not secret); it is only
acceptable for users to write to files at their securitv level ar higher and to read files at their level or lower.

The constraint language provides the specifier with a visual way to describe realizable and acceptable
configurations by limiting the set of “legal” instance pictures. A constraint picture specifies a (possibly
infinite) set of instance pictures. If a given instance picture is an element of the set of instance pictures
defined by a constraint picture. we say that the instance picture matches the constraint or that 1t is legal with
respect to that constraint picture. Different sets of constraints describe different security configurations. For
example. constraint pictures for Unix would be quite different from ones describing the Bell-LaPadula model
or Carnegie Mellon's Andrew File System [SHN*85].

Like the instance language, the constraint language alsc consists of boxes and arrows. but here the objects
have different meanings. In a constraint picture. a box is labeled with an expression that defines a set of

instance boxes. For example, in Figure 2, the left-hand box refers to the set of instance boxes of type User.

type = User writa type = File
L N N B N
read

Figure 2. A sample constraint picture ,

Three kinds of constraint arrows are used to describe the three relaticns in an instance picture: actual
arrows in an instance picture, entries in an instance picture’s corresponding access matrix, and containment
relations among the boxes of an instance picture. Additionally, each constraint object is either thick or thin.
and a constraint picture has a numeric range (the default is > 1). The thick/thin attribute and range are key
in defining the semantics of a constraint picture: for each set of ob ects in the instance picture that matches
the thick part of the constraint, count all the ways of extending that matching to include the thin portion
of the constraint; this number must lie within the range. Figure 2 shows a constraint picture specifying that
any user who has write access to a file should have read access to it as well {dashed arrows specify access
relations).

This paper discusses the instance and constraint languages in detai] (Sections 2 and 3), describes some
of the Mird software tools we have designed and implemented (Section 4) [HMT*89b), and closes with an

evaluation of our approach to visualizing security specifications (Secticn 5).



2 Instance Language

2.1 Syntax and Semantics

An instance picture is formed from a set of typed objects, each of which is an optionally labeled box or arrow.
Boxes represent individual users and files or collections of users or files; arrows represent access rights. A
box that represents a single process or file is atomic and contains no other boxes. Boxes may be nested to
indicate groupings of users or files; boxes may also overlap. Arrows can be positive or negative, representing
the granting or denial of access rights. Well-formedness conditions restrict the domain of syntactically legal
pictures: one condition is that arrows be attached at both ends; another is that all arrows must start {rom
a user box and end at a file box.

Figure 3 gives another example of an instance picture. Here, only Alice has read and write rights to
/usr/Alice/private. The other users do not have writs access to Alice’s private directory since we define

the absence of an appropriate arrow to mean no access.

Alice ) write /usr/Alice/privata

reagd

_ Y

read ; l Jetc/passwd A

Figure 3: Another instance picture

Jetc/passwd  [usr/Alice/private

Alice { read } { read, write }
Bob | { read } {}
Charlie | { read } {}

Table 1: Example of an access matrix; the matrix for Figure 3

Recall that the interpretation of an instance picture in the security domain is an access matrix. The
access matrix for the instance picture of Figure 3 is given in Table 1. Any relation not specified by an
explicit arrow in an instance picture is denied by default. So the negative artow in the Figure 3 is not
strictly necessary, but it is good “visual programming style” to make the absence of read rights explicit. A

more forma! definition of the instance language’s syntax and semantics appears in the appendix.



2.2 Ambiguity

The presence of negative arrows in the language adds some non-triviality to the semantics. because pictures
with ambiguous interpretations can be constructed. Figure 4 shows an example of such a picture Is Bob
a special user who has access to all programs in usr, including admin” Or are no users (including Bob)
allowed access to the admin directory? Either interpretation seems valid; therefore. we say this picture 1s

ambiguous.

World N\

Bob

J

Figure 4: An ambiguous instance nicture

It obviously undesirabje to allow ambiguities Lo remain in an instance picture. We here give a definition
of ambiguity. and in Section 4.3 give an algorithm f{or detecting it. In the rest of this section. we restrict our
attenticn to only those arrows of a given type, such as read. since arrows of differing ivpes cannot generate
ambiguities.

Consider Figure 3. Although both positive and negative read arrows involve Alice, we interpret the
picture to state that Alice is to have read access to her private directory. When determining whether a user
has access to a file. an arrow that is most tightly nested at both its head and tail governs the sense of the

access. In Figure 3 we say the positive arrow overrides the negative one.

An arrow a overrides another arrow & (with opposite parity) if @ connects boxes that are contained
in the boxes connected by a. where the box at at least one end of a is strictly contained in the

box connected to a at the same end. A formal definition is given on page 23.

For example, in Figure 3, the positive read arrow connected to the Alice box overrides the negative
read arrow connected to the World box. The reason is that their heads connect to the same box. and the
tail of the former is attached to a box more tightly nested than (i.e.. contained within) the box attached to

the tail of the latter. In general, we can determine the status of a relation using this rule:

A relation between u and f is unambiguous if there exists a single “certificate” arrow overriding
all arrows of opposite parity connecting boxes containing u and f. If such a certificate does not
exist, the relation is defined to be ambiguous. A picture is ambiguous when there exists some

ambiguous relation between atomic boxes within it.

Thus, Figure 4 is ambiguous, since there is no certificate for the raad relation between Bob and admin.
Figure 5 gives some more examples of ambiguous pictures, assuming that P and ¥, and P’ and N*. share

at least one atomic box. Each of these pictures has the property that no single arrow has both ends attached

to the smallest enclosing boxes. Note that when two arrows touch overlapping boxes at one end. neither one

overrides the other.
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Figure 6: Unambiguous instance pictures

In contrast, consider the pictures in Figure 6. Assuming again that each pair (F, I and P*, K*) shares
an atomic box, none of these pictures is ambiguous; they all have negative interpretations. Changing the
parity of the arrows would give them all positive interptetations.

Our definition of ambiguity has some subtleties. For example, in Figure 7, what is the relationship

between U and F? It is ambiguous, as we now argue. Arrow 2 overrides arrow 1 and arrow 4 overrides arrow
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Figure 7. Another kind of ambiguous instance picture

3. If the picture were unambiguous. then some arrow x would have to override all arrows of opposite parity
Thus only arrows 2 and 4 are candidates for being the arrow r. However, arrow 2 does not override arrow
3. and arrow 4 does not override arrow 1. Hence the picture is ambiguous. This example demonstrates that

ambiguity cannot be determined locally.

4 )

N /

Figure 8: An unambiguous instance picture

Now consider Figure 8. It is not ambiguous - access 15 permitted from U to F since arrow 2 and arrow 3
override arrow 1. Although arrow 2 does not override arrow 3 and arrow 3 does not override arrow 2. this

does not make the picture ambiguous since arrow 2 and arrow 3 are of the same parity.

2.3 Types

So far we have focused on the semantics of the relation defined by an instance picture as reflected by the
arrows. We also associate type semantics with arrows and boxes. Each arrow or box object has a type. The
type of an arrow is a subset of a user-specified finite set Any of access modes (e.g., Any = {read, write.
execute}). The type of a box is a name plus a (possibly empty) set of attributes. Each box type must
first be defined; individual boxes are created as objecis of a type with specific values bound to the type’s
attributes.

A box type definition takes the form:

type name
[ subtype of parent]
[ number-of-sbjects range |
[ atiribute-list ]



where clauses enclosed in square brackets ( [ ]'s ) are optional.

The nusbar-of-objects clause constrains the number of objects of this type, where range is either a
single integer or an integer range, with the default value being [0..o0c]. The attridute.list is a list of zero or
more tuples. Each attribute in the list provides additional information about each object of the type. An
attribute is either optional or mandatory (indicated by an O ot M in the tuples of Figure 9), and may have
a default value.

Box type definitions provide a subtyping mechanism. Each type has at most one parent (ie., there is
no multiple inheritance). The root of the type tree is defined to be type Root, which has no attributes and
is not a subtype of any other type. A subtype inherits all of the attributes of its parent type, and can add
additional attributes of its own. There are two restrictions on the attributes that a subtype inherits: first.
if an attribute is mandatory in the parent, it must be mandatory in the subtype, and second, an attribute
which is optional in the parent may be mandatory in the subtype.

To create an object of a particular type, the user must supply a name and values for all of the mandatory
attributes of that type, and may supply values for any of the optional attributes.

Figure 9 contains examples of type definitions and typed box objects. The two main types are Entity
and Sysobj. There are three subtypes of Entity (World, Group, and User) and two subtypes of Sysobj (Dir
and File). There can be only one World. indicated by the number-of-objects range of the World type.
All boxes with type Sysobj have owner. created, and modified attributes. The first two are mandatory,
whereas the third is optional. All boxes with type File have an additional Boolean attribute indicating

whether or not they are devices: that attribute’s default value is False.

Definitions Objects
type Entity type Sysobj Alice : User
< owner : string, M >
type World < created : date. M > Just/alice : Directory
subtype of Entity < modified : date. O > < owner, Alice >
number-of-objects | < created, 01/01/88 >
type File
type Group subtype of Sysobj
subtype of Entity < is-device : boolean = False, M >
type User type Dir
subtype of Entity subtype of Sysobj
type Mail
subtype of Dir

Figure 9: Some sample instance type definitions and objects for Unix

Type information expresses two different kinds of restrictions on an instance picture. First, there are
restrictions on the number of ob jects of a type, such as “there must be exactly one object of type World.” Such
restrictions are expressed in the number-of-objects clause of the type definition. Second, the constraint

language outlined in the next section provides a means for restricting pictures based on the values of type
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attributes.

3 Constraint Language

The Miré instance language is capable of specifying file system security configurations for any operating
systemn. However, the kinds of instance pictures users will draw will vary depending on the particular system
they are specifying. In particular, the system architecture and local security policies will impose constraints
on what should be considered a legal (realizable and acceptable} instance picture for that system. For
example, an instance that is legal for Multics may be illegal for Unix. We use the constraint language to
define legal instance pictures.

Constraints are assertions that the occurrence of some situation implies that some further condition
must hold. Constraints are divided into two parts: the antecedent (or trigger} and the comsequent {or
requirement). For example, we may wish to specify the constraint. “Any time a user has write access o a
file. he or she should also have read access to it.” {This is the example given in Figure 2). In this case. the
existence of write access is the trigger on the read access requirement. Both parts are expressed together in
a single constraint picture. We describe shortly how these constraints are depicted and give a description of
their semantics.

We would like our constraint language to be able to place restrictions on the following aspects of an

instance picture:

e Where arrows may be drawn (e.g.. “there can be at most 20 arrows leading to any box of type
top-secret™}. Such constraints specify certain syntectic relations among boxes because they depend
solely on the syntax of the instance picture

e Entries in the associated access matrix {e.g.. "if a user has write access to a file. he should also have
read access to it"). These constraints specify semantic relafions among boxes because they depend
on the meaning of the instance picture.

o Box containment relations (e.g., “every user in the Miro grous should have a sub-directory contained

in his or her home directory called mire™).

In general. a single security requiremnent will involve a combination of these relations. For example. the

constraint:

“For every user named u in the system, there should be a directory named u in the /usr directory.

and there should be a file called mail in that directory to which u has read access,”

is a combination of containment and semantic constraints; however, we can express this requirement with a

single constraint picture.

3.1 Syntax and Semantics

Like instance pictures, constraint pictures contain boxes and arrows, but with restrictions and extensions to
the instance picture syntax. Each constraint picture specifies a “pa:tern” which defines a (possibly infinite)
set of instance pictures. If a particular instance picture matches “he pattern, we say that instance is lega!
with respect to the constraint.

We now present an informal version of the syntax and semantics of the constraint language in an in-

cremental fashion. At each step in the presentation we give examples of constraint pictures (constructed

g



from the syntax as described up to that point) and instance pictures, and explain why a particular instance

picture does or does not match that comstraint picture.

3.1.1 Boxes

The primitives in the constraint language are constraint boxes; each constraint box contains a boz predicate
taken from the bor predicate language. A particular box in an instance picture matches a constraint box
if the values of the instance box’s attributes make the predicate in the constraint box true. In an actual
instance picture, there may be more than one box that matches a given constraint box. Similarly. each
instance box may satisfy more than one constraint box.

The box predicate is a Boolean expression (where “&." “|,” and “" denote “and.” “or,” and “not.”
respectively) of relations involving constants and attribute names associated with some box type. We use
C and C as relations on box types to denote subtype and strict subtype, respectively. We use variables to
force attribute values of two or more boxes to match. A variable is distinguished from other identifiers by
preceding it with a “8.” Each variable 8X in a constraint must appear in at least sne predicate containing
the expression “attribute = $X " The operational semantics of each variable in a constraint is as foilows
Pick any box pattern in which the variable is compared to an attritute for equality and set the value of the
variable to the value of the attribute of the box matching that box pattern. Then. for each other use of
the variable in constraint boxes. substitute the assigned value for the variable; that substituted value must
satisfy all of the box predicates.

The boxes shown in Figure 10 illustrate the basics of the box predicate language. The predicates match:
(a) all Users named jones, (b) all Groups other than those named miro or theory. and (c) ali Files created

in January 1988,

type = User & type = Group &

name = "jones” | ( name € { "miro","theory” } )
(a) (b)
type = File &

1/1/88 <= created <= 1/31/88

(c)

Figure 10: Three box patterns

For the remainder of the paper, we will adopt the shorthand that upper-case letters denote box predicates
matched only by the box instance in the instance picture named with the same lower-case letter (ie., a

matches A only, b matches B only, etc.).

3.1.2 Arrows

There are three kinds of constraint arrows, one for each type of relationship between boxes (syntactic.
semantic, or containment) we wish to constrain. We call the arrows associated with these relationships

syniaz arrows, semantics arrows, and confainment arrows, respectively. Both the head and tail of a syntax
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or sernantics arrow lie directly on the boundary of the boxes to which they are connected. whereas the head
of a containment arrow lies inside its connected box. Syntax and semantics arrows are visually distinguished
by drawing them with solid and dashed lines. respectively We alsc adopt the convention that syntax and
semantics arrows are horizontal. while containment arrows are vertical. This convention is used only for

pedagogical purposes in this paper: the language does not impose it. Examples of these arrows are shown

@yalasale

in Figure 11.

(a) Syntax (b) Semantics A
ArTow ATTOW .
(¢) Containment
AITowW

Figure 11: The three constraint artows types

Syntax and semantics arrows are labeled. but containment arrows are not The label in the former twe
cases serves to further specify which type of relationship may exist between a and b Recall that Anry s the
set of aliowed access types. In general, the label specifies some non-empty set § C Any. If s a singleton
set. we write it simply as s instead of {5 }.

We now describe what it means for the boxes a and b to match the patterns 4 and B with respect 1o
each type of arrow.

(a) Syntax Arrow: If there is a syntax arrow from A to B labeled 5. then there must exist an arrow in
the instance picture from a to b of some type s € 5.

(b) Semantics Arrow: If there is a semantics arrow from A to B labeled 5 then the access matnx
associated with the instance picture must specify that a has some perrussion s on b, where s € 5.
Furthermore. since the access matrix is only defined on atomic boxes. any box pattern having a
semantics arrow incident to it can be matched by only an atomic box. Therefore. in this case. ¢ and b
can match their respective box patterns only if they are atomic.

(c) Containment Arrow: If there is a containment arrow from A to B. then box a must be directly
contained in box b in the instance picture.

Consider the instance picture and the six different constraints shown in Figure 12. Along with each
copstraint is an indication of whether or not the instance picture matches that constraint. We now explain
each of these results:

(1) and (2): Constraint (1) is matched because d does have write access to g: constraint (2) is not matched
because there is not a write arrow connecting d to ¢ in the picture.

(3) and (4): Constraint (3) is matched because b is directly contained in a; constraint (4) is not matched
because although d is contained in a, it is not directly contained.

(5): Constraint (5) is matched because there is a read arrow from a to ¢ in the picture. This constraint
points out the “or” nature of the set label on syﬁtax and semantics arrows: constraint {5) would have
been matched if there had been either a read or a write arrow (or both) from a to e.

(6): Constraint (6) is matched because d has read access to f.

11
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a (p Y |_read ,le r
” ~ write
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J
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Constraints

O ) €

(1) Matched

arajalia

(2) Not Marched  (3) Matched (4) Not Matched

{ read,
) Ees

(5) Matched (6) Matched

Figure 12: Constraint arrow exarples

3.1.3 Containment and Starred Containment

In instance pictures, we already have a powerful visual representation for containment. and we allow this rep-
resentation in constraints as well. Drawing one box inside another is a shorthand for drawing a containment
arrow between two non-intersecting boxes. Figure 13a shows the equivalence of these two representations.
We will see later that containment arrows (the left-hand side of the equality) provide more expressiveness
than the box-inside-a-box representation (the right-hand side of the equality).

The constraint syntax also provides a means for specifying that a box is contained in another box at
some level, as opposed to being contained directly. A containment arrow with a star at its tip denotes this
more general starred conlainment relation. Again, there is an equivalent graphical representation for starred
containment in which one starred box is drawn inside another (Figure 13b).

SO HEE

Figure 13: Direct containment {(a) and containment (b)
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The semantics of a starred containment relation is straightforward Boxes a and b will match the con.
straint shown in Figure 13b if and only if @ is contained in b {one or more levels deep). For example. the

instance picture in Figure 12 would match constraint Figure 12(4) if the containment arrow were starred

3.1.4 Negated Arrows

Like instance arrows, each of the three kinds of constraint arrows may be negated. but the semantics is
different in each case. In general, a negated syntax arrow matches a negated arrou in the instance. whereas
a negated semantics arrow or containment arrow matcbes the negation of the relation that would be specified
by the positive version of the arrow

We now describe these semantics more formally by defining what it means for the boxes a and 4 to match
the patierns A and B with respect to each type of negated arrow.

(a) Negated Syntax Arrow: If there is a negated syntax arrow from A to B labeled S. then there must
exist a negative arrow in the instance from a to b of some type s € 5.

(b) Negated Semantics Arrow: If there is a negative semantics arrow from A to B labeled S. then the
access matrix associated with the instance must specify that o has negative permission s on b. for some
S§ES.

{c) Negated Containment Arrow: If there is a negative containment arrow (or negative starred con-
tainment arrow) from A to B, then box b must not be directly contained in {or contained n at any

level) box a in the instance.

C sl )G %
%l ) F)

(2) Matched (4) Matched (5) Not Matched
{ read
C)=F) 0

(3) Marched (6) Matched
Figure 14: Constraints using negative arrows

Figure 14 shows some simple constraints using negative arrows. As before, we indicate whether the
instance of Figure 12 matches each constraint. Most of these examples are straightforward. but constraint (6)
deserves explanation. Ip the instance, d has positive write access to g, but negative read access. Constraint
(6) is matched because we only require the existence of a single access matrix entry which confirms either a

negative read or a negative write relationship between d and g.

3.1.5 Thick and Thin

Recall that constraint pictutes in their general form are composed of both a trigger and a requirement that
must hold whenever the trigger is satisfied. We draw both parts of the constraint together and use line
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thickness to distinguish the two parts; the objects that form the trigger are thick, and the objects that form
the requirement are thin (on a color display system, we might use two colors, such as red and blue. instead
of line thickness). The loose meaning of & picture with both thick and thin objects is: “For each part of
the instance picture matching the thick part of the constraint. some additional part of the instance picture
must match the thin part of the constraint.” To specify conditions that must be true unconditionally. the

entire constraint picture must be thin

type = Dir &
group-owner s miro”

- o
type = User & ] write | type = Fie 8] [type e {File. Dir b 8..
name = $A |- =9 owner = SA group-owner s"mira

(a) (b)

Figure 15 Two thick and thin constraint examples

The semantics of thick and thin constraints is spelled out more rigorously in section 3.1.6 below. For
now, we present the simple examples of Figure 15 to introduce the meaning of such constraints. Constraint
{a) says. “For every User box u and every File box f that is owned by that same user, u must have write
access to f.” Constraint {b) says. “For every Dir d owned by the group miro, all boxes directly contained
in d should be Files or Dirs and owned by the the group mire " Notice that this constraint will force its
way down all Files and Dirs of any subtree rooted by a Dir owned by the Miré group.

Constraint {b) illustrates a limitation of the shorthand representation for box containment — if we had
represented this constraint using that shorthand, we would represent both boxes and their thickness. and
we would implicitly represent the containment arrow, but we would not be able to represent the thickness
of that arrow. Therefore, we need a rule defining which arrow thickness to assume in order to make the box
containment shorthand complete. The rule is: if both boxes are thick, the arrow is thick; otherwise. the

arrow 1s thin.

3.1.6 Building Bigger Constraints

So far, we have only considered simple constraints composed of at most two boxes and a single arrow, but in
fact a group of many boxes and constraint arrows may work together to specify a bigger constraint pattern.
We expect most constraint pictures to be relatively small, consisting of at most four or five boxes and three
or four arrows. We require that no boxes overlap in these bigger constraints though strict containment is
stil] allowed.

Given a more complex constraint picture, it is necessary to define carefully what it means for an instance
to match that constraint. We first convert all instances of box containment in the constraint to the equivalent
form using containment arrows and starred containment arrows. We now present some useful definitions.
A sub-picture of either an instance or a constraint is a (possibly empty) subset of the boxes and arrows
comprising the original picture. It is important to note that a sub-picture need not be well-formed: it may

have dangling arrows.
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We now present the semantics for matching. To simplify our discussion. we ignore constiraint arrows
although the semantics below are easily extended to handle them. A sub-picture P; of an instance P matches
a sub-picture Pr of a constraint if:

# there is a one-to-one mapping @ from box patterns of P to boxes of Py such that for each box pattern

b of P-. the box a(b) satisfies the box predicate of b.
e there 1s a ope-to-one mapping J from syntax arrows of P¢ to arrows of Py such that for each syntax
arrow a (with label §) of Pc, the type of ?{a)isin 5.
e there is a one-to-one mapping 7 from semantics arrows of Pr to access matrix entries determined by
P such that for each semantics arrow g {with label ) of P- the type of v(e) is in 5, and
s there is a one-to-one mapping from direct containment arrows (or statred containment arrows) of Pr
to instances of direct containment (or containment) in P,
such that for each constraint arrow a in Pc, if B denotes the set cf box patterns in P incident on a (note
that B may be a pair. singleton, or empty). it is the case that the corresponding boxes in P; are connected
in the same way that a and B are. Informally. this definition says that an instance sub-picture matches
a constraint sub-picture if each individual object matches, and if the relations between instance boxes are
connected to the correct boxes according to the constraint.

We are now ready tc define matching between entire instances and constratnts. We first split the con-
straint picture Pc inte its thick (trigger) and thin {required) sub-pictures. which we call Pr and Pg respec-
tively. An instance Py s legal with respect to the constraint picture Pe if. for each sub-picture of P; that
matches Pr. there is another sub-picture of P; that. when combined with the first sub-picture, matches all
of P-. Furthermore. the one-to-one mappings used in the latter matching must be extended functions of

the one-to-one mappings in the former matching

ﬁ
name = "Group2”

type = User read |name = "/usr/Alice/mail”

==

ﬁ

Figure 16. A composite constraint

Consider the {probably undesirable) constraint of Figure 16 in reference to the instance of Figure |
(pg. 2). This constraint says: “For every User directly contained in a box Group2, there must exist a
file /usr/Alice/mail to which that User has read access.™ Since Bob does not have such permission, the
instance picture of Figure 1 is not legal with respect to this constraint.

3.1.7 Numeric Constraints

A constraint picture can also have associated with it 8 numeric constraint that specifies some range of non-
negative integers. We determine whether an instance is legal with respect to the constraint as follows: For
each sub-picture that matches the trigger, the number of different sub-pictures matching the entire constraint
must be within the specified range. When there is no explicit range, we set the range to the default value
“> 17
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type < Entity | Any

‘ <= 10 I

Figure 17. No directory may have more than 10 arrows pointing at it

Figure 17 uses a numeric range to specify one of the conditions implicit in the design of the Andrew
file system. In Andrew, an access list of at most ten entries is associated with each directory. Figure 17

therefore states that any Dir may have at most ten arrows pointing at it.

3.1.8 Negative Constraints

Sometimes. it is more natural to express a constraint by depicting what should not be allowed. Negative
constraints are used for this purpose. A negative constraint is simply a positive constraint {as described so
far) with a large “X” through its frame. An instance is legal with respect to a negative constraint if and only
if it is illegal with respect to the positive version of the constraint. Since negated constraints with counts
can be confusing, we only allow corstraints without a numeric constraint to be negated. Hence. a negative

constraint is equivalent to its positive version with the pumeric constraint “= 0.

X

type < Entity | Any

Figure 18: No file may have any arrows pointing at it

Figure 18 depicts another aspect of the Andrew file system. Protections in Andrew are associated with
directories — files inherit the protection of their parent directory. Therefore, we require that no File in an

instance picture for Andrew can have an arrow pointing to it.

3.2 Example Constraints for Unix

In this section we present some possible constraints for the Unix operating system. Some of these constraints
are necessary to enforce that only instance pictures realizable by Unix be considered legal. Others are
examples of constraints for enforcing some security policy within Unix. Before each example, we describe
the constraint being specified.

1. Every arrow must connect an Entity to a Sysobj.

type < Entity | Any | type < Sysob
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2. Every Group must be directly contained in at least one World. and a Group cannct be contained in

type != World
A

3. Whenever a User has write access to a File, he or she should also have read access to that File.

write .
read

4. Every user Dir (e.g.. /usr/doe) should contain the three Dirs: bin. src. and man Note the two different

anything except a World.

type = Worlg

visualizations of the containment relation in this constraint

(type = Dir) & (name = “/usr/™)

type = Dir
4 4 A

w

type = Dir & ) [type = Dir& )[type = Dir& )
name = "bin" | | name = "src* | i name = "man”

5. For each User named A, there should be a Dir named A in /usr/, and that Dir shouid contain a
File called Mail to which user A is the only User with read access. This constraint denies all other Users
read access on A's mail file because, for each matching of instance picture boxes to trigger boxes, each box
matching the bottom User box must be different from the box matching the top User box.

(type = Dir) & (name = */ust/)
(type = Dir) & (name = "$A/)

'-_:(aype « File) & ]
(name « "Mail")

—

6. If a User A has a Dir named private in his home directory, then any File or Dir contained in it should
have the following two properties: A should have write access to it, and no other User should have read

access to it,
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type = User & {type = Dir) & (name = "$A")

= "$A" i
name = °$ (e (type = Dir) &
~ (name = “private”)

type = User | reag | [™ftvpe c Sysobj

L% — 4+ 4™

7. Below is a constraint that a system administrator might wish to establish. It states that no directory

that appears anywhere in the “/usr/” subtree can coptain more than 20 entries.

(type = Dir) & (name = "/usr/)
type = Dir

(type C Sysobj J

e ————

‘ <=20 )

4 Tools

4.1 Overview

In order to determine the effectiveness of the Mird languages, we are developing a collection of tools to support
the creation and use of instance and constraint pictures. What makes some of these tools particularly novel
are the non-trivial algorithms implemented to check for properties such as ambiguity. What makes the overall
design of our Miré environment particularly interesting and useful for prototyping is the loosely-coupied way
in which the individual tools interact.

We divide the set of tools into front-end tools and back-end tools, as illustrated in Figure 19. We draw
an analogy here with conventional compilers: these have a front-end that is system independent and a
machine-specific back-end that handles code generation. The front-end Mird tools are independent of the
file system structure of any specific operating system, while the back-end tools incorporate information about
a particular operating system and its security policy.

The front-end tools are used conceptually as follows: one draws instance and constraint pictures using the
editor, checks the instance picture for ambiguity with the ambiguily checker, and then checks the instance
picture against the constraint pictures with the constraiat checker. The printing tool! generates PostScript
files 80 hardcopies of pictures can be produced. All of the instance pictures in this paper were drawn with
the editor, checked with the ambiguity checker, and printed by the printing tool.

The two back-end tools are operating-system dependent. The configurer generates a set of system-level
commands that set file and directory protections and user and process privileges as specified by an instance
picture. The prober checks whether an existing file system has the same corresponding access matrix as a
given instance picture.

With the help of an extensive set of generic parsing routines stored in the parser library, all front-end
tools operate on a textual representation of pictures written in a well-defined intermediate file format (IFF).
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Figure 19: The Mird tools

An IFF file consists of a list of 'entnes. There is an entry for each object {box or arrow) in the picture. as
well as an “inside™ entry to list the boxes directly contained in each box, and an “editor” entry to list global
characteristics of the picture. Each entry consists of a list of attribute-value pairs. which provide a flexible
way to include any information required for that entry. For example, the entry for a box will contain. among
other things, its name, type, location, and size.

The parser library provides the routines necessary to parse IFF files, as well as some basic routines to
manipulate the resulting parse tree. The parser’s input is an IFF file describing an instance picture or
constraint picture. Its output is a pointer to a list of structures, one for each entry in the intermediate
file. Each structure points to a list of attributes, one for each attribute/value pair in the intermediate file
associated with that structure’s entry.

All tools drawn in rectangles in Figure 19 are semantic-domain independent; those in ellipses depend on
the semantic-domain (in this paper, security). For example, a by-product of the ambiguity checker is the
semantic interpretation (i.e., an access-rights matrix) of an instance picture. The eventual goal is to use the
same semantic-domain independent tools with a different set of semantic-domain dependent ones; that is,
we intend to use the same picture languages to specify system properties other than security.

As of October, 1989, the parser, printing tool, ambiguity checker, and a basic editor are complete. We
have a short videotape demonstrating these tools in use. Both instance and constraint pictures can by drawn
with the editor, and more sophisticated editing features are being added. Work is in progress on the design of

the constraint checker and back-end tools. The rest of this section discusses the design and implementation
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of the editor, ambiguity checker. constraint checker, and back-end tools.

4.2 Editer

The Miré editor tool allows a user to create, view, and modify instance and constraint pictures. Figures 20

and 21 show sample snapshots of editing sessions on an instance and constraint picture, respectively.

o instance
Q Constraint

!

Arrow Parity:
9 Positive Q Negathve

[ Alice™s ‘iles \

{Alice’s friends \
READ

N

EBREE
EEEER

Help Wingow

Figure 20: The Mir6 editor and a sample instance picture

4.2.1 Design

The editor window is divided into three main parts: a menu, a help window, and a drawing area. Commands
to the editor are through the menus, direct mouse manipulation, and occasional keyboard entry.

The top half of the menu shows what kind of picture is being drawn (instance or constraint); it contains
icons or buttons for the user to select the type of object he or she wishes to draw and the attributes of that
object. This part of the menu is more extensive when drawing a constraint picture, since there are several
types of arrows, and more attributes for each object (compare the menus of Figures 20 and 21).

The lower half of the menu provides commands for some standard graphical editing functions (Copy,
Delete, Undo, Clear, Exit), for reading from and writing to a file (in IFF format), for displaying the
current attributes of a graphical object, and for interfacing to the cther Miré tools (Ambig? and Print call
the ambiguity checker and postscript printing tool, respectively). Qutput from the ambiguity tool can be
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Figure 21: The Mird editor and a sample constraint picture

used to highlight boxes in the instance picture having an ambiguous relationship.

The drawing area displays an actual instance or constraint picture. A user creates objects in the drawing
area by selecting icons from the menu for the type of object desired (box or arrow) and the appropriate
attributes, and then specifying with the mouse where the object should appear in the drawing area. In
Figure 21, for example, buttons have been chosen for drawing a containment arrow with attributes “positive”,
“thick” and “starred”. Objects in the drawing area can be selected, resized, moved, copied or deleted. A user
can aiso display and change the attributes of an object, such as its label, thickness (for constraint objects},
or parity (for arrows). '

One problem with visual systems is the possibility of seeing too much information at once. The editor
will provide several facilities for managing this information in the future, including zooming in and out,
hiding the boxes inside any specified box, and scrolling vertically and horizontally across a large picture.

4.2.2 Implementation

We built the editor on top of the Garnet user interface development environment [Mye88]. Garnet provides us
with an object-oriented graphics package, encapsulated input device handlers (interactors), and a constraint
system to ease the pain of developing a graphical user interface. Garnet simplifies the creation of windows
and menus. Its object-oriented nature provides a convenient mechanism for encapsulating attributes, and

the interactors allow the seiection and movement of compound objects. The Garnet constraint systern gives
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us a way to specify restrictions on the manipulation of our graphical objects (e.g.. the ends of arrows in an
instance picture must always be attached to boxes. even when those boxes are moved). Garnet itself is built

on top of the X11 window system and Common Lisp.

4.3 Ambiguity Checker

Since our instance language allows for the creation of ambiguous pictures. and since ambiguity in instance
pictures is not easily detected by a person, it is necessary to automate the process of checking an instance
picture for ambiguity.

The ambiguity checker considers all pairs of atomic user and file boxes and all access modes. For each
user/file pair of atomic boxes, it searches for either a pesitive arrow or a negative arrow of each access mode
to cerfify that a positive or negative relationship exists between the two boxes. If no such certificate is found.
the boxes have an ambiguous relationship with respect to that access mode.

Since all pairs of atomic boxes and all access modes are checked. the ambiguity checker also functions
as an access matrix generator. If a particular command-line argument flag is supplied to the program. it
will print out positive and negative relationships between atomic user and file boxes. in additicn to the

ambiguous ones.

4.3.1 Design

The ambiguity checker builds three types of structures in memory. First. it constructs lists of the user and
file boxes. Second. it constructs lists of arrows: there is one list for each access mode. Finally. for each
box tvpe (i.e., user and file), it constructs a two-dimensional relation matriz representing the containment
relationship between every pair of boxes of that type.

The intermediate file provides direct containment information among boxes, so from the input file we
add direct containment relations to the relation matrices. The matrix at that point will represent a graph of
direct containment among the boxes. However, the ambiguity checking algorithm requires that we also know
if some box is contained in another at any level. We therefore compute the indirect containment relaticns
by running a reflexive-transitive closure algorithm on each of the relation matrices.

The ambiguity algorithm also requires that we know if one box crisscrosses another, where box a criss-
crosses box b if @ and b are the same box. or if neither properly contains the other but they contain some
box ¢ in common (and hence overlap). We run another algorithm on the relation matrices to add crisscrosses
relations. At this point, the data structures required by the ambiguity algorithm are completely built. and
we are ready to start testing for ambiguity.

The ambiguity algorithm works as follows. For each atomic user box u, atomic file box f, and access
mode m, it searches for either a positive or negative certificate between u and f with mode m. Henceforth.
discussion of the algorithm will be with respect to some implicit mode m; we repeat the ambiguity test for
each access mode.

We say box b’ is an ancestor of box b if b’ and b are the same box or if b’ contains b at some level. Let
A be the set of all arrows connecting an ancestor of u to an sncestor of f. According to the definition of
ambiguity, an arrow ¢ is a certificate for u and f if it is in 4 and if it “gverrides” all other arrows in A.

Therefore, to perform the search for a certificate, we first partition A into the two sets N and P of
negative and positive arrows, respectively. If both N and P are empty, we can immediately conclude that
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the relation between u and f is neg since this is the default. If one is empty. but not the other. then we can
also immediately conclude the relation between u and f.

Otherwise, both N and P are non-empty. We first search these sets to see if P contains a positive
certificate. If so, the relation between u and f is pos. If not. we search N to see if it contains a negative
certificate. If so, the relation between u and f is neg. Otherwise. we must conclude that the relation between
u and f is ambyg.

We now describe precisely how the search for a certificate is performed. Without loss of generality. sav
we are looking for a positive certificate. For each arrow p € P, we check that p “overrides™ all arrowsn € N
If so, p is a positive certificate; if not, we try the next arrow in P. If there are no more arrows to try. then
P does not contain a certificate. We now formally define what it means for p to “override” n. Let p, and
p; be the boxes attached to the tail and head of p respectively: similarly for n, and ny. Then p overmdes
n iff it is not the case that p, crisscrosses n, and p; crisscrosses ny, or that n, is contained in p,, or that

n; is contained in p;.

4.3.2 Implementation

The ambiguity checker was written to be fast. As a result. it sometimes sacrifices space for speed. For
example. the relation matrices are implemented as true two-dimensional arrays, incurring an O(n?) space
cost: since these matrices may be sparse, it might be more practical to use some more space-efficient sparse-
matrix representation.

The boxes are stored in two linked lists: one for user boxes and one for file boxes. Each list is in two
parts: non-atomic boxes appear first in the list. and atomic boxes {ollow them. A pointer to the first atomic
box in the list is also stored so we can iterate either over al! boxes or all atomic boxes of either type.

Each box in the input is given an internal name (sysname). An arrow is described by listing the sysnames
of the boxes it connects (along with other information). The program uses a hash table to find a box quickly
given its sysname. It also uses a separate hash table to store varisus identifiers such as legal entry names,
legal attribute names, access modes, and other identifiers occurring in the input file,

We derived the reflexive-transitive closure algorithm run on each of the relation matrices from the algo- '
rithm discussed in sections 5.6 and 5.7 of [AHU74]. We made some simple modifications to this algorithm.
First. we used only two O(n?) arrays to store the previous and current results of the dynamic program-
ming structures as opposed to the O(n?) space suggested. Second, our algorithm maintains the distinction
between direct containment and indirect containment. Although the ambiguity algorithm does not require
this distinction, it is free to maintain, and may be required by other tools.

The algorithm to add crisscrosses information to the relation matrices is straightforward. Two boxes a
and b crisscross if they are the same box, or if neither box contains the other and there is some box ¢ which
is contained by both a and . Given the results of the transitive closure algorithm described above, each
crisscross computation can be done in constant time. For every pair of boxes @ and b, we therefore simply
search all other boxes to find a box ¢ contained by both; this algorithm is O(n®) in the number of boxes of
a given type.

The only other implementation detail worth mentioning involves the test to decide if one arrow p overrides
another arrow n. The definition of overrides involves several comparisons based on the relationships between
the boxes at the tails and heads of p and n. We store each possible relationship between two boxes of the

same type (either no relation, direct containment, containment, or crisscrosses) as a number in the relation
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matrix. So for every pair of arrows, we can quickly (in O(1) time) find the two numbers corresponding to
the relationships between the pairs of boxes at the tails and heads of the arrows. Using a simple 4x4 static
matrix (initialized at compile time) to represent the overrides result according to these two numbers. we can
perform the overrides test in constant time.

We now consider the asymptotic worst case time complexity of the ambiguity checking algorithm. Let n
be the number of boxes and m the number of arrows in the input. The number of atomic user boxes and
the number of atomic file boxes are each O(n}. The number of arrows of a particular access mode is O(m).
Therefore, to iterate over all pairs of atomic boxes and all access modes takes O(n?m) time. Each of the sets
N and P may be O{m) in size, so searching for a certificate may take O(m?) time. Therefore, the overall
worst-case runping time is O{n?m?}. This upper bound should be compared to the lower bound of Q(n?m)

required simply to generate the access matrix.

4.4 Constraint Checker

The constraint checker. like the ambiguity checker, is a front-end tool. Given an instance picture and a
constraint picture, the constraint checker will determine whether the instance picture is legal according to
the given constraint. Hence this tool will ensure that a particular user’s security configuration conforms to
a given set of standards, perhaps specified by a system a.dminis..trator.

Instance pictures provide an elegant method for specifying sets of users and files. Simiiarly, constraint
pictures concisely represent sets of instance pictures. These picture languages reduce the specification work
required of people by asking more of the language compilers. In fact, determining whether an instance
picture satisfies a particular constraint (using the method below, requires exponential time in the worst
case. We have not found a polynomial-time matching algorithm at the time of this writing. There are 2
number of heuristics that improve the time spent on typical cases [RC77}, [Luk80], [Hof82], and {TEB83]. but
none covers all possible cases.

The constraint checker takes unambiguous instance and constraint pictures as input. The access ma-
trix, computed by the ambiguity checker, must also be input if the constraint picture has any semantic
arrows. Output consists of a boolean value that answers the question “Does this instance picture satisfy
this constraint?", and optionally a message describing which instance boxes and arrows failed to satisfy the
constraint.

Here is our idea for how to check an instance picture with respect to a constraint quickly. The constraint
can be compiled into an abstract program, which can then be run on the input instance picture to implement
the matching process. The constraint compiler can look for certain features in the constraint. These features
include: the types of constraint arrows, the numeric constraint range, and the number of subboxes for each
box in the trigger (i.e., all thick boxes). Creative application of these features can reduce the time spent in
finding instance subpictures that match the trigger. For instance, if 20 semantic arrows are present, then the
access matrix need not be searched. Also, the nesting level of a consiraint box can be used to prune instance
boxes from the search. In short, only those features relevant to the current constraint need be computed for

each instance picture.

4.5 Back-end Tools

After completing our picture language and constraint language tools, we plan to work on a number of
back-end tools that will provide direct interfaces with existing file systems. These back-end tools are the
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file systemn specific probers and configurers. A prober inspects an existing file system. compares it with
an instance picture, and shows what differences exist. A configurer sets file protection bits and/or user
privileges in a file system according to a given instance picture.

We anticipate that the back-end tools would be written calling a number of routines to inspect and make
medifications to an existing file system. These routines would contain all the file system specific code. and
separate versions of them could exist for each type of file system that Miré was used to specify, e.g.. Unix.
Andrew, or Multics.

With these routines we can use the prober to analyze a file system and compute its access matrix. We
then compare this access matrix to that described by an instance picture, perhaps discovering discrepancies
in some entries. Upon discovering such discrepancies with the prober, one could either manually or aute-
matically compare the file system with a given instance picture. (If this comparison were automated, then
the discrepancies might be highlighted in the editor.) The principal technical difficulty with automating this
comparison would be keeping the list of discrepancies small. The user, with the assistance of the other Miré

tools, can take one of the following actions:

1. Update picture manually. Because of the inheritance rules for positive and negative arrows in
the instance language. there are many instance pictures with the same access matrix. and it is not
always straightforward to compute which portion of an instance picture ought to be changed. (Should
we change the arrows on top-level boxes or on deeply nested boxes?) In fact. finding the minimal
set that needs to be changed is at least as hard as the NP-complete problem of vertex covering for
graphs [Kar72]. However. a few known heuristics can be adapted in this case to keep the number of

highlighted portions of the picture small [TE83].

2. Update file system automatically. Alternatively, we can feed the list of discrepancies to the
configurer which would then adjust file protections and/or process privileges to conform to the low-

level access matrix given by the instance picture.

3. Update picture antomatically. Rather than adjusting the file system automatically, as in alterna-
tive 2 above, or adjusting the picture manually, as in alternative 1 above, we might try to adjust the
picture aufomatically. It is certainly possible to do this, since we can always find at least one repre-
sentation of any access matrix: at the very least we can simply represent all files as atoms (without
using any hierarchy) and all processes (or users) as atoms and draw the bipartite graph corresponding
to the access matrix. Of course, such a naive representation would be no more comprehensible than a
listing of the access matrix itself. What we really would want in this case is a “pretty printed” instance
picture that would take advantage of the hierarchical structuring supported in the instance language.

Additional difficulties would be encountered if we insist that the “pretty printed” instance picture con-
form to an arbitrary constraint specification. These difficulties pose a number of challenging research
problems. Indeed, in the extreme case, where the inputs to> our automated “picture-update” algo-
rithm are a complex file systern configuration for an operating system with a highly flexible protection
scheme (such as ITOSS [RT87) or HYDRA [WLHB81]) and the empty instance picture, the likelihood
of obtaining a satisfactory result seems dim, since there are too many equivalent alternative instance
pictures possible. However, in the case where the number of discrepancies between the picture and the

file system is small, we are likely to do better than in the worst case.
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Support for the first two alternatives seems feasible, but the third option is considerably more difficult

and would require the solution of some basic research questions.

5 Evaluation and Further Research

5.1 Mird as a Security Specification Language

Mir6 demonstrates that it is possible to specify security visually. But how useful is it? Is Mird successful
in its attempt to provide a single method for security specification while satisfying the joint requirements of
rigor and straightforwardness? Consider first the requirement of mathematical rigor. In this paper, we have
seen two examples of security specification languages, the instance language and the constraint language:
certainly our formal semantics for the instance language shows that we can design a visual language that
satisfies the strictest requirements of rigor. While we have not preseated a formal semantics for the constraint
language here, valid constraint pictures also have completely precise and unambiguous meanings.

It is impossible to make a definitive statement about how easy it is to use Mird without extensive user
tests. Based on preliminary impressions, we believe that instance pictures are perspicuous to most users.
The constraint language is more difficult to master than the instance language. But the information captured
by the constraint language would otherwise be expressed as an unstructured set of predicates in competing
notations that are solely textual, such as those used to specify PSOS [NBF*80] or the Bell-LaPadula model.
In the design of the constraint language we have identified visual representations for the common idioms
used in the security domain, abstracting away from the more difficult textual models. In short. our visual
idioms would compile into these “assembly-level” textual languages. The constraint language provides users
with a concise yet expressive set of constructs with which to specify and evaluate different existing security
models and to design and experiment with new, more ambitious models.

Moreover, tools such as our constraint checker and back-end tools will allow those who write visual
specifications to recognize the consequences of their specifications more quickly. Using these tools. peo-
ple could quickly generate large numbers of examples and test them for conformity with the constraint
checker. Traditional specification methods do not have these sorts of tools. The ability to generate examples
quickly might have helped prevent problems that have shown up in standard security specifications. For
example, McLean bas criticized the Bell-LaPadula model for not accurately capturing the informal specifi-
cation [McL85,McL87]. Our rich set of tools allows users to see, immediately and explicitly, effects of their
specification that they would otherwise have to imagine (possibly incorrectly) in their heads.

5.2 Miré as a Visual Formalism

Miré demonstrates the power of visual formalisms by giving two different semantic domains into which one
syntactic domain (boxes and arrows) maps: access matrices (for instance pictures) and instance pictures
(for constraint pictures). The fact that we were able to embed these very different domains in a common
framework shows the fexibility and power of the Miré notation. To Harel’s credit, much of this flexibility is
inherited from his original work on higraphs [Har88).

The instance language works because it has a first-order universe primarily consisting of unary and binary
relations over a hierarchical domain. There is nothing specific to security about this notation; with minor

modifications the instance language could be applied to any set of object/entity relations (in Miré, we took
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these to be file-system accesses) taken over a set-theoretic domain (in Miré, these consist of files. groups of
files, users, and groups of users). The most difficult challenge we faced in designing the instance language
was in developing the exception mechanism. whereby an arrow could override a less deeply nested arrow.
and then designing algorithms and tools to detect and disallow the ambiguous pictures that the exception
mechanism introduced.

In contrast, the constraint language pushes the higraph notation much further. Here we needed each
constraint picture to specify some set (typically infinite) of all legal instance pictures. As argued abave.
this has been a very challenging problem in the past for text-based specifications. In essence, what we have
done is to allow quantification and implication over our first-order properties to be expressed in a visyal
notation. The three types of relations expressed by our arrows are quite different: in the case of syntax
and containment arrows we are expressing relations that would be immediately visible only from the syntax
of the instance language pictures. On the other hand, the semantic arrow expresses relations that result
from the interpretation of our instance pictures. In other words, the semantics of our constraint pictures
quantifies over the semantics of our instance pictures as well as the instance picture's syntactic properties.
We only carried this meta-semantics to one level: if Mird were uszd for specifying domains more compiex
than security, we might want to nest these meta-levels of semantics more deeply.

Even in the area of security, this meta-semantics could be expioited a second time. We might consider
introducing a trarsition language that could express the dynamics of file system protections. This sort of
picture would allow us to answer the questions such as, “Given a single instance picture, to which other
instance pictures can we legally move in a single operating system action”?” or “Given an instance picture
A, can we move to an instance picture B without going through any “dangerous” {i.e., insecure) instance
pictures? . If we view each instance picture as a node. then the transition language expresses the directed
graph showing how we can legally move from one node to another node. We could then further generalize
by defining a language of constraints on transition pictures, or a transition language on constraint pictures
{to specify legal changes to security policies). We believe that these sorts of meta-semantic hierarchies on

visual languages can find wide use in many application domains.

5.3 Areas for Further Research

As currently defined, Miré facilitates prototyping security modeis. Mird by itself, however. has opened
a number of research problems such as: higraph-layout problems introduced by our back-end tools, more
efficient ambiguity checking algorithms, constraint checking algorithms that are almost always fast. formal
specification of graphical properties and operations, and the application of the Miré languages to areas other
than security.
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A Formal Semantics of the Instance Language

Although the instance language itself is primarily visual, we give its sernantics in a well-known denotational
language: the language of mathematics. We build propositions out of set theoretic constructs. and use
first-order logic to reason about them. Table 3 lists the definitions we will need to build these propositions.

Table 3 defines the representation for all objects in our figures. It also defines some operators: subboxes
of one box (¢), subboxes of many boxes (), and all subboxes of many boxes {r"). [MTW89] describes this
table in more detail than we do here. Given this formal representation, we can construct predicates that
express object interaction. In particular, we need to say how different boxes are related, and which arrows
Join which boxes. We present these set constructors and predicates below: they are illustrated in Figure 22
and Table 2. Free variables (z, y, P, P/, N, N') in the definitions below range over elements in BOXES.

)

CERRRCERRNCED

.

Figure 22: Illustration for the auxiliary definitions

X members(X) inside-of(X) contams(X) | crisscrosses(X)
1 {1} 0 [ {1,A,B} |

2 1{2} 0 {2,A,B} ¢

3 {3} 9 {3.A,C} ¢

4 {4} 9 {4,A,D) 0

5 1{5) ) {5,A,C,D}|@

6 (| {6} ) {6,A,D} ¢

7 {7} 0 {7,A.C} ?
Al{1,234567)!{1,234567BCD}|{A} )

Bj {12} {1,2) {A, B} )

Cl {357} {3,577} {A,C} {D}
D {45,8} {456} {A. D} {C}

Table 2: Some properties of the picture in Figure 22
Before beginning the presentation, we must clarify some aspects of our notation. Throughout the ap-
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Entity Symbol Example j

Set of File Identifiers Fi { fusr/Alice/private. /etc/passud }
Set of Process ldentifiers | Py { Alice, Bob, Charhe }
Box Constructor: BY = {(0. 1d) | vd € T} B} is the set of atoms

Set of Boxes with Bl =Bju B} is the set of boxes

identifiers in T, {{z,d} |z € (282 - {8}y A id € T} contaiping atoms

=1

where I = Fyqor Py | By = UB% U (@, Alice) =
i=0

{(z, id) |z € (257" = {8}) Asd € T} | ({(@, Alice), (0. Bob)},

Group 2)

Set of File Boxes F¢ Bk,

=0
Set of Process Boxes PC UB};“

i=0

. Group 2
Set of All Boxes BOXES = FUP Alice|,

e }

Subbox Operators op F—2F

op P— :.’P
e ((X. i) = X

ao=cpluap

;. 9BOXES _, pBOXES

r(X)=|Jol2)
reé
~(X)=|Jr7(x)

j=0

Atomic Boxes ATOMS =
{z|z € BOXES A o(z) =8}

Set of Relation Types TYPES { read, write, execuie }

Atrows ARROWS C
P x F x TYPES x { pos,neg }

Table 3: Instance language syntactic entities; examples are from Figures 1 and 3
pendix, indentation is used to reduce the number of parentheses, negation symbols (=) will bind more closely
than conjunction (A), and conjunction will bind mote closely than disjunction (V). Implication (=) is less

restrictive than these, but will bind more closely than the quantifiers (v, 3). The symbol (&) will be used
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, e & .
to denote the union of two disjoint sets. and ( = ) will be used to define new constructs

The final access matrix does not depend on the shapes of boxes. but rather. on which atoms are contained
in each box. The set constructor members gives us the set of all atoms contained within a box. The other

set constructors use members In their definitions.
members(z) 2 {aja€ ATOMS Aacer™({z ]}

Many pictures have boxes that nest in a hierarchical fashion. We use inside-of and contains to give us

the descendants and ancestors of a particular box.
inside-oflz) 2 { b | b€ BOXES A members(b) C members(z}}
contains(z) = {b[b€ BOXES A members(z) C members(b}}

However, we do not require strictly hierarchical pictures; pictures may contain overiapping boxes. We
define the set crisscrosses{r} and operator pg to represent overlapping boxes. These will be useful in the

Closure Lemma below.

cr:sscrossés(.r) = {b| be BOXESA (members{z}Nmembers{h} # 0) A
(b & (1nside-ofir) & contans(r)))}

&

reay = (members{z) = members{y) vV € crisscrosses (y)})

There are two final definitions. POS(P.P') and NEG{N.N"). These are true when a positive (negative)

arrow connects boxes P and P’ (N and N').
POSY(P. P'Y2 (P, P’, 1. pos) € ARROWS
NEGHN. N')2(N, N', t, neg) € ARROWS

To clarify the interactions of these definitions, we introduce the concept of bor leve! and the Closure
Lemma. Box level refers to the hierarchy imposed on boxes through containment. Two boxes are said to be
at the same levelif and only if X paY .3 If X € inside-of (Y), Y is said to have a higher level than box X.
and X a lower level than box Y. In Figure 23, 4 and B have the same level, neither C nor D is related by
level to any other box (since they have no members in common), F has a lower level than E, E has a higher

level than F, and F has the same ievel as itself.
* ) E
F
B \ \ [ }
e

Figure 23: Illustration of bor level

The following lemma illustrates some relationships among these definitions.

3Just as pg is not transitive, neither is at the same fevel,
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Lemma 1 (Closure) If two bores B. B’ botk contain the same 1tomic bor. then exactly one of B = B’
B € inside-of (B’). or B’ € inside-of (B) s true.

Proof in [MTWSS].

The interpretation of an instance picture ip the security domain is an access matrix. The access matrix
7 is three-dimensional, with axes being Processes. Files, and types of Relations. Entries in the matrix range
over values pos, neg, and ambig. Let t be the type of the relation, p an atomic box representing the process.
and f an atomic box representing the file. The interpretation is that if Z (p, f 1) is pos then process p can
access file f according to relationship type t. If Z {p, f, 1) is neg, then p cannot access f according to t If
Z (p. f t)is ambig, the access cannot be determined. We want to detect and eliminate all such ambiguity
in the matrix.

In what follows, P and P' will identify the boxes at the tail and head. respectively, of a positive arrow.
and N and N’ will identify those at the tail and head of a negative arrow. If a positive and negative arrow
both emanate from the same box. both P and N would label the same process box. Similarly. P’ and N’
might label the same file box. Boxed symbols (e g.. [x]) are used in the formulas below to name clauses for

later reference. and have no semantic or logical interpretation.

Z(p. f. 1) is posiff (1}
3pp p € members(P) A fE members(P') A POS'(P, P') A
Yn n (p € members(N) A f € members(N') A NEGHN, N'))
(PoaN A PPNV
= - N' € mside-of (P') V
N € mnside-of (P)

7 is positive when the smallest enclosing boxes have only positive arrows: call these boxes P and P’ We
require that no negative arrow join the following pairs of boxes: boxes at the same level as P and P’ (case
above); one box at a lower level than P or P, and the other box at any level (cases and | 3| above).

Z(p.f.t)is negiff (2)
3y N p € members(N) A f€ members(N') A NEG'(N, N'} A
¥pp (p € members(P) A f € members(P’) A POS'(P, P))
(PN A PNV
= - | [2] P’ € imside-of (N') v
[3] P € inside-of (N)
v({d
Vg g+ B € contains (p) A B’ € contens (f) =
~POS'(B, B') A ~NEG'(B, B')
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Z is negative when the smallest enclosing boxes have only negat ve arrows (call these boxes N and V',
or when no surrounding boxes are connected by arrows. In the former case. we require that no positive
arrow join the following pairs of boxes: boxes at the same level as N and N’ (case {1]above). one box at a
lower level than N or N'. and the other box at any level (cases |2| and {3 | above}.

Z(p.f.1) 1s ambig otherwise. (3

The value of an element of Z is ambiguous when neither a positive nor a negative relaticnship holds. An

explicit derivation of those pictures that are ambiguous foliows.
Lemma 2 A relation between {wo atomic bores may not be both pos and neg.
Proof in [MTW89)].

Lemma 3 If the relation between p and f 15 ambiguous according to type t. then there must be at least tuo
pairs of bozes surrounding both p and f. one parr connected by a positive arrow and the other by a negatite

arrow.
Proof in [MTW3g].

Finally. Equation 4 gives the closed-form definition of ambiguity.

Zip.f.t)is ambigff (4)
Ypp —(p€ members(P) A f € members(P') A POS'(P, P')) v
In.a pE membersiN) A f & members(N') A NEG' (N, ¥') A
(PpaN A PoaN'}v
N' € mside-of (P') v
N € mside-of (P)
A
Yy n = (p € members(N) A f € members(N') A NEG' (N, N)) v
3p pr p € members(P) A f € members(P') A POSY{P, P') A
(PN APoaN)V
[z] P’ € inside-of (N') v
[3] P € mside-of (N)
A
3p 5 B € contains (p) A B’ € contains (f) A
{(POS*(B, B') v NEG‘(B, B'}))
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