
Innovative Design Systems:
Where are we, and where do we go from here?*

D. Navlnchandra

CMU-RI-TR-90-01.

The Rebates Institute
Carnegie Mellon University

Pittsburgh* Pennsylvania 15213

12 Januaiy JWO

Table of Contents
1. Introduction 1
2. What is Innovative Design? 1
3. Characterizing Design 1

3.1. Shades of Difference 3
3.2, In Conclusion 5

4. Analogy 6
4.1. Introduction 6
4.2. Analogy: Some Fundamentals 6

4.2.1. What is Analogy? 6
4.2.2. A Model of Analogy 6

4.3. Analogical Reasoning and Problem Solving: Background 7
43.1. Early Work on Analogical Reasoning. 7
43.2. Recent Work on AR 8
43.3. Requirements for a Computational Model 9

4.4. Design Representation: Determining what to index on. 9
4.5. Indexing and Retrieval 13

4.5.1. The Chicken -n-Egg Problem of Indexing 14
4.6. Synthesis and Debugging 15

4.6.1. Synthesis in the Physical Domain 15
4.6.2. The Cross-Contextual Snippet Synthesis Problem 15
4.63. Synthesizing Design Plans 16

5. Exploration and Discovery 17
5.1. The State Space * 17
5.2. Exploring Design Alternatives 18

5.2.1. Searching for Novel Structural Combinations 18
5.2.2. Use of Relaxations and Mutations in Exploration 20

53. Invention by Analysis 23
5.4. Criteria Emergence and Serendipity Recognition 25

5.4.1. Discovery Systems 26
5.4.2. Serendipty Recognition 28
5.43. Learning from Experience 29

6. Creativity 31
6.1. Background 31
6.2. Analogy 32
63. Asking the Right Questions 32
6.4. Conclusions on Creativity 37

PITTSJ&IMGH, PA 15213^3890

u

List of Figures
Figure 3-1: Design Spectrum
Figure 4-1: A Model of Analogy
Figure 4-2: The ANALOGY program
Figure 4-3: The atom is like the solar system
Figure 4-4: Qualitative Device Description of a Tap
Figure 4-5: Causal Explanation of the Tap Function
Figure 4-6: The configuration space and qualitative

states of a tap
Figure 4-7: A water tap
Figure 5-1: CIDS solves a short arch problem
Figure 5-2: EDISON mutates a door
Figure 5-3: Example of a shape change operator
Figure 5-4: Example of a topology change operator

4
6
8
8

11
12
13

13
20
22
24
24

Innovative Design Systems:
Where are we, and where do we go from here?

This report was last updated in March 1989

1. Introduction
This report reviews the state of the art in systems that innovate. The review concentrates more on the

techniques used in these systems rather than what the system actually did.

This report reviews some of the important issues for DA systems that work in domains requiring
non-routine and innovative approaches to problem solving. This part of the report covers issues such as
analogy & metaphor, exploration & discovery and creativity.

Readers who wish to get a broader sense of the techniques used in DA systems may refer to the
following papers [Gross 86, Stefik 80, Tong 86a, Mostow 85, Nilsson 80, Sriram 86, Ullman & Dietterich
87, Tang 86b].

2. What is Innovative Design?
Before talking about tools and techniques, we will first try and characterize innovative designs. Earlier

definitions of innovative design have tended to finess over details. For example, innovative design has
been defined as any design that is: new or different or elegant or uses new ideas or is an improvement
over its peers [Dixon 65]. Such a definition is correct, but it does not tell us how to measure "newness".
How new is something? In this section we shed a little more light on the problem of trying to distinguish
between innovative and routine design. No definition will ever be complete or accurate, but something is
better than nothing.

The real purpose of trying to define innovative design is to try and identify the characteristics of
innovative design. With a list of such characteristics we can better focus our research efforts. If DA
systems that emulate some of the characteristics of innovative design can be built, thai, such systems can
be said to have some form of innovative behavior.

3. Characterizing Design
The first question to ask is: "When does a design qualify as innovative (as opposed to routine) ?"

Ironically, the answer is that there is no absolute measure of innovativeness. It does not make sense to
label a design as being innovative, because the perception of an artifact as being novel or not, lies not in
some inherent property of the artifact but in the eyes of the beholder. For a given observer or a given
group of observers (e.g. Mechanical Engineers) there is a set of design styles they are accustomed to
seeing in the artifacts designed by their peers. For example, a construction equipment designer will view a
construction robot (e.g. an excavation robot) as being innovative. On the other hand, a Robot designer
will view the same construction robot as being yet another application. The robot's sophisticated vision,
tactile and position sensing systems are not new to the Robot designer and are part of the design culture
he works within. For the construction engineer, on the other hand, an excavation robot is novel because
robotics is outside his design culture. A design culture is defined by the common practices, design styles
and technologies used by people who operate within the culture. It defines the context they operate
within, it's their weltanschauungen. The notion of design culture gives us a datum from which designs
can be characterized, where, each design culture has its own way of viewing designs as being routine or
innovative.

Here are three different types of design:

The simplest type of design is procedural A design process is said to be procedural when all the steps
are known beforehand and all the critical decisions have been made. In such a situation, the designer just
follows instructions blindly. For example, the design of a concrete beam which involves the calculation of
beam depth, width and the amount of steel reinforcements is procedural in nature.

Routine design. A design process is said to be routine when all the steps are known beforehand, but all
the decisions are not known. The designer may have to search a space of design alternatives to arrive at
the final design, however, as the steps are known there are no surprises. All possible outcomes are known
and appropriate responses are also known. All knowledge used in problem solving is from within the
original design culture. Let's take an example from simple TTL logic design. Given a logic specification
there is a set of simple steps that will convert the specification into a circuit The design process is
routine: Specification ~> Truth table --> Karnaugh map — > Boolean equations ~> TTL logic diagram. A
designer who uses the above process to design simple TTL logic circuits only (e.g. binary adders or
decoders) can be said to be doing routine design. However, it is not necessary that a routine design
process will always produce routine designs. For example, if we gave our TTL designer the specifications
of a ROM or a Programmable logic array, then he could follow the same old routine process to come up
with the combinational logic of a complex product that would be very different from any of the designs
previously attempted him. Where does the novelty lie? In the process or in the specifications? There is
no clear cut way of classifying a design process, even within the context of a given design culture.

The novelty of a design can be characterized along three dimensions: the initial specification, the
design process and the final designed product The Figure shows eight different types of design within
the framework of routine design. This table goes to show that there is no objective demarcation between
routine, non-routine, and innovative design.

ISpecs IProc.|Prod. | Example |

I M I M I M | Routine Design. (Beam design) |

I D I M } M I Where the application is novel)

I I I I but the solution is quite |
| I I I mundane (eg Office automation |
(I | I of a Church) j

I M I ® I M 1 A new faster/cheaper process |
I f | [(Faster beam design) (

I M 1 M I D I Hot possible j

1 D 1 B | M | Similar to DMM. (e.g. A new]
I I I | Systems analysis technique |
I I I | gives the same old solution) j

| M | D I D 1! A new method for solving an J
I | I | old problem, (eg A Microproc- j
I | I I ssor controlled toaster.) f

| D I M 1 D | A different spec. p&sses thro-1
1 1 { | gh a mundane process to become)
i | | l a novel product.

I D I D | D | A truly non-routine design \
I | I 1 situation, |

LEGEND:
Specs = Specifications t.o the design process.
Proc. = The design process.
Prod. = The product, the final design.
M = Mundane
D « Different, not-mundane

In the Figure above, the word "different" has been used to denote how different a particular dimension
is with respect to the norms of the given design culture. The word is used loosely. In reality there are
several shades of difference between a design and the design culture it is a part of. Let's examine this
aspect even further.

3.1. Shades of Difference
All new ideas have their origins in old ideas. A human being's ability to understand some new concept

is predicated on him/her already possessing sufficient support knowledge for the new idea. Likewise, all
new designs involve the use of previously acquired knowledge. A designer acquires such knowledge in
particular from his design experience and his time in college. This body of knowledge defines the design
culture he resides in. In a design situation, designers normally draw upon this knowledge. However, some
design situations cannot be solved by the design knowledge possessed by the designer. Under these
conditions he will have to either learn more about the design culture he is operating within or try to use
knowledge from outside the current design culture. The designer can reason analogically from his
experiences in situations other than just design. The designed artifacts we see around us are a mixture of
knowledge of the design culture the artifact belongs to and knowledge drawn from various other sources.
For example, a biomedical engineer, given the task of designing a non-surgical method for removing
urinary calculii1 is faced with a task requiring innovations drawn from outside his design culture. He has
to find some way of reaching the calculii and removing it without surgery. The requirement of finding a
non-surgical method reminds him of catheters. This idea is from within his design culture. Now that he
has a way of reaching the calculii, he has to find a way of grabbing iL This reminds him of kitchen tongs
and she decides to put small clips at the ©ad of the probe. Next, he has to pull out the calculii without
scratching the insides of the urinaiy tract This can be done by expanding the tract The word "expanding"
reminds him of a balloon and he decides to introduce a small balloon at the end of the probe. This will aid
in pulling out the calculii. This example, taken from a real design problem, shows how remindings can
occur from within and without the design culture. As the designed artifact drew upon knowledge from
outside the design culture of bio-medical engineering it was viewed as being innovative. This is the
essence of measuring difference. Let's expand on this idea.

Conceptual distance. To measure the difference between two ideas, one has to have some measure of
their conceptual closeness. For example, nuclear engineering is closer to mechanical engineering than say,
biology or psychology. Conceptual closeness can be measured if one has a conceptual clustering of the
different domains. Such a clustering might be in the form of a tree and the number of links between two
domains can be used as a measure of closeness. For example, all engineering fields could be under one
heading and all humanities could be under another. The number of links to be traversed from nuclear
engineering to mechanical engineering is less than the number of links between mechanical engineering
and psychology. Every time a new innovation is made, this tree will have to be reorganized.

Let us draw up a spectrum for characterizing designs as a function of the difference between the
knowledge used in solving a design problem and the design culture of the design domain. For brevity, let
us assume that new designs are generated by drawing knowledge only from one source at a time. The

1A ctkium deposit in the urinuy tract

spectrum has the following two dimensions:

the difference between the knowledge used (base knowledge) to solve a problem (target

problem) and the knowledge subsumed by the design culture of the target problem. The greater

the difference between the base and target the greater the perceived innovativeness of the

product.

the level of knowledge drawn from the base culture. The higher the level of knowledge used,

the easier the transfer of knowledge. A low-level concept is a basic principle or law in some

domain. A high-level concept is some final result or equation from the domain. For example,

the author once came across a thesis that applied control theory to highway.maintenance. The

student had not derived new results in control theory but had only applied some of the existing

results of control theory to highways. He had used high-level concepts borrowed from control

theory. If, on the other hand, be had derived some new results, he would have had to draw upon

low-level concepts in control theory and mathematics.

g I 1
| Good engxneex- 1 ,Iimovtti'vi for
!practice. [the target

Level of I ' <=sscalt̂ ixe ? but not
Base I (Xntra- fso innovative
Knowledge f cultural} fto the base

1 A jCTitu**. A

I
IResearch and
| development
|effort*.
I (Zntxa-
| cultural)

Highly
innovative
in both
cultures,
base & target.

low

low nigh
Difference between
base and target

Figure 3-1: Design Spectrum •

Figure 3-1 shows a spectrum of designs along two dimensions. The higher the difference and the lower
the level of knowledge used the greater the perceived inventiveness of the product Here are some
examples that win help explain the above table. Consider the following scenario: a Civil Engineer
acquires and programs a robot for laying bricks. The project will be viewed by civil engineers as very
innovative idea Robotics researchers* however, will view the project as "yei-another-applicationft. This is
because the brick laying robot is just some standard robot arm programmed to perform a new task. In this
example a well developed, high-level concept from a Imse domain (robotics) was transferred to a very
different target problem (construction). This kind of design falls in the upper-right comer of the spectrum.

If, however, the engineer had decided to work on a much harder robotics project things would be
different. Consider this scenario: the engineer decides to develop a general-purpose window cleaning
robot for high-rise buildings. This task is so hard that no off-the-shelf, well-developed, high-level
concepts in robotics are available. The window-cleaning robot would need a good 3-D navigation system
with a good vision system that can recognize windows, pay attention to dirty spots and operate under
almost any lighting conditions. The engineer will have to design a robot from basic principles of robotics,
working with less developed, low-level ideas. The product of this second type of design will be viewed as
inter-culturally innovative (lower-right box). The other two types are intra-cultural. In an intra-cultural
setting, the level of knowledge used in design determines the innovativeness of the design. A designer
who uses high-level knowledge of a domain is said to be a good engineer (not a scientist). He uses the
well established results of the domain, and as he is not involved in any kind of innovative design, he is
happy with access to knowledge only from within the design culture he belongs to. Conversely, engineers
who work from the first principles of the target problem's design culture can be viewed as doing research
and development

In the examples above, we made two major assumptions which have the following implications:

1. To draw out the characterization, we assumed that innovative designs are derived from the

application of one base concept to a target problem. In actuality, however, designs involve

all types of approaches. Parts of the design may be innovative while other parts might

require routine or procedural design.

2. Another aspect of design is: that which is innovative today ceases to be innovative in the

future. A new design idea that draws on some extra-cultural base concept will end up

becoming part of the target domain's design culture. It is for this reason that keeping one's

design innovative and competitive is a constant struggle for newer ideas.

3. In all bur discussions we have assumed that innovation comes from applying some base

knowledge to a target problem. Innovation also stems from trial-and-error processes, both

random and informed.

3*2* In Conclusion
In order to emulate innovative behavior in a DA system, one has to consider the following questions:

• Can the program reason analogically?

• Can it reason at several levels? Can it use principles and results of several domains?

• Does the program have access to knowledge outside it's original design culture? If so, how

can it use this outside knowledge. How should one represent and index knowledge?

• Can the design generate alternatives? Can it explore new ideas? Does it ask the right

questions?

These issues are open research problems in AI and DA. The rest of this this paper reviews work that
has been done towards answering the questions listed above.

4. Analogy

4*1. Introduction
Experienced engineers have the ability to utilize knowledge gained from previous experiences to

provide novel solutions to a wide range of problems. Hence, this type of reasoning should be
incorporated in programs that attempt to emulate the intelligence of engineers. A wide spectrum of
problem solving techniques have been developed by AI researchers during the last few decades. Some of
these techniques have been incorporated in Knowledge-based Expert Systems (KBES). However, the
techniques used in current day KBES do not adequately exploit the reasoning process that went into
solving previous problems.

The purpose of this section is two fold: 1) to provide an overview of a problem solving technique -
analogical reasoning - that can play an important role in building KBES for engineering; and 2) to provide
an intuitive understanding of the role analogues, heuristic-rules and first-principles play in technical
problem solving.

The rest of the section is organized as follows. Section 4.2 provides an overview of Analogy and
introduces a model of Analogy. Section 4.3 reviews the literature and Section 4.4 introduces the different
types of knowledge used for solving engineering problems.

42. Analogy: Some Fundamentals

4,2.1. What is Analogy?
Analogical Reasoning (AR) involves the use of past experience to solve problems that are similar to

problems solved before. A formal definition is provided by Carbonell:

"Analogical problem solving (reasoning) consists of transferring knowledge from past

problem solving episodes to new problems that share significant aspects with corresponding

past experience - and using the transferred knowledge to construct solutions to the new

problems.* [Carbonell 86]

43JL A Model of Analogy
The various components that would be involved in a computational model of AR are shown in Figure

4-1. This model is based on the work reported in [Gentner 83] and views AR as a four stage process:
Retrieval, Elaboration* Mapping, and Justification.

1 Retrieval

2 Elaboration L Justification

Additional base objects Additional target objects
and relations and relations

3 Mapping

Figure 4-1: A Model of Analogy

The connotation of the above components is described below through the following metaphor taken
from the building design domain: The building is like a beam.

1. Retrieval: Given the target, this process notices and retrieves a potentially analogous state

and places portions of the base and target in correspondence. In the above example there is

no need to retrieve the base (beam) since it is provided in the metaphor.

2. Elaboration: Given the base and the knowledge about the base, derive additional attributes,

relations, and complex causal chains involving the base. A derived attribute in the above

example may be a beam resists forces in transverse direction, a derived relations could be

the beam is made of steel, and a derived causal relations could be IF the beam is made of

steel THEN the modules of elasticity is 36 ksi*

3. Mapping: Given base attributes, relations, and causal chains, map selected ones over to the

target (with modifications). Here the attributes/relations that are salient to a beam can be

mapped. For example the beam resists forces in the transverse direction can be mapped into

the building resists forces in the transverse direction.

4. Justification: Given mapped target attributes, relations and causal chains, justify they are,

in fact, valid. Modify these if needed. In the above example justify that the building can

resist transverse forces.

For a design automation system the AR steps involve:

1. Determining a Cue based on a given design representation.

2. Retrieving a Design.

3. Synthesizing parts of the old design in the new one.

4. Verification and Debugging the result.

The rest of this section discusses these steps. Before embarking on the discussion, we provide some
background of analogical problem solving methods.

4 3 . Analogical Reasoning and Problem Solving: Background

43.1. Early Work on Analogical Reasoning.
One of the first interesting programs was called ANALOGY [Evans 68]. This program could solve

simple visio-spatial problems like the one in Figure 4-2.

One of the important ideas introduced by Evans was the use of generalizations in the derivation of the
transformation rules. For example, in Figure 4-2 we can describe the transformation rule for mapping A to
B as "Rotate the inner-most triangle1*. The ANALOGY program can generalize the rule to "Rotate the
inner-most object*'.

Kiing [Kling 71] introduced a program ZORBA, thai proved theorems analogically. The program is
given a theorem to prove. It is then given an analogous base theorem to use to prove the target The
program is interesting, in that, it proves a theorem efficiently by using an analogous theorem and proof,
and thereby reduces unnecessarily search. The program could not perform generalizations* as the
ANALOGY program did.

A IS-TO A AS IS-TO ?

1

A
2

O
3

< >

Figure 4-2: The ANALOGY program

43 JL Recent Work on AR
CarhonelL Carbonell introduced a program that solved problems by combining analogical reasoning

and means/ends analysis [Carbonell 83a]. Given an initial state (base) and a final state (target), the
program searches the space of solutions using transformation operators. This approach was called
Transformational Analogy.

A limitation of Transformational analogy was the fact that problems that share some characteristics
need not share problem solving strategies. This led to work on Derivational analogy [Carbonell 83b]. The
mapping of base to target is done by transferring the base's reasoning process (derivation) to the target

Winston. Winston [Winston 80, Winston 81, Winston eLal 83] has made a considerable contribution
to Analogical Reasoning. Much of his work uses a characteristic representation scheme. Mapping is
carried out by matching the links of the base and target representations.

Structure Mapping, Causais and Explanations One of the limitations of early work is the belief that
base and target should be matched using the feature sets [Tversky 77]. This approach is limited compared
to the Stricture Mapping theory [Gcmner 83] and the Systonaticity principle [Gentner & Toopin 86],
The systonaticity principle is used to map base to target by concentrating on the causal relations while
regarding all other relations as independent An interesting example builds the analogy. wThe atom is like
the solar system"* (Figure 4-3).

hotmassive A yellow
protons & neutrons

attracts orbits

planet*

attracts orbits
i

electrons

negative
charge

Figure 4-3: The atom is like the solar system

An important assumption of this approach is that, the given causal network of the base Is assumed to be

relevant to making the analogy. The trick is to develop an explanation of the base that suits the needs of
analogy being drawn . This idea is called purpose-directed analogy [Kedar-Cabelli 85a].

4*33. Requirements for a Computational Model
The AR model should be able to satisfy a number of requirements, some of which are outlined below

[Kedar-Cabelli 85b].

1. AR is knowledge-intensive. Hence, a model of AR must be knowledge-based. It must have

some representation of the domains to be put in correspondence beyond the features of the

target and base supplied as input to the analogy.

2. AR requires the ability to recall previous experiences. Hence, a model of AR must have

mechanisms for organizing experiences in memory, augmenting memory, and retrieving

experiences from memory

3. AR requires the ability to retrieve a potential base solution from a large store of situations.

A potentially analogous situation might be dissimilar by surface features from the current

situation, or might be represented at a different level of detail than the current situation.

Hence, in the model of AR, retrieval cannot be based on a partial match of surface features.

4. In AR, retrieval might be based on shared abstractions between base and target. Hence,

mechanisms for generalizing knowledge in base and target would be useful.

5. AR prefers mapping over a system of connected knowledge, rather than independent facts.

Hence in a model of AR preference for mapping systematic, causal networks of relations

must constrain the possible consistent mappings from base to target.

6. In AR, the interpretation of an analogy may depend on knowing the purpose for which the

analogy is being stated. Hence, in a model of AR, explicit representation of the intended

purpose of analogy may be used to constrain the possible consistent and systematic

mappings from base to target.

7. The model of AR should know what to match and what not to match.

8; AR is performed with limited time and resources. Hence, a model of AR must be

computationally effective.

Issues relevant to the above requirements will be discussed in the following sections. The discussion is
in the context of building design automation systems.

4.4. Design Representation: Determining what to index on.
In the past, design systems needed only to use knowledge drawn from one domain. Consequently they

used domain-specific knowledge and artifact representation methods. In order to build systems that am
reason analogically from precedents from within and without the current design domain, we need better
canonical knowledge representation schemes. In the example presented in Section 3.1 (page 3) we saw
bow a biomechanical engineer was reminded of a balloon while trying to solve a urinary disorder. TMs
means that the balloon precedent has to be represented in such a way that it could be used for very

10

different purposes. One easy way out would be to represent the balloon precedent such that it can be
retrieved by a few distinct indices such as: expanding, soft, thin etc. This will work for some limited cases
but does not capture the fact that we can retrieve precedents to solve problems in ways we had never
imagined before. This means that a precedent should be represented such that it can be viewed in many
different ways and can thus be used to serve different purposes.

A popular representation technique is the use of predicate logic. The work on explanation based
learning and purpose directed analogy uses this formalism [Kedar-Cabelli 85c]. People working on DA
systems for VLSI circuits use standard circuit description languages that allow for abstraction and
reasoning about functional behavior. In the mechanical domain, however, the problem of representation is
critical. There is a lot of semantic difference between an artifact representation, its function and its
behavior. For example, a stapler can be used as a paper weight, as a nut cracker, as a hammer, its
spring-action could be used to launch projectiles such as pencils, open it up and it could be used as a set
of crude weighing scales.... How does one represent the stapler that it can be retrieved for different
purposes?

Two research efforts on representing physical artifacts are trying to address this issue: learning physical
domains [Forbus & Gentner 86] and the EDISON system [Dyer et.al. 86]. The first effort bases precedent
representation on a qualitative process (QP) theory. In QP theory, a physical situation is modeled as a
collection of objects and relationships among them, with processes responsible for causing changes. The
continuous parameters of an object, such as temperature and pressure, are represented by quantities that
are denoted by an amount and a change-derivative. In the EDISON effort, artifacts are represented in
terms of parts, spatial relations, connectivity, functionality, and processes. For example, when describing
the relative orientation of two objects, EDISON uses predefined notions such as: coaxial, colinear,
adjacent, overlapping etc. Using a set of production rules which know about the behavior of these
different types of connections, spatial relations etc., the system is able to simulate the working of the
artifact

We believe that cases should be represented at several levels. This will allow an AR system to
appropriately extract information from the precedent case. Following is a proposed representation for
design cases.

There is a host of questions that arise regarding representation and indexing of cases in the context of a
creative and synthetic task, such as design. What constitutes a "design case"? What information should
be incorporated? What features could be used as indices? How are these features extracted from the
input? How can the various reasoning levels be captured in an expressive and efficient manner enabling a
problem solver to move between those levels during the problem solving process? How is numerical and
analytical information incorporated into cases? Should it be incorporated in the case memory or in a
different library? How are constraints and tradeoffs represented and indexed?

The case representation we propose is multi-layered. An important aspect of the representation is the
existence of mechanisms which allow one layer to be mapped onto the next We currently use the
following layers to handle mechanical engineering related cases:

L Linguistic. Linguistic indices are best suited for direct indexing based on a matching linguistic
index. Case attributes provide such indices. For example, a simple household water tap can be indexed in
terms of its function, to control water flow; its components, pipe, nozzle, handle, valve and seal; the
material out of which it is made, brass; the type of device it is, mechanical; the places where it is intended
to be used, kitchen* bathroom, water tank.

Previous research in index detennination in the CBR literature [Hammond 86, Kolodner 88, Sycara
87] has identified goals as well as object attributes and scenes as general classes of features that can be
used as indices. Since artifacts always have an associated intended function as the purpose/goal of the
artifact, It is clear that the intended functional specification should give rise to a set of related indices. In
addition, features that capture the physical description of the device (object features) need to be included.

11

2. Functional Description, Devices can be viewed as black-boxes which take inputs and produce
desired outputs. In the physical domain, three types of inputs and outputs have been identified: signals,
energy and materials [Pahl & Beitz 84]. A characterization of the relationships between the input and the
outputs is the device behavior. Device behavior can be represented at several levels of detail. At the
highest level, the behavioral description contains the overall inputs and outputs, whereas at more detailed
levels domain principles, such as Bernoulli's theorem, Newton's laws and conservation laws could be
used.

For example, a household water tap takes a material input (water) and outputs the water in response to a
signal (open/close). Taking this a step further, a tap takes the input signal theta, and the input water flow
rate of Qin and produces the output flow rate of Qout. The temperatures of the input and outputs are Tin
and Tout. The tap may be represented as shown in Figure 4-4. The figure shows the tap as a box with the
following qualitative relationships: (1) The inflow of water (Qin) monotonically increases (Af+) with the
signal theta. (2) The inflow is equal to the outflow (Qin = Qout), (3) Temperature does not change (
Tin = Tout). The bottom two statements are qualitative boundary conditions: (4) when theta is zero,
there is no flow through the tap, and (5) when theta is 2JC, then the flow is maximum.

Qin

Theta

•tap(Qin M+ theta)
(Qout « Qin)
(Tin - Tout)
(at theta « 0, Q « 0)
(at theta - 2n, Q - Qmax)

Qout
•

\
qualitative
description of
"tap" function.

Legend:
— •

Q
M+

T

• materials

signals/energy

- rate of flow
* monotonically

increasing w.r.l
- temperature

Figure 44 : Qualitative Device Description of a Tap

3. Causal Explanation of Behavior. The Qualitative Device description is at a high level of detail, it
does not capture how the tap works. The device behavior can be viewed as a causal explanation of how
the structure of a device enables the accomplishment of its functional specifications. We propose to
explore the use of causal networks augmented with relations expressed in the language of qualitative
physics [Forbus 84, Kuipers 86] to capture the causal behavior of devices. We believe that the
augmentation of causal explanations with qualitative relations captures the dynamics of device behavior.

A causal explanation of the tap is shown in Figure 4-5 (the tap's components are shown in Figure 4-7).
The representation is a semantic network of components and attributes with causal links between the
nodes in the network. We have augmented the causal links by qualitative constraints [Kuipers 86], The
figure is built of several primitives. It has a definition of flow across an orifice with links relating orifice
size and pressure drop to the resulting flow rate. It also shows how a screw mechanism causes the tap's
cylinder to go up and down, changing the orifice size as a result of the movement The network shows
objects (eg. the cylinder) and parameters (e.g. orifice size) linked by relations. We have found three type
of relations to be useful: (1) Attribute relations (e.g. the orifice has a Msizetf attribute), (2) Positional
relations (e*g. the orifice has pressure PI to it's left), and (3) Causal relations. The causal relations
capture the notion that some parameter (e.g flow) is dependent upon having a positive pressure difference
across the orifice. The causal relations are augmented by constraints which qualify the causal relation.
For example, the flow rate moaotDiiicaUy increases with respect to the size of the orifice: (Q M+ size). In
addition to the behavioral constraints y the boundary conditions are also specified (not shown in the
figure). For example, the relation-that flow monotonically increases with respect to the pressure difference
is true only if the orifice is open, that is, size > 0 . These boundary conditions are derivable from the
configuration space diagram (next section).

4, Qualitative states and Configuration Spaces. The causal relationships that describe the behavior

12

Jocatio,

has location

; greater_than

y •

P2))

size

{size M+ x-position)

ft-position M+ thula) while,
hasjthrtadmg •

Figure 4-5: Causil Explanatioo of the Tap Function

of an artifact refer so specific artifact components and relate status conditions such as position and size of
tbe components, The next step is to associate the objects and their status directly to the object geometry*
Tks may be done through Qualitative State descriptions, Qualitative states provide a vocabulary for
desmtog Hie device befaavtor. Transitions between the states in the vocabulary arc expressed in the
causal expimucn. The cjtsalitattve slates can be derived from the geometry through a special type of
lepresestatiaa called the Configuration S

Tfec cOTfipnUOT of a single object is a valor of six ptrtmeiOT, three positions and three orientations*
thai ucuqueiy dctoc tbc object's posiftro MM mwnnum m space. Now consider a mechanism with two
links., i reprcW m&vtduaJUy, the two links iavc a total of two tunes six, i.e. twelve Agrees of freedom.
However, teausc of the fact tot two ob^cts cannoi overiap in space, sane ccmfigiirtiiOEs for c^h link
boccmie dkfal. H e Ikft i repOT is also calked the no-go ztgi(m. The plot of ill go tad no-go regions for
aa> two jtaffifCiefs ©f a tttttemia u the cacfipamtiQo space plot of the mechanism fLozano-Pcrez
S3*Filiap S9JoskowiOE & AiMatJd 88]. AJ itfions within tht ccmfignntiott spm:c repwrnt
qti&iitattte %mu of tbe taa^atsm. The eittonc points of regions in the eonfiguranoQ space concs|xxicl
to the boundary c^diiM«$ en behavior,

¥m m$mplt, Use tap can late three states that are qualitatively significant: closed, partially open and
tutty open ^Figwrr 441 Tlicse states provi^ limit zsocs for qualitative sunulaboo of the causal i^twortL

.ie• tec

Structural fattatm.
ij.f the

. ,i«s of an anlfiKt A i l am visually powineoi
r tc remeve cases fcased ou surface similarity. Ttiere
'Hi?ivrjak X"*. Gentncr K5*. that, is a large snaibef of

iLdrt\ 4>, liie fejsi- icr ':udg:ag trie soundness of a
ifcai mz^r,^ mmi :^dil\ ^-ere based cm surface

• * : * « i * , ; «JL J

i/j; f.'-* ^-^^;

Structural
e.g. cvlxder xv acres^

,rai de!ermine VMi visual ic-nt.

13

tap closed partially open fully open

theta = 0, x = 0
orifice size = 0

0 < theta < 2K
0 < x < xmax

Configuration
Space

theta

Figure 4-6: The configuration space and qualitative
states of a tap

eta (opening)

cylinder

orifice

nozzle
Qoiit

Qin

Figure 4-7: A water tap

The above levels or design representation covers a wide spectrum of ways in which a design case may
be re-used.

AS. Indexing and Retrieval
Indexing precedents in memory is one of the toughest issues facing systems that reason by analogy. As

an illustration, txy answering the following question: 'Think of ten things you can do with a spoil printer
ribbon-cartridge". In answering this question, notice how you can retrieve precedents by using properties
of 'the cartridge as cues into memory. Another question: ffWho is the most famous person you ever met?*1

In answering this question you have to search memory because it is highly unlikely that you have aU
meeting-precedents indexed in decreasing levels of "famousnessM. Here is a trace of the process I
followed in order to answer the question: "Where could I have met famous people,.. Who are famous
people* actors, scientists, politicians... Who are the scientists I have met?... Where could one meet
scientists?.*. Whom did I meet at the last AAAJ conference?... Who are the famous AI people? ... and so
on." Memory has to be indexed such that precedents can be reached in many ways. In addition, the
memory is constantly reorganizing indices and making generalizations [Schank 82].

14

The work of Kolodner on the CYRUS system provides a good indexing mechanism [Kolodner 81].
CYRUS uses knowledge structures called Episodic Memory Organization Packets (EMOPS). An EMOP
can have several episodes under i t The EMOP contains generalized information characterizing its
episodes. The individual episodes are discriminated from each other by their differences. When many new
episodes are added to an EMOP, then new sub-EMOPS are created. This process eventually forms a tree
with the most generalized concept at the root with specific episodes residing at the leaves.

The EDISON system uses this discrimination tree strategy to organize devices [Dyer etal. 86]. In
EDISON, devices are organized under a general index and then discriminated by their differences.
Indexing is done on function, topology and context of use of the device. For example, a magnet and a
suction cup are both methods of semi-permanent connection and are indexed under one node, they are
however differentiated by the principles used; namely, magnetism and vacuum.

4.5.L The Chicken-n-Egg Problem of Indexing
There are ways of indexing precedents/episodes based on their characteristics. The CYRUS program

indexes episodes based on actual enumerable attributes of the episodes. In an analogical reasoning
system, we earlier argued, there needs to be a method by which precedents can be retrieved to fulfill
purposes that they were not originally intended for. Purpose-directed analogy can help explain a
precedent as performing some required function or not For example, explaining how a stapler can be
used as a nutcracker. It is not clear how to index memory to retrieve precedents for given purposes.

To find relevant cases we need to develop a case indexing mechanism which will allow one to retrieve
cases which are analogically related to the current problem. The question is: "As one can determine the
analogical relevance of a case only after it is retrieved, how does one know which case to retrieve in the
first place"? This is the chicken and egg problem of memory indexing. Surprisingly, people are very
good at this, a "property of memory that always seemed technically mysterious is its uncanny aptitude for
making metaphorical connections, of causing us to recollect things that turn out relevant only after
reflection and reformulation (Minsky)M.

One cannot go through memory searching for precedents that can be explained as serving some given
purpose. While answering questions such as "Think of all the things that can be used as a nutcracker" we
use a functional and structural description of a nutcracker to search memory with. A functional
description might be based on functions and causal relations among the different parts of the nutcracker.
Does tiiis mean that memory should be organized not only by part attributes but also by function and the
types of causal relations among the different parts? Maybe so. Here is a question that illustrates the point
ibout having causal relations as indices too: "Name five things that change color when you touch or
press them?" This question does not index on attributes but on some relation among attributes. A
technique for answering questions that require indices that do not exist in memory is required. We have
several choices: we can either re-organize memory based on a question; refonnulate the question; index
memory with many redundant indices and hope for the best; not retrieve the precedent at all; or just go
through aD the precedents trying to explain the precedents as serving some purpose.

In the preceding paragraphs we have been emphasizing the idea of being able to recognize a particular
precedent in many different ways. This ability requires a level of understanding on the part of the design
system thai will allow it to recognize (explain to itself) an artifact as capable of fulfilling some given
fraction, evea if the artifact* s original purpose was very different Here is an example that will help
illustrate this point take a moment and look around the room you are in right now, ask yourself the
following question; wWtiat items in this room could I use as an ice-cream scoop?" The performance of
this task is based oa your ability to "explain*1 how the different items you see around could be used as a
scoop. It is important that a design system be able to explain precedents as being able to serve a required
fu&ctioa. In crfer to do this the system needs to have sufficient domain knowledge. For example, a
mechanical design system has to know about force, motion and other laws of naive physics. The program
CYCLOPS uses explanations but does not generate explanations based on a given purpose. Explanations,
though complex, are pre-coded and are static.

15

Then there is generalization. Generalization plays an important role in learning engineering design. For
example: almost all engineering courses require students to work through several exercises. This is done
with the assumption that students will generalize from the specific exercises and learn the underlying
principles. The ability to generalize is linked to a learner's understanding of the situation. A system can
be said to understand, if it can explain a new situation in terms of the concepts it already possesses.
References to Explanation based learning and generalization are found in [DeJong 81, Mitchell et. al. 86]

A possible strategy for solving this problem is to use extensive cue transformation heuristics to find
cases. The hypothesis is that, cue transformation could possibly find related cases which, upon inspection,
turn out to be relevant One of the techniques of interest is question reformulation. We will see later, how
question transformation lies at the heart of innovative design.

4.6. Synthesis and Debugging
Synthesis lies at the heart of design, it is the process by which an artifact is refined or generated. The

process by which the artifact actually takes form. In order to perform a synthesis, one has to have things
to synthesize. The synthesis process involves first finding what to synthesize, then deciding how to
synthesize, followed by an evaluation and finally debugging or redesign.

4.6.1. Synthesis in the Physical Domain
In many systems, it is already known what alternatives are available for synthesis e.g. ALL-RISE

[Sriram 86] and MEET [Steinberg et.al. 86]. In goal directed systems the programs generate lists of
possible candidates for synthesis at each stage of the design process. A design problem is broken into
subfunctions and then components which can fulfill the different subfunctions are retrieved.
Conventionally, these components could be retrieved from a global database or local list attached directly
to a refinement operator. In an analogical reasoning system the synthesis alternatives could be drawn from
within and without the current design culture. Where, each subfunction provides us with a purpose or
index to search memory with. After precedent case are retrieved, parts of the cases are extrated and
synthesized into new designs. This transfer of knowledge from base to target is one of the least
investigated problem in design automation and probably the hardest Work on case based planning has
shown how plan snippets can be retrieved and incorporated in new plans. This work on snippet synthesis
has been developed in problem domains where the representation of the case and the solution is of the
same type. In mechanical design, however, decisions relating to how certain functions are achieved might
be taken at a linguistic or qualitative level. Considerable complication arises from the fact that although a
design might be verified to be correct at these levels, simulation at the physical level might fail. We have
to find ways in which the problem solver can synthesize snippets at one level of abstraction while making
sure the parts will work together m physically correct ways [Sycara & Navinchandra 89]. A further
complication is that the parts (also called case "snippets") may not be from the same domain and may
need substantial modifications becore synthesis. This is the cross-contextual synthesis problem.

4,6-2. The Cross-Contextual Snippet Synthesis Problem
Consider, for example, a biomedical engineer is given the task of designing a non-surgical method for

removing urinaiy caiculii (a calcium deposit in the urinary tract) without surgery. The requirement of
finding a non-surgical method reminds him of catheters. Tins idea is from within his domain. Now that
he has a way of reaching the caiculii, he has to find a way of grabbing it. This reminds him of kitchen
tongs and he decides to put small clips at the end of the probe. His next sub-goal is to pull out the caiculii
without scratching the insides of the urinary tract This can be done by expanding the tract. The word
"expanding" reminds him of a balloon and he decides to introduce a small balloon at the end of the proi>e.
This will aid in pulling out the caiculii. This example, taken from a real design problem, shows how
designers are able to use known cases from a variety of domains to solve a given problem. The issue is,
bow does one make a correspondence, find the relevant parts of the case, make an abstraction, and
appropriately instantiate it in a different domain.

16

The cross-contextual synthesis of design snippets could take place in the following ways:

• The physical form of a precedent case (the base) and current problem (the target) match. In
this situation one can cut out part of an old design and transfer it to another. For example, a
special gear train used in some machine could be re-used in the design of another machine.

• In some situations, even if the physical form is the same, snippets being moved from base to
target may need modifications. For example, a surgical drill may be designed based on an
industrial drill.

• Snippets may need to be adapted when being moved from base to target Adaptation may in
itself be a design problem involving the retrieval and use of cases.

• Ideas from the base may be extracted in a purpose-directed fashion and re-embodied in the
context of the target problem. We have no way of doing this automatically.

We believe we need some way in which a design "IDEA11 can be extracted and communicated from one
domain to another. In the above example, the clips at the end of the probe probably do not look like tongs
at all, but share an underlying idea. The notion of "idea" is related to work done my Mostow on the
operationalization of advice. It is also related to the work of Owens on the interpretation of abstract ideas.
We will have to extend these notions to handle advice across domains.

4.63. Synthesizing Design Plans
When solving a new design problem by analogy to a previous case, we might transfer the solution used

in the base to solve the target problem. In some cases instead of transferring the final solution from base
to target, it is better to transfer the design plan (process) from base to target. This approach was suggested
by Carbonell [Carbonell 83a, Carbonell 83b], The first method transfers the actual steps performed from
base to target This is called a Transformational analogy. The second, improved method, transfers the
reasoning process used in the base to the target problem. This is called Derivational Analogy as it uses the
underlying reasoning steps in the base and target To find a match the system first starts solving the target,
after some progress is made, the reasoning steps in the target are matched against those of the base. If the
match is found, the rest of the plan from the base is transferred to the target This method, though a
desirable capability for DA systems, needs improvements. It is not clear how far the target should be
solved before the analogy can be drawn and the rest of the plan can be transferred from the base to the
target This issue, among others, is discussed in [Kedar-Cabelli 85d, Mostow 86].

The idea of using design plans has been applied to VLSI design in a system called Argo [Huhns 87].
Argo uses a hybrid mechanism borrowing ideas from MACROPS of STRIPS [Fikes & Nilsson 71] and
the Explanation-based Generalization method [Mitchell et al. 86]. The Argo program learns operators
from solving design problems. Whenever it solves a design problem, Argo creates a tree of the rules used
in the solution. The tree is represented as a rule-dependency graph (RDG). Macro-operators are
generated by dropping the most specific rales from the RDG. By doing this many times over Argo
generates design plans that are more and more generalized. In order to leam these Marco-operators, Argo
regresses through the actual rales of the plan. In so doing, the pre- and post-conditions of the macro-
operators ©id up with variables in their patterns rather than references to specific objects.

WMk using these operators, the program starts with the most specific macro-op, failing which, it
proceeds to use more and more abstract macro-ops. As the system uses generalized operators it will be
difficult for it to recover from the wrong application of macro-ops. There is no guarantee that in all
domains MACROPS (derived the way Argo dews) will work even if all preconditions are tested before
application. However, Argo seems to run well in the domain it was built for.

17

5. Exploration and Discovery
A designer is forced to innovate whenever he is faced with a problem that cannot be solved in some

previously known way. He is forced to innovate by exploring within his current design culture or by using
ideas drawn from other domains. The process of exploration can be either syntactic or context driven,
further, it can be either goal driven or data driven.

Whenever a designer reaches a dead end in a design process he can start exploring new alternatives by
making syntactic changes (mutations) to the artifact he is designing. He may make such changes in the
hope of finding a novel combination that satisfies the given design goals. Exploration can also be done in
a data driven fashion. In this case, the designer has no explicit goals, but is trying to find some regularity,
some hidden principle in the alternatives generated by exploration. This process is called Discovery. The
discovery process does not rely on explicit goals for testing alternatives but uses heuristics to recognize
interesting patterns, conceptual clusters etc.

A designer can also explore new alternatives in ways other than making random.syntactic changes.
When faced with a design problem he can perform an analyses of the problem and then make
modifications to the artifact in direct response to the results of the analysis. In this case, the designer is
reasoning about the nature and direction of exploration and hence, is using a context-driven approach. In
this section we will examine the above issues in detail, with references to research that address these
issues.

5.1. The State Space
All artifactual design systems have a target technology. A target technology comes with a standard

representation formalism for the artifact in question. For example, in VLSI design the design
representation language consists of objects such as gates, connections, adders ttc. which are governed by
a grammar that defines how the objects may be put together.

The set of all possible, legal (with respect to the grammar) combinations of the objects is called the
state space of the design problem. For all practical purposes, the state space of the design is infinitely
large. For example, the state space for the Chess game is a number (10120) larger than the estimated
number of atoms in the universe (1075)! In order to deal with such large spaces search techniques use the
governing design constraints to prune away large parts of the search space. Techniques such as least
commitment, constraint propagation and hierarchical design have been developed for keeping the search
space manageable [Stefik 80].

If we are given a design problem with an artifact representation language and a set of design
constraints, then, the set of all combinations in the state space that satisfy the constraints is called the
solution space of the design problem. The aim of techniques such as search and constraint handling is to
find any point in the solution space. Systems that optimize over the state space have the harder task of
finding the best point in the solution space.

Two problems that one can face while searching tlie state space for a solution are: first, the possibility
that there is no solution space and that the problem is completely over-constrained; second, it is possible
that none of the solutions found are acceptable or interesting. To alleviate this problem, exploration
techniques are used to aid in looking beyond ttie current solution space. In building computer programs
that explore design spaces we need:

• to know when, and in which direction to explore*

• to resolve the conflict between trying to keep the search space small (for efficiency) and the

need to expand the search space (to explore),

• htve methods or operators with which the exploration can be conducted,

18

• ways for using knowledge to recognize promising alternatives during an exploration phase,

and,

• operators and techniques to use knowledge to change the state space itself!

One of the assumptions about exploration is that, the best design is somewhere in the state space, even
if it is not in the solution space. Let us call this the static state space assumption. It also possible to
modify the representation language in order to expand the state space itself. These, and other issues are
discussed in the following subsections.

5.2. Exploring Design Alternatives
This section presents three exploration methods and compares them. The methods are:

1. Searching for novel combinations.

2. Using Relaxation and Mutation heuristics.

3. Analytical Invention.

A design system can generate alternatives by producing legal combinations of parts in its target
technology. To avoid doing a blind search, these systems use design goals to guide the search. The
relaxation and mutation approachs are different in that they try to generate alternatives that are closely
related to the existing solutions. The idea is to mutate existing solutions or to slightly relax a governing
constraint to modify the solution. The third technique, is the most goal-directed. The idea is to use
analytical relations and equations about the design to produce new designs. This technique is a lot more
reliable, but may not be able to produce totally novel solutions like the other exploration methods.

In addition, while exploring a state space we should not miss promising alternatives. The next section
describes techniques used to evaluate alternatives generated by the exploration process. Evaluation is
particularly important because exploration techniques tend to produce too many design alternatives. If the
evaluation are slow or inadequate one may miss a truly novel design. It is as much a part of innovative
design to recognize what is innovative as it is to synthesize the design in the first place.

5JLL Searching for Novel Structural Combinations
Consider a system that can search the state space of structural combinations of a given set of objects

using rules of combination. If such a system can be given a set of criterion to test combinations with, it
can be set off on a search for solutions. Given a complex set of criteria and sufficient computer time such
programs could come up with combinations never thought of before. By following a simple generate
(complete or incremental) and test paradigm it is possible to come up with novel combinations (as long as
the static state space assumption holds).

One of the first programs in this area was DENDRAL [Buchanan & Feigenbaum 78]. The program had
the task of determining the physical structure of organic molecules. The input to the program is a mass
spectiograph sod the chemical composition of the molecule in question. Using rales about how molecules
fragment, the program first generates a set of constraints on the possible structure. It then alters a
generate and test process where it generates possible structures and tests them. The testing is done by
comparing a theoretically derived spectragrapfa with the actual spectragraph. The test is successful if a
good fit is found between the two graphs.

The generate and lest paradigm tends to be very slow. This problem is addressed by using heuristics to
search the state space.

Another program that explores structural models is a discovery system called DALTON [Langiey eLal.
87]. The goal of the program is to devise a model of chemical reactions that specifies the number of

19

molecules and atoms involved. Given a list of reactions and components of substances, the program uses
heuristic operators to search, in a depth-first fashion, through a state space of possible models. The search
proceeds by making assumptions about the number of atoms in a molecule and testing these hypotheses
against laws of conservation, combining volumes etc. Here is a trace of how DALTON figures out the
equation for the formation of water by combining hydrogen and oxygen (H and O denote molecules, h
and o denote atoms):

1. Starting with the reaction: (Hydrogen + Oxygen — > Water)

2. Assume one molecule each ((H) (O) ~> (W))

3. Guess internal structure: (single particles are denoted by h and o)

((h) (o) -> (W))

4. By conversion heuristic:

((h) (o) --> (h o)) - this result was actually arrived by the 18th century chemist DALTON

too.

5. Using a heuristic about combining volumes, the following is inferred

((H) (H) (O) - > (W) (W)) which lead to

((h) (h) (o) —> (W) (W)), - the above (#4) reaction is revised using data about combining

volumes.

6. DALTON assumes the oxygen is made of two particles as the last equation above does not

pass the conservation heuristic:

((h)(h)(oo)~>(ho)(ho))

7. The above reaction is found to be wrong by a heuristic that knows how hydrogen reacts in

some other reaction. At this point, backup occurs and a different branch is searched.

8. The search proceeds until the following structure is reached

((H) (H) (O) - > (W) (W)), which gives

((h h) (h h) (o o) - > (h h o) (h h o)), finally

O2-->2H2O

Using a very similar technique, a bridge design system, CIDS has been built [Cheyayeb 87]. The
program works with objects such as beams, arches and cables. Given a set of functional requirements, the
program searches its database for structural elements that can satisfy the given conditions. If no single
element is found, combinations of elements is considered. The program follows a beam search technique
using number of unsatisfied constraints as a measure of goodness. For example, given the problem of
spanning a wide gorge which is too long for a single arch, the program comes up with a solution in the
following manner:

The program first puts an arch and then realizes it needs a support fa* the arch (Figure 5-1). There are
several ways of supporting an arch, it finds a cable and suspends the arch's free end from the cable. Next,
it needs a place to hang the cable from, again, them are several choices: cable, arch or team. By going
through a process of incremental generation, the program solves the problem as shown in Figure 5-1.

20

Single arch too short

The program's solution

Figure 5-1: CIDS solves a short arch problem

The combinations that the program comes up with are novel.

In conclusion, one can say that innovative design systems can be built using fairly simple heuristics as
shown above. The apparent inventiveness of such systems is predicated on the fact that, the search space
is so large that a computer can stumble upon combinations never before thought of by humans. This
phenomenon holds true, not only for structural combination systems but for mil innovative design systems
that search and explore.

5 JL2. Use of Relaxations and Mutations in Exploration
Relaxation operators work on the solution spaces that are bounded by constraints and/or objectives. If a

design system has no constraints or objectives, then* any point in the state space is a solution. In effect,
the solution space is the state space. If, however, there is a set of criteria (constraints and objectives)
bounding tie solution space, then one can explore beyond the solution space only by relaxing the
bounding criteria.

There are essentially two ways a criterion can be relaxed, it can be either eliminated; or it can be
weakened. For ©cample, while preparing a job-shop schedule there are many job due-dates to be adhered
to. If a major conflict occurs, the due-date of a job could be relaxed by either pushing the date forward in
time or by reducing the penalty for delay* In order to perform such actions on criteria* the computer needs
knowledge to determine how to relax a criterion. Currently, syntactic relaxations are most widely used.
For example the coasttaint Total Deity <* 5 hours" could be changed to: 'Total delay <= 6 hours*1. Such
operations tan be done using simple arithmetic techniques. In addition to relaxing numerical constraints
we need techniques for relaxing non-numeric relationships* For example, an interior designer woridng
with a constraint on compatible colors for walls* drapes and upholstery cannot relax the constraint in a
purely syntactic fashion. One way of dealing with such constraints is to attach utilities to the different
color combiaMioiB with Wghcsi utility for the most compatible colors. Having done this, the constraint
can be relaxed or intensified by just turning the utility value either down or up. This is how CYCLOPS

21

relaxes criteria (by using compatibility matrices).

Semantic relaxation is a much harder problem. Here is an illustrative example. Consider the following
scenario: there is a city planner trying to layout a new city in a narrow valley. He decides to layout the
city as a large circle with radial roads. As he is designing the city he realizes that parts of the city will
have very steep slopes. He decides to avoid the steep slopes by using an oblong shaped city. As before, he
continues to use radial roads. In this example, the circularity constraint has been relaxed while the
essential idea of having a radially laid out city is maintained. A system that can make non-syntactic
relaxations need to have a deeper understanding of the purpose of the constraint. It will need the ability to
change the superficial form of the constraint while the essence or intent is maintained.

Mutations and Semantic Preservation. The distinction between syntactic and non-syntactic is not
very well defined in all domains. A good counterexample to the distinction is the AM system [Lenat 76].
In its search for mathematical concepts, AM essentially was operating as an automatic programming
system [Lenat 84]. It searched the state space by making mutations to mathematical concepts. It did this
by making syntactic mutations to the LISP code that represented the concepts. The program used a set of
rich heuristics for deciding when a concept is interesting or what mutator should be applied to it For
example, the COND clause statement in some piece of LISP code can be generalized by replacing an
AND by an OR which, in essence, is equivalent to relaxing the strictness of the function from a
conjunction to a disjunction.

AM searches the space looking for example of concepts. It has heuristics about what is interesting (as
far as mathematical concepts are concerned). For example the heuristic: "If there are some numbers with
unusually small number of divisors, then these numbers are worthwhile investigating." Let's see how AM
used this heuristic. Consider the following scenario: at some stage of the search, AM picks up a random
example of the concept n u i r i b e r s - w i t h - 3 - d i v i s o r s and looks for the other properties the example
possesses. For instance, the number 49 has the following properties: p e r f e c t - s q u a r e , odd-number
and n u m b e r s - w i t h - 3 - d i v i s o r s . AM then makes a hypothesis that all numbers with 3 divisors are
odd and/or perfect squares. AM tries to verify this conjecture on other examples of the base concept and
finally discovers that all numbers with 3 divisors are also perfect squares!

AM discovered new concepts by making syntactic changes to LISP code and by using heuristics to
recognize if the mutated concept is interesting or not. The program was able to discover concepts such as
prime numbers, addition, subtraction, deMorgan's laws etc. AM's success led to the belief, at least
initially, that pure syntactic mutation of concepts can yield new meaningful concepts. This rather
profound idea, unfortunately, cannot be easily applied to domains other than mathematics. The reason
AM worked was because it used LISP as an implementation language. In Lenat's own words: "the density
of worthwhile math concepts are represented in LISP that is the crucial factor.... It was only because of
the intimate relationship between LISP and Mathematics that the mutation operators turned out to yield...
useful new math concepts... (however, when applied to) generating new heuristics, the technique almost
always produced useless new heuristic rules" [Lenat 84], When AM mutated small portions of LISP code
which made up mathematical concepts, it produced new concepts. It was because LISP and mathematics
are related, that mutations on LISP code maintained the semantic equivalence between the code and the
mathematical concept it represented. However, when mutations were made on large sections of LISP code
that represented heuristics, new heuristics were rarely generated. It is harder to guarantee semantic
preservation over a representation when the representation is not semanticaUy veiy close to what it
represents.

The EURISKO program, (a successor to AM) used a frame like representation for heuristics [Lenat 83].
This approach provided a functional decomposition of the heuristic. Each function could then be
independently mutated and the semantic preservation property that AM satisfied fortuitously is recreated
by keeping mutations local to functions. This raises some important questions for innovative design. In
order to make random mutation meaningful, there should be a strong semantic equivalence between the
artifact representation language and the artifact It is very difficult to achieve this for physical artifacts.

22

Achieving Semantic Equivalence. The highest level of semantic equivalence is in the domain itself.
For example, in the blocks world domain, mutation works best if one moves actual blocks around to
change their arrangement. Each mutation gives you a new true state of the world. In building computer
models that manipulate artifacts we are dealing with two aspects: representation and reasoning. At one
end of the spectrum we could have a representation that is semantically so close to the actual domain that,
any mutation to the representation is not meaningless. On the other extreme, one could use a totally
ad-hoc representation but make use of the representation in such a way that all actions taken by the
control program maintains semantic equivalence. For example, a game program that displays bouncing
balls on a screen creates a physical scene using a mathematical representation. The program that sits
between the representation and the display device is doing the job of bridging an equivalence between a
purely mathematical representation to a simulation we can comprehend. Let us now assume we want to
mutate the balls in the bouncing balls domain. For example, a possible mutation might be to cut the balls
in half. It is not possible to cut a ball in half by throwing away half the code that generates it but, a new
function will have to written to make the change. If fact, this new function will be much harder to write
than the first one. In order to build systems that change physical artifacts in meaningful ways we need to
develop a balance of the two aspects described above: the representation and the interpretation
mechanism that works with the representation.

Modification operators. A system that portrays a mix of using a good artifact representation and a
domain specific mutation operators is a design invention system called EDISON [Dyer etal. 86]. The
system is a joining of qualitative reasoning and innovative design strategies. Mechanical devices are
defined in terms of part, spatial relations, connectivity, functionality and processes. The representation is
rich enough to allow simulation of the working of physical devices. The EDISON team has identified the
following strategies for invention: generalization, analogy and mutation, all of which rely on memory
organization, indexing and retrieval. The mutation heuristics that EDISON uses are domain specific
pieces of code that mutate in semantically correct ways. For example, the figure below shows how
EDISON starts with a standard door, mutates it by cutting it in half (a), finds that the second half has no
support (b) and adds supporting hinges (c) and finally invents the dual bar-room door.

Hinge C
ut

Figure 5-2: EDISON mutates a door

Along a different touch of the search tree, EDISON moved the hinges of the noima! door from the
sick to the top of the door and, in effect, invented a trap-door.

The CYCLOPS program completely circumvents the semantic correctness issue. It's representation is
so formal (CLP) that any mutation is guaranteed to produce semantically correct alternatives. For
example* it can produce mutations such as: faouse-on-site, house-on-stilts, stllts-on-house etc. CYCLOPS
does not make muutions/rclaxations directly to the artifact hit to the constraints and objectives that
govern the artifact solution space. In effect, criteria mutation is the dual of artifact mutation. It is for this
reason that CYCLOPS can successfully explore. The application of this idea to other artifactual domains
is yet to be trial out

23

5*3. Invention by Analysis
Bugs give us clues about ways in which a design could be improved. If we explain the bug, then we

could use the explanation to appropriately modify the design. An explanation might be in the form of
clauses or in the form of analytical equations. The actual method by which a modification is made might
be by analogy, or by a heuristic operator. The use of an operator is a special case of analogy. An operator
is usually retrieved by matching the bug with the preconditions of the operator. The matching is usually a
direct match. If the matching involves abstraction and the retrieved data is in the form of a precedent
(rather than an operator) then, an analogy is said to have been drawn.

The decision about what to debug is what gives us an index/pattern with which precedents/operators
may be retrieved and applied analogically/directly. The process of deciding what to debug is called bug
analysis or failure analysis. Unlike random mutation, analysis involves extensive use of domain
knowledge to identify a bug, find its causes and to eliminate the bug. Almost all design systems, routine
and non-routine, have some way of recovering from design failures. Earlier in this article we discussed
debugging techniques such as advice generation [Mittal 85], here are some other approaches:

Invention by analysis. The PROMPT program is a design system which debugs by performing a
qualitative analysis of design problems [Murthy & Addanki 87]. The program performs the analysis on
the equations that describe the behavior of the artifact being designed. After the qualitative analysis is
completed, modification operators are used to correct the design. One of the design examples PROMPT
has been tested on is beam design. Consider the following scenario: the program is given the task of
designing a rod which can bear high torsional loads. The program uses the specifications to retrieve a
metal rod from the database. The rod is then tested for torsional stress under the specified loading
conditions. The program finds the rod is over-stressed. The program then analyses the equation for torsion
Ts = KR4/L and decides to increase the radius of the rod. This modification, however, violates the weight
constraint of the rod. The program, through some more analysis realizes that the torsional stress borne by
the rod is higher on the periphery and lower towards the center of the rod. PROMPT finally decides to
redistribute mass from the center of the rod to the periphery. In this way, PROMPT invents a "hollow
torsional member".

PROMPT'S ability to analyze problems in such detail is based on a large knowledge base called the
"Graph of Models" [Addanki & Davis 85]. This database uses a graph structure to store physics
knowledge about principles such as: bending loads, buckling, torsion, vibration etc. Using this
knowledge, the program can reason about an artifact from first principles and can derive its behavior from
its structure.

PROMPT uses modification operators to eliminate problems. It uses two types of operators: operators
that it derives directly from the behavioral equations of the artifact and, operators that are pre-stored in the
system. Examples of derived operators are: redistribution of mass by removing mass from regions of low
stress and adding mass to high stress regions; changing material distribution and some simple shape
changes. Examples of predefined operators are: shape changing operators and topology changing
operators. Here are some examples. The figure below shows how a simple shape change in a box beam
can change stress concentrations at the edges:

24

High stress
concentration

Rounded edge
reduces stress
concentration

Figure 5-3: Example of a shape change operator

The figure below shows how a strut can be used as a structural brace:

Excess deflection

Force Force

Brace

Figure 5-4: Example of a topology change operator

The EDISON program is also capable of reasoning qualitatively about the artifacts it generates through
mutations. Using a process reasoning mechanism [Forbus 83], EDISON can simulate the workings of
physical artifacts it designs. Device simulation is used by the problem solver for verification and
discovesy. EDISON can discover constraints by simulating the movement of devices. In this way, process
simulation sores as an analysis method for recognizing design problems. For example, if EDISON
knows nothing about the way hinges constrain the movement of doors, it can leam such constraints by
placing hinges at the top and side of a door (a mutation) and leam that the door will not move when
subjected to a simulated push.

Explanation as a form of Analysis. The CYCLOPS system finds innovative solutions by generating
explanations of bugs and using the explanations to find solution strategies frcm a database of previous
design cases [Navinehandra 89]. The system performs two basic functions: dependency-tracking and
subgoal-maiching.

Dependency •tracking involves of the following steps: first, the problem is identified; second,

the problem statement is postal as a demand on the database of precedents. This means that the

database manager has to find precedents that match the demand (pattern). If no suitable

pftcedent is found, the program retrieves the causes of the problem. These causes are then

posted as demands. This process of posting demands, retrieving causes of problems and posting

the causes as new demands proceeds recursively till suitable precedents arc found.

25

Subgoal-matching. A precedent is said to be suitable with respect to a posted demand (pattern)

if it contains a design strategy which attains a goal (pattern) that matches the demand. If such a

match is found, the design strategy in the precedent is transferred to the current design problem.

If, on the other hand, a match between the demand and the goal of the precedent is not found,

the program retrieves an explanation (pre-coded) of how the design strategy in the precedent

attains the precedent's goal. An explanation is usually a trace of how the different parts of the.

overall strategy address the subgoals of the overall goal. After retrieving an explanation, the

program matches the demand (pattern) against the subgoals of the precedent strategy in order to

find a match. If no match is found, failure is announced. The advantage of using this technique

is that it takes advantage of the fact that: even if the overall goal or the surface features of a

precedent is radically different from the current problem it is possible that they might have

. common subgoals. It is for this reason that the program appears to reason analogically.

The process terminates when all the causes, goals and subgoals have been satisfied by precedents. A
trace of the solution takes the form of an AND-OR tree with precedents or parts of precedents attached to
the branches.

Other important work in innovation by analysis has been reported by Cagan [Cagan 88] and Mittal
[Wang, Mittal & Leifer 89].

Conclusion. In this subsection we reviewed three strategies for debugging designs. All three methods
are different from mutation processes in that, they perform bug analysis using domain knowledge and/or
dependency links. In general, the process of analysis is that of finding the causes of a problem. Whenever
a direct solution to a bug is not found, the causes of the problem are determined. Causes are found
through dependency links or by qualitative reasoning. The ability to analyze and to retrieve or generate
new modifications is an important ingredient of design systems.

CYCLOPS and EDISON are two systems that use both relaxation/mutation techniques coupled with
knowledge based reasoning (analogy and modifications). At this stage it is still hard to tell what is the
right way to mix mutation processes and knowledge based processes in design automation.

5,4. Cri ter ia Emergence and Serendipity Recognition
In order to innovate, it is important not only to be able to explore new alternatives but to also be able to

recognize innovative alternatives when they are generated.

The BACON program, for example, discovered new laws by detecting numerical trends. Using a depth
first control strategy, the program generated data that was checked for patterns of relationships among
variables. The AM program, like BACON, had no explicit goal to discover. It used heuristics of
interestingness to move from one interesting concept to another.

This section discusses how a reminding can be used as a way of recognizing and measuring
mtenesiingness. Alternatives generated through criteria relaxation or mutation can sometimes cause the
designer to be reminded of some previous episode. It is through such a reminding that the designer may:
recognize an opportunity, serendipitously solve some previous goal, or emerge new design criteria.

Here is a partial list of the types of remindings a new alternative can generate:

• Emergent Criteria. Consider the following scenario: a landscape designer is working on the

layout of suburban neighborhoods. Using constraints about acceptable slopes, soil conditions,

26

aspect etc. he delineates suitable regions of the landscape. He then starts locating various

housing units on the suitable sites. After completing a preliminary layout he sits back to

inspect his work. He suddenly realizes that a swampy area on the landscape provides by-far

the best possible view of a picturesque mountain range. He had overlooked this site because

his original set of goals and objectives did not take the mountain range into account. Further,

there was a constraint that all swamps are unacceptable. This scenario, shows how a designer

can emerge new criteria as he goes through the design process. (CYCLOPS emulates this

behavior).

• / will know what I want, when I see it! This is equivalent to searching for alternatives

hoping a positive reminding occurs. For example, you walk into a departmental store with the

idea of buying a birthday gift for a friend. You are not sure what you want, but you walk

around the store hoping to find something suitable.

• A new episode solves a previous problem. It's a lazy Sunday morning, you pick up the

newspaper and start scanning it not looking for any article in particular. You suddenly find

something interesting and read the full column. The reason this happens is that, the article

answers some dormant question or problem or curiosity. While working on one design

problem, it is possible that one might find a solution to some other problem. In order to

support such behavior, we need a mechanism that matches the current input episode to some

precedent in memory, where, the precedent is some previously unanswered question.

• A new state leads to the serendipitous solution of a given problem. The DAYDREAMER

program is one which displays creative behavior through the use of a mutation mechanism

and a serendipity recognition mechanism. The program takes descriptions of events in the

world as input and produces a sequence of events it will perform in an imaginary world. Hie

output represents the program's ^stream of thought", a daydream,

5 A 1 . Discovery Systems
Discovery systems are programs that search the state space not with the purpose of finding a solution

but to discover some regularity, a pattern or a concordance in the provided data. Discovery programs
generally use rattier simple statistical or numerical analysis techniques to discover new theories,
relationships etc. These systems rely on the computer's ability to search ikekssly and are not based on
any cognitive model of human thought processes.

Evea ihotigh discovery systems have a very different puipose than design innovation systems, there are
sevaal tedmiqties that we can borrow from the discovery literature. Tectaiqties include the use of
exploration heuristics, operators for exploration, and testing techniques that recognize a new discovery.
The last issue is of great importance. How does a discovery system know It has made a discovery? There
arc essentially three methods:

l.The system can have a global goal to find some pattern. For example* to find a relation

among attributes in an amorphous daiaset

27

2. The new alternatives may cause reminding of an episode from a database of past

experiences. If this database has knowledge from a wide range of sources, then it is possible

that a reminding will help recognize an interesting solution. A good example is the case of

the cardiologist who, in the process of testing new medicines for hypertension found that

one of the drugs, minoxidil, had an annoying side effect. It caused patients to grow

excessive hair. If the doctor was only interested in cardiology he would not have have

realized that he had accidentally discovered a wonder drug for baldness.

3. The new alternative is better than previous alternatives. CYCLOPS uses pareto-optimality

to evaluate alternatives in relation to previous designs.

Discovery by Bacon, Bacon is a quantitative discovery system that finds mathematical relations
between given data sets. For example, Bacon can discover Kepler's third law by working with a given
dataset of distances (d) of the different plants to the sun with their corresponding time periods (p). The
goal of the program is to find a relation f such that f(p,d) = constant. Let us assume the dataset has both p
and d increasing monotonically (shown below, adapted from [Walker 87]):

Planet p d

Mercury 1 1
Venus 8 4
Earth 27 9

As the values increase monotonically, a certain heuristic suggests the term (d/p) be calculated. On
seeing that d and (d/p) vary inversely, another heuristic suggests multiplying the two to give (d2/p), by
following such heuristics the program finally finds (d^p2) to be constant Which is Kepler's third law!
Bacon's approach is interesting but it is limited in its inability to handle noisy data. Further, it cannot
handle irrelevant data, and definitely not irrelevant noisy data.

Patterns in medical data. Another data driven discovery system is a medical data analyzer called RX
([Blum 82]). RX works from a database of patient information and tries to find medical relations between
the attributes. It uses statistical techniques and medical domain knowledge in the process. The program
uses cross-correlation to hypothesize relations. It then checks the hypothesis for statistical significance.
RX, unlike BACON, has some medical domain knowledge that it uses to build new relations. Medical
relations discovered by RX are added into the program's knowledge base and can be used in future
iterations.

Some discovery systems use knowledge more extensively, they are not purely data-driven. For example
AM/EURISKO [Lenat 76] and DAYDREAMER [Muller 87] are examples of systems that innovate by
both syntactic searching and intelligent use of knowledge and heuristics. These systems are discussed in
the following subsections.

CYCLOPS uses a database of precedents to recognize designs as being interesting. After a design is
found to be pareto optimal it is passed onto the precedent's database for further scrutiny. If a design has
certain characteristics that match those of a precedent, then the precedent is retrieved. If the precedent has
favorable or unfavorable effects associated with it, these effects are passed on to the design alternative in
the form of a new criterion. This is how CYCLOPS emerges new criteria during it's exploration of the
design state space.

28

5.4.2. Serendipty Recognition
Serendipity recognition in DAYDREAMER. The serendipity mechanism enables the accidental

achievement of goals or subgoals. The mechanism responds to states, actions, physical objects and
retrieved episodes. Consider the following scenario of DAYDREAMER operating in the domain of
social relations: DAYDREAMER is female and is a great fan of the movie star Harrison Ford. One of the
goals of DAYDREAMER is to date Mr Ford. The program is then given an input state: "Harrison Ford is
at the Nuart Theater". In response to this input, the serendipity mechanism recognizes that the episode is
relevant to its goal to date Mr Ford. It then starts working through the subgoals of the top level goal. A
subgoal of the top level goal is meeting Mr Ford; a subgoal of meeting Mr. Ford is having a conversation
with Mm; a subgoal of having a conversation is being in proximity to Mr. Ford so that it is possible to
talk; a subgoal of being in proximity to a person is being at the same location as the person; a subgoal of
being at the same location is knowing where the person currently is; and as Mr. Ford is at the Nuart
theater, DAYDREAMER decides to go there!

DAYDREAMER plans its dreams with the use of rules that are derived from other episodes. The
program uses a pre-compiled network of rules. The network is essentially a graph where any two rules
are connected if the goal of one rule matches the subgoal of another. The program starts with the new
state pattern and the goal pattern. It then identifies two rules, one which produces the goal state and
another which corresponds to the input state. It then, finds a path in the rule graph between the two niles.
This kind of search is called intersection search [Quillian 68] and is, in essence, a proof mechanism. In
order to complete the serendipity, DAYDREAMER verifies the path by checking that each subgoal
unifies with the antecedent goal of the rule that it is connected to. All unbound variables (if any) are
collected and their values can be retrieved from the associated episodes. In this way, new objects or
situations from other episodes get used in the dreams the program generates.

The serendipity mechanism in DAYDREAMER provides us with a method for finding a plan for
solving a design problem by using a retrieved precedent/episode. The process of finding the connection
will lead to the use of several other episodes. One problem with this approach is the need for a good
verification technique. Sometimes, the connection between a problem and its solution might follow a path
that is bizarre and impractical. For example, a design system that is trying to place a house on a swamp
might decide to suspend the house with balloons. An innovative idea, but impractical. One way to check
for impracticality is to search the episodic database to find any connection between the generated plan and
an unfavorable condition. For example, after generating the balloon solution, the program starts searching
the rule graph till it finds a path to a problem. For example, it might find that balloons are unstable in
wind, and that the site is windy and that unstable houses are not acceptable. In this way we make the
Mclosed-worldM assumption that, if none of the rules in the graph can find a problem with the generated
design, then it is acceptable. CYCLOPS uses this "closed-world" assumption to verify analogies that it
draws. CYCLOPS also reasons by matching subgoals to base and target It's subgoal matching
mechanism is given below:

SubgoalHnurtcliiiig* A precedent is said to be suitable with respect to a posted demand (pattern) if it
contains a design strategy which attains a got! (pattern) that matches the demand. If such a match is
found, the design strategy m the precedent is transferred to the current design problem. If, on the oilier
hand, a match between the demand and the goal of the precedent is not found* the program retrieves an
explanation (pre-coded) of how the design strategy in the precedent attains the precedent's goal. An
explanation is usually a trace of how the different parts of the overall strategy address the subgoals of the
overall goal. After retrieving an explanation* the program matches the demand (pattern) against the
subgoais of the precedent strategy in order to find a match. If no match is found, failure is announced.
The advantage of using this technique is that it takes advantage of the fact that even if the OYCUJI goal or
the surface features of a precedent is radically different from the current problem it is possible that they
might have common subgotls* It is for this reason that the program appears to reason analogically*

29

5.4.3. Learning from Experience
This section has been about emergent criteria and serendipity recognition. The approaches discussed

are based on a cognitive model of behavior . The idea of storing experiences in the form of episodes,
rather than abstract operators, is closer to a cognitive model than an operator based algorithm.

We talked about design systems discovering new ideas/artifacts and finding innovative solutions
serendipitously. A question that one may ask about design systems that have this kind of behavior is: "If
the program already has the episode in memory, then how is it's use of the episode is an accident If the
program has access to it, then why can't it just use it?" There are two responses to this question:

Database size. Oftentimes the episodic memory is so large that testing all episodes against the

current problem is impossible. The main task of controlling programs is to generate the right

index to retrieve precedents that may be useful. Sometimes a problem just cannot be solved by

episodes that first come to mind. One might solve such problems after thinking about it for

some time, or just taking a walk in the park. "Consider an inventor who is blocked in the task of

creating a new kind of door, one that allows people through either side simultaneously. The

inventor decides to 'quit thinking' about the problem and take a walk. While walking along a

river, the inventor sees a water wheel. Suddenly a solution comes to mind: the revolving

door The water could not be accessed directly..." [Dyer etal. 86]. If the designer had tried to

scan his memory for all the episodes he probably would have never found the right episode.

Learning to use new criteria. Before starting a design process a designer might list down a set

of criteria. These criteria represent what the designer thinks is important, prior to the design

process. During the process of design new criteria might emerge through a reminding process.

One might recognize problems in the design which had gone un-noticed earlier. After a set of

criteria are emerged and used, they become part of the designer's experience. The next time the

designer comes around to a similar problem his list of prior criteria will be longer and he will

appear to have more expertise. The prior criteria for a design problem is dictated by the design

culture one is operating in. As one gains experience in designing and one solves problems by -

analogy to episodes outside the current design culture, the new episodes become part of the

design culture. For example, the design of a structural member by analogy to the structure of

honeycombs was a very innovative idea when it was first proposed. Today however, the

honeycomb structure is a part of the mechanical engineer's design culture and is mentioned in

Introductory engineering design text books. Let us try an experiment to show how criteria

emergence is helpful. Imagine yourself to be a designer who has the task of designing a hot/cold

water tap. Think up some criteria that you might impose on the design. Write them down on a

piece of papa1 before you continue. ...-Pause. I am sure you came up with a few good

criteria, here is an excerpt from the list of an expert designer

• Maximum throughput 20 Vmin at 20 bar pressure
• to fit household basins, convertible for wall fitting
• light operation (for children)
• self flushing (no deposits)
• trade mark prominently displayed
• toadfe/tacte not heat ova- 35C, even under prolonged use

30

• no sharp edges
• easy maintenance, can use standard spare parts
• ... and so on....

The expert's list is longer and has some concerns that you probably missed. Interestingly

however, many of the expert's criteria seem to be fairly obvious: surely you want the tap to be

operable by children; surely no sharp edges; surely it should be maintainable.... These

requirements are not alien to use but we did not invoke them because they just were not

indexed right. However, they are now!

31

6, Creativity
Creativity can be defined as the production of something - a theory, an artifact, or a painting - which in

new and is useful in some way. In the previous sections of this report we examined a definition of
innovation that was based on the notion of a design culture. Creativity can be viewed as including all
innovation is and something more. A design seems creative if it is radically different from past designs, is
highly imaginative, or artistic. Philosophers and psychologists have studied creativity for many years.
Much of this work has been aimed at describing the symptoms or end products of a hitherto unseen
process which has come to be called illumination. Illumination is the sudden idea formation that appears
to take place during a creative spell. Namely, the "eureka" phenomenon.

6.1. Background
The notion of illumination was introduced by Wallas [Wallas 26]. His model of creativity had the

following steps:

1. preparation (preliminary work)

2. incubation (allowing some time for the ideas to sink in)

3. illumination

4. verification (testing)

This basic model was expanded and modified over the years [Rossman 31, Osborn 53].

During the 1950*8 and 1960's a lot of interest was generated in using models of creativity to develop
methods for improving creativity of people in the workplace. Two popular techniques Brainstorming and
Synectics were developed.

Osbom [Osbom 53] extended Wallas' model of creativity to a seven step process:

1. Orientation: Pointing up the problem

2. Preparation: Gathering pertinent data

3. Analysis: Breaking down the relevant material

4. Ideation: Piling up alternatives by way of ideas

5. Incubation: Letting upt to invite illumination

6. Synthesis: Putting the pieces together

7. Evaluation: Judging the resulting ideas

Emerging from such models of creativity, are techniques to aid in human creative processes. Much of
the work in AI approaches to innovation and creativity are based, in principle, on such techniques.

Here are some of the major characteristics of such techniques:

• Use of Analogy, the bringing together of seemingly disparate ideas.

• Asking the right questions and the use of techniques for transforming questions in interesting
ways.

32

• Generating lots and lots of alternatives and throwing away the bad ones.

6J2. Analogy
The creativity literature places a lot of importance on the role of analogy and metaphor in problem

solving. For example, Synectics [Gordon 61] uses analogies to solve problems. The Synectics process
involves: making the strange familiar and making the familiar strange. Simply put, it involves making
connections between the target problem and base concepts from conceptually distant parts of memory.
To make the familiar strange is to distort, invert, or mutate the everyday ways of looking and responding
to problems in an attempt to cause an useful reminding. Gordon has identified four mechanisms for
making the familiar strange, each metaphorical in character:

• Personal Analogy. Personal identification with the elements of a problem releases the

individual from viewing the problem in terms of its previously analyzed elements. For

example, a chemist might imagine himself to be a molecule, permitting himself to be pushed

and pulled by other molecules.

• Direct Analogy. This involves the direct comparison of parallel facts, knowledge, or

technology. For example, Sir March Brunei solved the problem of underground construction

by watching a shipworm tunneling into timber. The wonn constructed a tube for itself as it

moved forward, this led to the classical notion of caissons. To automate such an analogy, one

needs to have a good way of representing processes qualitatively.

• Symbolic Analogy. Symbolic Analogy uses objective and impersonal images to describe a

problem. It is not clear yet how to automate the use of imagery and visualization in problem

solving.

• Fantasy Analog}. This is based on expressing one's wish about what one would like to have.

A part of the Synectics Approach is to ask the question, "How do we in our wildest fantasies

desire the artifact to do?M

Techniques such as Synectics are aimed at helping people be creative by inducing them to take
different views of a problem and by drawing analogies. In order to make interesting analogies one needs
to retrieve the right precedents. For which, one needs the right index into memory, such indices come
from asking the right questions.

6 3 . Asking the Right Questions
Questions arc the cues into memory. They provide the Index/pattern to search memory with. It is

through the process of posing the right questions and redefining them that one can retrieve useful
precedents*

Several techniques for posing questions have been developed* Here are a few:

Wishful Thiaking. fRickards 74] To fancifully think about some goal The questions may be of the
following forms:

33

"What I would really like to be able to do is
"If I could break all the constraints

Boundary Examinations. [Rickards 74] Starting with a statement of the problem, one picks up random
phrases in the statement and asks why? For example, the statement:

How to develop the motorway network to allow for gradual replacement of rail by road

transport as a consequence of relative lack of flexibility of the former?

is converted into the following questions (with respect to the underlined phrases):

• develop: Why develop this at all? Are we solving the right problem?

• motorway replacement: Why motorways only? Why a Network?

• gradual replacement Why only gradual? Why replace? Why not append?

• lack of flexibility: Why is rail not flexible? Can it be made flexible?

Questions such as these give us many new ideas as they produce indices to precedents not obvious with
respect to the original statement of the problem.

Creativity by brainstorming. [Osborn 53] Osborn suggests that brainstorming is improved by asking
questions about the problem. The purpose of questions is to spur ideation. Here is a genetic list of
questions one can ask about almost any problem:

• Can it be put to other uses? Are there new ways to use?
• Can I adapt? What else is like this?
• Modify? New twist?
• Magnify? Minify? Longer? Larger? Condensed?
• Substitute? Other ingredients? Other power source?
• Redefine? What are the causes and effects? Can rearrange?
• Can I reverse? Turn upside down?
• Combine? Blend? Alloy?

Divergent Thinking. [Guilford 59] Divergent thinking involves deliberate attempts to not follow the
beaten path. It requires the ability to rapidly produce ideas. This is related to another strain of thinking
called Ideonomy (Wall St. Journal, Junl, 1987). Ideonomy is the science of laws of ideas and of the
application of such laws to the generation of all possible ideas in connection with any subject, idea or
thing. It is by mixing lists of natural phenomena and fallacies, for instance, that many questions can be
generated. The inventor of Ideonomy, Mr. Gunkel, has developed a computer program that helps spew
out combinations of ideas.

The underlying principle of all these techniques is that good ideas can be generated by having lots of
ideas and throwing away the bad ones. Interestingly, many of the techniques use syntactic methods for
generating ideas. For example, boundary examination and ideonomy use purely syntactic reformulation of
the problem or the questions related to the problem.

This brings us back to our earlier discussion about Exploration and Discovery in design. Earlier in this
report we discussal the role of artifact mutation as a means of discovery. Here we take this notion further
by suggesting idea mutation and question mutation as methods for exploring ideas. In terms of design,
idea mutation is equivalent to making mutations to the generic parts that are synthesized into complete
designs, and question mutation is equivalent to mutating the specifications and design problem statement.

There are few systems that Implement some techniques of question formulation and reformulation
discussed above. Such systems, though successful, are just scratching the surface of the problem of

34

understanding human creativity.

Question Transformation in CYRUS. The program CYRUS [Kolodner 80] used interesting
techniques of question reformulation to search memory with. It is a question answering program that
draws on an episodic knowledge base.

The CYRUS program's memory consisted of all news stories about one person, Cyrus Vance. It could
answer questions about the news stories. For example, the question (adapted from [Schank 86]):

Has your (Cyrus Vance) wife ever met Mrs Begin?

As CYRUS does not have information in memory to answer the above question, it has to transform the
question using some domain knowledge.

Original Question (Ql): Has your wife ever met Mrs. Begin?

(Q2): Where would they have met?

(Q3): Under what circumstances do diplomat's wives meet?

(Q4): Under what circumstances do diplomats meet?

(A4): On state visits to each other's countries and at international conferences.

(A3): When they accompany their husbands on these visits.

(Q3a): When did Vance go to Israel?

(Q3b): When did Begin to to the US.?

(A3a/A3b): various dates can be retrieved from memory.

(Q3c): Did tbeir wives accompany them on any of these trips?

(A3c): A few trips where this happened is found.

(Q2a): During what pait of a trip would the wives have met?

(Ala): During a stale dkmer.

(Al): Probably on May 24,1977, ai a state dmasr in Jerusalem. Roth wives were present They probably
met

The question reformulation process converts an tin-answerable question into a series of questions that
are more relevant to the data in memory,

CYRUS'S memory, as we discussed earlier in this report, is in the form of a network of episodes
discriminated by their differences. The difference is with respect to the direct attributes of the episodes.
Attributes such as topic, participants, location etc. In the future we wll see indexing schemes based on
relationships among attributes. Such organizations will be able to answer indirect questions such as:
"What are all the things in the room that can be used as an ice-cream-scoop?"

Demand Posting in CYCLOPS. CYCLOPS uses demaiicl posting as t means of questioning its
database of precedents* H e progmm starts by posting the top-level goal, it then keeps reformulating the
question by drawing upon the causes of the problem. For example, in its attempt to solve the problem of
erosion caused by terracing t steep housing site, it uses the following questions:

(QI): Cao 1 think of seme way of reducing the erosion?

35

(Qla): What are the causes of erosion?

(Ala): Terracing a steep slope causes erosion.

(Q2): Can I think of some way of not having to terrace the ground?

(Q2a): Why is the ground terraced?

(A2a): Because a house cannot be put on steep ground.

(Q3): Can I think of some way of not having the house on the ground?

(A3): Try putting the house on stilts.

CYCLOPS uses a tree-like structure to keep track of the questions and precedents it uses along the way.

Question tweaking in SWALE. SWALE is a understanding system that creatively retrieves and uses
precedents [Schank 86]. Given a story, the program starts by checking if the story fits memory, if not, it
detects an anomaly, and then searches for and Explanation Pattern2 (XP) that can explain the anomaly.
Finally it attempts to apply the retrieved XPs. If the XP is not applicable, SWALE tweaks the XP to make
it applicable. Finally, if an explanation is generated, it is integrated into memory and generalized.

Consider the following scenario:

Input Episode: Swale^, a successful 3-year old race horse, was found dead in his stall a week

after winning the Belmont Stakes race.

SWALE starts by trying to detect anomalies. It retrieves a RACE-HORSE script [Schank & Abelson
77] from memory which says that horses usually die many years after they retire from racing. SWALE
finds a temporal anomaly. When the program detects and anomaly, it starts searching for an explanation
pattern (XP) which can explain the anomaly. This is similar to how CYCLOPS uses precedents to
recognize design problems.

In order to be creative, SWALE searches both routinely and unusually. An unusual search is based on
using unusual features of the anomaly as indices into memory. For example, the fact that Swale the
racehorse is successful and young is used to find XPs with the index: "death of the successful and young."
The following XP is retrieved:

The Jim Fixx XP:
1. Joggers jog a lot.
2. Jogging results in physical exhaustion because jogging is a kind of exertion.
3. Exertion results in exhaustion.
4. Physical exhaustion coupled with a heart defect can cause a heart attack.
5. Heart attack can cause death.

The above statements make up the belief of the XP. These statements, like those in CYCLOPS'S
precedents, represent causation. SWALE however, uses many types of causation other than just physical-
causation. For example: social-causation, emotional-causation and economic-causation.

After an XP is retrieved, certain applicability checks are made. These checks are in the XP. For

2 A precedent

3Ttie pro^mra is called SWALE and the horse it retsoos about is named Swmlc

36

example, in trying to apply the Jim Fixx XP (above), the program asks itself the following question:
"Could Swale be a Jogger?" In order to answer this question the program searches its database of XPs and
scripts related to Swale, race-horses in general, and generalizations of the class: race-horses. If the
program finds a matching XP, the XP is used directly. If, on the other hand, an XP is rejected due to a
near-miss, the XP is then considered for tweaking. Several tweaking strategies are available. SWALE has
heuristics for tweaking. FOr example, when trying to determine if Swale could be a jogger, the program
finds a script which attributes jogging only to humans. The theme "jogging" is not appropriate for hoses.
In order to tweak the Jim Fixx XP, SWALE uses the heuristic: "Substitute another theme which is more
appropriate for the actor." Given the following faulty theme:

The faulty theme:[ACTOR: SWALE
SCRIPT: JOGGING
ROLE: ACTOR]

the program retrieves the belief labeled JOGGING, which is as follows:

JOGGING: [ACTION: DESCRIPTION
ACTOR: SWALE
ACTION: MOVE-BODY-PART
PART: FEET

SPEED: FAST]

Next, the program retrieves several themes Swale participates in:

THEME1: Swale often has ACTOR role in the HORSE-RACE theme.

THEME2: Swale often has ACTOR role in the EAT-OATS theme.

THEMES: Swale often has ACTOR role in the SLEEP theme,

etc..
The program then tries to substitute themes and asks questions of the new themes. For example, it finds

a match between the RUN belief (above) and the racing belief in the HORSE-RACE theme. This is
because it finds a match between the JOGGING script and the RUN script. Finally, the program
conjectures that Swale probably died of exhaustion as described in the retrieved Jim Fixx XP. In order to
complete the train of reasoning, SWALE goes on to asking the next question: "Could Swale have had a
heart defect?*' This question, in turn, is answered by finding XPs as described above.

It is through the process of asking direct and indirect questions, followed by tweaking, that SWALE
can creatively explain situations, SWALE is the only system that explicitly uses heuristics to adapt
precedents to problems at band.

Schank suggests several heuristics for question transformation and XP tweaking. Here are some
examples (adapted from [Scfaank 86]):

Question Transformation

Transform the original question about why X occurred into: How can I correctly predict the

outcome of situations such as X» next time?

To find the answer to a question, transform it by relaxing the set membership constraints on the

objects in the question.

37

To determine if a goal is anomalous, change the initial question into one whose intent is to find

out if the goal is governed by a belief that the actor might have.

XP Tweaking

If a condition is clearly false, ignore it temporarily, make it true later if the rest works out.

If one is reminded, while tweaking, of a related fact, suspend tweaking and apply the fact to the

original question.

If a rule applies in a given situation, try reversing its actors and objects and see what remindings

occur.

6.4, Conclusions on Creativity
What do we have to learn form the creativity literature? Here are a few observations:

• "Creativity is not such a mysterious process. It depends upon having a stock set of
explanations and some heuristics for finding them at the right time, and for tweaking them
after they have been found... Search and adaptation of patterns are two of the biggest
problems facing AIn [Schank 86].

• Asking questions as indices into memory is crucial.

• The use of syntactic methods to transform questions can lead to remindings of episodes that
solve problems or explain anomalies in creative ways.

• The indexing mechanism used determines how easy or how difficult it is to retrieve a
precedent at the right time.

• Indexing depends on the representation used for precedents. We have yet to come up with a
good representation scheme that will allow easy cross-contextual remindings.

• Is it possible to come up with heuristics which help adapt precedents? How can one learn
such heuristics?

38

References

[Addanki & Davis 85]
Addanki, S. & Davis, Ernst S.
A Representation for Complex Domains.
In Proceedings of the Ninth International Joint Conference on Artificial Intelligence.

1985.

[Blum 82] Blum, R.L.
Discovery and Representation of Causal Relationships from a Large Time-Oriented

Clinical Database: The RX Project.
In Lindberg, D.A.B. (editor), Medical Informatics, Volume 19. Springer-Verlag, New

York, 1982.

[Bourne et.al. 89] Bourne, D., D. Navinchandra, R. Ramaswamy.
Relating Tolerances and Kinematic Behavior.
In J. Gero (editor), AI in Design. Computational Mechanics, U.K., 1989.

[Buchanan & Feigenbaum 78]
Buchanan, B.G., E.A. Fiegenbaum.
Dendral and Meta-Dendral: Their Applications Dimension.
Artificial Intelligence 11 (1):5-24,1978.

[Cagan 88] m Cagan, J. and Agogino, A. M.
lstPRINCE: Innovative Design from First Principles.
In 7th National Conference on Artificial Intelligence. AAAI-88, Minneapolis, MN,

August 21-26,1988.

[CarbooeH 83a] Carbonell, J. G.
Learning by Analogy: Formulating and Generalizing Plans from Past Experience.
In Michalski, R. S., J. G. Carbonell, T. M. Mitchell (editor), Machine Learning: An

Artificial Intelligence Approach. Tioga Press, Palo Alto, CA, 1983.

[Carbonell 83b] Carbonell, J. G.
Derivational Analogy and its role in Problem Solving.
In Proceedings ofAAAI-83, pages 64-69. 1983.

fCarbooell 86] Carbonell, J. G.
Derivational Analogy: A Theory of Reconstructive Problem Solving and Expertise

Acquisition,
In Michalski, R. S., J. G. Carbonell, T. M. Mitchell (editor), Machine Learning: An

Artificial Intelligence Approach Vol 2. Morgan Kaufman, 1986.

[Oieyiyeb 87] Cheyayeb, F.
A Framework for Engineering Knowledge Representation and Problem Solving.
PhD thesis, DepL of Civil Engineering, M.I.T., Cambridge, MA, May, 1987.

[DeJong 81] DeJong, G.
Generalizations basal on explanations.
In Proceedings of the Seventh IJCAI, pages 67-69. Morgan Kaufmaan, 198L

[DIXOQ 651 Dixon, J.R.
Design Engineering: Inventiveness, Analysis and Decision Making.
McGraw Hill, 1965.

39

[Dyer eLal. 86] Dyer M.G., M. Flowers, J. Hodges.
EDISON: An Engineering Design Invention System Operating Naively.
In Proceedings of the First International Conference on Applicatoins ofAI to

Engineering, April, 1986.

[Evans 68] Evans, T. G.
A Program for the Solution of a Class of Geometric Analogy Intelligence Test

Questions.
In Minsky, M. (editor), Semantic Information Processing. MTT Press, Cambridge,

1968.

[Faltings 89] Faltings, B.
Qualitative Kinematics in Mechanisms.
Artificial Intelligence , Expected in 1989.

(Pikes &Nilsson 71]
Fikes R.E., NJ. Nilsson.
STRIPS: A new approach to the application of theorem proving to problem solving.
Artificial Intelligence 2:189-208, 197L

[Forbus 83] Forbus, K.
Qualitative Process Theory.
Artificial Intelligence 24:85-168, 1983.

[Forbus 84] Forbus, K.
Qualitative Process Theory.
Artificial Intelligence 24,1984.

[Forbus & Gentner 86]
Forbus, K.D., D. Gentner.
Learning Physical Domains: Toward a Theoretical Framework.
In Michalski, R.SM J.G. Carbonell, T.M. Mitchell (editor), Machine Learning: An

Artificial Intelligence Approach, Vol 2. Morgan Kaufmann, 1986.

[Gentner 83] Gentner, D.
Structure Mapping: A Theoretical Framework for Analogy.
Cognitive Science 7,1983.

[Centner 85] Gentner, D. and Landers, R.
Analogical reminding: A good match is hard to find.
In Proceedings of the International Conference on Systems, Man and Cybernetics,

pages 607-613. Tucson, AZ., 1985.

[Gentner & Toupin 86]
Gentner, D., C. Toupin.
Systematicity and Surface Similarity in the Development of Analogy.
Cognitive Science 10:277-300, 1986.

[Gordon 61] Gordon W.J.
Synectics: The development of Creative Capacity,
Harper & Row, Publishers, NY, 1961.

fGross 86] Gross, MJD.
Design as Exploring Constraints.
PhD thesis, M.I.T., 1986.

40

[Guilford 59]

[Hammond 86]

[Holyoak 87]

[Huhns 87]

Guilford, I P .
Creativity.
American Psychologist (5):444-454, 1959.

Hammond, K J .
CHEF: A model of case-based planning.
In Proceedings ofAAAI-86, pages 267-271. Philadelphia, PA, 1986.

Holyoak, KJ., and Koh, K.
Surface and structural similarity in analogical transfer.
Memory and Cognition 15:332-340,1987.

Huhns MJL, R.D. Acosta.
Argo: An Analogical Reasoning System for Solving Design Problems.
Technical Report AI/CAD-092-87, Microelectronic and Computer Technology

Corporation, March, 1987.

[Joskowicz & Addanki 88]
Joskowicz, L., S. Addanki.
From Kinematics to Shape: An Approach to Innovative Design.
In Proceedings of the Seventh National Conference on Artificial Intelligence, pages

347-352. 1988.

[Kedar-Cabelli 85a]
Kedar-Cabelli S. T.
Purpose-Directed Analogy.
In Proceedings of the Cognitive Science Society Conference. August, 1985.

[Kedar-Cabelli 85b]
Kedar-Cabelli, ST.
Analogy - From a unified perspective.
Technical Report ML-TR-3, Department of Computer Science, Rutgers University,

December, 1985.

[Kedar-Cabelli 85c]
Kedar-Cabelli, S.T.
Purpose-Directed Analogy.
In Proceedings of the Cognitive Science Society Conference. 1985.

85d]
Kedar-Cabelli, S X
Analogy - From a Unified Perspective.
Technical Report ML-TR-3, Rutgers Univenstiy, 1985.

Kling,ILE»
A Paradigm for Reasoning by Analogy.
Artificial Intelligence 2(2), 1971,

Kolodner, J JL
Retrieval and organiiatio'iml strategies in conceptual memory: A computer model.
PhD thesis, Yale University, 1980,

Kolodner, J JL
Organization and retrieval in a conceptual memory for events.
In Proceedings of the Seventh International Mini Conference on Artificial Intelligence,

1981.

[KIing71]

pColodner 80]

[Kolodnar 81]

41

[Kolodner 88] Kolodner, J.L.
Retrieving Events from a Case Memory: A Parallel Implementation.
In Proceedings of the 1988 Case-Based Reasoning Workshop, pages 233-249.

Clearwater, Fla., 1988.

[Kuipers 86] Kuipers, BJ .
Qualitative Simulation.
Aritifial Intelligence 29:289-338,1986.

[Langley etal. 87] Langley, P., H.A. Simon, GJL. Bradshaw, J.M. Zytkow.
Scientific Discovery - Computational Explorations of the Creative Processes.
The MIT Press, Cambridge, MA, 1987.

[Lenat 76] Lenat, D.B.
AM: An artificial intelligence approach to discovery in mathematics as heuristic

search.
PhD thesis, Stanford University, STAN-CS-76-570,1976.

[Lenat 83] Lenat, D.B.
EURISKO: a program that learns new heuristics and domain concepts, The nature of

Heuristics HI: program design and results.
Artificial Intelligence 21(1,2), 1983.

[Lenat 84] Lenat, D.B.
Why AM and EURISKO Appear to Work.
Artificial Intelligence 24:269-294,1984.

[Lozano-Perez 83]Lozano-Perez, T.
Spatial Planning: A Configuration Space Approach.
IEEE Transactions on Computers C-32(2), 1983.

[Mitchell eL al. 86]
Mitchell, T.M., R. ML Keller, S. T. Kedar-CabellL
Explanation-Based Generalization: A Unifying View.
Machine Learning 1(1), 1986.

[Mittal 85] Mittal, S., Dym, C and Morjaria, M.
PRIDE: An Expert System for the Design of Paper Handling Systems.
In Dym, C. (editor), Applications of Knowledge-Based Systems to Engineering

Analysis and Design* pages 99-116. American Society of Mechanical Engineers,
1985.

[Mostow 85] Mostow, J.
Toward Better Models Of The Design Process.
The AI Magazine , Spring, 1985.

[Mostow 86] Mostow, J.
Why are design derivations hard to replay?
In Mitchell T.ML, J.G. Carbonell, R.S. Michalski (editor), Machine Learning - A guide

to current research. Kiuwer Publishing, 1986.

[Muller87J MulterfE.T.
Daydreaming and Computation: A Computer Model of Everyday Creativity, Learning,

and Emotions in the Human Stream of Thought.
PhD thesis, Univ. of California, Los Angeles, UCLA-AI-87-8, February, 1987.

42

[Murthy & Addanki 87]
Murthy, S.S., S. Addanki.
PROMPT: An Innovative Design Tool.
In Proceedings of the sixth national conference on artificial intelligence, pages

637-642. 1987.

[Navinchandra 89]
Navinchandra, D.
Exploration and Innovation in Design.
Springer Verlag, Expected in 1989.

[Nilsson 80] Nilsson, N J .
Principles of Artificial Intelligence.
Tioga, Palo Alto, CA, 1980.

[Osborn 53] Osborn, A. F.
Applied Imagination.
Charles Scribner's Sons, New York, 1953.

[Pahl & Beitz 84] Pafal, G., W. Beitz.
Engineering Design.
The Design Council, Springer-Verlag, 1984.

[Quillian 68] Quillian, R.M.
Semantic Memory.
In Minsky, M. (editor), Semantic Information Processing. MJLT. Press, Cambridge,

1968.

[Rickards 74] Rickards, T.
Problem Solving through Creative Analysis.
Wiley, NY, 1974.

[Rosxman 31] Rossman, J.
The Psychology of the Inventor.
Inventor's Publishing, Washington, 1931.

[Schank82] Schank,R.C
Dynamic Memory: A Theory of reminding and learning in computers and people.
Cambridge University Press, 1982.

[Scfaank 86] Scfaank, R.C.
Explanation Patterns: Understanding Mechanically and Creatively.
Lawrence Eribaum Associates, Hillsdale, NJ, 1986.

[Schank & Abelson 77]
Schank, R.C., R.P. AbelsoE.
Scripts, Plans* Goals, and Understanding.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1977.

[Sriram 86] Srirarn, D.
Knowledge-Based Approaches for Structural Design.
PhD thesis, Carnegie Mellon University, 1986.

[Stefik 80] Stefik, M.
Planning with Constraints*
PhD thesis, Stanford University, STAN-CS-80-784,1980.

43

[Steinberg etal. 86]
Steinberg L., N. Langrana, T. Mitchell, J. Mostow, C. Tong.
A Domain Independent Model of Knowledge-Based Design.
Technical Report AI/VLSI Project Working Paper No. 33, Rutgers Universtiy, March,

1986.

[Sycara 87] Sycara, K.
Resolving Adversarial Conflicts: An Approach Integrating Case-Based and Analytic

Methods.
PhD thesis, School of Information and Computer Science Georgia Institute of

Technology, 1987.

[Sycara & Navinchandra 89]
Sycara, K., D. Navinchandra.
Integrating Case-Based Reasoning and Qualitative Reasoning in Design.
In J. Gero (editor), AI in Design. Computational Mechanics, U.K., 1989.

[Tong 86a] Tong, C.
Knowledge-Based Circuit Design.
PhD thesis, Stanford University, 1986.

[Tong 86b] Tong, C
A framework for organizing and evaluating knowledge-based models of the design

process.
Technical Report AI/VLSI Project Working Paper No. 21, Rutgers University, 1986.

[Tversky 77] Tversky, A.
Features of Similarity.
Psychology Review 84(4), July, 1977.

[Ullman & Dietterich 87]
Ullman, D.G., T.A. Dietterich.
Mechanical Design Methodology: Implications on Future Developments of Computer-

Aided Design and Knowledge-Based Systems.
Engineering with Computers 2:21-29,1987.

[Walker 87] Walker, M.G.
How Feasible is Automated Discovery.
IEEE Expert :69-82, Spring, 1987.

[Wallas 26] Wallas, G.
The Art of Thought.
Haicourt,NY, 1926,

[Wang, Mittal & Leifer 89]
Wang, W., S. Mittal, L. Leifer.
An Innovative Alternatives Generator for Force Transducer Conceptual Design.
In Navinchandra, D., M. S. Fox (editor), Research Issues in AI and Design:

Proceedings of the second AAAI Workshop on Design. Morgan Kaufman
Publishers (Forthcoming), 1989.

[Winston 80] Winston, P. H.
Learning and Reasooig by Analogy.
Communications of the ACM 23(12), December, 1980.

[Winston 81] Winston, P. H.
Learning New Principles from Precedents and Exercises: The Details.
Technical Report AI Lab Memo 632, MIT, AX Lab, 1981.

44

[Winston et.al. 83]
Winston, P. H., T.O. Bktford, B. Katz, M. Lowry.
Learning Physical Descriptions from Functional Definitions, Examples and Precedents.
In Proceedings of AAAI-83. August, 1983.

