
Experience with a Task Control
Architecture for Mobile Robots

Long-Ji Lin
Reid Simmons

Christopher Fedor

CMU-RI-TR-89-29^

The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania

December 1989

© 1989 Carnegie Mellon University

This research was supported by NASA under Contract NAGW-1175.

Table of Contents
1. Introduction 1
2. Scenario 3
3. The Task Control Architecture 4

3.1. Communication Layer 5
3.2. Behavior Layer 5
3.3. Resource Layer 6
3 A Task Management Layer 6
3.5. Monitor Layer 7
3.6. Exception Handling Layer 8

4. The Hero Robot System 9
5. Performance 12
6. Related Work 13
7. Conclusion 14
8. Acknowledgements 15

Figure
Figure
Figure
Figure
Figure
Figure

2-1:
2-2:
3-1:
3-2:
4-1:
4-2:

List of Figures
The Hero 2000 Robot
Overhead View of Laboratory as Seen by Robot
Sample task tree
Exception handling
Organization of the robot testbed

Interpreted Version of the Image from Figure 2-2 with Planned Path and
Uncertainty Cone. The brightened line shows the final computed
path to a cup-like object, while the dimmer line is the original path
before optimization. The shaded area in the uncertainty cone
indicates how far the robot may safely proceed.

3
4
7
9
9

11

Ul

List of Tables
Table 1-1: The supporting relationships between mechanisms and capabilities 2

Abstract

This paper presents a general-purpose architecture for controlling mobile robots, and describes a
working mobile manipulator which uses the architecture to operate in a dynamic and uncertain
environment. The target of this work is to develop a distributed robot architecture for planning,
execution, monitoring, exception handling, and multiple task coordination. We report our progress to
date on the architecture development and the performance of the working robot. In particular, we discuss
temporal reasoning, execution monitoring, and context-dependent exception handling.

1. Introduction
The principal goal of this work is to develop a distributed robot architecture to support robot planning,

execution, monitoring, exception handling, and multiple task coordination. We have been developing
such a robot architecture, called the Task Control Architecture (TCA) [15]. TCA is designed for
controlling mobile robots that have limited computational and sensory resources, operate in uncertain,
changing (but relatively benign) environments, have multiple goals, and have a variety of strategies to
achieve goals and handle exceptions.

We have been developing TCA concurrently on two testbeds — the CMU six-legged Planetary Rover
[3] and the Heath/Zenith Hero 2000 mobile manipulator robot [12]. The CMU Rover project is an

attempt to develop an autonomous robot that can survive, navigate, and acquire samples on the Martian
surface. The Hero testbed is an indoor platform that has been used to drive the architecture design. The
current capabilities of the Hero include collecting cups in the laboratory and recharging itself.

Our initial implementation on the Hero robot [12], which was developed in an ad hoc manner, had
several shortcomings. It was slow and slack in reacting to environmental changes. It could not protect
itself and recover from failures properly. It also could not change its focus to higher-priority tasks or
respond to requests from human advisors. After re-implementing the testbed using mechanisms and
functions provided by TCA, most of these shortcomings have been minimized. The robot is now faster
and more robust It can react to environmental changes in a reasonable time frame, and it has a variety of
strategies to recover from failures.

The following are the capabilities that TCA currently supports.
• Concurrent planning and execution. Robots often take a significant amount of time in

constructing plans. Since planning and execution are activities that often need different
resources, both can occur concurrently. However, this concurrency sometimes needs to be
constrained. In many cases, the robot must act on an incomplete plan and defer some specific
decisions until more information can be acquired. On the other hand, to minimize risk to the
robot, one might want to completely plan out a goal before executing any of its sub-
commands.

• Reacting to environmental changes* To accomplish tasks, and even to survive, the robot
must be reactive. It must always be aware of environmental changes, and respond to them
appropriately and in a timely manner. Some environmental changes invalidate current plans,
while otters may demand the robot to change its focus completely.

• Error recovery • In complicated, changing environments, failures are bound to occur. When
they do occur, the robot must change its plan to meet the new situation. Error recovery is
often context-dependent, that is, the same failure may have to be handled differently,
depending on the robot's intentions. Since in a benign environment, the failed plan is often
close to being correct, it is desirable for the robot to be able to fix and re-use the problematic
plan, instead of always replanning from scratch.

• Coordinating Multiple Tasks. With many simultaneous goals but limited resources, the
robot must be able to dynamically prioritize and schedule its various tasks based on their
urgency, relative costs, likelihoods of success, etc. Currently, only simple-minded strategies
can be specified using TCA, but we envision taking a more knowledge intensive approach in
the near future.

Various TCA mechanisms have been developed to support these capabilities.

• Distributed processing. TCA is a distributed architecture with centralized control. A robot
system using TCA includes a central control and a number of concurrent, application-specific

processes We believe that a centralized control architecture facilitates the coordination of
multiple complex robot behaviors, while the distributed processing allows for concurrency in
planning, execution, and perception.

• Resources- TCA provides a mechanism to schedule the use of the robot's limited
computational and physical resources. A task is automatically queued by TCA until the
needed resources are available! Resource reservation, together with temporal constraints (see
below), provide synchronization mechanisms to control distributed robot systems.

• Task trees and temporal constraints. In TCA, planning and execution are separate
activities and can be performed concurrently. The interleaving of these activities can be
constrained by imposing temporal constraints among the planning and achievement times of
subgoals. TCA explicitly maintains the goal/subgoal hierarchies, called task trees. Task
trees, together with the temporal constraints, areTCA's representation of plans.

• Concurrent monitors- Concurrent monitors enable the robot to watch for environmental
changes in parallel with normal task execution. Because task execution and monitoring occur
concurrently, the performance of tasks will not be (significantly) slowed down, while still
enabling environmental changes to be detected as early as possible.

• Exception handling. TCA provides a general mechanism for handling planning time
failures, execution time errors, and contingencies. The robot implementor can specify
different strategies for handling the same exception in different contexts. One benefit of
having this mechanism is to allow the user to separate robot behaviors for normal situations
from these that handle failures or contingencies. In this way, complex robot behaviors can be
developed incrementally, and exception handling can be flexibly defined. At present, the
mechanism is still under construction but some primary results have been obtained.

Table 1-1 summarizes the supporting relationships between the TCA mechanisms and desired robot
capabilities. A marie WXW in an entry of the table indicate that the mechanism in that column is used to
support the capability in that row. Note that although synchronization by itself is not a capability needed
by robots, it plays an important role in the distributed environment of TCA.

Table 1*1: The supporting relationships between mechanisms and capabilities

Synchroni-
sation

CoRctinreist.
Plaaain^ &
Execution

Reacting*
to Clwfiijws

Error

Coordination
Multiple
T«fc«

Distributed
?recessing

x
X

Resources

X

X

Task Trees
& Temporal
Constraints

X

X

X

X

Concurrent
Monitors

X

Exception
Handling

X

X

The i o t of Ms piper pmem flic Hero robot system, the Task Control Architecture, and their
perftomance. Secitoit 2 describes the tadware setup of the system and gives a scenario to illustrate how
the HOD nobet putiam* tasks* ^^mS^mm^^m^mkxmmaimimmofTCA, Section 4 describes
die Ksbot system im detail IMmmmm of the robot tod TCA is evaluated in Section 5. Comparisons
with related wwk are given in Section 6. Finally the paper is concluded in Section 7.

2. Scenario
Our mobile manipulator robot, the Heath/Zenith Hero 2000, is a commercially available wheeled robot

with a two-finger hand (see Figure 2-1). The robot operates in an unstructured laboratory, which is
observable through a ceiling-mounted camera (see Figure 2-2). The Hero robot has three sonar sensors: a
rotating sonar on top, a forward-pointing sonar fixed to its base, and one mounted on the robot's hand
which can be rcpositioned relative to the body. In addition, the robot has a battery charge level sensor, a
rotating light intensity sensor, and touch sensors on the fingers. Using existing vision software [10], we
developed a 2D vision subsystem for the ceiling camera. We also developed algorithms for navigation
and manipulation in the indoor environment

Figure 2-1: The Hero 2000 Robot

When the system is started up, the robot is given several high-level goals, including (1) collecting cups
discovered on the lab floor and placing them in a receptacle, (2) avoiding obstacles, and (3) recharging its
battery when necessary. The rest of this section presents a scenario to illustrate how the robot achieves
and coordinates these goals.

For the cup collection task, the robot monitors its 2D vision map for the appearance of cups on the
floor. An asynchronous perception process continually takes a picture and updates a world map. Once a
new map is built, the robot scans the map to find cup-like objects. In this scenario, two cup-like objects
are spotted, and the system sets up two cup-collection goals and temporally orders them so that the closer
object will be explored first

The robot then plans and executes a path to the first object. While moving, it monitors for obstacles in
its pam. A monitor, whose temporal extent continues until the object is picked up, is created to ensure
that the taiget object does nol disappear (e.g., someone else may pick it up). Upon arriving near the
object, the robot uses its wrist sonar to measure the height and width of the object and matches them
against its cup models. If a satisfactory match is found, the robot plans an! executes actions to pek up
the object, In parallel with measuring aod picking up die object, the robot uses its overhead vision map to
pienpltn a path to the receptacle so that a path plan is ready for execution when the cap is picked up. The

Figure 2-2: Overhead View of Laboratory as Seen by Robot

robot then uses the plan to navigate to the receptacle, where it deposits the cup.

Next, the robot attends to collecting the other object While moving toward the object, the robot
notices (from either its oveihead vision or its sonar sensors) that an object appears in into its path. The
robot slaps immediately and waits to see if the object will move away soon. If the obstacle does not
move, the robot plans a detour by modifying the blocked path plan. If no detour can be found, the robot
replans a path from scratch. If stiH no path can be fourKi, the robot abandons this cup-collection goal.

In this scenario a detour is found, so the robot continues to navigate to the object. The robot finally
arrives near the object and starts measuring it At this point, the bafiery charge monitor notifies the robot
that its battery chaige is getting tow* Based on the simple-minded strategy: Mif the robot has arrived near
die object compleie the task befoie going over to fechaige*\ file robot oeates a recharge goal with
temporal constraints indicating that the new goal wil be attended to after the cup-collection goal is
achieved or abated. The robot continues and subsequently diseoveis thai the object is not a cup at all, It
gracefiilly iemiBaies all ongoing and pending activities and montoens that weie set up for collecting the
object, and iiieii it chooses to pursue its next gcai, which is the recharge goal.

ny for autonomous robots. TCA is
3. The Task Control Architecture

' TCA is designed m implement capabilities we believe to be
a distributed aichttectiiie with centralized coitroL An application of TCA includes a central process and
a number of 'Oonofflrat, application-specific processes, called modules. Communication occurs via
coarse-graliied message pissing between modules, with a& messages being imfed through the central
process*

To feditate ocp«iMaMc»iftii€fferatta»tti schemes, TCA is built as a layered system so that an
e n choose which ityeis to use- tester layers provide move fbixrikxudiiy specific to robotp

control but tow layen provide flexibility to implement alternative control schemes.

At present, the implemented layeis include:
• Communication layer that supports distributed processes under centralized control;

• Behavior layer for querying the environment, specifying goals, executing commands, and
altering the robot's internal state

• Resource layer for allocating and managing physical and computational resources;

• Task management layer for building hierarchical plan simcuires ami specifying temporal
constraints between planning and execution of various goals in the plan;

• Monitor layer for concunemiy monitoring user-selected aspects of the robot's exlemal ami
internal environments;

• Exception handling layer for specifying context-dependent 'Strategies for handling plan
failures, execution errors, and environmental changes.

In addition, otter layers to support multi-task coordination ami user interaction are planned.

3.1* Commonicadon Layer
The base layer of fbnetioaattty provided by TCA is the sending and receiving of messages between

modules. Modules can be written in differatt languages (conentiy both lisp and C are supported) and
nm CHI cfiffarcrt machines (usaag the UNIX TCP protocol)* In essence* TCA provides a simple remote
procedure coi^RPQ Interface from a caller in one module to a procedure in a possibly remote module.
The main difference between typical RFC impfa&entatioii and TCA is thai the central control determines
which module handles messages and in what outer they are handled.

A potential problem wsii cefltialifzed control Is thai the central process may become a bottleneck.
Experimentally, a mini-trip time for messages of under 1OKL bytes is about SO nlliseeofids* Since tMs
toe is small awipweit with the time taken by image processing, planing* awl the robot's actuators, tbe
cettrali»di control im no: bom t problem oa our auieat imbeds* Besides* the potential Ixsttteneek;
profafeia can be overcome by turibos bij^spew! hmtwvs (eg*, tte Nectv£2]> and adhering to some

m -^s:zz a ^ % * p » i ^ l bdtotkm :o Unit in-e ffiiouft of

3 JL Behavior Layer
TCA povicto sacral types of primitive building Moc±s needed to construct robot behavions. Ttie

primitive beiiaviois are iniptemci^ as diffeasi classes of messages, built on iop of ihe communication
layer. The classes differ sitMy to their axmo! flew. For example, query messages Mock the user's code
until a icply Is leceived, wtele goal and command messiges are non-Uocking aid report success or
failure directly to the ccnual conoid.

• Query messages ait requests to provide ifrfoimaiiiHt ai»nt the external or internal
enviiunmeni, $mh as obtaining m W0ricl map m deaennining the item's dead-reckoned

Goal t a e s a ^ ait in^irf^ to suppon lo^Htown, hieraxchical ^aimifig. A typical response
10 a goal message woidd be to i$sx other tsub)goal -mdMT command messages ^ » d on the
results of pfcumng, Unlike queries, goal messagis are asynchronous sM aoe^bleclGng., That
2$, the cenxai control mi> aueue the goal untd resources ts^omc avalabic; in the meanwhile*
*c moduk «mi:ng the goal mmmgt can ccn&nue. The zat&Gnale i% that ncn-blocking goal
messages give "M impkr^mor greater flexibility in cc«!m>lhng ihc .aeMevefBeiii of goals

(e.g., interleaving planning ami execution).
• Command messages arc used to execute actions. Like goal messages, command messages

ait asynchronous and non-btocWng. Distinguishing goal from command messages is done
mainly for interleaving planning and execution.

Constraint messages piwide a way to alter the robot's internal state. For example,

3 3 . Resiwroe Layer
It is cradti for m mtmmmm agent to effectively allocate its limited resources in order to satisfy its

goals. The robot mmt detect when tasks need competing lesources, and must prioritize and schedule
tasks when conflicts occur, to TCA, a resource is an abstract entity that is used to manage the handling of
messages. A resource may be associated with a computational entity, such as a module, or with a
physical entity, such as a motor or cament

Resources arc oreaied with a opacity - the number of messages the resource can handle
siffluttmously. A massage received by the ccmal control is queued until the resource that handles the
f»€S»jpe has available capctty* Ginenlly, messages to the same itsouice are handled in FIFO order,
subject 10 the tampon! c a p i t a impeied by ibe task managemei* layer,1

SmicftiaiGS» a nutate sight need control o w a leaomoe for wome period of time, particularly one
associated will i physical ilm. For example, if i vlskm module is acquiring an image, it might want to
enmie that the robot doei not move during that period. To fxMmc mis, TCA includes mechanisms for
reserving icsouices* in effect, prrmtifig other Bwdto front utilizing the issource until the reservation is
explidtly c « ^ ^ d , E^waw reaervatioa is one of the $ym±umizM&m 'OX«ram in TCA.

3 A Ttsk
?..:•• tt* wmmgcmmlMy^i p w i t a madbmiam tor 'mgmMog mm o:\~:ess3ges km hierarcmcai

to tie satk tiw »i,.;..,-, of the ^ ^ tm .: .;:.̂ .: i n s ^ ^ ^ . H ^ ft$alfiig t ru is n -execution of graph
§f nu»afe» ^ ^ to e a i p t e i giwa ^ f c to adAMta* finBtto hawe b ^ ctevdop«I for ttac±ig a i l

tte task « * . such » ki!ttfl§ off « t e i w , suqpaKiiiv fteas and adding new nodes. These
io«e cf te faigliar lajfefi* ach as the exception handing

Aziother mpawii ' p ^ p ^ of this layer ts for sd^ni i s i tasiui U K !a>w contains a genenl facility for
mmmmg nixm use.. In TCA, by detail pbauMBg ma txecuoon ean a:air aHssuffKaiy. teerieavlng of
p&m&ng n ^ etecsiucsn can &c ̂ ^msiraiiwd l>y aspcKsng temporal camraiMs 011 the planning times of
goaU « ^ actueveiscm untea of foils* $ammanto> and montiofs. For example* a module migltt specify
ifm Urn acteevesms ame of Gl p w a t e tM rf 02* but tte ^ I M M ^ time of G2 piec^les thai of GI
*'e.g.. S « actorve pcfc ^p the o p , then bnng n ts fi« i ^ p « k , to 0 m the mm to tim receptacle
before pAmmng he* 10 pet # Ac ap* SenilM^ a motfuie msght caMain a goal to be completely
p i heum any of iti suiSKaBKtmawaa; cm sivt being

0
Figure 3-1: Sample task tree

The mechanisms for reasoning about temporal constraints are based on the Quantity Lattice [13], an
arithmetic reasoning system, that integrates relationships, arithmetic expressions, qualitative and
quantitative*- information to perform a wide range of common arithmetic inferences. In TCA, it is used to
maintain a consistent partial order of time points and to answer queries about relationships between time
points and about the durations of intervals.

With the temporal mechanisms provided, robot implementors can formulate a fairiy wide range of
different constraints to take advantage of concurrencies in the distributed environment of TCA. Together
with resource reservation, the temporal constraints provide synchronization mechanisms to control
distributed robot systems.

3.5. Monitor Layer
To react to environmental changes, robots must first be able to monitor the environment and detect

changes in time. Although in the real world many things may go wrong at any time, robots with limited
sensory resources, such as ours, cannot afford to monitor everything that goes on in the environment The
monitor layer provides mechanisms to monitor user-selected aspects of the environment and report
detected changes to the central control for handling. Monitors in TCA run concurrently with normal task
execution. For example, the Hero robot attends to the cup collection goal while monitoring for obstacles
and its battery charge.

A monitor specifies the condition to be monitored, and the time, relative to other messages, when
monitoring is to take place. When the condition holds, a typical action would be to send an exception
message to the central control, which will decide whai to do based on the environment ami context in

2The quantitative nasoeiisg capaWicy of the Quantity Lattice is not yet mBiwd by TCA.

which the exception occurred (see Section 3.6).

Two classes of monitors are implemented: point monitors and interval monitors. Point monitors, which
test the monitor's condition just once, are useful for checking static, execution time conditions, such as
checking the pre-condition or post-condition of a command or goal. Interval monitors, which have a
temporal extent, are useful for checking for environmental changes over time.

TCA has two variations of interval monitors: polling and demon monitors. Polling monitors implement
synchronous polling of conditions at a fixed frequency, while demon monitors implement asynchronous
demon-invocation. For instance, the battery monitor of the Hero robot, which is a polling monitor,
periodically checks the battery charger and raises an exception if a low charge is detected. The cup
appearance monitor, implemented as a demon monitor, is invoked whenever a worid map is updated by
the asynchronous perception process, and checks the worid map for cup-like objects, raising exceptions if
such objects are found.

Monitors can also be used to construct conditional plans. For instance, suppose there are two strategies
to achieve goal G, but we do not know in advance which one will be applicable. We can set up a monitor
to check the environment and choose the appropriate strategy at execution time.

3.6. Exception Handling Layer3

Exceptions can be divided into three classes, according to the ways they are detected.

• failures detected in planning (e.g., no path to the cup);

• errors detected in executing commands (e.g., wheel slippage);

• contingencies detected by monitors (e.g., low battery charge).
TCA. employs the same mechanisms to handle the three different types of exceptions.

Exception handling is often context-dependent: the same exception might need be handled differently,
depending on the environment and where in the plan the exception occurs. For example, a wheel
blockage is a failure if it is delected when the robot is navigating in an open space. But it could be a
signal of a roccessfiil docking if the robot's goal is to dock on the charger. To facilitate context-
dependent exception handling, TCA supports mechanisms for associating exception handlers with
contexts at planning lime and automatically invoking the handlers when exceptions are raised. Various
utilities are also provided to enable handlers to fix problematic plans.

The context of an exception handler is established by attaching the handler to a task tree node. This
association is done dynainicaily as the task tree is created. When an exception is raised, TCA searches up
the task tree, sorting from the node where the exception arose, to find a handler specific to that exception.
•The iirst matched handler is ten invoked to handle the exception.

Exception handling is achieved by editing the task tree, for example, by (Meting part of it and inserting
some new nodes. H e exception banders csn use the task tree operations provided by the task
mmaaann t layer to access, scrutinize, m i then modify ttm task nee. Modifications to task trees may
indutiz lenmnaung m suspending ifae execution of subtrees, and adding new nodes to the task tree, which

y. only the tmmmmk of the exception handing layer has beat inqtoi^ited, ami various supporting
mectaantams are still under canstiuctioa.

is then expanded using the normal TCA mechanisms. To illustrate, Figure 3-2(a) shows a situation where
a battery charge monitor is set up and the robot is actively attending to the cup-collection goal. When the
monitor detects a low battery charge, the low battery charge handler attached to the root node is chosen
to handle it After checking the battery charge and the progress of the cup collection, the handler decides
to recharge first and finally ends up with the situation in Figure 3-2(b), where the monitor has been
canceled, the cup-collection goal has been suspended, and the recharge goal has been added and become
the current goal.

^ • ^ .

• low battery
charge handler

* suspended

(a) <b)

Figure 3-2: Exception handling

If an exception handler finds it cannot actually handle the situation, it can raise an exception itself.
When the central control receives an exception from an exception handler, the search for a capable
handler is resumed, starting from the node where the previous handler was found and searching up the
task tree. This process is repeated until the exception is successfully handled. As a catchall, TCA
attaches a general exception handler to the root node of the task tree. When invoked, this general handler
simply deletes the failed task along with all its subtasks.

This TCA approach to exception handling is efficient First, the invocation of exception handlers is
fast, because only a simple search on the task tree is involved. Second, TCA allows a problematic plan to
be fixed and re-used as much as possible. For example, when moving obstacles appear unexpectedly, the
Hero robot first waits for obstacles to move away. If they do not move away, it tries to plan a detour by
modifying the blocked path plan. If no detour is found, a new path is planned from scratch. Only if no
path is found is the task terminated.

4. The Hero Robot System
The Hero robot system, which uses TCA, presently consists of five modules plus the central control

(see Figure 4-1). In this section, we describe the functionalities of the modules and how they interact with
each other.

User
Interface

Perception
Query
Handler

World
Map

Builder

Central Controller

Planner

Figure 4-1: Organization of the robot testbed

10

Controller. This module, which controls the robot via either a radio link or an RS232 cable, executes
navigation commands (eg., torn, move) and manipulation commands (e.g., raise aim, open grippers). It
also handles queries Hut involve using sensors m the roboc, for example, reading the battery charge level,
and measuring the height of an object using the wrist sonar.

Tie Ctontroiff Becauseofthe
Gonool error* the mmttakiy about the robot's position wfll grow over time. The Controller utilizes a
cwarimoe matrix iqsieientatioa[16] t> model the control error, and compounds the uncertainty
whenever the robot mmm m tons. H i s uaoeitainiy mfctmaticm is primarily used by the Perception
Query Haaifirto detenitifje the Iflcdihood of faMiig obstacles in the course of navigation.

We also implemented reflexive grouted move commands directly on-board the Hero. These give the
toboi t Uglier depte of leactivity t un could be gotten from centralized control. While the robot is
awing or taming, the ai-boarf CPU detects wheel slippage mi blockage by monitoring the motor
encoders. At tte same timcf the sonar sensors aie used 10 detect obstacles in tte robot's trajectory. In
both eases, the reflex action is to stop the robot immediately, stabilizing i t Then tte Controller signals a
failim so thai the s y ^ a can rectify the situnkx! tiring the exception handling mechanisms.

World Map Btilcfcr* TMs module condnually takes ami processes images of t te lab (every 20
serands or s o } , ^ updates a woridmaf^ We

fosse! that shis aaynchronous process has substantially increased tte performance of the robot
with air pievious system. For example, since a relatively up-to-date world map is always

svaifcbte, she fotx& does not need 20 waic for processing an image in enter to find a cup-like object or to
pirn a

T0 identify she n*ot in the i a i ^ s the Wai l Map Bialder first gets tte robot's dead-reckoned
OTjettisfy firm the Caifmllei; B ^ K ! on die mjcaoij and octer infoimMkHi suds as tte size of t te robot,
the robot region «aa 0 t e be distinguished from other object regions. Two failures, however, can be
encountered* Him, fie robot may not be SMxegsfiiHy spotted, because tte robot region, for example,
overlaps anothor visual region. T t e M m is haalM by taking s i image, moving tte robot a few
inches, taking mm&mt knage, fi^ eonqxruy the diffcraccs in ihe im^es 10 spec tte robot Tte second
faiiure ocCTii when the light in Ac lab m tuned off. This eicepficf! is handled by asking humans to mm
on the light esr psng m tissp (\.t+ mmmg off the power 10 aU circuitry except tte memory) if 00 help is

QNf? Halter. The Pfaapim C^iy BmMa* pfwicto three kinds of f
Rwt * s^dasei the wodd nap 19011 recttviif a new map front the Worid Map Builder. Second, it
handles perception ikmom* Wliei a ne t woiid m^ 11 w » v ^ , peiw^iHi demons tie invoked to check

thai tfie> nmstor. PRsestiy sbere « t w o kinds ©f ̂ mmm that can be set up - cup appearance
t otyea .^Mtes ^ to cheeking sf * ^ ^ 1 i^Mss 111 specified pTOiiMHi on the floor).

The Hut! yak of i t e nx&te is fo handle p e t t f t e queries, i

rM vmmty cf nobpct moider to approach it.

: if ,i path ti ciesr, 'fiaatd -an snomany nrasomnc*
[die i f a m m j A M slie rcftot^ location and orientation fey mug vision.

As ?nCT8OTr4 ?rr*so«siv, !ftr C«ro3rr eipttniy miUels the uncenaiiuy of the robot's slams. Wten tte
. , . - . , a ?Mf, ^ ^ Lf< j ^ j q p ^ ^ Q g ^ H ^ ^ I ^ p V 0 | jjjg jmggit^njy Momaticm. would be

11

asked to determine (1) if the path is clear, (2) if yes, how far the robot may safely proceed along the path
before the uncertainty cone overlaps object regions (see Figure 4-2). If the uncertainty has grown to the
extent that collisions with obstacles are possible, the Perception Query Handler uses vision to reduce the
uncertainty. To do this, it first takes a picture of the robot and calculates the robot status (including visual
uncertainty) based on properties of the robot's shape and internal model of sensor uncertainty. A new
robot status is then obtained by merging the observed and expected status [16].

Figure 4-2:
Interpreted Version of the Image from Figure 2-2 with Planned Path and Uncertainty

Cone. The brightened line shows the final computed path to a cup-like object, while the
dimmer line is the original path before optimization. The shaded area in the uncertainty
cone indicates how far the robot may safely proceed.

Planner. At present most of the navigation and manipulation planning is done in this module. The
Planner has a collection of procedures, each of which is intended to achieve a goal. When executed to
achieve goals, the procedures typically send queries, create subgoals, issue commands, set up monitors,
specify temporal constraints, and/or associate exception handlers with contexts.

As an example, the procedure for handling die cup collection goal does the following:
1. Adds approach object goaL The first step is to navigate to the vicinity of the target object

In the course of navigation, the robot models uncertainty and watches out for obstacles.

2. Sets up object monitor. This monitor watches for the disappearance of the taiget object.
Temporal constraints are added to indicate that the monitor starts from the beginning of the
cup collection goal and ends at the beginning of the grasp cup goal (see below).

3. Adds servo to object goal. Once arriving near the object, the robot utilizes its wrist sonar to
estimate its distance and orientation relative to the object This information is used to
compute the locomotion commands to reduce the differences between the estimated and
desired distance and orientation. To overcome sensing and control errors, this goal is re-
generated recursively until the differences are within acceptable limits. This recursive
implementation makes it possible to break the time-consuming servoing loop for handling
contingencies.

4. Adds identify object goal to measure and classify the object

5. Adds grasp cup goal. If the object is a cup, it is grasped by a procedure specific to that cup.
A point monitor, which utilizes the base sonar, is set up for checking if the grasping

12

succeeds*

6. Adds approach receptacle goal. Orcc picked up, the cup is brought to ^ recep tac le .
Howcw^ temporal amtmnts ait imposed so that the path planning can begin once the
icbot wives near the oip*

XSeaiviMAiififKMtor. m Interval I » O T ^
» mate sure that the cup docs not drop on the way to the itceptacle-

8. Adds rfepof U a ranaa l a> drop off the cup in toe receptacle.

9. Assoclnes appropriate exception haodtaa to various task nee nodes.

Ustr faterftoe. ft^aily the User bteifaoe merely iBows the user «> enier commands, add goals, and
sec up raottois. Facilities for supporting t friendly wo- interface ait being planned.

5. Performance
Our e i p t t i G ^ with the testfaed stow« thtf TCA is a hdpfiii tmA for l»iding iobot behaviors.

• TCA Is cany m ute and programs developed under TG% arc usually easy to extend and
modify, TTM is putty facoffitse TCA ammm^ BwMariiy of programs. For example,
noiiisai mbm b ^ ? ^ w i ^ w s , and o a ^ t§k b to^dtd
TCA pwidftg i firir « » t of cxpesiiw pw«r to fioittie ii^toaa^iiig complex robot
bcteviots. for exmfi^ TCA mskm it e»v tt> specify n l cooind the in^leaving ofv p

coDcurmt moatom, and c « ^ ^ n taodliiig.

Due itt

adfteie i pftodple: .̂̂ r. :

cadi iocs '•>•"' His Mtci :...-̂ ^

iiittMt, TCA emm be uaed » taf^neBi hw-tevd icflac bciiaviois that
to fflviwi^it^ d^^^* 1b migittte ibe irterval betw^n die time an

and the ̂ ^ cbe txwpticii I w ^ t t ' ^ s os*tttoJ# tbe i^toiMSiois themselves must
pttoitive miom mm be designed :o finish in a small time
- -:-^ « i te fepeitaity divided inio maler ones, so that

if tm - nen n exa*puon Is raised; Lhe chosen excepxicn
Gons, because of rcsciirce conSicis. If so, the
mmsMtf i t » b«w^tii^ i^eath area aai we

pfatt to »

13

TCA mechanisms.

The robot, however, is still susceptible to dangers. These dangers mainly arise from the robot's
inability in sensing. For example, the robot has no sensor to detect imminent arm collisions and prevents
them in advance. The vision processing is slow, so the robot might use out-of-date information and make
wrong decisions. Although these problems can be minimized (but not overcome) by adding more sensors
and using faster hardware, that is not the purpose of this work.

6. Related Work
An alternative approach to building reactive and robust robots is that taken by the subsumption

architecture [4]. The main features of this approach are (1) hard-wired, layered robot behaviors, (2) no
explicit internal model of the world, (3) no explicit representation of goals and plans, (4) no central
control, and (5) continual monitoring. Many of these characteristics are shared by some other approaches,
such as [1] and [11]. In contrast to these architectures, TCA has a centralized control and makes the
notion of goals explicit, allowing the robot to reason about them. These differences make TCA more
flexible in coordinating complex robot behaviors. The use of explicit plan representations enables TCA
to pre-plan for the future, not just figure out "what to do next". TCA advocates selective monitoring,
because sensors are often scarce resources and the use of them should be carefully scheduled. These
differences result in two architectures with very different capabilities [6]. While the subsumption
architecture is good at handling low-level sensor and effector actions (e.g., car chasing), it is not yet clear
how complex behaviors (e.g., planning, exception handling) can be coordinated in the architecture. On
the other hand, while with TCA fairiy complex behaviors have been realized on the Hero robot, it is not
well-suited to handling low-level reflex activities. Rather than competing architectures, however, it is
reasonable to combine the strengths of both approaches, for example, by using the subsumption
architecture for reflexive control, which talks to TCA for higher-level control. In fact, our experience
with the guarded move commands (see Section 4) suggests that this might be a promising way to
implement robust, intelligent robots.

The Procedural Reasoning System (PRS) [7] consists of four main components: a database of beliefs
about the world, a goal stack, a library of procedural plans, and an interpreter. PRS is similar to TCA in
several, aspects. For example, both are concerned with combining planfiil, reasoned behaviors with
reactivity. The goal stack and procedural plan representation used in PRS is similar to our task tree
structure plus temporal constraints. The main difference between the two systems is that PRS is more
concerned with reasoning and planning, while TCA mainly focuses on the execution, monitoring, and
exception handling.

The Reactive Action Package (RAP) system [5], which is very similar to PRS, is another work which
addresses reactivity and adaptive execution of plans. Like TCA, the RAP system provides various
mechanisms for supporting resource reservation, temporal constraints, monitoring, and exception
handling. The RAP system, which is a sequential system, is based on the idea of situation-driven
execution, much like the subsumption architecture. This viewpoint is different from that of TCA. While
supporting reactivity, TCA still allows the robot to plan for the future. For example, the Hero robot can
measure the potential cup, monitor its battery charge, and pre-plan the path to the receptacle concurrently.
Both systems also differ in the ways exceptions are handled. When exceptions are raised, the RAP
system examines the context at run-time to find the appropriate method for re-achieving the failed task,
while in TCA only a simple search on the task tree is needed.

14

The exception handling mechanisms of TCA arc similar to those in some programming languages such ;
as Ada [91 - when an exception oecuurs, program execution is transferred to the exception handler with a j
matched name that is closest to the exception point in the context (i.c.t the runtime call-stack in Ada or the j
task trees to TCA). However, they differ In three aspects. First, TCA allows the exception handlers to j
maiiptiale the task trees explicitly, while explicit manipulation of the caltatack in Ada Is prohibited. J
Second, popping and pushing the calL-stack is dwtys stapler than kitting awl adding new subtrees, !
because of die teaporil const t^^ Maintaining the desired temporal constraints
brtwecn M * nodes white ^ ^ f y t a g the task frees is t difficult problem, wMcti we have not solved
compietdy. THnt, task teee nodes am not Ultod while TCA ia searching for capable handlers, so the
euceptiGtt handDen can ermine the M M node and in ancestors to help in debugging [14].

7. Conclusion ;
We hmt designed and implemented TCAf a gen^ixirpoae task contra! architecture, for the control of :;

mobile loboca. TCA is designed to be uaed for rob«$ with mtaMpie tasks* and limited computational and \
phyricai nmuioes, ttat opeme in an uncertain and ehaitgingt but relatively benign* environment. The f
design of TCA if baaed party OQ a l p a c a * gttoefl fcwa our Sist venion of the Hero testbed. That |

i e te top^ i i an ad tec Banner, had sevcial stKHftcomiogs. sucb as taittki^, iroawaitncss of 1
etc. By toiflc TCA, we hmt w-im^kmeimi the system in a more disciplined 1

|
the floor, ^ ^ * Urn mm tee wttdh to MIiw n ! axtfo^«te t iwxwer ftom faihues, md go

of T ^ Aai laidt to te Htm ^ ^ * s « « ^ ^ and that we bdicve, will fivnlitate the
of inifillpat* lotaai t^m MC (1) atotbttwi px^ri»g, (2) P ^ M W ^ , (3) task trees and
;..-.:• :.:̂ *;,:,-. (4| ^ i » s ^ -;; -::-.-;:. ;.;,:, (S) « ^ » t t - ^ n x t e t except:en handling. The

and plan e»^^i»^ t© 'be p ^ » ^ ^ ooMnrmitly* the i^miiw ^ K S M ^ M ^«bte robcts to sctwduie
::.:,:'• ,. :-e ;-;:.*• ^ - ;r.: -'--:>•:. ,̂ .;.̂ . By wng ite ^ ^ ^ ^Kto^S i t Ae -ser cm :mpler.en: mftllgait
-—> \. ;.--,..;. :,^ ..,;\:;:. to adl on m -::-':/,:,:: z J:. wfm tm o ^ g l :nf::r-211 rn :s available to mate a

mbott tte ^ » ^ r t | of 1 ^ ^ ^ m mdmmmMA d « ^ and d^iging fl«ir ftx^is for

Awsther ssispcfunt feaftut of TCA $ that si facilitates modular mi ircrcmental design of complex robot
fa TCA, piamn$, ffxecutaon* mamtcmf, » ^ e^a^i«i handlii^ une an lo^cally Mid

'-r.^-.r . ^ ^ M ^ TIftf «iMes me «> build systems incrementally - first building
"- :" -" "-'- wcaae* shet» addbng feafiuts ^usodly by adding new code with few changes to

. » tafc* idvanagr of «fcsrmi^ m iriammg aM execution, to moniior for
and » handle Hmt t̂ua&oŝ smelligently.

„: .;.™::,

Despue ftcse trcf^fif:it| m^t j 4 retocft issore wiwk itmasns 1© be ctonc. In puticular, we plaa to
iml TCA B sus*prm vjm^s* tar*$ed#? ?.ntrajvt decision-inaksng capMM-iies 18], such as, scheduling

»y*<r3 « Ac;r / C T O ma r t ^ n * :DSL dioosmg omisal pians based on Hie analysis of

15

various plans* strength, limitation, resource usages, time constraints, etc.

Although building complex, robust robot systems is still very much an art, we believe that with the use
of high-level architectures, such as TCA, we can make the process easier. Through experience with
different robot systems (the CMU planetary Rover also uses TCA), and analysis of the requirements for
different environments and robot configurations, we are converging on a set of mechanisms to support the
building of such robot systems.

8. Acknowledgements
We express our gratitude to Robert Eric Wolpov, who has been adding new sensors to the Hero robots

and maintaining them in good health. We thank Tom Mitchell and Andrew Phillips, who helped develop
the first version of the testbed. Lonnie Chrisman has provided valuable comments on TCA design and
Kevin Ryan helped develop the guarded commands. We are grateful to them. We also thank John Allen,
Jim Moody, and Steve Shafer for their assistance in setting up the testbed. This research has been
supported by NASA under Contract NAGW-1175.

16

References

f! 1 Agic» RE, Chapman, D,
Pengi: An taiptemestation of a Theory of Activity.
In Procutai%sofAAM&*wgA 268-272. 1987.

[21 Amoidd, EA.. Bite, FJU Gooper9 E C , Kmff, HX» Sanoaou RJX. and Steeokiste, RA.
The Dmign cfNecmr: A N'etwmk Backplane far Hemmgemtms Multicomputer®.
Technical Report* CMIK34P-101, Ctfnegic Mdkm IMvasity, 1989.

{31
Ambler An PmtmmmoM Rova for E a ^ M y E^tomlaL

29No.6, 1989.

14]
A RohM Lifted Cattol Sy^aa for t Mobile Robot
In #£££ioicnial cf Robots md Automaton, vol. RA-2, no. / .

[5] %
ASapdm ^ c « ^ » C«f^to Dynamic Wm?tds*
Technical Repent YALEUCSD^R #672, Yale Untanfty, 1989.

MR* Mobile Roboo - Wto*f Next?
faPrmet^igs/£EffJBoAoitormdAMmmoiimk p* t» 611*617. A p t , 1986.

I?] Geoqp&MUP,
A Sysmmpr Rmauming in Dynamic Dimmim: F « ^ BiagmmiM 0m As Space Stmoie*
Tedi Mm 475, AI totorf mi ! f ^ n ^ « ^ t IMA.

Ill QeDi|dtMP :,ln(riod tFJP.

/ C 4 9 # n 9 »

If |

,4 Programmer's Guide so she Generalized twrnge Ubrary
Cmcpt Me&» Umv-trsty, 1987.

4 « Architecture for imiagem Reactive Sy stems <
40), AI r

Lax. LJ., MSittteS,TM.. PtaSspsi. A., T .
A Case Stmdp m Autonomous Kobot B-. **•

In Proceedings ofAAAhS6> p^grs 1! 8-124 198ft.

m. R.
k Theory cf Deteggmg Fans md

/4A.4/4?. 19^1

17

[15] Simmons, R., Mitchell, T.M.
A Task Control Architecture for Mobile Robots.
In Stanford Spring Symposium. 1989.

[16] Smith, R.C., and Cheeseman, P.
On the Representation and Estimation of Spatial Uncertainty.
In The International Journal of Robotics Research, pages 56-68. 1986.

