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Abstract

This paper presents a general-purpose architecture for controlling mobile robots, and describes a
working mobile manipulator which uses the architecture to operate in a dynamic and uncertain
environment. The target of this work is to develop a distributed robot architecture for planning,
execution, monitoring, exception handling, and multiple task coordination. We report our progress to
date on the architecture development and the performance of the working robot. In particular, we discuss
temporal reasoning, execution monitoring, and context-dependent exception handling.




1. Introduction

The principal goal of this work is to develop a distributed robot architecture to support robot planning,
execution, monitoring, exception handling, and multiple task coordination. We have been developing
such a robot architecture, called the Task Control Architecture (TCA)[15]. TCA is designed for
controlling mobile robots that have limited computational and sensory resources, operate in uncertain,
changing (but relatively benign) environments, have multiple goals, and have a variety of strategies to
achieve goals and handle exceptions.

We have been developing TCA concurrently on two testbeds -- the CMU six-legged Planetary Rover
[3] and the Heath/Zenith Hero 2000 mobile manipulator robot [12]. The CMU Rover project is an
attempt to develop an autonomous robot that can survive, navigate, and acquire samples on the Martian
surface. The Hero testbed is an indoor platform that has been used to drive the architecture design. The
current capabilities of the Hero include collecting cups in the laboratory and recharging itself.

Our initial implementation on the Hero robot [12], which was developed in an ad hoc manner, had
several shortcomings. It was slow and slack in reacting to environmental changes. It could not protect
itself and recover from failures properly. It also could not change its focus to higher-priority tasks or
respond to requests from human advisors. After re-implementing the testbed using mechanisms and
functions provided by TCA, most of these shortcomings have been minimized. The robot is now faster
and more robust. It can react to environmental changes in a reasonable time frame, and it has a variety of
strategies to recover from failures.

The following are the capabilities that TCA currently supports.

¢ Concurrent planning and execution. Robots often take a significant amount of time in
constructing plans. Since planning and execution are activities that often need different
resources, both can occur concurrently. However, this concurrency sometimes needs to be
constrained. In many cases, the robot must act on an incomplete plan and defer some specific
decisions until more information can be acquired. On the other hand, to minimize risk to the
robot, one might want to completely plan out a goal before executing any of its sub-
commands.

e Reacting to environmental changes. To accomplish tasks, and even to survive, the robot
must be reactive. It must always be aware of environmental changes, and respond to them
appropriately and in a timely manner. Some environmental changes invalidate current plans,
while others may demand the robot to change its focus completely.

¢ Error recovery. In complicated, changing environments, failures are bound to occur. When
they do occur, the robot must change its plan to meet the new situation. Error recovery is
often context-dependent, that is, the same failure may have to be handled differently,
depending on the robot’s intentions. Since in a benign environment, the failed plan is often
close to being correct, it is desirable for the robot to be able to fix and re-use the problematic
plan, instead of always replanning from scratch.

e Coordinating Multiple Tasks. With many simultaneous goals but limited resources, the
robot must be able to dynamically prioritize and schedule its various tasks based on their
urgency, relative costs, likelihoods of success, etc. Currently, only simple-minded strategies
can be specified using TCA, but we envision taking a more knowledge intensive approach in
the near future.

Various TCA mechanisms have been developed to support these capabilities.

* Distributed processing. TCA is a distributed architecture with centralized control. A robot
system using TCA includes a central control and a number of concurrent, application-specific




processes. We believe that a centralized control architecture facilitates the coordination 9f
multiple complex robot behaviors, while the distributed processing allows for concurrency in
planning, execution, and perception. '

e Resources. TCA provides a mechanism to schedule the use of the robot’s Hmited
computational and physical resources. A task is automatically queued by TCA l_mnl the
needed resources are available. Resource reservation, together with temporal constraints (see
below), provide synchronization mechanisms to control distributed robot systems.

e Task trees and temporal constraints. In TCA, planning and execution are separate
activities and can be performed concurrently. The interleaving of these activities can be
constrained by imposing temporal constraints among the planning and achievement times of
subgoals. TCA explicitly maintains the goal/subgoal hierarchies, called task trees. Task
trees, together with the temporal constraints, are TCA’s representation of plans.

« Concurrent monitors. Concurrent monitors enable the robot to watch for environmental
changes in parallel with normal task execution. Because task execution and monitoring occur
concurrently, the performance of tasks will not be (significantly) slowed down, while still
enabling environmental changes to be detected as early as possible.

o Exception handling. TCA provides a general mechanism for handling planning time
failures, execution time errors, and contingencies. The robot implementor can specify
different strategies for handling the same exception in different contexts. One benefit of
having this mechanism is to allow the user to separate robot behaviors for normal situations
from these that handle failures or contingencies. In this way, complex robot behaviors can be
developed incrementally, and exception handling can be flexibly defined. At present, the
mechanism is still under construction but some primary results have been obtained.

Table 1-1 summarizes the supporting relationships between the TCA mechanisms and desired robot
capabilities. A mark "X" in an entry of the table indicate that the mechanism in that column is used to
support the capability in that row. Note that although synchronization by itself is not a capability needed
by robots, it plays an important role in the distributed environment of TCA.

Table 1-1: The supporting relationships between mechanisms and capabilities
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The rest of this paper presents the Hero robot system, the Task Control Architecture, and their
performance. Section 2 describes the hardware setup of the system and gives a scenario to illustrate how
the Hero robot performs tasks. Section 3 discusses the various mechanisms of TCA. Section 4 describes
the robot system in detail. Performance of the robot and TCA is evaluated in Section 5. Comparisons
with related work are given in Section 6. Finally the paper is concluded in Section 7.




2. Scenario

Our mobile manipulator robot, the Heath/Zenith Hero 2000, is a commercially available wheeled robot
with a two-finger hand (see Figure 2-1). The robot operates in an unstructured laboratory, which is
observable through a ceiling-mounted camera (see Figure 2-2). The Hero robot has three sonar sensors: a
rotating sonar on top, a forward-pointing sonar fixed to its base, and one mounted on the robot’s hand
which can be repositioned relative to the body. In addition, the robot has a battery charge level sensor, a
rotating light intensity sensor, and touch sensors on the fingers. Using existing vision software [10], we
developed a 2D vision subsystem for the ceiling camera. We also developed algorithms for navigation
and manipulation in the indoor environment.

Figure 2-1: The Hero 2000 Robot

When the system is started up, the robot is given several high-level goals, including (1) collecting cups
discovered on the lab floor and placing them in a receptacle, (2) avoiding obstacles, and (3) recharging its
battery when necessary. The rest of this section presents a scenario to illustrate how the robot achieves
and coordinates these goals.

For the cup collection task, the robot monitors its 2D vision map for the appearance of cups on the
floor. An asynchronous perception process continually takes a picture and updates a world map. Once a
new map is built, the robot scans the map to find cup-like objects. In this scenario, two cup-like objects
are spotted, and the system sets up two cup-collection goals and temporally orders them so that the closer
object will be explored first.

The robot then plans and executes a path to the first object. While moving, it monitors for obstacles in
its path. A monitor, whose temporal extent continues until the object is picked up, is created to ensure
that the target object does not disappear (e.g., someone else may pick it up). Upon arriving near the
object, the robot uses its wrist sonar to measure the height and width of the object and matches them
against its cup models. If a satisfactory match is found, the robot plans and executes actions to pick up
the object. In parallel with measuring and picking up the object, the robot uses its overhead vision map to
pre-plan a path to the receptacle so that a path plan is ready for execution when the cup is picked up. The




Figure 2-2: Overhead View of Laboratory as Seen by Robot
robot then uses the plan to navigate to the receptacle, where it deposits the cup.

Next, the robot attends to collecting the other object. While moving toward the object, the robot
notices (from either its overhead vision or its sonar sensors) that an object appears in into its path. The
robot stops immediately and waits to see if the object will move away soon. If the obstacle does not
move, the robot plans a detour by modifying the blocked path plan. If no detour can be found, the robot
replans a path from scratch. If still no path can be found, the robot abandons this cup-collection goal.

In this scenario a detour is found, so the robot continues to navigate to the object. The robot finally
mnvesncarthe%umdmmemnngm Atﬂnsponmﬂmbmrydmgcmomtormuﬁ&sﬂmmbot
ttmnsbmwyeMem‘ nple-minded strategy: "if the robot has arrived near

wmemkbeﬁomgumgmermmdmge the robot creates a recharge goal with

 indicating that the new goal will be attended to after the cup-collection goal is
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At present, the implemented layers include:
« Communication layer that supports distributed processes under centralized control;

e Behavior layer for querying the environment, specifying goals, executing commands, and
altering the robot’s intemal state

e Resource layer for allocating and managing physical and computational resources;
e Task management layer for building hierarchical plan structures and specifying temporal
constraints between planning and execution of various goals in the plan;

« Monitor layer for concurrently monitoring user-selected aspects of the robot’s external and
internal environments;

e Exception handling layer for specifying context-dependent strategies for handling plan
failures, execution errors, and environmental changes.

In addition, other layers to support multi-task coordination and user interaction are planned.

3.1. Communication Layer

The base layer of functionality provided by TCA is the sending and receiving of messages between
modules. Modules can be written in different languages (currently both Lisp and C are supported) and
run on different machines (using the UNIX TCP protocol). In essence, TCA provides a simple remote
procedure call(RPC) interface from a caller in one module to a procedure in a possibly remote module.

potential problem with centralized control is that the central process may become a bottleneck.
Experimentally, a round-trip time for messages of under 10K bytes is about 50 milliseconds. Since this
muwmmmmwmmmmmm'smm
centralized control has not been 2 problem on our current testbeds. Besides, the potential bottleneck
pmﬂmm&mmhﬂmﬁﬁmﬁh@m(e&&&wﬁbmmmmm

e-grained behaviors to limit the amount of module-to-module

mmmmwmmmmmmmm The

layer. mmmmyhmmm mmmwmunmfsm
until a reply is received, while goal and command messages are non-blocking and report success or
failure directly to the central control.
» Query messages arc requests to provide information about the external or intemal
environment, such as obtaining a world map or determining the robot's dead-reckoned
» Goal messages are intended to support top-down, hierarchical planning. A typical response
10 a goal message would be t0 issue other (sub)goal and/or command messages based on the
resuits of planning. Unlike queries, goal messages are asynchronous and non-blocking. That
is, the central control may queue the goal until resources become available; in the meanwhiie,
the module sending the goal message can continue. The rationale is that non-blocking goal
messages give the implementor greater flexibility in controlling the achievement of goals




(e.g., interleaving planning and execution).

« Command messages are uscd to execute actions. Like goal messages, command messages
are asynchronous and non-blocking. Distinguishing goal from command messages is done
mainly for interleaving planning and execution.

« Constraint messages provide a way to alter the robot’s internal state. For example,
mmmmgwmbemdnaﬁexpwmmsabmﬁmfuwebehawors

3.3. Resource Layer

hmandﬂhmmmmmcmdyﬁbmmhmmdmmesmordermsansfyus
goals. The robot must detect when tasks need competing resources, and must prioritize and schedule
tasks when conflicts occur. In TCA, a resource is an abstract entity that is used to manage the handling of
messages. A resource may be associated with a computational entity, such as a module, or with a
physical entity, such as a motor or camera.

Resources are created with a capacity - the number of messages the resource can handle
simultaneously. A message received by the central control is queued until the resource that handles the
message has available capacity. Currently, messages to the same resource are handled in FIFO order,
subject to the temporal constraints imposed by the task management layer.!

Sometimes, a module might need control over a resource for some period of time, particularly one
associated with a physical item. For example, if a vision module is acquiring an image, it might want to
ensure that the robot does not move during that period. To facilitate this, TCA includes mechanisms for
reserving resources, in effect, preventing other modules from uti

tilizing the resource until the reservation is
explicitly canceled. Resource reservation is one of the synchronization constructs in TCA.

MT&WW

trees (see Figure 3-1). mmmmmmmmwaMMMam
10 the task tree as a child of the node that issued the message. The resulting tree is an execution of graph
of messages used to compiete a given task. In addition, facilities have been developed for tracing and
manipulating the task tree, such as killing off subtrees, suspending them, and adding new nodes. These
facilities will provide functionalities needed by some of the higher layers, such as the exception handling
layer (see Section 3.6) and the planned multi-task coordination layer.

mmm«mmhumm mmw:mfmmyh
MumMumwmmmmmmmw
goals and achievement tmes of goals, commands, and monitors. For example, a2 module might specify
that the achievement time of G1 precedes that of G2, but the planning time of G2 precedes that of G1
{e.g. firw achieve pick up the cup, then bring it 10 the receptacle, but plan the route 1o the receptacle
before planning how to pick up the cup). Similarly, a module might constrain a goal to be completely
planned before any of its sub-commands can stant being achieved.
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Figure 3-1: Sample task tree

The mechanisms for reasoning about temporal constraints are based on the Quantity Lattice [13], an
arithmetic reasoning system, that integrates relationships, arithmetic expressions, qualitative and
quantitative? information to perform a wide range of common arithmetic inferences. In TCA, it is used to
maintain a consistent partial order of time points and to answer queries about relationships between time
points and about the durations of intervals.

»

With the temporal mechanisms provided, robot implementors can formulate a fairly wide range of
different constraints to take advantage of concurrencies in the distributed environment of TCA. Together
with resource reservation, the temporal constraints provide synchronization mechanisms to control
distributed robot systems.

3.5. Monitor Layer

To react to environmental changes, robots must first be able to monitor the environment and detect
changes in time. Although in the real world many things may go wrong at any time, robots with limited
sensory resources, such as ours, cannot afford to monitor everything that goes on in the environment. The
monitor layer provides mechanisms to monitor user-selected aspects of the environment and report
detected changes to the central control for handling. Monitors in TCA run concurrently with normal task
execution. For example, the Hero robot attends to the cup collection goal while monitoring for obstacles
and its battery charge.

A monitor specifies the condition to be monitored, and the time, relative to other messages, when

monitoring is to take place. When the condition holds, a typical action would be to send an exception
message to the central control, which will decide what to do based on the environment and context in

>The quantitative reasoning capability of the Quantity Lattice is not yet utilized by TCA.




which the exception occurred (see Section 3.6).

Two classes of monitors are implemented: point monitors and interval monitors. Point monitors, which
test the monitor’s condition just once, are useful for checking static, execution time conditions, such as
checking the pre-condition or post-condition of a command or goal. Interval monitors, which have a
temporal extent, are useful for checking for environmental changes over time.

TCA has two variations of interval monitors: polling and demon monitors. Polling monitors implement
synchronous polling of conditions at a fixed frequency, while demon monitors implement asynchronous
demon-invocation. For instance, the battery monitor of the Hero robot, which is a polling monitor,
periodically checks the battery charger and raises an exception if a low charge is detected. The cup
appearance monitor, implemented as a demon monitor, is invoked whenever a world map is updated by
the asynchronous perception process, and checks the world map for cup-like objects, raising exceptions if
such objects are found.

Monitors can also be used to construct conditional plans. For instance, suppose there are two strategies
to achieve goal G, but we do not know in advance which one will be applicable. We can set up a monitor
to check the environment and choose the appropriate strategy at execution time.

3.6. Exception Handling Layer3
Exceptions can be divided into three classes, according to the ways they are detected.
o failures detected in planning (e.g., no path to the cup);
oemrsmcxccuungcommands(eg.,wheelshppage)

ntingencies detected by monitors (e.g., low battery charge).
TCA employs the same mechanisms to handle the three different types of exceptions.

Exception handling is often context-dependent: the same exception might need be handled differently,
depending on the environment and where in the plan the exception occurs. For example, a wheel
blockage is a failure if it is detected when the robot is navigating in an open space. But it could be a
signal of a successful docking if the robot’s goal is to dock on the charger. To facilitate context-
dependent exception handling, TCA supports mechanisms for associating exception handlers with
contexts at planning time and automatically invoking the handlers when exceptions are raised. Various
utilities are also provided to enable handlers to fix problematic plans.

The context of an exception handler is established by attaching the handler to a task tree node. This
association is done dynamically as the task tree is created. When an exception is raised, TCA searches up
the task tree, starting from the node where the exception arose, to find a handler specific to that exception.
The first matched handler is then invoked to handle the exception.

Mﬁag’madﬁcvedbyediﬁng&nwkmﬁxmphbydekﬁngpmoﬁtmmmg
memw m::cepmnhmdlemcmusemcmkmopcmmspmwdbdbyﬂwmsk
managemen hymmaocm scrutinize, and then modify the task tree. Modifications to task trees may
mdudzmmmmgm 'thcemcunonofmbmes,andaddmgmwmdwtoﬁxtasknee which

*Currently, only the framework of the exception handling layer has been impiemented, and various supportin
mechanisms are still under construction. ¢




is then expanded using the normal TCA mechanisms. To illustrate, Figure 3-2(a) shows a situation where
a battery charge monitor is set up and the robot is actively attending to the cup-collection goal. When the
monitor detects a low battery charge, the low battery charge handler attached to the root node is chosen
to handle it. After checking the battery charge and the progress of the cup collection, the handler decides
to recharge first and finally ends up with the situation in Figure 3-2(b), where the monitor has been
canceled, the cup-collection goal has been suspended, and the recharge goal has been added and become

the current goal.
* low battery
Root
charge handler
* suspended

(b)

Figure 3-2: Exception handling

battery
charge
monitor

(a)

If an exception handler finds it cannot actually handle the situation, it can raise an exception itself.
When the central control receives an exception from an exception handler, the search for a capable
handler is resumed, starting from the node where the previous handler was found and searching up the
task tree. This process is repeated until the exception is successfully handled. As a catchall, TCA
attaches a general exception handler to the root node of the task tree. When invoked, this general handler
simply deletes the failed task along with all its subtasks.

This TCA approach to exception handling is efficient. First, the invocation of exception handlers is
fast, because only a simple search on the task tree is involved. Second, TCA allows a problematic plan to
be fixed and re-used as much as possible. For example, when moving obstacles appear unexpectedly, the
Hero robot first waits for obstacles to move away. If they do not move away, it tries to plan a detour by
modifying the blocked path plan. If no detour is found, a new path is planned from scratch. Only if no
path is found is the task terminated.

4. The Hero Robot System

The Hero robot system, which uses TCA, presently consists of five modules plus the central control
(see Figure 4-1). In this section, we describe the functionalities of the modules and how they interact with
each other.

Perception World
Query ‘ Map
Handler Builder
User
Interface Central Controller|
Hero
Planner |

Figure 4-1: Organization of the robot testbed
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Controller. This module, which controls the robot via either a radio link or an RS232 cable, executes
navigation commands (e.g., turn, move) and manipulation commands (e.g., raise arm, open grippers). It
also handles queries that involve using sensors on the robot, for example, reading the battery charge level,
and measuring the height of an object using the wrist sonar.

The Controller also keeps track of the robot’s trajectory and handles trajectory queries. Because of the
control error, the uncertainty about the robot’s position will grow over time. The Controller utilizes a
cwuimmmixmpmmxdm{lﬁlmmodelmemm«mr,mﬂoompmuﬂs the uncertainty
whenever the robot moves or tums, This uncertainty information is primarily used by the Perception
Query Handler to determine the likelihood of hitting obstacles in the course of navigation.

We also implemented reflexive guarded move commands directly on-board the Hero. These give the
robot a higher degree of reactivity than could be gotten from centralized control. While the robot is
moving or tuming, the on-board CPU detects wheel slippage and blockage by monitoring the motor
encoders. At the same time, the sonar sensors are used to detect obstacles in the robot’s trajectory. In
both cases, the reflex action is to stop the robot immediately, stabilizing it. Then the Controller signals a
failure so that the system can rectify the situation using the exception handling mechanisms.

World Map Builder. This module continually takes and processes images of the lab (every 20
seconds or s0), and updates a world map, which is then forwarded to the Perception Query Handler. We
bave found that this asynchronous process has substantially increased the performance of the robot
compared with our previous system. For example, since a relatively up-to-date world map is always
available, the robot does not need 1o wait for processing an image in order to find a cup-like object or to
plan a path.

To identify the robot in the image, the World Map Builder first gets the robot’s dead-reckoned
trajectory from the Controller. Based on the trajectory and other information such as the size of the robot,
the robot region can often be distinguished from other object regions. Two failures, however, can be
encountered. First, the robot may not be successfully spotted, because the robot region, for example,
overlaps another visual region. This failure is handled by taking an image, moving the robot a few
inches, taking another image, and comparing the differences in the images to spot the robot. The second
failure occurs when the light in the lab is tumed off. This exception i
on the light or going 1o sleep (i.c., turning off the power to all circuitr

Perception Query Handler. The Perception Query Handler provides three kinds of functionality.
First, & updates the world map upon receiving a new map from the World Map Builder. Second, it
handles perception demons. When a new world map is received, perception demons are invoked to check
mmmm Presently there are two kinds of demons that can be set up - cup appearance
WMMMWMﬁnMMuuWmem&
The third task of this module is 1 handle perception queries, includig

* calculating the vicamty of an object in order 10 approach it,

* checking if a path is clear, based on uncertunty reasoning,

» reducing the uncertnty abowt the robot's location and orientation by using vision.
mmm,mmwmmwummmm. When the
mumawmmmmm,wmwmmmmm

 except the memory) if no help is
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asked to determine (1) if the path is clear, (2) if yes, how far the robot may safely proceed along the path
before the uncertainty cone overlaps object regions (see Figure 4-2). If the uncertainty has grown to the
extent that collisions with obstacles are possible, the Perception Query Handler uses vision to reduce the
uncertainty. To do this, it first takes a picture of the robot and calculates the robot status (including visual
uncertainty) based on properties of the robot’s shape and intermal model of sensor uncertainty. A new
robot status is then obtained by merging the observed and expected status [16].

Figure 4-2:

Interpreted Version of the Image from Figure 2-2 with Planned Path and Uncertainty
Cone. The brightened line shows the final computed path to a cup-like object, while the
dimmer line is the original path before optimization. The shaded area in the uncertainty
cone indicates how far the robot may safely proceed.

Planner. At present most of the navigation and manipulation planning is done in this module. The .
Planner has a collection of procedures, each of which is intended to achieve a goal. When executed to
achieve goals, the procedures typically send queries, create subgoals, issue commands, set up monitors,
specify temporal constraints, and/or associate exception handlers with contexts.

As an example, the procedure for handling the cup collection goal does the following:
1. Adds approach object goal. The first step is to navigate to the vicinity of the target object.
In the course of navigation, the robot models uncertainty and watches out for obstacles.

2. Sets up object monitor. This monitor watches for the disappearance of the target object.
Temporal constraints are added to indicate that the monitor starts from the beginning of the
cup collection goal and ends at the beginning of the grasp cup goal (see below).

3. Adds servo to object goal. Once arriving near the object, the robot utilizes its wrist sonar to
estimate its distance and orientation relative to the object. This information is used to
compute the locomotion commands to reduce the differences between the estimated and
desired distance and orientation. To overcome sensing and control errors, this goal is re-
generated recursively until the differences are within acceptable limits. This recursive
xmplcmemanon makes it possible to break the time-consuming servoing loop for handling

4. Adds identify object goal to measure and classify the object.

5. Adds grasp cup goal. If the object is a cup, it is grasped by a procedure specific to that cup.
A point monitor, which utilizes the base sonar, is set up for checking if the grasping
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succeeds.
i i the receptacle.
6. Adds approach receptacle goal. Once picked up, the cup 1s bmpght to the
Howwa.mporﬂaxmmimmimposedwmﬂﬂwMlengcaﬂbegmomemﬁ
7. Sets up holding monitor. m:hwv&mmmﬂymdsﬁcmmonmﬁngers
mmﬂwmdmﬁcmpdoumdmpmmcmwmemm

8. Adds deposir command to drop off the cup in the receptacle.
9.AmwmmmmmmMmm

User Interface. PmﬂydemMumaﬂyaﬂowsmcmwmmmands,addgoals, and
set up monitors. Facilities for supporting a friendly user interface are being planned.

5. Performance .
wwmmwmmr&mwmmuﬂmmmm

modify. This is partly because TCA encourages modularity of programs. For example,
normal robot behaviors, monitors, and exception handling can be developed separately.

© TCA provides a fair amount of expressive power to facilitate implementing complex robot
behaviors. For example, TCA makes it easy o specify and control the interleaving of

Due 10 its deliberative nature, TCA cannot be used to implement low-level reflex behaviors that
demand sub-second responses 10 environmental changes. To minimize the interval between the time an
exception is detected and the time the exception handler gets executed, the implementors themselves must
adhere t0 a principle: each of the robot’s primitive actions must be designed to finish in a small time
frame. In other words, a time-consuming action must be repeatedly divided into smaller ones, so that
each does not take much time. The reason is that when an exception is raised, the chosen exception
handler might be blocked by other ongoing primitive actions, because of resource conflicts. If so, the
handler must wait for these actions to finish. Guaranteed reactivity is an interesting research area and we
pian 10 investigate it in the near future.

Roughly speaking, the robot system described above is quite successful in surviving, collecting cups,
and maintaining battery charge. It typically takes about 3-5 minutes to collect a cup, depending on the
difficulty of individual tasks (e.g.. smaller cups usually demands more time). If a cup is placed away
from the perimeter of the visual view and not occluded, the robot can locate and collect it most of the
nme. mmmmm&mmwﬂmm(@,mmwn
sneaker), those objects are usually identified as non-cups by the sonar sensors when the robot approaches
the obsects (but they can result in considerable wasted time).

The mbot system is about twice as fast as the previous sequential version. This is mainly because the
world map is updated by an asynchronous process: this is a big win, because image processing takes

mmmunmmwmumm This is mainly because
mwmmmwmmmmmmunmaw for
handling exoeplons. It s aiso heiped by the reflexive guanded commands and their integration into the
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TCA mechanisms.

The robot, however, is still susceptible to dangers. These dangers mainly arise from the robot’s
inability in sensing. For example, the robot has no sensor to detect imminent arm collisions and prevents
them in advance. The vision processing is slow, so the robot might use out-of-date information and make
wrong decisions. Although these problems can be minimized (but not overcome) by adding more sensors
and using faster hardware, that is not the purpose of this work.

6. Related Work .

An alternative approach to building reactive and robust robots is that taken by the subsumption
architecture [4]. The main features of this approach are (1) hard-wired, layered robot behaviors, (2) no
explicit intemal model of the world, (3) no explicit representation of goals and plans, (4) no central
control, and (5) continual monitoring. Many of these characteristics are shared by some other approaches,
such as [1] and [11]. In contrast to these architectures, TCA has a centralized control and makes the
notion of goals explicit, allowing the robot to reason about them. These differences make TCA more .
flexible in coordinating complex robot behaviors. The use of explicit plan representations enables TCA
to pre-plan for the future, not just figure out "what to do next". TCA advocates selective monitoring,
because sensors are often scarce resources and the use of them should be carefully scheduled. These
differences result in two architectures with very different capabilities [6]. While the subsumption
architecture is good at handling low-level sensor and effector actions (e.g., car chasing), it is not yet clear
how complex behaviors (e.g., planning, exception handling) can be coordinated in the architecture. On
the other hand, while with TCA fairly complex behaviors have been realized on the Hero robot, it is not
well-suited to handling low-level reflex activities. Rather than competing architectures, however, it is
reasonable to combine the strengths of both approaches, for example, by using the subsumption
architecture for reflexive control, which talks to TCA for higher-level control. In fact, our experience
with the guarded move commands (see Section 4) suggests that this might be a promising way to
implement robust, intelligent robots.

The Procedural Reasoning System (PRS) [7] consists of four main components: a database of beliefs
about the world, a goal stack, a library of procedural plans, and an interpreter. PRS is similar to TCA in
several. aspects. For example, both are concerned with combining planful, reasoned behaviors with
reactivity. The goal stack and procedural plan representation used in PRS is similar to our task tree
structure plus temporal constraints. The main difference between the two systems is that PRS is more
concemed with reasoning and planning, while TCA mainly focuses on the execution, monitoring, and
exception handling.

The Reactive Action Package (RAP) system [5], which is very similar to PRS, is another work which
addresses reactivity and adaptive execution of plans. Like TCA, the RAP system provides various
mechanisms for supporting resource reservation, temporal constraints, monitoring, and exception
handling. The RAP system, which is a sequential system, is based on the idea of situation-driven
execution, much like the subsumption architecture. This viewpoint is different from that of TCA. While
supporting reactivity, TCA still allows the robot to plan for the future. For example, the Hero robot can
measure the potential cup, monitor its battery charge, and pre-plan the path to the receptacle concurrently.
Both systems also differ in the ways exceptions are handled. When exceptions are raised, the RAP
system examines the context at run-time to find the appropriate method for re-achieving the failed task,
while in TCA only a simple search on the task tree is needed.
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as Ada [9] — when an exception occurs, program execution is transferred to the exception handler with a
matched name that is closest to the exception point in the context (i.e., the runtime call-stack in Ada or the
task trees in TCA). However, they differ in three aspects. First, TCA allows the exception handlers to
manipulate the task trees explicitly, while explicit manipulation of the call-stack in Ada is prohibited.
because of the temporal constraints placed on the task trees. Maintaining the desired temporal constraints
‘  modifying the task trees is a difficult problem, which we have not solved
completely. Third, task tree nodes are not killed while TCA is searching for capable handlers, so the
exception handlers can examine the failed node and its ancestors to help in debugging [14].

7. Conclusion

We have designed and implemented TCA, a general-purpose task control architecture, for the control of
mobile robots. TCA is designed to be used for robots with multiple tasks, and limited computational and
design of TCA is based partly on experience gained from our first version of the Hero testbed. That
version, developed in an ad hoc manner, had several shortcomings, such as brittleness, unawareness of
environmental changes, etc. By using TCA, we have re-implemented the system in a more disciplined
way. The current robot can navigate in a changing (indoor) environment, avoid obstacles, collect cups on
the floor, and at the same time watch for failures and contingencies, recover from failures, and go
recharge when necessary.

The features of TCA that result in the Hero robot’s success and that, we believe, will facilitate the
WMWWMM{I)MMQ)WB)WMW
Wmmmwwummm
and plan execution, to be performed concurrently. mmmmmammmm
Mmame wmuwmmsmm implemen
mm&mmﬂmwmmmm
MWMMMNWMM&&M%W
tasks, gives robots the opportunity of reacting to environmental changes and changing their focus for
contingencies or opportunities. The exception handling mechanisms enable robots to dynamically choose
context-dependent strategies for handling contingencies, planning time failures, and execution .
The mechanisms also allow robots 1o re-use a failed plan by making changes in it, or even to change their

focus completely.

Another imponant feature of TCA is that it facilitates modular and incremental design of complex robot
syswems. In TCA, planning, execution, monitoring, and exception handling are all logically and
funcuonaily separste activities. 'This enables one 0 build systems incrementally — first building
behaviors that pian and execute, then adding features (usually by adding new code with few changes to
the existing programs) to take advantage of concurrency in planning and execution, to monitor for
exceptional snsations, and 1o handle those situations intelligently.

MMWMMMMWNwm In particular, we to
extend TCA 0 support vanous knowledge-intensive decision-making capabilities [8], Mn.schz:;mg
WWW&MWMWMMWMMmmmmof
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various plans’ strength, limitation, resource usages, time constraints, etc.

Although building complex, robust robot syst(ems‘is still very much an art, we believe that with the use
of high-level architectures, such as TCA, we can make the process easier. Through experience with
different robot systems (the CMU planetary Rover also uses TCA), and analysis of the requirements for

different environments and robot configurations, we are converging on a set of mechanisms to support the
building of such robot systems.
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