The OPIS Framework for
Modeling Manufacturing Systems

Stepiien F. Smith

CMU-RI—TR-BQ-SO‘?_ .

Center for Integrated Manufacturing Decision Systems
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

December, 1989

Copyright © 1990 Carnegie Mellon University

| gt:i? research has been sponsored in part by IBM Corporation under contract 567016 and the Robotics
nstitute.

Abstract

In this paper we present a general framework for modeling manufacturing systems. Our interests are in
knowledge-based scheduling and simulation of large-scale manufacturing environments, and these
interests have significantly influenced the approach to modeling we have taken. The modeting framework
is developed using object programming and frame-based representation techniques. it provides an
extensible set of modeling primitives that emphasizes (1) specification of the full range of constraints that
influence production management and control decisions, (2) the development and use of hierarchical
models of manufacturing processes and required resources, and (3) a clear separation of control
knowledge relating to resource allocation and manufacturing process management. The framework
enables the construction of models that reflect the full complexity of actual manufacturing environments
and are interpretable from both scheduling and simulation perspectives.

UNIVERSITY LiBRapire
CARNEGIS B2EL: ?f“gm
PITTSBUS

Table of Contents
1. Introduction
1.1. Overview of the Approach
1.2. Organization ot the Paper
2. Basic Temporal Primitives
2.1. Representing Absolute Temporal Constraints
2.2. Representing Relative Temporal Constraints
3. Modeling Manufacturing Activities
3.1, Hierarchical Descriptions of Manufacturing Activities
3.2. Representing Precedence Relatlons
3.3. Associating resource requirements
3.4. Specifying operation duration constraints
3.5. Operation Status Information
3.6. Operation Descriptions
3.6.1. Utilization Operations
3.6.2. Control Operations
4. Modeling Resources
4.1. Hierarchical Descriptions of Resources
4.2. Modeling Capacity Constraints
4.2.1. Capacity-related Attributes
4.2.2. Available Capacity
4.2.3. Relating capacity constraints at different levels
4.3. Modeling Resource Setup Constraints
. 4.4. Modeling Work Shift Constraints
4.5. Modeling Resource Breakdowns
4.6. Ascribing control responsibility to resources
4.7. Resource Descriptions
4.7.1. Stationary Resources
4.7.2. Moblle Resources
4.8. Regulating the level of precision of decision-making
5. Modeling Products, Demands and Production Units
5.1. Product Descriptions
5.2. Demand descriptions
5.3. Production unit descriptions
5.3.1. Relating production units to products
5.3.2. Relating production units to demands
5.3.3. Other Attributes
5.4. Mapping demands to production units
6. Final Remarks

O ONNENMDNN -

LRABEELA/NRELYYRLBRLEY

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:

Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15:
Figure 3-16:
Figure 3-17:
Figure 3-18:
Figure 3-19:
Figure 3-20:
Figure 3-21:
" Figure 3-22:
Figure 3-23:
Figure 3-24:
Figure 3-25:
Figure 3-26:

Figure 3-27:
Figure 3-28:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:

Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 4-14:
Figure 4-15:
Figure 4-16:

List of Figures

The time-interval and time-line definitions
The dated-by/dates relations
calendar-interval and calendar definitions
days-of-week-interval and days-of-week definitions
hours-of-day-interval and hours-of-day definitions
Relations for hierarchical descriptions of prototype operations
Relations for hierarchical descriptions of instantiated operations
Additional Relations for hierarchical prototype descriptions
Additional Relations for hierarchical descriptions of instantiated
operations
Precedence relations between prototype descriptions
Precedence relations between instantiated operations
The connection-spec definition
Example of the use of outcome-dependent-specs
Example of the use of computable-condition-specs

Relatlons for describing resource requirements

The resource-requirement-spec definition

Subtypes of resource-requirement-spec

Procedural specification of secondary resource requirements

The duration-spec definition

The has-duration/duration-spec-of relations

The production-activity-interval definition

The operation definition

The utilization-operation definition

Types of utilization-operations

Types of resource-support-operations

mfg-op-duration-specs and its subtypes

The trans-op-duration-spec definition

The res-support-duration-spec definition

The control-operation definition

The control-point definition

Types of control operations

Types of control points

Abstract control operations
The sub-resource-of/sub-resources relations
A work area of machines supporting a particular process step
Hierarchical representation of the work area
A work area of machines with overiapping capabilities
The overliapping-sub-resource-of/overiapping-sub-resources
relations
The grouped-sub-resources/grouped-in relations
The overlaps-with relation
Augmented hlerarchical representation of the work area
The capacity-interval definition

The pctg-of-capacity-spec definition

setup-matrix definitions

The current-aiterations/alteration-of relations

The work-shift-spec definition

The work-shift-spec-root definition

Shift and work-week definitions

Shift examples

ONOOLPWWOL

SEHREEREBR2BE BRBBIIBRRBRR

C4
P

Figure 4-17:
Figure 4-18:
Figure 4-19:
Figure 4-20:
Flgure 4-21:
Figure 4-22:
Figure 4-23:
Figure 4-24:
Figure 4-25:
Figure 4-26:

Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 5-13:
Figure 5-14:
Figure 5-15:
Figure 5-16:
Figure 5-17:
Figure 5-18:

The breakdown-spec definition
The resource definition
The stationary-resource definition
atomic and aggregate stationary resources
Parallel and serial cell groups
The mobile-resource deflinition
The human-resource definition
atomic and aggregate human resources
The transport-device definition
The tool-resource definition
An example product type hierarchy
The material-requirements/material-requirement-for relations
The quantity-spec definition
An example of inter-product relationships
The product definition
The demand definition
Specilalizations of demand
The production-request definition
The requests/request-of relations
The production-requirements/production-requirement-of relations
An example demand with associated production requirements
The produced-by/produces relations
The member-of/has-members relations
The satisfled-by/satisfies-request relations
Production unit, production request, and product relationships
The production-unit definition
The sub-unit-of/has-sub-units relation pair
The demand-manager definition

37

39
39
40
40
40
41
41
41
43

45
46
47
47

49
50
50
51
52
52

1. Introduction ‘
In this paper we present a framework for modeling manufacturing systems. Our interests are n

knowledge-based simulation and scheduling of large-scale manufacturing environments, and these
interests have significantly influenced the approach to modeling we have taken. Specifically, the
modeling framework emphasizes:
« the developrnent of models that reflect the reality of the manufacturing environment - The
framework defines representational primitives that enable detailed modeling of the full range
of constraints that influence scheduling and control decisions.

o the development and use of hierarchical models of manufacturing processes and required
resources. The simulation and coordination of large-scale manufacturing systems requires
the flexibility to selectively and dynamically vary the level of detail at which resource
allocation decisions are considered. -

e a clear separation of concerns of resource allocation and concerns related to management of
the products being manufactured. Resource allocation policies are associated with
resources; product management policies are associated with control activities.

« the definition of extensible primitives. Reliance on object programming and frame-based
representation techniques enables the framework to be straightforwardly customized to
model the important idiosynchracies of a given manufacturing environment.

This paper is written with two objectives in mind. First, it is intended to present a general knowledge-
based modeling perspective and examine basic alternatives vis a vis the definition of various aspects of a
knowledge-based modeling framework. Second, it is intended to serve as an implementation-level
reference of the specific modeling framework we have defined. Thus, representational issues and the
modeling framework are discussed in terms of its implementation language, CRL [4]. The reader is
referred to [5] for a description of a simulation kernel that operates on models defined by this framework.
The framework generalizes and extends the modeling primitives underlying the OPIS factory scheduling
system [8].

1.1. Overview of the Approach

Generally speaking, we advocate a declarative approach to modeling manufacturing systems. A model
is specified in terms of five basic types of entities, operations, resources, products, demands and
production units, and the modeling framework defines knowledge structuring primitives relative to each.
These primitives provide an extensible framework for representing relevant aspects of the manufacturing
system to be modeled, a relational organization that reflects appropriate interdependencies among the
manutacturing system entities that are modeled, and a model semantics relative to scheduling and control
decision-making.

In more detail, the basic model building components consist of the following:

* operations - Operations are descriptions of specific activities that are performed within the
manufacturing system. Generally speaking, an operation is a specification of the set of
constraints that define a particular activity (e.g. resource requirements, duration constraints,
precedence relations relative to other activities, process related control policies, etc.).
Operations are organized hierarchically to describe manufacturing processes at different
?eveis of detail. Descriptions of manufacturing processes (or production plans) are
instantiated to represent the activities actually taking place (or planned to take place) on the
factory fioor.

* resources - Resoprpes are descriptions of the various resources that are required to perform
mapyfactxmng activities. Resource descriptions encode resource allocation constraints and
policies at different levels of abstraction, providing the basis for hierarchical definitions of
manufacturing processes.

e products - Products are descriptions of the materials that are manufactured by the
manufacturing system. Products specify the constraints on their manufacture (e.g. the
production plan that must be executed, the quantity in which they are produced. material
requirements, etc.).

* demands - Demands are descriptions of the obligations for product delivery that the
manufacturing system has undertaken. Demands specify requests for specific quantities of
products within specific time constraints, as well as client-dependent priority information.

e production units - Production units are descriptions of the actual entities that are
manipulated by the manufacturing system. Each represents a a given set (or quantity) of
products to be manufactured. Production units are created in response to demands for
specific types of products, and share models (through relational inheritance) with specific
demand and product descriptions.

1.2. Organization of the Paper

The remainder of the paper is organized as follows. In Section 2, we make specific assumptions
regarding the representation of temporal constraints and define a set of basic temporal primitives for use
in subsequent sections. In Section 3, we consider issues related to the representation of manufacturing
activities. This is followed in Section 4 by a similar treatment of the issues related to modeling the
resources that must be allocated to support manufacturing activities. Finally, in Section 5, we address
issues related to modeling products that are produced by the manufacturing system, demands for these
products, and the production units that are actually manipulated by the manufacturing system.

2. Basic Temporal Primitives

Fundamental to the modeling, simulation, and scheduling of manufacturing systems is a framework for
representing and reasoning about temporally constrained activities. Production demands have requested
start times and deadlines, work shifts in different areas of the factory span specified time periods, there
are precedence relations between various manufacturing operations, operations are carried out over
specific time intervals, etc. An adequate set of temporal primitives must support both relative and absolute
specification of temporal constraints. The intent of this section is simply to introduce the set of basic
temporal objects that will be needed in subsequent sections, and sketch the approach that is taken to
reasoning about temporally constrained activities.

2.1. Representing Absolute Temporal Constraints

Given our need to represent and reason extensively about absolute time constraints, we adopt a point-
based framework for modeling time. Of course, we are typically interested in the persistence of various
facts over time (e.g. when a given manufacturing operation takes places or is planned to take place), and
accordingly define the time-interval (see Figure 2-1) as the basic time object. Characteristics of the time
points delineating a given time interval are defined by associating each interval with a specific time-line.
This association is made through the dated-by relation (see Figure 2-2), which is defined as an
inheritance relation.! Thus, we assume that the START-TIME and END-TIME attributes of a given time
interval designate specific points on a given time line (as opposed to time points being represented as
objects whose values are constrained to a specific set of points on the time line). This assumption has
implications with respect to the management of absolute temporal constraints which we will briefly
consider below.

'Conceptually, we could assocate all ime point manipulation functions with the associated time line. Pragmaticaily, this will be
expensive, and we will instead rely on the time-interval accesser o know what type of interval it is manipulating. We illustrate the
concept by specifying two inhentable propertes in the definiion of time-line, a method outputting interval start and end points
{print-point) and a POINT-GRANULARITY attnbuts.

{{time-interval
IS-A: time-object
START-TIME:
END-TIME:
DURATION:
DATED-8Y: }}

{{time-line
IS-A: time-object
DATES:
POINT-GRANULARITY:
print-point. }}
Figure 2-1: The time-interval and time-line definitions

{{dated-by
IS-A: relation
DOMAIN: (TYPE is-a time-interval)
RANGE: (TYPE is-a time-line)
INVERSE: dates
INCLUSION: {instance Inclusion-spec
TYPE: slot
SLOT-RESTRICTION: (NOT dates is-a instance) } }}

{{dates
IS-A: relation
DOMAIN: (TYPE is-a time-line)
RANGE: (SET (TYPE is-a time-Interval))
INVERSE: dates }}

Figure 2-2: The dated-by/dates relations

Intervals and time lines are respectively specialized into three associated subtypes (see Figures 2-3,
2-4, 2-5). Calendar-intervals provide the primary means for specitying absolute time constraints on
activities as well as recording actual activity execution intervals. Days-of-week-intervals and
hours-of-day-intervals will be used later in developing work shift specifications.

{{calendar-interval
1S-A: time-interval
DATED-BY: calendar }}

{{calendar
I1S-A: time-line
DATES: calendar-interval

print-point. pt>date }}
Figure 2-3: calendar-interval and calendar definitions

{{days-of-week-interval
IS-A: time-interval
DATED-8Y: days-of-week }}

{{days-of-week
IS-A: time-line
DATES: days-of-week-interval
print-paint. pt>day }}

Figure 2-4: days-of-week-interval and days-of-week definitions

{{hours-of-day-interval
IS-A: time-interval
DATED-BY: hours-of-day }}

{{hours-of-day
IS-A: time-line
DATES: hours-of-day-interval
print-point. pt>hour }}

Figure 2-5: hours-of-day-Interval and hours-of-day definitions

2.2. Representing Relative Temporal Constraints

With regards to expression of relative temporal constraints, we presume a basic set of symbolic
relations {e.g. the successor/predecessor relations defined in Section 3.2) whose semantics dictate
specific consequences with respect to the absolute time constraints associated with the related entities.
These relations will be introduced and discussed in subsequent sections in the context of the specific
types of entities they are defined to relate.

Let us, however, retum momentarily 1o the issue of “"constant” vs "variable” representations of time
points and the management of absolute time constraints (an important issue in the context of scheduling).
Our assumption of a constamt time-point representation implies an underlying constraint propagation
mechanism that embeds the temporal semantics of various symbolic relations and uses this knowledge to
properly maintain the earliest start and latest end times of the time intervals associated with various
entities in the system.? The disadvantage here is the special purpose nature of the propagation
mechanism (and the complexity of its implementation). The introduction of a variable representation of
time points (in the manner of [2]), wherein time points are explicitly represented and reiated to one
another via distance constraints, provides a framework for specification of a simple general propagation
mechanism. Under this altemative approach, the introduction of a specific symbolic relation (e.g. the
introduction of a successor relation during instantiation of an actual manufacturing operation to be
performed - see Section 3.2) results in the introduction of additional distance constraints between relevant
time points (the specific constraints being a function of the semantics of the symbolic relation) which are
interpreted by the general propagation machinery. The choice between these two approaches '»
representing and maintaining absolute time constraints has little impact on the material presented in

2This is the approach taken in the current OPIS scheduler [6].

remainder of this document. We only note that a future version of this document and the implementation
of the modeling framework it describes will assume the latter approach identified above.3.

3. Modeling Manufacturing Activities

Of concern in this section is representation of the activities that must be modeled within a
manufacturing system. This, of course, includes specification of various manufacturing operations and
their organization into production plans. It also includes activities not directly related to production of
products, such as machine maintenance and repair. All manufacturing activities are modeled within the
framework as operations. In the subsections below, we first consider various aspects of their
representation independently, and then consider their complete definition.

3.1. Hierarchical Descriptions of Manufacturing Activities

Since we are interested in hierarchical descriptions of manufacturing operations, we first define a set of
relations for describing composition/decomposition of manufacturing operations. Here and below we
distinguish between hierarchically organized prototype descriptions and the hierarchically organized
instances of these prototype descriptions that are created to represent the specific operations that are
taking place within the manufacturing system. Hierarchically organized prototype descriptions provide
representations of generic manufacturing processes at different levels of precision (e.g. production plans)
and provide a basis for instantiating the actual operations that must be performed.

For purposes of constructing hierarchical descriptions of manufacturing operations, we distinguish two
basic forms of process abstractions:

e conjunctive abstractions - operations defined as conjunctive abstractions decompose into a
sequence of operations at the next lower level in the hierarchy.

¢ disjunctive abstractions - operations defined as disjunctive abstractions decompose into a set
of alternative operations at the next lower level in the hierarchy.

Within the representation, manufacturing activities at all levels of description are modeled as operations.
An operation has a TYPE, whose value distinguishes the operation as either a conjunctive/disjunctive
abstraction or an atomic activity in the mode! (see Section 3.6 below). Hierarchical descriptions of
arbitrary depth can be constructed using these two basic abstraction building blocks. Since the objective
is to provide a basis for reasoning about resource allocation decisions at muttiple levels of details (for
purposes of either simulation or scheduling), process abstractions are motivated by useful abstractions of
the resources that they require. A corresponding framework for modeling resources at different levels of
abstraction is presented below in Section 4.

In Figures 3-1 and 3-2, we define basic composition/decomposition relations used to define process
abstractions. The possible-sub-operation-of/possible-sub-operations relation pair provides primitives
for organizing prototype operation descriptions, which are modeled in the representation as specific types
(or classes) of operations. The actual operations performed in the factory are represented as instances of
prototype operations and are related to other instances of prototype operations via the
sub-operation-of/sub-operations relational primitives.

3A knowledgecraft implementation of this generalized approach to maintenance of temporal constraints is described in [1]

{{possible-sub-operation-of
Is-A: relation
DOMAIN: (TYPE is-a operation)
RANGE: (TYPE is-a operation)
INVERSE: possible-sub-operations }}

{{possible-sub-operations
IS-A: relation
DOMAIN: (TYPE is-a operation)
RANGE: (SET (TYPE is-a operation))
INVERSE: possible-sub-operation-of }}

Figure 3-1: Relations for hierarchical descriptions of prototype operations

{{sub-operation-of
IS-A: relation
DOMAIN: (TYPE instance operation)
RANGE: (TYPE instance operation)
INVERSE: sub-operations }}

{{sub-operations
1S-A: relation
DOMAIN: (TYPE instance operation)
RANGE: (SET (TYPE instance operation))
INVERSE: sub-operation-of }}

Figure 3-2: Relations for hierarchical descriptions of instantiated operations

Values in the range of a specific possible-sub-operations relation (or a sub-operations relation in
the case of instantiated operations) identify the specific set of sub-operations that the relation's domain
operation abstracts. The relation, on the other hand, contains no information about the relationships

among the identified sub-operations themselves (i.e. there is no assumed ordering relative to the values
present in the range of the relation). These constraints are specified at the sub-operation level of
! abstraction in the hierarchical model (and we consider their representation below in Section 3.2). In the
case of conjunctive process abstractions, #t is convenient to explicitly designate the entry and exit points
of the operation sequence being abstracted. The relations defined in Figures 3-3 and 3-4 are defined to
this end, again for both prototype and instantiated operations respectively.4.

4The information supplied by these relations could of course be inferred when needed from consideration of the more detaled
sub-apwaﬁmdesmsmmﬁedbyampoommpmﬁom(mwm;m Since the information s
siatic in nature, however, it seems appropriate fo “compiie* this information into the representation

{{initial-operation-of
IS-A: relation
DOMAIN: (TYPE is-a operation)
RANGE: (TYPE is-a operation)
INVERSE: subplan-entry-operation }}

{{subplan-entry-operation
IS-A: relation
DOMAIN: (TYPE is-a operation)
RANGE: (SET (TYPE is-a operation))
INVERSE: Initial-operation-of }}

{{final-operation-of
IS-A: relation
DOMAIN: (TYPE is-a operation)
RANGE: (TYPE is-a operation)
INVERSE: subplan-exit-operation }}

{{subplan-exit-operation
1S-A: relation ;
DOMAIN: (TYPE is-a operation) 1
RANGE: (SET (TYPE is-a operation))
INVERSE: final-operation-of }}

Figure 3-3: Additional Relations for hierarchical prototype descriptions

Hierarchical descriptions of manufacturing processes provide the opportunity to regulate the ievel of
detail at which various resource allocation decisions are reasoned about. In the context of large-scale
simulation, for example, it may be desirable to selectively consider more or less detail in different areas in
the factory. Similarly, from a scheduling perspective, more or less detail may be desirable, depending
perhaps on the unpredictability inherent in the processes being modeled or the time horizon of the
scheduling decisions being made. Determination of an appropriate set of process abstraction levels is
obviously a function of the particular manufacturing system being modeled. In particular, characteristics
and organization of the resources that must be allocated within the manufacturing system will dictate the
decision-making levels of interest. We will discuss issues relating to specification of appropriate
abstraction levels and regulation of the level of precision of decision-making in Section 4, when we
consider the representation of resources.

{{tirst-sub-operation-of
IS-A: relation
DOMAIN: (TYPE instance operation)
RANGE: (TYPE instance operation)
INVERSE: first-sub-operation }}

{{first-sub-operation
IS-A: relation
DOMAIN: (TYPE instance operation)
RANGE: (SET (TYPE instance operation))
INVERSE: first-sub-operation-of }}

{{last-sub-operation-ot
IS-A: relation
DOMAIN: (TYPE instance operation)
RANGE: (TYPE instance operation)
INVERSE: last-sub-operation }}

{{last-sub-operation
IS-A: relation
DOMAIN: (TYPE instance operation)
RANGE: (SET (TYPE instance operation))
INVERSE: last-sub-operation-of }}

Figure 3-4: Additional Relations for hierarchical descriptions of instantiated operations

3.2. Representing Precedence Relations

Manutacturing operations are aiso related according to precedence constraints, which dictate the order
in which operations defined at a given level of abstraction in the model must be performed. In defining a
set of precedence relations for expressing these constraints, we again distinguish between prototype and

instantiated operation descriptions (see Figures 3-5 and 3-6).

{{possible-successors
iS-A: relation
DOMAIN: (TYPE is-a operation)
RANGE: (SET (TYPE is-a operation))
INVERSE: possible-predecessors }}

pOMAIN: (TYPE is-a operation)
RANGE: (SET (TYPE is-a operation))
INVERSE: possible-successors }}

Figure 3-5: Precedence relations between prototype descriptions

{{successor
IS-A: relation
DOMAIN: (TYPE instance operation)
RANGE: (TYPE instance operation)
INVERSE: predecessor }}

{{predecessor
IS-A: relation
DOMAIN: (TYPE instance operation)
RANGE: (TYPE instance operation)
INVERSE: successor }}

Figure 3-6: Precedence relations between instantiated operations

These two relation pairs have considerably different semantic interpretations. In the case of
precedence relations among instantiated operations (i.e. the successor/predecessor relations)
sequences of operations are defined that are known with certainty. In the context of simulation, these
relations define the sequence of operations actually carried out to produce specific production units,
repair failed machines, etc. In the context of scheduling, they define expected manufacturing processes
for purposes of reasoning about allocation of resources.

On the other hand, precedence relations defined within prototypical process descriptions (i.e.
expressed via possible-successors/possible-predecessors relations) are intended to provide a basis
for describing generic manufacturing processes, defining instead sets of possible operation sequences.
This raises several additional representational requirements:

* Manufacturing processes are typically conditional in nature, implying the need to represent
state-dependent precedence relations. We can identify two broad types of state-dependent
precedence relations:

» dynamic - These relations define operation sequences that are contingent on the
dynamic aspects of the current production state. For example, the outcome of a
specitic test/inspection operation will dictate whether the actual successor operation
will be the next step in the product’s production or a product rework operation.

e static - These relations define operation sequences that are contingent on
determinable aspects of the current production state. For example, many
manufacturing processes involve a fixed amount of iteration over specific sub-
processes.

o Specification of repairrework components of production processes introduces further
complications. A given production repair or rework subprocess is often sharable (i.e. a
POSSIBLE-SUCCESSOR at several distinct points in the overall production process), and can
sometimes be self-referential in nature (i.e. the need for repair/rework is recognized in the
midst of repair/rework). This implies the need for a representation of precedence relations
that distinguishes operation sequences that should be interpreted as "subroutine definitions".

e Finally, conditional precedence relations can exist between different manufacturing
processes (e.g. production processes operating on different production units). For example,
successful completion of a given manufacturing subprocess on a given production unit (as
determined during a final inspection step) may indicate stability of the subprocess and enabie
initiation of the subprocess with respect to other production units. This implies a need to
represent outcome dependent causal relationships between manufacturing processes
operating on different production units.

10

These representational requirements are addressed augmenting each value in the range of an
operation's possible-successors relation with a meta-description of the relation implied by the value.
These meta-descriptions are referred to as Connection-specs, and provide a framework for encoding
both the causal constraints and shared subprocess assumptions that underlie each specific precedence
relation. This is made precise in Figure 3-7.

{{connection-spec
IS-A: conceptual-object
LINK-TYPE:
range: (OR jump call return exit) }}

{{outcome-dependent-spec
IS-A: connection-spec
CONDITION:
PROBABILITY:
MESSAGE-DESTINATIONS:
range: (SET (TYPE instance walt-operation)) }}

{{computable-condition-spec
iIS-A: connection-spec
LINK-TYPE: jump
PREDICATE: }}

Flgure 3-7: The connection-spec definition

The UNK-TYPE attribute included in the basic connection-spec definition provides a specification of the
precedence relation vis a vis the use of shared process descriptions. Four possible values are allowed,
with the following semantics:

e jump - Jump implies a coupling of two operations within the same prototype process
description. In instantiating prototype operations to represent a particular production unit's
production process, movement across jump relations occurs in a memoryless fashion (i.e.
knowledge of the operation in the domain of jump relation plays no role in the interpretation
of subsequently encountered precedence relations).

e exit - Exit designates the domain operation as the last operation of a prototype process
description at a given level of detail in the hierarchical model. In this case, the value of the
range of the relation is not an operation but simply the designated marker symbol end.
Interpretation of an exit relation causes either movement to one of the POSSIBLE-SUCCESSORS
of the abstract operation representing the just completed process at the next higher level of
description, or completion of the overall production process (if at the highest level of
description). The CONDITION associated with an exit link (see discussion of
outcome-dependent-spec below) is assumed to match the CONDITION of one of the
POSSIBLE-SUCCESSORS at the next higher level of abstraction.

« call - Call implies a coupling of the relation's domain operation with the first operation of a
shared process description. in moving across a call relation, the particular instance of the
domain operation of the relation that just terminated is recorded for use in subsequent
interpretation of the corresponding return relation.

» retumn - Retum designates the domain operation as the last operation of a shared process
description. As in the case of exit links, the value of the range of the relation is the
designated marker symbol end. Interpretation of a return relation causes movement to one
of the POSSIBLE-SUCCESSORS of the operation previously marked as the most recent call point.

AR

The CONDITION of a return link is assumed to match the CONDITION of one of the
POSSIBLE-SUCCESSORS of the operation previously recorded as the cail point.

The connection-spec definition is specialized in two ways to characterize the twe types of state-
dependencies identified above. Outcome-dependent-specs describe precedence relations whose
relevance depends on the specific outcome of the relation's domain operation. In this case, the specified
CONDITION designates the operation termination condition under which the relation is appropriate, and the
PROBABILITY indicates the likelihood of this outcome. Specified conditions are assumed to be symbois
(e.g. success, fail1, etc.) Probability values are assumed to range from 0 to 1 with the additional
constraint that the sum of the probability values associated with each of the POSSIBLE-SUCCESSORS of a
given operation equals 1. Thus, the specs associated with a given set of POSSIBLE-SUCCESSORS define the
range of possible outcomes of the domain operation, and provide a basis for simulating actual operation
outcomes. Figure 3-8 provides an example of the use of outcome-dependent-specs.

? {{op1

POSSIBLE-SUCCESSORS:
op2
{INSTANCE outcome-dependent-spec
LINK-TYPE: jump
CONDITION: success
PROBABILITY: .95 }
op1-rework
{INSTANCE: outcome-dependent-spec
LINK-TYPE: jump
CONDITION: fail
PROBABILITY: .05 }

Serrs oot

Figure 3-8: Example of the use of outcome-dependent-specs

b The outcome-dependent-spec also defines a set of MESSAGE-DESTINATIONS, which specify causally
i related activities involving different production units. n the event that the outcome of the relation's domain
operation indicates that the relation is to be enforced, triggering messages are sent to all operations
designated in MESSAGE-DESTINATIONS. These operations are, by definition, walt-operations (see Section
3.6.2), which represent conditional suspensions of production activity.

A second type of connection spec, termed a computable-condition-spec, is defined for description of
precedence relations that are contingent on computabie aspects of the current production state (e.g. how
far along in the production process a given production unit is). In this case, the relevance of a specific
precedence relation is determined through evaluation of a designated PREDICATE.
Computable-condition-specs provide a basis for expressing bounded iteration relative to a given
manufacturing process and always presume a LINK-TYPE of jump. An example of their use in this regard is
given in Figure 3-9.

12

{{ri-liftoft

POSSIBLE-SUCCESSORS:
final-inspect
{INSTANCE computable-condition-spec
LINK-TYPE: jump
PREDICATE: last-Chip-layer-completep }
new-chip-layer-prep
{INSTANCE computable-condition-spec
LINK-TYPE: jlump
PREDICATE: chip-layers-remainingp }

Figure 3-9: Example of the use of computable-condition-specs

3.3. Assoclating resource requirements

Specification of manufacturing activities also requires representation of resource requirements. We
partition the set of resource requirements to be associated with specific manufacturing activities into two
types:

e primary resource requirement - We assume that for any particular operation, a specific
resource can be designated as primary from the standpoint of allocation. The type of
resource designated as primary can vary for different operations (e.g. an AGV would be the
primary resource in a transporting operation, an expose machine would be the primary
resource requirement of a photoexpose operation, etc.), but we assume that if the operation
requires use of a stationary resource, which at the lowest level designates either a machine
or a particular work station in the factory (see Section 4), then the stationary resource will be
the primary resource requirement. Primary resources are distinguished in that they provide a
locus for associating control policies.

e secondary resource requirements - Secondary resource requirements designate those
supporting resources that are required to perform the operation to which they are associated.
Secondary resources are assumed to always be mobile resources such as operators and
tools (see Section 4).

These two sets of requirements are defined for specific operations using the primary-resource and
secondary-resources relations respectively.

13

{{primary-resource
IS-A: relation
DOMAIN: (TYPE instance operation)
RANGE: (TYPE instance resource)
INVERSE: primary-resource-for }}

{{primary-resource-for
IS-A: relation
DOMAIN: (TYPE instance resource)
RANGE: (SET (TYPE instance operation))
INVERSE: primary-resource }}

{{secondary-resources
IS-A: relation
DOMAIN: (TYPE instance operation)
RANGE: (SET (TYPE instance mobille-resource))
INVERSE: secondary-resource-for }}

{{secondary-resource-for
IS-A: relation
DOMAIN: (TYPE instance mobiie-resource)
RANGE: (SET (TYPE instance operation))
INVERSE: secondary-resources }}

Figure 3-10: Relations for describing resource requirements

The range specifications for both the primary-resource and secondary-resources relations designate
instances of particular resources. Taken together, these two relations identify all resources required by a
given operation, and each resource identified is assumed to be required for the entire duration of the
operation. The relations do not, however, fully specify resource requirements, as the association of a
resource requirement with an operation does not necessarily imply that 100% of the resource is required.
This is particularly true at higher levels of abstraction, where aggregate resources are identified as
resource requirements (see Section 4). Thus, the primary-resource and secondary-resources
relations are more accurately viewed as constraints that state that some percentage of each designated
resource’'s capacity is required to perform the operation. The interpretation of a given resource
requirement is made precise through attachment (in the same manner as connection specs) of a
resource-requirement-spec to the resource designated in the range of the reiation.

»

{{resource-requirement-spec
IS-A: conceptual-object
REQUIRED-RESOURCE-FUN:
REQUIRED-QUANTITY-FUN: }}

Figure 3-11: The resource-requirement-spec definition

The attributes introduced in the resource-requirement-spec (Figure 3-11), which are both assumed to
be lisp functions that take the related operation as their sole argument, define two ways in which a
resource requirement might be further specified relative to the percentage of the resource actually

required:

14

« amount of capacity required - As we will see in Section 4, a numerical CAPACITY value is
specified for each resource to define its overall potential for parallel activity. Given this, a
numerical specification of the amount of capacty that is required by an operation is typically
sufficient to fully define a resource requirement. However, the amount of capacity required
depends on the nature of the operation and cannot always be specified as a constant. The
amount of capacity required for a baking operation in an oven, for example, depends on the
size of the production unit. Accordingly, capacity requirements are represented procedurally
within the resource-requirement-spec through specification of an appropriate function
{REQUIRED-QUANTITY-FUN). We define two subtypes of resource-requirement-spec in Figure
3-12 which provide definitions for the two most common situations. in the case of
constant-quantity-spec, a QUANTITY attribute is introduced and this value is simply returned
by the specified REQUIRED-QUANTITY-FUN. In the case of batch-quantity-spec, the specified
REQUIRED-QUANTITY-FUN is assumed to return the size of the production unit associated with

the related operation.

« specific subset of the resource required - In the case of secondary resources, it is sometimes
impractical to explicitly identify the resource required in the range of the relation. Consider,
for example, the use of masks in semiconductor manufacturing operations. A different mask
is required for each type of wafer that is manufactured (typically 1000s). At the same time,
water manufactuning processes are basically differentiable only at the product family level
(typically 10s). Thus, association of precise mask requirements with operations would require
representation of 1000s of highly redundant manufacturing processes (i.e. with the
processes for wafers belonging to the same product family varying only in the type of mask
required at specific steps in the process). In light of such situations, we aiso associate a
function (REQUIRED-RESOURCE-FUN) with the resource-requirement-spec to provide an
alternative means for specifying resource requirements that vary only with respect to the
contents of the production unit being manipulated by the operation. Figure 3-13 illustrates its
use in the case of the mask example. Here the secondary-resources relation specifies the
need for capacity relative o an overail mask-pool (an aggregate resource), and the defined
REQUIRED-RESOURCE-FUN determines the specific mask subpool (aiso an aggregate resource)
that represents copies of the particular mask that is required>. An additional secondary
resource requirement, designating capacity from the pool of expose machine operators, is
also included to illustrate a situation where a secondary resource is explicitly specified. In this
case, the REQUIRED-RESOURCE-FUN simply retums the resource designated in the relation
{implying in this example that we need a qualified operator but don't care which one it is).

' constant-guantity-spec
SA spec
RECUIRED-QUANTITY.FUN: get-constant-quantity })

n-Spec
REQUIRED-QUANTITY-FUN: caic-prod-unit-size |}
Figure 3-12: Subtypes of resource-requirement-spec

MMmmwmmwnmmmm.memm
Sesorpaos I I HRGUCION LY IeSGTRRT by e TR0,

15

{{expose-operation

SECONDARY-RESOURCES:
mask-pool
{INSTANCE constant-quantity-spec
QUANTITY: 1
REQUIRED-RESOURCE-FUN: get-product-dependent-mask-pool }
expose-operator-pool
{INSTANCE constant-quantity-spec
QUANTITY: 1
REQUIRED-RESOURCE-FUN: get-designated-resource }

Figure 3-13: Procedural specification of secondary resource requirements

This procedural specification of resource requirements raises a broader issue concerning the modeling
of manufacturing processes. It is obvious that decisions as to the level of generality at which
manufacturing processes should be defined are not always clear cut and there are always tradeoffs to be
considered (in this case regarding specification of secondary resource requirements). The most we can
expect from any representational framework is a set of primitives that can be straightforwardly customized
according to peculiarities of the specific application.

3.4. Speclifying operation duration constraints

Another aspect of the definition of manufacturing activities is specification of constraints relating to
operation duration. These constraints are, of course, quite often a function of the particular resource that
is designated as the operation’s primary resource (e.g. a function of the operating speed of the machine).
However, since all operation descriptions are constrained to designate a single primary resource and
process abstractions are assumed to be based on appropriate abstractions of required resources,
association of duration constraints with operations is perfectly natural, serving to further define the
manufacturing activity being modeled.

One important concem influencing the specification of a representation of operation duration
constraints is the modeling perspective adopted relative to resource setup activities. Utilization of a
resource in the context of a specific production activity is typically predicated on the resource being in a
particular state. A machine must be configured according to the characteristics of the manufacturing
operation that requires it. An AGV must be at same location as a production unit before a transport
operation involving that production unit can be carried out. In situations where a resource is not in the
state required by the operation, then preparatory actions that bring the resource to the required state
must necessarily be performed prior to execution of the production operation. We refer generally to such
preparatory actions as resource setup activities.

From a modeling standpoint, there are different assumptions we might adopt regarding the issue of
setup activities. On the one hand, we might assume an explicit representation of all relevant aspects of
the state of resources over time, express the resource requirements of operations directly in terms of
required state values, and dynamically construct and schedule the sequence of setup operations
necessary to satisfy these constraints. Such an approach to dealing with state-dependent setup
constraints is described in [7].

On the other hand, our primary objective in modeling setup activities in the context of manufacturing
systems is determination (or estimation) of setup duration. In light of this, the approach outlined above

16

would seem most advantageous in situations where there is considerable interaction between the setup
activities of different resources and this interaction has a significant effect on the total setun duration. In
manufacturing environments, this is typically only the case at micro levels (e.g. a sharea AGV within a
flexible manutfacturing cell). The duration of a machine setup activity, for example, is typica - not affected
by any setup activities being performed relative to other resources. Given this fact, and the fact that we
are interested in large-scale simulation and scheduling, we assume it reasonable to operate with a
simpler, implict model of operation-dependent setup activities. More specifically, we assume that
resource setup activities can be adequately modeled as adjustments to the durations of operations that
require the setup. This is accomplished by defining the state of a resource at any given point in time to
be a function of the operation last performed, which in tum provides a basis for defining setup durations.

The use of this implicit model of resource setup activities is not without some loss of generality:

¢ By modeling setup.activities as adjustments to operation durations, it is assumed that
resource setup activities must occur immediately prior to the operation requiring the
resource, which need not always be the case.

« While it is possible to differentiate between the portion of an c~aration's duration that is
devoted to setup and the portion that represents its actual execu: - = (which is, in fact, done
in the representation presented below), it becomes somewhat curc rsome to differentiate at
finer levels (e.g. between that portion of the setup duration that recuires the presence of the
production unit and that portion that can proceed without its presence).

One final comment regarding representational objectives is in order before considering the details of
the representation of operation duration constraints. We assume that the framework for specification must
provide a basis for use of decision procedures that perform some amount of lookahead from the current
state or rely on some amount of scheduling. This implies an ability to specify and derive expected
durations as well as actual durations.

Given these assumptions, we define the concept of a duration-spec (Figure 3-14). Duration-specs
are intended to encapsulate all parameters and caiculations relevant to determination of an operation’s
duration. Two generic methods, common to all duration specs, define basic mechanisms for determining
durations and a framework for specialization according to domain-specific parameters and caiculation
methods:

e get-expected-duration - This method returns the "expected” total duration of the associated
operation (including any required setup time). The actuai method is defined quite simply as:
(defun calc-expected-duration (op message
&optional (prev-ops nil))
(declare (ignore meassage)
(+ (call-mathod op ’get-expected-setup-duration prev-ops)
(call-mathod op ’get-expected-run-duratiom)))

The definitions of the methods supporting this caiculation, get-expected-setup-duration and
get-expected-run-duration, will obviously vary across different types of duration-specs. We
will consider the nature of this variability in Section 3.6 as the definitions of different types of
operations are elaborated.

e get-actual-duration - This method returns the "actual” total duraticn of_ the as;ociated
operation according to a specified PROBABILITY-DISTRIBUTION. It operates Dy first obtaining the
“expected” duration, which provides a basis for defining the absolute parameters of the
specitied distribution, and then returning a sample drawn over this distribution. A pre-defined
set of possible types of probability distributions is assumed® and the.paramete‘rs necessary
to specify a distribution of any one of these types appear as spectfiable attributes of the

Swhich are exactly those types of distributions that are supported by SIMPAK.

17

duration-spec (in Figure 3-14 this is alluded to by "STANDARD-DEVIATION SPREAD ..."). Values
filling these distribution parameter slots are assumed to be relative to the expected duration.

{{duration-spec
IS-A: conceptual-object
get-expected-duration: calc-expected-duration
get-expected-setup-duration:
get-expected-run-duration:
get-actual-duration: calc-actual-duration
DURATION-SPEC-OF:
PROBABILITY-DISTRIBUTION:

range: (TYPE instance distribution-object)

STANDARD-DEVIATION:
SPREAD:

N

Figure 3-14: The duration-spec definition

Duration-specs are associated with operations via the has-duration relation. It is defined as an
inheritance relation to make aspects of the attached duration-spec immediately accessible to the
operation description. The has-duration relation and its inverse are defined in Figure 3-15.

{{has-duration
Is-A: relation
DOMAIN: (TYPE instance utilization-operation)
RANGE: (TYPE instance duration-spec)
INVERSE: duration-spec-of
INCLUSION: Is-a-inclusion-spec }}

{{duration-spec-ot
IS-A: relation
DOMAIN: (TYPE instance duration-spec)
RANGE: (TYPE instance utilization-operation)
INVERSE: has-duration }}

Figure 3-15: The has-duration/duration-spec-of relations

3.5. Operation Status Information

We associate a STATUS attribute with the definition of operation (with possible values of pending,
inprocess, or completed) to indicate the current state of a given instantiated operation at any point in time.
Similarly, we associate an EXECUTION-INTERVAL with each instantiated operation, to delineate its actual (or
planned) start and end times. The range of EXECUTION-INTERVAL is constrained to be an instance of a
production-activity-interval (Figure 3-16). This specialization of calendar-Interval introduces two
additional attributes: RUN-DURATION and SETUP-DURATION.

= ;ﬂ;; = j

18

{{production-activity-intervai
Is-A: calendar-interval
SETUP-DURATION:
RUN-DURATION: }}

Figure 3-16: The production-activity-interval definition

Within the basic representational framework, it is assumed that the model updating associated with the
initiation and termination ot operations propery maintains these two state variables (as well as state
variables relating to the available capacity of resources - see Section 4.2). However, in the context of a
specific manufacturing environment, it may be desirable or necessary to extend the representation of
current state in various ways, and hence extend the basic model updating that is performed as control
decisions are initiated. Implementation of the example in Figure 3-9, for instance, would require
extension of the cument state representation to include an association of a
NBR-OF-CHIP-LAYERS-COMPLETED attribute with productic:” inits, and extension of the model updating that
must take place upon termination of specific operations.

To enable this capability, two methods, update-on-op-start and update-on-op-end are also associated
with operations. These methods (which by default are noops) are called after the basic model updating
has been performed in the cases of operation initiation and termination respectively, and thus provide a
mechanism for model extension.

3.6. Operation Descriptions
Given the above primitives for organizing and describing manufacturing activities, we now put the
pieces together and consider representation of manufacturing activities themselves. Figure 3-17 depicts
the generic definition of operation. It contains those attributes and relations previously discussed and
identifies three additional attributes:
e an instantiate-operation method, which provides the mechanism for instantiating a given
operation and establishing relationships with previously instantiated oc--ations,

¢ an OPERATES-ON attribute, which indicates the object of the operation, and

e a STATISTICS attribute, which serves as a repository for statistics relating to the current
instantiations of a given prototype operation.

19

{{operation
IS-A: activity
instantiate-operation:
update-on-op-start.
update-on-co-end:
POSSIBLE-SUB-OPERATIONS:
POSSIBLE-SUB-OPERATION-OF
SUBPLAN-ENTRY-OPERATION:
INITIAL-OPERATION-OF;
SUBPLAN-EXIT-OPERATION:
FINAL-OPERATION-OF:
SUB-OPERATIONS:
SUB-OPERATION-OF:
FIRST-SUB-OPERATION:
FIRST-SUB-OPERATION-OF:
LAST-SUB-OPERATION:
LAST-SUB-OPERATION-OF:
TYPE:
range: (OR and or atomic)
POSS!BLE-SUCCESSORS:
POSSIBLE-PREDECESSORS:
SUCCESSOR:
PREDECESSOR:
STATUS:
range: (OR pending inprocess completed)
EXECUTION-INTERVAL:
range: (TYPE instance production-activity-interval)
OPERATES-ON:
STATISTICS:
range: (TYPE instance operation-stats-report) }}

Figure 3-17: The operation definition

We distinguish between two general types of operations:

« utilization-operations - Utilization operations are defined to be those operations whose
execution involves utilization of resources (machines, operators, tools, etc.). We can further
distinguish three subtypes in this case, depending on the nature of the object being
OPERATED-ON, and the type of transformation being modeied:

- manufacturing-operation - Manufacturing operations model activities that operate on
production units, transforming their contents and making progress toward the
production of final products. A

- transport-operation - Transport operations model activities that change the location
of production units, specifying movement from one stationary resource to another.

« resource-support-operations - Resource support operations are defined to mq«dei
those activities required to support the resources required by manutacturing operaisqqs
(i.e. resource maintenance, repair and setup activities). They operate on specific
resources.

« control-operations - Control operations are defined to model operations that change and
requlate the flow of products through the manufacturing system. These operations do not
constitute productive work on the contents of production units but rather act to reconfigure
production units and control their movement.

20

We consider the representation of each of these types of operations in turn in the following subsections.

3.6.1. Utilization Operations

The definition of utilization-operation (Figure 3-18) specializes operation through the introduction of
previously discussed relations pertaining to specification of resource requirements and duration
constraints. Further specialization of utilization-operation into the subtypes manufacturing-operation,
transport-operation, and resource-support-operation (Figure 3-19) imposes appropriate constraints
on the type of vaiue that may fill the OPERATED-ON slot and the HAS-DURATION relation. In the case of
transport-operation, additional attributes relating to location are also defined. We assume for the time
being that stationary resources and process-related "control points” (see Section 3.6.2) designate
possible production unit locations.

{{utllization-operation
IS-A: operation
HAS-DURATION:
PRIMARY-RESOURCE:
SECONDARY-RESOURCES: }}

Figure 3-18: The utilization-operation definition

{{manufacturing-operation
Is-A: utllization-operation
OPERATES-ON:
range: (TYPE instance production-unit)
HAS-DURATION:
range: (TYPE instance mfg-op-duration-spec) }}

{{resource-support-operation
iS-A: utilization-operation
OPERATES-ON
range: (TYPE instance resource)
HAS-DURATION:
range: (TYPE instance res-support-duration-spec) }}

{{transport-operation
iS-A: utilization-operation
OPERATES-ON
range: (TYPE instance production-unit)
HAS-DURATION:
range: (TYPE instance trans-op-duration-spec)
INITIAL-LOCATION:
range: (OR (TYPE instance stationary-resource) (TYPE instance control-point))
FINAL-LOCATION:
range: (OR (TYPE instance stationary-resource) (TYPE instance control-point)) }}

Figure 3-19: Types of utllization-operations

Figure 3-20 further refines the utllization-operation type hierarchy by defining three different types of

21

resource-support-operation. These definitions do not, by themselves, provide any differentiating
characteristics. They are defined for purposes of easily associating default information within the model of
a specific manutacturing system. For example, a single probability distribution for determining operation
durations might be appropriate for all repair operations.

{{repair-operation
IS-A: resource-support-operation }}

{{maintenance-operation
IS-A: resource-support-operation }}

{{setup-operation
IS-A: resource-support-operation }}

Figure 3-20: Types of resource-support-operations

The above definitions of manufacturing-operation, transport-operation, and
resource-support-operation presume corresponding specializations of basic duration-spec introduced
in Section 3.4. We consider these specializations in the following paragraphs.

Figure 3-21 lists the definitions of duration-spec specializations relevant to
manufacturing-operations. The mfg-op-duration-spec is distinguished by the introduction of a generic
get-expected-setup-duration method. Setup duration in this case is assumed to be a function of the setup-
matrix associated with the required primary resource (the concept of setup-matrix will be discussed in
Section 4). The method defined simply consults this structure. The mfg-op-duration-spec subtype is
further specialized into batch-op-duration-spec and plece-dependent-duration-spec to define two
basic types of get-expected-run-duration calculations. These specializations distinguish respectively
cases where operation run time is independent of the number of items in the production unit (e.g. "wash”
operations in semi-conductor manufacturing environments), and cases where operatior: run time is a
function of the number of items in the production unit (e.g. wafer "etching” operations). Both
specializations add an appropriate calculation parameter.

{{mtg-op-duration-spec
IS-A: duration-spec
get-expected-setup-duration: calc-resource-setup-duration }}

{{batch-op-duration-spec
IS-A: mfg-op-duration-spec
get-expected-run-duration: calc-batch-op-run-duration
RUN-DURATION: }}

{{plece-dependent-duration-spec

IS-A: mfg-op-duration-spec
get-expected-run-duration: calc-piece-dep-run-duration
DURATION-PER-PIECE: }}

Figure 3-21: mig-op-duration-specs and its subtypes

Definitions of get-expected-run-duration can certainly be more complex. If, for exampnhe,_ we were
defining an iterative manufacturing process, as in Figure 3-9, then it might be appropriate to differentiate

22

run duration parameters according to aspects of the current production state. Supposing this to be the
case, we could extend the example of Figure 3-9 by defining "level-dependent” variants of
batch-op-duration-spec and plece-dependent-duration-spec, substituting get-expected-run-duration
methods that derive the current level of the production unit being OPERATED-ON by the operation, and
interpret the contents of the parameter slot as a list of <level value> pairs.

Figure 3-22 defines a specialization of duration-spec relevant to transport-operations. In this case,
the both get-expected-setup-duration and get-expected-run-duration calculation methods are defined in
terms of distances between source and destination locations. Setup duration is defined to be the time
necessary for the resource to travel from the FINAL-LOCATION of the last transport operation performed to
the INITIAL-LOCATION of the current operation. Run duration is similarly defined in terms of the
INITIAL-LOCATION and FINAL-LOCATION of the current operation. In both cases, a distance is retrieved from
the defined DISTANCE-MATRIX and multiplied by the DURATION-PER-DISTANCE-UNIT parameter.” Note that the
same DISTANCE-MATRIX will be applicable to all instances of trans-op-duration-specs. Only the
DURATION-PER-DISTANCE-UNIT can vary across instances.®

{{trans-op-duration-spec
iS-A: duration-spec
get-expected-setup-duration: calc-trans-op-setup-duration
get-expected-run-duration: calc-trans-op-run-duration
DISTANCE-MATRIX:
DURATION-PER-DISTANCE-UNIT: }}

Figure 3-22: The trans-op-duration-spec definition

Finally, we define the res-support-duration-spec (see Figure 3-23) for describing duration constraints
associated with resource-support-operations. In this case, the defined get-expected-setup-duration and
get-expected-run-duration methods are defined in tums of specified RESPONSE-TIME and
SUPPORT-OP-DURATION parameters respectively.

{{res-support-duration-spec
is-A: duration-spec
get-expected-setup-duration: calc-support-prep-duration
RESPONSE-TIME:
get-expected-run-duration: calc-suppornt-op-duration
SUPPORT-OP-DURATION: }}

Figure 3-23: The res-support-duration-spec definition

"Within the implementation, the distance matrix is actually implemented as a hash table with a default value of 0. This exploits the
fact that the matnx is symmaetnc and economizes the amount of storage required.

80ne obvious alternative to the use of a distance matnix is to simply retrieve the location values of the appropnate statonary
resources and/or control points, and directly compute the distance. We believe this approach is perfectly reasonable (and perhaps
preferable) when it is possible. However, since the modeling framework assumes that the locations of all enties are defined reiative
1o the locations of stationary resources and control points, this alternative is not possible in manutactuning environments where there
are no stationary resources. in such cases, the distance matnx provides a framework for defining suitable approximations.

23

3.6.2. Control Operations

In contrast to the various types of utilization operations discussed above, control operations are
concerned with the reconfiguration of production units traveling through the manufacturing system and
regulation of treir rmovement. Reconfiguration of production units during the production process is a
common phenomenon in many manufacturing environments. Production units may be merged into larger
units or split into smatler units at various stages due to material handling constraints (e.g. paliet capacities
in an automated manufacturing cell). Alternatively, yield problems at a particular inspection point in the
manufacturing process may dictate that a production unit be split and defective elements routed through a
sequence of repair operations. Depending on the specific control policies in force, the remaining portion
of the production unit may be sent on in the manufacturing process or held until defective elements are
repaired and can be reunited. A third example of reconfiguration arises in the context of complex setup
procedures. In wafer fabrication, selected elements of a given production unit are sometimes "sent
ahead" through a particular process for purposes of verifying that the manufacturing equipment is
correctly calibrated. In such cases, further movement of the remainder of the production unit is contingent
on the outcome of the send ahead process. Control operations provide a basis for modeling these sorts of
production unit reconfiguration activities.

Figure 3-24 provides the prototypical definition of a control-operation. The definition specializes
operation by designating an associated CONTROL-POINT, which specifies the locus of the control operation
(see the definition of control-point below). As stated above, a control operation OPERATES-ON a given
production unit. Control operations do not require resources, and either occur instantaneously or have an
indefinite duration that is depends entirely on the execution of other activities in the manufacturing
system.

{{control-operation
IS-A: operation
CONTROL-POINT:
range: (TYPE instance control-point)
OPERATES-ON:
range. (TYPE instance production-unit) }}

Figure 3-24: The control-operation definition

As indicated above, the distinguishing characteristic of a control operation is its controi-point (see
Figure 3-25). A control-point designates a particular QUEUE (or store) of production units, and has a
well-defined LOCATION within the manufacturing system. A particular control-point is seen as the locus of
a specific process-related control activity (e.g. a place where production units are reconfigured to
accommodate the material transport constraints on a specific manufacturing subprocess). A production
unit enters the queue of a given control point when it is necessary to perform this control activity
(specified by a control operation that OPERATES-ON that production unit and designates the controi point in
question). For purposes of simulating model behavior [5], a control-point is ascribed responsibility for
managing control operations. To this end, a control-point has an associated execute-op method, which
defines the overall semantics of executing a control operation (i.e. the changes it implies with respect to
the state of the model). This method, in turn, relies on any parameters specified in the specific control
operation being executed (see below) as well as a specified control-policy. The control-policy associated
with a control point defines the specific decision procedure to be applied in reconfiguring and reieasing
the production units that reside in the control point’s QUEUE.

24

{{control-point
execute-op:
control-policy:
LOCATION:
range: (LIST integer integer)
QUEUE:
range: (SET (TYPE instance production-unit)) }}

Figure 3-25: The control-point definition

Three basic types of control operations are distinguished (depicted in Figure 3-26):

 split-operation - This type of control operation involves reformulation of the production unit
designated by OPERATES-ON into two or more smaller production units. In this case, a
NEW-PRODUCTION-UNIT-SUCCESSORS attribute is introduced to designate the first operation to
be performed on all but one of the newly created production units. It is assumed that the
POSSIBLE-SUCCESSORS relation designates a continuing route for the one remaining
production unit resulting from the spiit. The control-policy contained in the associated
CONTROL-POINT specifies a procedure for splitting the production unit. This procedure may
reflect a decision policy as the name implies (e.g. a partitioning of an n element production
unit into a 2 element "send ahead” sub-unit and an n-2 element "hold back" sub-unit) or
mode! observed behavior of the manufacturing system (e.g. a yield function that partitions
the elements of the production unit into "good" and "bad" sub-units).

« join-operation - This type of control operation involves the merger of the production unit
designated by OPERATES-ON with one or more other production units currently in the QUEUE of
the operation's associated CONTROL-POINT. Here, the CONTROL-POLICY contained in the ,
associated CONTROL-POINT is a procedure that designates the circumstances under which H
production units residing in the queue can be joined and proceed past the control point (e.g.
rejoining the above mentioned "good” sub-unit with the "bad” sub-unit once it has been
repaired and enters the queue). As is the case with utilization-operations, the
POSSIBLE-SUCCESSORS relation designates the continuing route of the single production unit
produced by this operation.

« walt-operation - This type of control operation serves to delay any further movement of the '1
production unit designated by OPERATES-ON until a specific causal condition involving a
separate production unit becomes true. As indicated in the discussion of connection specs in
Section 3.2, this is operationalized by posting triggering "message” with the wait-operation
when the condition becomes true. To this end, a MESSAGE-LIST is associated with each wait
operation. Note, that the there is no CONTROL-POLICY associated with the CONTROL-POINTS of
walt-operations. In this case, there is no decision-making that must take piace; when the
triggering message is received, the production unit is released.

25

{{spllt-operation
IS-A: control-operation
NEW-PRODUCTION-UNIT-SUCCESSORS:
CONTROL-POINT:
range: (TYPE instance split-control-point) }}

{{joln-operation
IS-A: control-operation
CONTROL-POINT:
range: (TYPE instance join-control-point) }}

{{walt-operation
is-A: control-operation
MESSAGE-LIST:
CONTROL-POINT:
range: (TYPE instance walt-control-point) }}

Figure 3-26: Types of control operations

Correspondent to these three basic types of control operations, three types of control points are also
defined: split-control-point, join-control-point, and wait-control-point (see Figure 3-27). These types
of control points are distinguished by the presence of distinct execute-op methods.

{{split-control-point
Is-A: control-point
execute-op: split-pu-transition-fun }}

{{join-control-point
1s-A: control-point
execute-op: join-pu-transition-fun }}

{{walt-control-point
1S-A: control-point
execute-op: release-pu-transition-fun }}

Figure 3-27: Types of control points

To provide a basis for modeling process-related control activities at different levels of abstraction, an
abstract-spiit-operation and an abstract-join-operation are additionally defined (see Figure 3-28). As
can be seen, these types of abstractions are associated both the properties of the corresponding basic
control operation and the properties of a manufacturing-operation. This is due to the fact that an
abstract control operation will often encapsulate a subprocess consisting of both types of more primitive
operations.

26

{{abstract-spilit
IS-A: spiit-operation manufacturlng-operatlon 3]

{{abstract-join
is-A: join-operation manutacturing-operation }}

Figure 3-28: Abstract control operations

The reader is referred to [5] for further details regarding the interpretation of control operations and
examples of their use.

4. Modeling Resources

In this section we consider representation of the resources required to perform manufacturing activities.
We first address issues relating to th> Jevelopment of hierarchical descriptions of resources. We then
consider, in turn, representation of the -ious constraints that affect resource allocation. This will provide
us with a basis for subsequent de.:ziopment of descriptions of the specific types of resources
encountered in manufacturing environments.

4.1. Hierarchical Descriptions of Resources

The framework for hierarchical specitication of manufacturing processes described in Section 3.1 is
motivated by a desire to enable reasoning about resource allocation at different levels of precision. We
have seen in the representation of operations that resource requirements of a given operation are
uniformly designated as percentages of specific resources, regardless of the position of the operation in
the hierarchical model. At abstract levels, it is thus assumed that resource requirements are expressed in
terms of aggregate resources. it has already been stated that the determination of appropriate process
abstraction levels in any particular manufacturing environment is largely a function of the utility of various
resource abstractions from an allocation perspective. Resource abstractions (defined as aggregate
resources) are intended to encapsulate and isolate meaningful sets of control decisions.

Re&oanmoumenﬁmﬂHeMs&mmmmmwamemwnof
aggregate resources that is interpretable from two distinct perspectives:

aggregateresowooasanaﬁowlabﬂcmﬁy mm::mw:xotreasmmgaboutmsoume

abstraas(e@capmﬂywmm 'w.‘:a»»‘:
e aggregate resource as a set of constituent sub-resources ~ ; lev
abstraction in the model, Wsmmsdﬂmmwmmmmmmm
more detailed resource allocation decisions that must be made. In this regard, the
mmmmmmmmrmwmmmmmm
well as any knowledge relevant to sub-resource allocation (e.g. aliocation preferences among
the alternatives abstracted by a given aggregate resource).

These representational requirements motivate our approach to modeling resources.

As implied above, we assume that the basic objective in developing hierarchical resource descriptions
is specification of groups of functionally related resources. A group of resources is defined to be

functionally related if either
1. they provide manufacturing alternatives relative 1o a given process step or

27

2. they are configured for consecutive utilization within a multi-step process.

Hierarchical resource descriptions based on this organizing principle are, of course, not unrelated to the
actual configuraticn of manufacturing system being modeled. Indeed, the design of rnanufacturing
systems is typically also motivated by functional grouping objectives (e.g. resources are partitioned into
work areas which support particular production processes and/or process.steps). Thus. the types of
abstractions defined above often correspond very directly to identifiable structural ccmiponents of the
actual manufacturing system. Generally speaking, the set of resource abstractions of interest in
constructing a hierarchical model will be a superset of those implied by a structural decomposition- of the
actual manutacturing system.

Consideration of just those resource abstractions (or functional groupings) that have structural
counterparts in the actual manufacturing system leads to a hierarchical organization of resources that
partitions the resources defined at any given level of abstraction into mutuaily exclusive resource sets at
the next higher level. Such an organization offers considerable advantages from the standpoint of
maintaining descriptions of current available capacity (see Section 4.2 below), and we rely on mutually
exclusive resource partitions to provide the "backbone"” of any defined organization of resources. We
introduce the sub-resources/sub-resource-of relation pair (Figure 4-1) for purposes of specifying such
partitions. These relations are defined to associate aggregate resources with their constituent sub-
resources (and vice versa) under the assumption of a mutually exclusive hierarchical partitioning. Thus, a
resource. can be a SUB-RESOURCE-OF at most one higher level aggregate. An additional
PCTG-OF-AGGREGATE-CAPACITY attribute is associated with the sub-resource-of relation to further specity
the relationship between a resource and its aggregate. We defer consideration of the semantics of this
information until Section 4.2 below, where resource capacity constraints are discussed.

{{sub-resources
is-A: relation has-parts
DOMAIN: (TYPE instance resource)
RANGE: (SET (TYPE instance resource))
INVERSE: sub-resource-of }}

{{sub-resource-ot
Is-A: relation part-of
DOMAIN: (TYPE instance resource)
RANGE: (TYPE instance resource)
INVERSE: sub-resources
PCTG-OF-AGGREGATE-CAPACITY: }}

Figure 4-1: The sub-resource-of/sub-resources relations

From the standpoint of reasoning about resource allocation, hierarchical resource descriptions based
solely on the use of the sub-resources/sub-resource-of relation pair can prove insufficient in some
situations. To illustrate this, we consider an exampie of their use. Figure 4-2 depicts a work area of
machines that supports a particular production process step within a hypothetical manufacturing system.
The work area is composed of three different types of machines: type A machines, type B machines, and
type C machines. Each machine type is assumed to possess distinct operating characteristics, and thus
take variable amounts of time to perform specific operations. Given this work area configuration, we can
identify three levels of detail at which control/allocation decisions might be modeled:

« at the work area level, where the characteristics of constituent machines are appropriately
aggregated (e.g. operation durations reflect averages over all constituent machine types) and
allocation decisions are based on the overall capacity of the work area,

28

« at the identical machine group level, where tradeoffs between machine types (e.g. varying
operation durations, relative reliability) can be factored into allocation decisions, and
allocation decisions are based on the respective capacities of each machine group, and

e at the individual machine level, where specific machine assignments are made to pending
operations, and tradeoffs between sequencing decisions (e.g. to minimize setup time) can be
precisely evaluated.

Assuming appropriate abstractions of constraints such as capacity (which will be considered in following
sections), these three levels of description would be represented within the relational framework defined
above as indicated in Figure 4-3.

Work Area 1

Mach Mach Mach Mach
A1l A2 A3 C1

Mach Mach}] Mach Mach
B1 B2 C3 C2

Figure 4-2: A work area of machines supporting a particular process step

WORK-AREA1
A-CELL-GROUP B-CELL-GROUP C-CELL-GROUP
MACH-A1 MACH-A2 MACH-A3 MACH-B1 MACH-B2 MACH-C1 MACH-C2 MACH

Figure 4-3: Hierarchical representation of the work area

However, suppose that allocation of resources in the work area is also constrained by the types of
products that are being manufactured. Figure 4-4 introduces a set of such constraints, which dictate that
the process step for product family P1 can only be performed on machine types A and C, that the process
step for product family P2 can only be performed on machine types A and B, and that the process step for
product tamily P3 can only be performed on machine type B. Given these additional constraints, the work
area level of description in Figure 4-3 no longer provides a meaningful basis for reasoning about resource
aliocation. Saying this another way, designation of work-areal as a required resource of an abstract
operation in a specific production process is always misleading. Interpreting work-areal as an

29

allocatable entity, its capacity constraints reflect all resources of the work area while in the context of any
specitic production process, only a portion of the work area's total capacity is actually relevant. Similarly,
work-areal indicates all three machine groups as its constituents, while in the context of any specitic
production process, only a subset of these groups are allocation altematives.

Work Area 1
A-CELL-GROUP
C-CELL
products: P1, P2 GROUP
IB-CELL-GROUP
products: P1
products: P2, P3

Figure 4-4: A work area of machines with overiapping capabilities

The problem, of course, stems from the fact that the constituent resources of the work area have
overiapping capabilities. We thus extend our representational framework to allow definition of aggregate
resources that designate overlapping sets of constituent resources. We associate a TYPE with each
resource, which can be either disjoint-aggregation, overlapping-aggregation, or atomic (see Figure 4-18),
and define an additional set of relations for constructing resource hierarchies that include overlapping
aggregations. A given overiapping aggregation is related to the smallest disjoint aggregation that
“contains” it (and vice versa) via the overlapping-sub-resource-of/overiapping-sub-resources relation
pair (Figure 4-5). An overlapping aggregation is related to its constituents (and vice versa) via the
grouped-sub-resources/grouped-in relation pair (Figure 4-6). Finally, an overlapping aggregation is
related to the overlapping aggregations with which it shares constituents via the overlaps-with relation
(Figure 4-7).

{{overlapping-sub-resources
IS-A: relation has-parts
DOMAIN: (TYPE instance resource)
RANGE: (SET (TYPE instance resource))
INVERSE: overiapping-sub-resource-of }}

{{overlapping-sub-resource-of
IS-A: relation part-of
DOMAIN: (TYPE instance resource)
RANGE: (TYPE instance resource)
INVERSE: overiapping-sub-resources }}

Figure 4-5: The overiapping-sub-resource-of/overiapping-sub-resources elations

{{grouped-sub-resources
IS-A: relation has-parts
DOMAIN: (TYPE instance resource)
RANGE: (SET (TYPE instance resource))
INVERSE: grouped-in }}

{{grouped-in
IS-A: relation part-of
DOMAIN: (TYPE instance resource)
RANGE: (SET (TYPE instance resource))
INVERSE: grouped-sub-resources }}

Fiz- = 4-6: The grouped-sub-resources/grouped-Iin relations

{{overiaps-with
IS-A: relation
DOMAIN: (TYPE ins- -8 resource)
RANGE: (TYPE instarice resource)
INVERSE: overiaps-with }}

Figure 4-7: The overlaps-with relation

The augmented resource hierarchy in the case of our work area example is shown in Figure 4-8. Using
this hierarchy, the resources designated as operation requirements at the work area level of precision
now become P1-cell-group, P2-cell-group and P3-cell-group within the production process descriptions
associated with products P1, P2 and P3 respectively.

4.2. Modeling Capacity Constraints

In both the above discussion of hierarchical resource descriptions and the approach to specitying
resource requirements of operations presented in Section 3.3, we have made the assumption that
allocation of a resource to a specific activity does not necessarily imply its total unavailability to other
activities. Rather unavailability is assumed to be a function of the resource’s capacity constraints, and
aliocation of the resource to an operation implies the unavailability of some percentage of the resource
(i.e. a reduction of its available capacity) until the operation requiring it subsequently terminates. We can
certainly identify types of resources whose allocation requires this perspective (e.g. an oven that can
simultaneously accommodate several production units). Moreover, reasoning about resource aliocation at
abstract levels almost always involves partial allocation of resources. In this section we consider
representation of the capacity constraints that govern allocation of resources, and the means by which
these constraints are used to maintain descriptions of current available capacity.

4.2.1. Capacity-related Attributes

Generally speaking, we define the CAPACITY of a resource to be the number of tems that the resource
can process simultaneously. We use the term “items™ here, in part, to reflect the fact that different types ot
utilization-operations (i.e. those that require resources) operate on different types of entities.
Manufacturing and transport operations manipulate production units; resource support operations
manipulate other resources. However, we aiso wish to define the notion of capacity in a manner that is
independent of the number of activities that might be simultaneously supported. For example, the

AT |

31

WORK-AREA1

P3-CELL-GROUP P1-CELL-GROUP

A-CELL-GROUP B-CELL-GROUP C-CELL-GROUP
MACH-A1 MACH-A2 MACH-A3 MACH-B1 MACH-B2 MACH-C1 MACH-C2 MACH-C3

Figure 4-8: Augmented hierarchical representation of the work area i

production unit designated by a specific manufacturing (or transport) operation actually represents a
group of products that are moving together through the manufacturing system, and it is these products
that are actually transformed (or moved) during execution of the operation. The capacities of resources
required by this operation are thus defined in terms of the number of products that each resource can
simultaneously support. In the case of a resource required by resource support operations, capacity is
the number of resources that can simultaneously be supported (e.g. a machine repairman would have a
capacity of 1; the overall pool of repair personnel would have a capacity equal to the number of people in

|
{ the pool).

A resource may also have constraints on the manner in which capacity can be allocated. Consider, for
example, a "wash” operation in the context of semi-conductor manufacturing, where wafers are soaked
for some period of time in a chemical bath. The bath might have the capacity to hold 50 wafers. However,
once the bath has been allocated to a particular production unit (or batched set of production units), it is
unavailable for other use for the duration of this wash operation, regardiess of the number of wafers
actually undergoing the operation. Such constraints are modeled by associating a BATCH-SIZE with each
resource, which defines the multiple of capacity units in which capacity must be allocated. Thus, in the
above example, we would specify a BATCH-SIZE of 50 for the bath. Supposing, at a higher level, the
definition of an aggregate resource that represents a group of three of these baths, we would specity
quantities of 150 and 50 as the aggregate resource’s CAPACITY and BATCH-SIZE respectively.

4.2.2. Available Capacity

Of central importance in reasoning about resource allocation, of course, is a representation of the state
of availability of resources over time. in our terms, this corresponds to a representation of that portion ot
resource’s total CAPACITY that is available for allocation at any point in time.

Given the CAPACITY and BATCH-SIZE constraints defined above and the specification of resource
requirements in Section 3.3, computation of a resource’s available capacity is straightforward. Suppose

32

we designate the available capacity of resource R at time t as avail-capy ,, and assume an initial value
avail-capp g=capacityg. Then the change in avail-capy , as a result of A 's allocation to operation op at
time t1 is simply

avail-capg, = avail-capp, , - ma.x(cap—reqop , batch—sizep).
Similarly, the change in avaii-capg , upon termination of op at time t2is

avail-capp , = avail-capp, | + max(cap—reqap , batch—sizep).

The important issue from the standpoint of representation here concerns support for reasoning about
the future. If resource allocation decisions are to be made in a strictly time ordered manner (e.g. in the
context of a forward simulation) with no anticipation of or expectations about future system behavior, then
maintenance of a scalar available capacity value for each resource (as described above) is sufficient. In
our representation of resources, we associate a CURRENT-CAPACITY attribute which has precisely these
semantics. If, on the other hand, resource allocation decisions are to be contemplated in advance of their
occurrence (i.e. either schedules are developed or some amount of iook ahead search is performed) and
the results used to guide factory operations, then a representation that depicts the evolution of each
resource’s available capacity over some future planning horizon is additionally required. We thus also
associate an AVAILABLE-CAPACITY structure with each resource, which provides this representation of
anticipated resource utilization. A resource’s AVAILABLE-CAPACITY is represented as an ordered sequence
of capacity-intervals (Figure 4-9), with each interval indicating the activities that are anticipated to be
consuming capacity within its temporal scope and the capacity that remains available. Further details of
this representation and its use in scheduling may be found in [8].

{{capacity-interval
IS-A: calendar-time-interval
CAPACITY:
CONSUMERS:
range: (SET (TYPE instance utilization-operation)) }}

Figure 4-9: The capacity-interval definition

4.2.3. Relating capacity constraints at different levels

Use of a hierarchical model of the manufacturing system raises an additional issue relative to resource
capacity constraints: that of maintaining consistency in the available capacity of resources defined at
different levels of abstraction®. If a machine breaks down, for example, the loss in available capacity must
be reflected not only in the description of the broken machine, but also in the descriptions of every
aggregate resource that "contains” the machine as a sub-resource.

Propagation of changes in available capacity through different levels in the resource hierarchy requires
knowledge of the percentage of capacity that each sub-resource contributes to the overall CAPACITY of a
given aggregate resource. In the case of disjoint abstractions, this information is encoded with the
instance of the sub-resource-of relation linking a given sub-resource to the abstraction. Recalling this
relation’s definition in Figure 4-1, we see that PCTG-OF-AGGREGATE-CAPACITY is defined as an attribute of
the relation. We assume that the vaiue of PCTG-OF-AGGREGATE-CAPACITY is a value between 0 and 1, and
that the sum of the values associated with all sub-resources of a given abstraction equals 1. Given this
information, a change of n units in the available capacity of a subresource A is defined to result in a

®Here we are using the term "available capacity” in a general sense o refer to either the CURRENT-CAPACITY OF AVAILABLE CAPACITY
representation defined above.

change of
—_ .
X ptrg—of- te~capaci
capacity, = °7% of-aggregate-capacity,

in the available capacity of the related aggregate resource.

In the case of overlapping abstractions, where sub-resources are related to the abstraction via the
grouped-in relation (Figure 4-6), we define a similar updating scheme. However, since a resource can
belong to more than one overlapping abstraction, we cannot associate PCTG-OF-AGGREGATE-CAPACITY with
the relation itself. We must instead associate this informatio~ with the specific values in the range of the
relation as meta-information. For this purpose, we define a pctg-of-capacity-spec (Figure 4-10), whose
PERCENTAGE attribute has the same interpretation as defined above. The pctg-of-capacity-spec is also
used to describe the overiaps-with relations associated with overlapping abstractions (in this context
reflecting the percentage of resources shared by two overlapping abstractions). When the available
capacity of an overlapping abstraction changes this information is used to update the descriptions of each
aggregate resource that OVERLAPS-WITH the overlapping abstraction. Specification of
PCTG-OF-AGGREGATE-CAPACITY information relative to relations between an overlapping abstraction and its
“containing” disjoint abstraction is done in the same manner as in the case of the sub-resource-of
relation, since the overiapping-sub-resource-of relation used to define such linkages (Figure 4-5) is also
a one-to-one relation. Note, however, that change is propagated across overlapping-sub-resource-of
relations only if the overlapping abstraction constitutes the lowest level of precision at which the system is
reasoning. Otherwise, change will be propagated to the containing disjoint abstraction through
sub-resource-of relations.

{{pctg-of-capacity-spec
Is-A: conceptual-object
PERCENTAGE: }}

Figure 4-10: The pctg-of-capacity-spec definition

Determination of appropriate “percentage of aggregate capacity” values depends on the nature of the
set defined by a given aggregate resource. if the aggregate resource represents a set of manufacturing
alternatives, then percentages are straightforwardly defined (i.e. the CAPACITY of the aggregate is simply
the sum of the capacities of its constituents). The situation is more ill-defined in cases where the
aggregate resource represents a set of consecutively utilized resources. Here the CAPACITY of the
_ aggregate may be dominated by the CAPACITY of one or more "bottleneck” resources. We have no
compelling methodology for specification of percentages in this case, and rely instead on estimates based
on performance characteristics of the actual manutacturing system.

4.3. Modeling Resource Setup Constraints

We associate a setup-matrix with each resource as a means of specifying setup duration constraints.
The object defines a MATRIX of durations and a retrieve-duration method for accessing the structure. The
function implementing the method is assumed to be defined in terms of two parameters: the operation
requiring the setup and the set of operations last utilizing the resource.

We distinguish between two basic types of setup-matrix, a config-dependent-setup-matrix and a
location-dependent-setup-matrix. in the case of config-dependent-setup-matrix, setup duration is
assumed to be a function of the difference in the resource configuration state implied by the last operation
- performed on the resource and the resource configuration state implied by the current operation. The

34

retrieve-duration method derives the value of the "state-defining” attribute for each operation (e.g. the
type of product contained in the production unit OPERATED-ON by each operation) and uses these values
as indices into the SETUP-MATRIX. The matrix itseif detines durations for each possible index pair.

In the case of location-dependent-setup-matrix, the matrix is precisely the same distance matrix that
was defined for trans-op-duration-spec in Section 3.6. The retrieve-duration method derives "location”

indices in the same manner as previously specified.'°.

{{setup-matrix
IS-A: object
retrieve-duration:
MATRIX: }}

{{config-dependent-setup-matrix
IS-A: setup-matrix
retrieve-duration: get-stationary-resource-setup }}

{{location-dependent-setup-matrix
IS-A: setup-matrix
retrieve-duration: get-mobile-resource-setup }}

Figure 4-11: setup-matrix definitions

4.4. Modeling Work Shift Constraints

Work shifts specifications provide a framework for representing the periods of time during which
specific resources are to be operational. More generally, work shift specifications provide a solution to
representation of time varying constraints - constraints which vary in nature over different intervals of
time. For example, circumstances may dictate some degree of overtime over a specific period of time,
even though shorter operational period is typically adhered to.

A work shift specification defines intervais of operation for a resource (i.e. work shifts) over a specific
temporal horizon. The work shift specifications relevant to a specitic resource are organized as a rooted
tree structure, with each subtree defining an alteration to its parent specification over some portion of the
temporal scope of the parent specification. In other words, work shift specs are defined as calendar
intervals (which delineate their temporal scope), and the current-alterations and alteration-of relations
used to define the tree structure are equivalent respectively to the “contains™ and "during” temporal
relations of Allen.

'"The comments made in Section 3.6 regarding use of actual location values as an aftemative o the matrix are equaily

{{current-aiterations
IS-A: relation
DOMAIN: (TYPE instance work-shift-spec)
RANGE: (SET (TYPE instance work-shift-spec))
INVERSE: alteration-of }}

{{alteration-of
IS-A: relation
DOMAIN: (TYPE instance work-shift-spec)
RANGE: (TYPE instance work-shift-spec)
INVERSE: current-aiterations }}

Figure 4-12: The current-aiterations/alteration-of relations

{{work-shift-spec
IS-A: calendar-interval
CURRENT-ALTERATIONS:
ALTERATION-OF:
SHIFTS: }}

Figure 4-13: The work-shift-spec definition

A specialization of the work-shift-spec, the work-shift-spec-root, is defined to represent the root of a
given resource's work shift specification tree. It designates, through an additional SPEC!ALIZATION-OF
relation, the name of another work shift specification tree, to be used over periods of time not covered by
‘the root’s CURRENT-ALTERATIONS (or if the root has no current afterations). This provices a basis for
association of default work shifts with larger areas of the factory (i.e. cell groups) which can be selectively
modified for particuiar subresources in appropriate circumstances. Indeed, the framework is designed to
accommodate control policies which dynamically alter work shift specifications according to
characteristics of the current production state. :

A method compile-shifts is also associated with the work-shift-spec-root. This method transforms the
specification into an array representation (stored in the COMPILED-SHIFTS slot of the resource) that is more
efficient from a computational standpoint. Thus, it is assumed that alterations to a given resource’s
specification are followed by a recompile.

{{work-shift-spec-root
1S-A: work-shift-spec
compile-shifts: compile-shifts
SPECIALIZATION-OF:
START-TIME: O
END-TIME: “time-infinite” }}

Figure 4-14: The work-shift-spec-root definition

Work-shift-specs contain descriptions of work shifts. A shift is defined as an hours-of-day-interval
with an associated work-week. A work-week is, in turn, defined as a days-of-week interval.

{{shift
Is-A: hours-of-day-interval
WORK-WEEK: }}

{{work-week
IS-A: days-of-week-Interval }}

Figure 4-15: Shift and work-week definitions

Some sample subtypes and instances are given below.

{{8to4-shift
IS-A: shift
START-TIME: 28800
END-TIME: 57800 }}

{{mon-fri-wwk
INSTANCE: work-week
START-TIME: O
END-TIME: 4 }}

{{5day-1st-shift
INSTANCE: 8to4-shift
WORK-WEEK mon-fri-wwk }}

Figure 4-16: Shift examples

4.5. Modeling Resource Breakdowns
Another attribute of a resource is its failure characteristics. In modeling resource failure characteristics,
we focus on representing two parameters:
e time to next failure - This parameter relates to the frequency at which the associated
resource breaks down.

« amount of capacity lost - This parameter reiates to the amount of utilization capacity lost as a

result of any given breakdown of the resource. It provides a means of modeling "partial”

breakdowns of aggregate resources.
These parameters are defined for any given resource through association of a breakdown-spec (see
Figure 4-17). The breakdown-spec provides a framework for specifying probability distributions relative
to both of these parameters, and defines a get-actual-breakdown-parameters method which returns a
sample drawn from each distribution. A second method called get-expected-breakdown-parameters is
also defined for use in reasoning about the future. It simply retums the specified mean of each
distribution. '

'}t shouid be noted that, uniike the specification of operation duration constraints, the parameters of resource breakdown
distnbutions are defined in absolute terms and therefore can be stored directly with the SIMPAK distribution object.

37

{{breakdown-spec
IS-A: conceptual-object
get-breakdown-characteristics: get-mean-time-to-failure get-mean-capacity-lost
get-actual-breakdown-parameters. calc-time-to-failure calc-capacity-lost
TIME-TO-FA!LUR=-DISTRIBUTION:
range: (TYPE instance distribution-object)
CAPACITY-LOST-DISTRIBUTION:
range: (TYPE instance distribution-object) }}

Figure 4-17: The breakdown-spec definition

One additional issue regarding resource breakdowns is specification of the repair-operations required
to return a failed resource to an operational state. To this end, we also associate a REPAIR-PLAN with each
resource, which specifies the "root” operation of a hierarchical description of the resource repair process.

4.6. Ascribing control responsibility to resources
Analogous to the treatment of control-points in Section 3.6.2, control responsibility is also ascribed to
resources for purposes of simulating the behavior of the manufacturing system. More specifically, each
resource is defined to be responsible for managing three associated queues:
* PENDING-OPERATIONS - which contains a set of utilization operations that are waiting to utilize
capacity of the resource,

¢ INPROCESS-OPERATIONS - which contains the set of operations that are currently utilizing
capacity of the resource, and

¢ COMPLETED-OPERATIONS - which contains the set of operations that have just finished utilizing
capacity of the resource.
The semantics underlying the use of these queues (i.e. how the state of the queues change over time)
are specified in terms of three basic transition methods: begin-operation, end-operation, and
preempt-operation (the last of which occurs as a result of a resource failure).

Note that of ir.ese possible state transitions, only begin-operation involves any decision-making (i.e.
which of the PENDING-OPERATIONS should be started at a given point, if any). As was done with
control-points, we encapsulate the specific decision procedure to be used in this case as the resource’'s
control-policy. This control-policy is applied by the begin-operation method when the latter is enabled.

We refer the reader to [5] for further details of these control methods and their use in the context of
simulation.

4.7. Resource Descriptions

Having now addressed the major representational issues vis a vis resources, we can now complete the
picture by considering the description of resources themselves. Figure 4-18 defines those attributes .nat
are common to all resources. Note that all attributes discussed in previous sections do not appear in this
basic definition of resource. These missing attributes are characteristic of only certain types of resources
and will be introduced as various specializations of resource are considered below. The only attributes
not previously mentioned are

* STATISTICS, which serves as a repository for statistics relating to utilization of the resource,
and

o SCHEDULING-LEVEL and SIMULATION-LEVEL, which are discussed in Section 4.8 below.

B e |

PSRRI

{{resource

IS-A: physical-object
TYPE:

range: (OR disjoint-aggregation overlapping-aggregation atomic)
SUB-RESOURCES:
SUB-RESOURCE-OF:
OVERLAPPING-SUB-RESOURCES:
OVERLAPPING-SUB-RESOURCE-OF:
GROUPED-SUB-RESOURCES:
GROUPED-IN:
OVERLAPS-WITH:
CAPACITY:
CURRENT-CAPACITY:
AVAILABLE-CAPACITY:

range: (SET (TYPE instance capacity-interval))
BREAKDOWN-SPEC:

range: (TYPE instance breakdown-spec)
REPAIR-PLAN:

range: (TYPE is-a repair-operation)
STATISTICS:

range: (TYPE instance resource-stats-report)
SCHEDULING-LEVEL:

range: (OR t nil)
SIMULATION-LEVEL:

range: (OR t nil)
DESCRIPTION: }}

Figure 4-18: The resource definition

4.7.1. Stationary Resources

Stationary resources are those resources that have a fixed location within the manufacturing system. At
the atomic level, stationary resources include individual machines and work stations. At abstract levels,
stationary resources are functional work areas composed of collections of machines and/or work stations.

As previously stated, stationary resources will always be designated as primary resource requirements
for manufacturing-operations if they are present in the manufacturing system being modeled. This
being the case, the definition of stationary-resource (Figure 4-19) includes the previously discussed
methods, queues, and control policy that enable control decisions to be made (i.e. begin-operation,
end-operation, preempt-operation, PENDING-OPERATIONS, INPROCESS-OPERATIONS, COMPLETED-OPERATIONS
and control-policy. We also associate shift constraints (i.e. WORK-SHIFT-SPEC and COMPILED-SHIFTS) with
stationary-resources, again a consequence of their role as primary resources. Given the nature of setup
in the context of a statlonary-resource, its associated SETUP-MATRIX is constrained to be configuration
dependent. Finally, an attribute indicating a stationary resource’'s LOCATION is introduced.

39

{{stationary-resource
IS-A: resource
begin-operation: start-op-transition-fun
end-operatior end-op-transition-fun
preempt-operition: breakdown-transition-fun
control-policy-
PRIMARY-RESOURCE-FOR:
LOCATION:
range: (LIST integer integer)
SETUP-MATRIX:
range. (TYPE instance config-dependent-setup-matrix)
WORK-SHIFT-SPEC:
range: (TYPE instance work-shift-spec-root)
COMPILED-SHIFTS:
PENDING-OPERATIONS:
range: (SET (TYPE instance utilization-operation))
INPROCESS-OPERATIONS:
range: (SET (TYPE instance utilization-operation))
COMPLETED-OPERATIONS:
range: (SET (TYPE instance utilization-operation)) }}

Figure 4-19: The stationary-resource definition

Stationary-resource is specialized into work-cell and cell-group to distinguish between atomic and
aggregate stationary resources. '

{{work-cell
IS-A: stationary-resource
TYPE: atomic }}

{{cell-group
IS-A: stationary-resource
TYPE:
range: (OR disjoint-aggregation overlapping-aggregation) }}
Figure 4-20: atomic and aggregate stationary resources

Finally, with respect to cell-groups, we distinguish between the two basic types of functionally-related
resource groups defined in Section 4.1: parallel-cell-groups, which delineate manufacturing aitematives,
and serial-cell-groups, which represent resources configured for consecutive utilization.

ol

R R L SR

{{parallel-cell-group
IS-A: cell-group }}

{{serial-cell-group
Is-A: cell-group }}

Figure 4-21: Parallel and serial cell groups

4.7.2. Mobile Resources
Mobile resources are those resources that do not have a fixed location in the manufaciuring system,

but rather move (or are moved) between locations over time. Mobile resources encompass human
resources, transport devices, and tools. Since each of these types of resource has fairly unique
characteristics, the definition of mc. -s-resource (Figure 4-22) serves only to distinguish between mobile
and stationary resourc s and does ntroduce any additional attributes.

{{mobile-resource
IS-A: resource }}

Figure 4-22: The mobile-resource definition

The human-resource subtype of moblle-resource (Figure 4-23) defines those resources that
comprise the human work force. Depending on the characteristics of a given manufacturing environment,
human resources might be defined as either primary or seccncary resources from the standpoint of
allocation. More precisely, we assume that, in the absence of stationary resources, human resources will
constitute the primary resource requirements of both manufacturing-operations and
resource-support-operations. Given this potential role, a human-resource is defined with the methods
and attributes accorded to resources that can participate in control decisions, and shift constraints are
also associated. Finally, its SETUP-MATRIX is constrained to be location dependent.

{{human-resource

IS-A: mobile-resource
begin-operation: start-op-transition-fun
end-operation: end-op-transition-fun
preempt-operation: breakdown-transition-fun
PRIMARY-RESOURCE-FOR:
SECONDARY-RESOURCE-FOR:
SETUP-MATRIX:

range: (TYPE instance location-dependent-setup-matrix)
WORK-SHIFT-SPEC:

range: (TYPE instance work-shift-spec-root)
COMPILED-SHIFTS:
PENDING-OPERATIONS:
INPROCESS-OPERATIONS:
COMPLETED-OPERATIONS: }}

Figure 4-23: The human-resource definition

41

Human-resource is specialized into operator and operator-group to distinguish between atomic and
aggregate human resources (Figure 4-24).

{{operator
IS-A: human-resource
TYPE: atomic }}

{{operator-group
IS-A: human-resource
TYPE:
range: (OR disjoint-aggregation overlapping-aggregation) }}

Figure 4-24: atomic and aggregate human resources

The transport-device subtype of mobile-resource (Figure 4-25) delineates mechanical devices (as
opposed to human resources) that are used to transport production units from one location to another. A
transport-device can only be required by transport-operations (see Section 3.6), and in this context will
always be the primary resource required. Given this role as a primary resource, a transport-device is
also defined so as to enable its participation in control decisions.

{{transport-device
IS-A: mobile-resource
begin-operation: start-op-transition-fun
end-operation:. end-op-transition-fun
preempt-operation: breakdown-transition-fun
PRIMARY-RESOURCE-FOR:
PENDING-OPERATIONS:
INPROCESS-OPERATIONS:
COMPLETED-OPERATIONS: }}

Figure 4-25: The transponrt-device definition

A final subtype of moblle-resource is tool-resource (Figure 4-26). A tool resource can only be defined
as a secondary resource, and thus has no role in the control of operations. As with other types of
resources, we specialize tool-resource into tool and tool-group (not depicted) to distinguish between
atomic and aggregate tool resources respectively.

{{tool-resource
IS-A: mobile-resource
SECONDARY-RESOURCE-FOR: }}

Figure 4-26: The tool-resource definition

42

4.8. Regulating the level of precision of decision-making

Given a hierarchical model of resources defined according to the representational primitives put forth in
the preceding sections, it is straightforward to superimpose a framework for regulating the level of
precision at which specific resources are reasoned about. We simply associate a "marker” with each
resource indicating whether or not the resource resides at the desired level of precision. in the case of
primary resources, the marker is used to determine whether descent to a more detailed description of
manufacturing operations (and required resources) is appropriate (since our representation assumes that
levels of manufacturing process descriptions mirror the levels of description defined relative to primary
resources). Inthe case of secondary resources, the marker simply bounds the level of precision at which
their allocation is considered. Recognizing that it may be desirable to differentiate between the level of
precision at which resource allocation decisions are anticipated (i.e. through scheduling) and the level at
which control decisions are actually modeled (i.e. through simulation), we actually associate two such
markers with each resource: a SCHEDULING-LEVEL and a SIMULATION-LEVEL. In both cases, the value is
constrained to be tor nil.

5. Modeling Products, Demands and Production Units

We now turn attention to representation of the entities that are manipulated and transformed by the
manufacturing system. As indicated in Section 3, manufacturing activities are defined to OPERATE-ON
production-units. Production units represent collections of products that are manufactured together
and production units are created in response to product demands. As such, their representation
necessarily relies on representations of related product and demand information. The modeling of these
three types of entities is the focus of this section.

Before proceeding, one general comment regarding our modeling perspective is in order. We are
interested in models of products and demands from the standpoint of simulation and scheduling, and will
address representation issues from this constrained viewpoint. Consideration of other modeling
perspectives (e.g. product design, process planning, accounting) would obviously lead to much more
comprehensive representations of products and demands.

5.1. Product Descriptions

We refer to the objects actually produced by the manufacturing system, either as final outputs of the
system or as input materials to more complex objects, as products. Within our modeling framework,
product descriptions are intended to provide a basis for organizing information about products that is
relevant to its manufacture.

One central characteristic of a product in this regard, of course, is the manufacturing process by which
it is realized. We have already addressed the details of representing manufacturing processes (Section
3), and a given product’s PRODUCTION-PLAN is defined in this manner. More precisely, this product attribute
designates the “root” operation of a hierarchically described prototype manufacturing process (specified
according to the representation defined in Section 3). Typically, there is commonality in the manutacturing
processes associated with different products. For example, in the semiconductor domain the
manufacturing processes of two different types of wafers might vary only in the particular types of masks
that are required for exposing operations (see example in Section 3.3). We take commonality of basic
manufacturing process as a basis for organizing product descriptions into a type hierarchy. We define the
notion of PRODUCT-FAMILY to represent a set of products whose manufacture follows the same basic
process, and assume that intermediate levels in the product type hierarchy designate specific product
families. Production plans are associated at the level in the type hierarchy at which PRODUCT-FAMILY
attributes are defined, and are inheritable by all specific product types defined at lower levels.
Individuating characteristics required for interpretation of a PRODUCTION-PLAN relative to a specific product
type are associated with the definition of that product type. Such a type hierarchy is illustrated in Figure

5-1.
product
wafer
MSi-wafer MS2-wafer

product-family: MS1
production-plan: make-MS1-wafer

MSi-wafer1 MSiti-wafer-n

mask-type: MS1-waferi-mask

Figure 5-1: An example product type hierarchy

With respect to compositional relationships between products, which are important from the standpoint
of mapping product demands to production requirements, we can identify two general cases:
* subassembly/assembly relationships - Much of manufacturing consists of the production of
products which then become component materials for the production of composite prcducts.
In such cases, demands for composite products must be decomposed into demands for
component products to determine production requirements.

e aggregate/disaggregate relationships - In other situations, manufacturing consists of the
production of products which are then disaggregated into other products (e.g. manufacturing
wafers and then dicing them into chips). In these cases, demands for final products must be
aggregated into demands for internally manufactured products to determine production
requirements.

These two situations can be treated uniformly by viewing the relationships from a material requirements
perspective. Production of a composite product requires the prior production of each component material
(product). Similarly, production of products through disaggregation requires the prior production of the
material (product) to be disaggregated.

We define the material-requirements/material-requirement-for relation pair (Figure 5-2 to express
these product relationships. In the case of material-requirement-for, we assume that a quantity-spec
(Figure 5-3) is attached as meta-information to each vaiue in the range of the relation, indicating the
"amount of material" that is required for production of the range product. In cases where the
material-requirement-for relation is used to relate a component product to a composite product,
QUANTITY simply designates the number of that component that is required for production of the composite
product. In cases where material-requirement-for is used to relate an aggregate product to a
disaggregated final product, QUANTITY indicates the percentage of the aggregate product required to
produce one disaggregated product. Figure 5-4 illustrates the use of the material-requirements 31~1

44

material-requirement-for relations to express inter-product relationships.

{{material-requirements
IS-A: relation
DOMAIN: (TYPE instance product)
RANGE: (SET (TYPE instance product))
INVERSE: material-requirement-for }}

{{material-requirement-for
IS-A: relation
DOMAIN: (TYPE instance product)
RANGE: (SET (TYPE instance product))
INVERSE: material-requirements }}

Figure 5-2: The material-requirements/material-requirement-for relations

{{quantity-spec
Is-A: conceptual-object
QUANTITY: }}
Flgure 5-3: The quantity-spec definition

material-requirements material-requirements

mastersiice1 MS1-wafert

[1] | / [1/200] l \

material-requirement-for material-requirement-for

Figure 5-4: An example of inter-product relationships

We assume that the material-requirements relation defines a conjunctive set of mmwements and,
thus situations where material alternatives exist must be modeled by defining separate "material
requiring™ products. This assumption seems reasonabie in the case of assemblies, since subcomponents
are typically rigidly defined during product design and we would expect experimental designs to be
separately named. And in situations of production by disaggregation, where there is often fiexibility in the
mapping of intemally manufactured products to the disaggregated final products, we claim that the
assumption is not as restrictive as it might first appear. Consider an example from the semiconductor
manufacturing domain, where top level demands are for chips and the production of chips (in our terms)
requires wafers as materials. Typically there is a one to one correspondence between chip types and
wafer types, but some wafer fabrication technologies provide the flexibility to manufacture different chip
types on the same wafer. This implies the possibility of alternative material requirements for a given chip
type and, given the above modeling assumption, the need for multiple product definitions. However, given
the magnitudes of the quantities of chips that are typicaily ordered, there would seem to be little to be

45

gained (at the expense of considerable additional complexity) from the unconstrained placement of
different chip types on a given wafer. More realistically, multiple chip type wafers would be defined
relative to typicai chip relationships (e.g. the types of chips required for a particular device). which map
quite naturally to the definition of specific end products (e.g. computer1-chip-set).

In situations where the production of a product requires the prior production of input mecierials, some
indication of the time required to produce the end product once input materials are available is needed to
propery establish the manufacturing requirements (e.g. due dates) relative to intermediate products. We
associate an AVERAGE-LEAD-TIME with each product description which contains this information.

A final general attribute of relevance to a product's manufacture is its PRODUCTION-QUANTITY. Products
are often manutactured in specific quantities due either to economies of scale or physical constraints
relating to their manufacture (e.g. product movement). A product’s PRODUCTION-QUANTITY simply indicates
the batch size'2. This information constrains the instantiation of the production-units that are actually
manipulated by the manufacturing system.

Figure 5-5 lists the complete definition of product. In addition to the characteristics just discussed, we
specify a PRODUCED-BY relation, which associates a product type description with currently instantiated
production units that are composed of products of that type. This relation will be discussed in Section 5.3
below.

{{product
IS-A: physical-object
PRODUCT-FAMILY:
PRODUCTION-PLAN:

range. (TYPE is-a operation)

PRODUCTION-QUANTITY:
MATERIAL-REQUIREMENTS:
MATERIAL-REQUIREMENT-FOR:
AVERAGE-LEAD-TIME;
PRODUCED-BY: }}

Figure 5-5: The product definition

5.2. Demand descriptions

We introduce the concept of a demand (see Figure 5-6) to represent an obligation for delivery of
products that the manufacturing system has committed to. Generally speaking, A demand specifies
REQUESTS for quantities of specific products to be satisfied within a REQUESTED-PRODUCTION-INTERVAL.
Demand REQUESTS are mapped into PRODUCTION-REQUIREMENTS, which represent the total set of product
requests that the manufacturing system must satisfy (i.e. both intermediate and end products). A
demand’s PRODUCTION-REQUIREMENTS, in turn, guide the formation for production-units for release to the
manufacturing system.

From the standpoint of scheduling and control of the manufacturing system, demands also specify
information relating to their relative priority. We identify two such attributes (assumed to be a function ot
the demand'’s INITIATOR):

120f course the PRODUCTION-QUANTITY will be 1 in cases where products are manufactured individually

ﬁ;«J

46

* PRIORITY-CLASS - The partitioning of demands into a discrete set of priority classes is a
commonly employed method for specifying the relative importance of the associated
demand. Priority classes provide one basis for differentiating among alternative scheduling
and control policies. We assume the possible values of this attribute to be domain-
dependent (e.g. hot, red-hot, etc.).

¢ TARDY-COST - Tardy cost is defined to be the cost penalty per time unit for late delivery of the
requested products. Tardy costs provide an additional basis for trading off afternative
resource allocation decisions.

{{demand
IS-A: conceptual-object
REQUESTS:
PRODUCTION-REQUIREMENTS:
INITIATOR:
REQUESTED-PRODUCTION-INTERVAL:
range: (TYPE instance calendar-interval)
PRIORITY-CLASS:
TARDY-COST:
CONTRACT-DATE: }}

Figure 5-6: The demand definition

We specialize demand into three subtypes, according to the nature of the demand’s INITIATOR:

e customer-order - Customer orders represent external demands that have been placed on
the manufacturing system

« engineering-work-order - Engineering work orders represent internally generated demands
relating to testing of product manufacturing processes and product changes.

« stock-order - Stock orders represent internally generated demands for purposes of
maintaining inventory levels.
Given our modeling interests (i.e. simulation and scheduling), the motivation for this demand type
hierarchy is to provide a basis for default specification of PRIORITY-CLASS and TARDY-COST values. In a
broader modeling context (e.g. encompassing order administration and accounting model interpretations),
these definitions would necessarily require elaboration.

47

{{customer-order
IS-A: demand
INITIATOR:
range: (TYPE instance customer) }}

{{englneering-work-order
IS-A: demand
INITIATOR:
range: (TYPE instance engineer) }}

{{stock-order
IS-A: demand
INITIATOR:
range: (TYPE instance stock-manager) }}

Figure 5-7: Specializations of demand

Specific demand requests and production requirements are uniformly represented as
production-requests (Figure 5-8). A production-request specifies a request for some QUANTITY of a
specific PRODUCT. INITIATOR requests are linked to demands via the requests/request-of relation pair
(See Figure 5-9). The production requirements that are implied by the specified INITIATOR requests are
related to the demand via the production-requirement-of/production-requirements relation pair (see
Figure 5-10). Note that production-requirement-for is defined as an inheritance relation, extending the
definiton of production-request in the context of production requirements to include
REQUESTED-PRODUCTION-INTERVAL, PRIORITY-CLASS, and TARDY-COST. In this case, the value of the
associated demand's REQUESTED-PRODUCTION-INTERVAL is interpreted as a default which may be
overridden during determination of production requirements (e.g. the due dates of component materials of
an assembly must allow time for the assembly). A satisfied-by relation is also introduced in the definition
of production-request for purposes of relating production requirements to production-units. This
relation is discussed below in Section 5-16.

{{production-request
IS-A: conceptual-object
REQUEST-OF:
PRODUCTION-REQUIREMENT-OF:
SATISFIED-BY:
PRODUCT:

range: (TYPE instance product)

QUANTITY: }}

Figure 5-8: The production-request definition

{{requests
IS-A: relation
DOMAIN: (TYPE instance demand)
RANGE: (SET (TYPE instance production-request))
INVERSE: request-of }}

{{request-of
IS-A: relation
DOMAIN: (TYPE instance production-request)
RANGE: (TYPE instance demand)
INVERSE: requests }}

Figure 5-9: The requests/request-of relations

{{production-requirements
Is-A: relation
DOMAIN: (TYPE instance demand)
RANGE: (SET (TYPE instance production-request))
INVERSE: production-requirement-of }}

{{production-requirement-of
IS-A: relation
DOMAIN: (TYPE instance production-request)
RANGE: (TYPE instance demand)
INVERSE: production-requirements
INCLUSION: {instance Inclusion-spec
TYPE: slot
SLOT-RESTRICTION: requested-production-interval tardy-cost priority-class} }}

Figure 5-10: The production-requirements/production-requirement-of relations

in Figure 5-11, we graphically illustrate the representation of a particular demand at a point after
production requirements have been determined. In this example, a request for chips (whose production is
assumed to be defined as a wafer dicing activity) leads to an additional wafer production requirement. '3

5.3. Production unit descriptions

Production units model the objects that are actually manipulated by the manufacturing system. They
are defined to represent sets of one or more product instances which travel through the system and are
manufactured together. As we have previously stated, production units draw part of their definition from
characteristics of their member products and part of their definition from the demands that they are
designated to satisfy. With respect to grouping products into production units, the only constraint we
impose is that all member products belong to the same product family (i.e. all member product types
share the same PRODUCTION-PLAN). With respect to associating production units with demands, we allow a

30t course, mmw&maﬁunapmwwonmquvomentandmodolmWqunding d?cingacﬁvityis up‘tome
model builder, who must specify the mapping from requests to production requirements. Specification of this mapping is considered
below in Section 5.4.

49

demand1
requests
produciiv.-
requirement-for
reques
of .
production-

requirements

prod-req1 prod-req2

product: chip1
quantity: 10000

product: MS1-wafer
qQuantity: 50

Figure 5-11: An example demand with associated production requirements

production unit to contribute to the satisfaction of more than one production request. Both of these
assumptions are less restrictive than is required in many manufacturing environments. However, the
actual policy employed to configure production units can be specified to match the characteristics of the
specific manufacturing system being modeled (see Section 5.4).

In addressing the representation of production units, we first define relations for use in associating
production units to products and demands, and then present their complete definition.

5.3.1. Relating production units to products

We define the produces/produced-by relation pair (see Figure5-12 to associate respectively a
production unit with the type(s) of products that the production unit will ultimately “produce”, and a product
type with all currently instantiated production units that are "producing” products of that type. The
produces relation is defined as an inheritance relation which provides a production unit with the prototype
PRODUCTION-PLAN required for its manufacture. Since we impose the constraint that all product types
grouped within a given production unit must share the same PRODUCTION-PLAN, inheritance of this
information in situations where production units are comprised of muitiple product types presents no
problems (i.e. inheritance from any of the product types designated by the produces relation will yield the
same value). 4

“The possibly of multiple associated product types does however introduce some complications relative to further exploitation of
produces as an automatic inference mechanism. We have seen in Sections 3 that various aspects of manufacturing activites may
rely on product-dependent information (e.g. d’nspocdmoonofsooondarymwm) and one might consider redefinition of the
produces inheritance semantics to make this information automatically inferrible from the production unit However, in situations
where muitipie product types are associated, mmmmummmmmwmmmwm
(2) a list of the values associated with each product type, or (3) some value that is a function of the vaiues associated with each
product type. The first two cases can be managed through appropriate setting of the $inhenit-all inheritance control switch, but the
third case is not an inference that is supported by the CRL inheritance mechanism. An approach to modeling this last type of
situation is considered below relative to the probiem of relating demands to production units.

RS—— -

{{produced-by
IS-A: relation
DOMAIN: (TYPE is-a product)
RANGE: (SET (TYPE instance production-unit))
INVERSE: produces }}

{{produces
is-A: relation
DOMAIN: (TYPE instance production-unit)
RANGE: (SET (TYPE is-a product))
INVERSE: produced-by
INCLUSION: {instance Incluslon-spec
TYPE: slot
SLOT-RESTRICTION: production-plan } }}

Figure 5-12: The produced-by/produces relations

The definition of the produces/produced-by relation pair in terms of instances of production units and
types of products is motivated by a desire to provide flexibility with respect to the manner in which
materials and material flows are modeled. In many modeling contexts, product instances have no
distinguishing characteristics from a manufacturing perspective, and it is sufficient to model the contents
of production units and inventories of materials as numerical quantities. In modeling turbine blade
production, for example, there is little to be gained by representing each individual blade in the system.
On the other hand, there are modeling contexts which do require an explicit representation of product
instances. Consider the problem of evaluating various scrapping policies in the wafer fabrication domain.
One set of possible policies might be based on the number of times a given wafer has undergone rework,
which would require a model that represents individual wafers and maintains a REWORK-COUNT with each
one. The has-members/member-of relation pair is defined to support such situations.

{{member-of
IS-A: relation
DOMAIN: (TYPE instance product)
RANGE: (TYPE instance production-unit)
INVERSE: has-members }}

{{nas-members
IS-A: relation
DOMAIN: (TYPE instance production-unit)
RANGE: (SET (TYPE instance product))
INVERSE: member-of }}
Figure 5-13: The member-of/has-members relations

5.3.2. Relating production units to demands

The satisfles-request/satisfied-by relation pair (see Figure 5-14) provides primitives for relating
production units to the production requirements they are intended to satisfy (and vice versa). As with the
earlier defined produces relation, we define satisfles-request as an inheritance relation, in this case to
allow automatic inference of demand-dependent information that is relevant to the control of production
units. The attributes REQUESTED-PRODUCTION-INTERVAL, PRIORITY-CLASS, and TARDY-COST are contributed

51

to the definition of production units through this relation.

{{satistied-by
IS-A: relation
DOMAIN: (TYP" is-a production-request)
RANGE: (SET (I'YPE instance production-unit))
INVERSE: satisfies-request }}

{{satisties-request
IS-A: relation
DOMAIN: (TYPE instance production-unit)
RANGE: (SET (TYPE is-a production-request))
INVERSE: satisfled-by
INCLUSION: {instance Inclusion-spec
TYPE: slot
SLOT-RESTRICTION: requested-production-interval priority-class tardy-cost } }}

Figure 5-14: The satisfied-by/satisfles-request relations

It is important to note that the inheritance of values through the satisfies-request relation is only
meaningful in modeling contexts where the mapping from production units to production requirements is
constrained to be one-to-one. Since such a mapping represents common practice in many manufacturing
environments the relation is defined in this manner. However, if production units are allowed to contribute
to the satisfaction of more than one production requirement, then only attributes (and not values) can be
inherited through the satisfles-request relation and methods must be provided to derive the vaiues. To
this end, we add the methods get-requested-production-interval, get-priority-class and get-tardy-cost to
the definition of production-unit. These methods, it they exist, are invoked to establish values by
instantiate-production-unit (discussed below).

The mapping from production requirements to production units specified by the satisfled-by relation is
always assumed to be one-to-many. Thus, we assume attachment of a quantity-spec (recall Figure 5-3)
as meta-information to each value designated in the range of a given satisfled-by relation to indicate the
portion of the production requirement to be satisfied by the associated production unit

Figure 5-15 provides an example of production unit, production request, and product relationships.

5.3.3. Other Attributes

In addition to the information that is attributed to production units by virtue ot -alationships to specific
product types and production requests, productions units have defining charactenstics of their own. These
characteristics are identified in the definition of production-unit contained in Figure 5-16, along with the
relations and methods identified above. In the following paragraphs, we describe these additional
attributes.

prod-req10

prod-req2

product: MS1-wafer1
quantity: 50

product: MS1-wafert
quantity: 100

satisfies-request ces was
satisfied-by

(39] (2
satisfied-by

satisfies-request

MS1-wafer1
production-plan:

make-MS1-wafer1
production-quantity: 30

produces

. ‘ h

Figure 5-15: Production unit, production request, and product relationships

{{production-unit
IS-A: physicail-object set
instantiate-production-unit. create-p-unit
get-requested-production-intervar.
get-priority-class:
get-tardy-cost.
PRODUCES:
HAS-MEMBERS:
QUANTITY:
SATISFIES-REQUEST:
INSTANTIATED-PLAN:
range: (TYPE instance operation)
CURRENT-STATE:
HAS-SUB-UNITS:
SUB-UNIT-OF:
STATISTICS:
range: (TYPE instance punit-stats-report) }}

Figure 5-16: The production-unit definition

One obvious characteristic of a production unit that is important from the standpoint of coordination is
its QUANTITY, which is simply the number of products that the production unit contains. As we have -zenin

53

Section 3, this attribute can be important in interpreting various aspects of the production unit's prototype
PRODUCTION-PLAN (e.g. operation duration constraints). Production units also have attributes related to
their current manufacturing state. One attribute that provides such information is the production unit's
INSTANTIATED-PLAN. As we have previously discussed, interpretation of the prototype production plan as
the production unit travels through the manufacturing system (or prior to its manufac* re if advance
schedules are to be developed) results in the creation of a network of instantiated operati= .. At any point
in time, a produciion unit's instantiated production plan, or more specifically the instantiated root operation
that is actually stored as the value of INSTANTIATED-PLAN, contains a STATUS and EXECUTION-INTERVAL that
reflect basic aspects of the production unit's current state. We also define and associate a CURRENT-STATE
attribute with the production unit itself, to provide a framework for user-defined extensions to the
representation. In the wafer fabrication example presented in Figure 3-9 of Section 3.2, for instance,
CURRENT-STATE might be defined to take on values such as level1, level2, etc.

There are often situations that dictate a reconfiguration of production units at some point during the
manufacturing process. For example, the outcome of a particular "test" operation may indicate that some
percentage of the production unit must be re-routed for rework operations. As we have already seen in
Section 3.6.2, such situations are modeled within prototype production plans through the use of various
split and join operations. Instantiation of these operations in the context of specific production units,
however, requires an ability to model the relationship between an initial production unit and any
decomposition of that unit that has transpired. To this end, we define the has-sub-units/sub-unit-of
relation pair (see Figure 5-17). The sub-unit-of relation is defined to allow inheritance of all "parent”
production unit attributes except those relating to its com;:‘osition.15

{{has-sub-units
IS-A: relation
DOMAIN: (TYPE instance production-unit)
RANGE: (SET (TYPE instance production-unit))
INVERSE: sub-unit-of }}

{{sub-unk-of
IS-A: relation
DOMAIN: (TYPE instance production-unit)
RANGE: (TYPE instanee production-unit)
INVERSE: has-sub-units
INCLUSION: {INSTANCE Inclusion-spec
TYPE: slot
SLOT-RESTRICTION: (NOT quantity has-members produces) } }}

Figure 5-17: The sub-unit-of/has-sub-units relation pair

The following two attributes complete the definition of production-unit listed in Figure 5-16:
 instantiate-production-unit, which is a method that is called to instantiate a particular
production unit, and
» STATISTICS, which serves as a repository for statistics relating to the behavior of production
units.

*The value of the produces relazion is excluded here because of the possibility that a subcomponent coqd consist of only a
subset of the types of products “procuced” by the parent. Recall, however, that all product types appearing in a given producton unit
must share the same production plan, so there is nc complication in inheriting the INSTANTIATED-PLAN.

5.4. Mapping demands to production units
As suggested in the above discussion of demands, products, and production-units, the activity of
mapping a set of current demands into a set of production units to be manufactured is conceptualized
within the modeling framework as a two step process:
1. the set of demand requests is first translated into a set of production requirements, and

2. a set of production units is then formulated whose manufacture will satisfy the set of
production requirements.

Given a manufacturing model, the first step is well-defined; it simply involves interpretation of the material
requirements associated with the product specified in each demand request (i.e. the explosion of product
“bills of materials” to determine all production requirements). The second step, alternatively, is much more
a function of the characteristics and policies practiced in a given manufacturing environment. For
example, in a computer board assembly and test facility where products are manufactured individually,
the mapping from production requirements to production units is straightforward and invariant. On the
other hand, in environments where products are produced in batches (e.g. wafer fabrication, turbine biade
production), more complex possibilities exist (e.g. mapping multiple production requirements to a single
production unit) and a variety of policies are practiced. Furthermore, production unit formation typically
involves consideration of current inventories (i.e. it may be possible to directly satisty some portion of the
production requirements), and, in some cases, consideration of tradeofts between manufacturing or sub-
contracting.

To provide a framework for modeling the production unit formation practices of a specific manufacturing
facility (or, more generally, for analyzing the eftects of different production unit formation strategies on
overall system performance) , a demand-manager object is defined (Figure 5-18). This object specifies
two methods which govern the mapping of demands to production units in accordance with the above
conceptualization. The first, generate-production-requirements, is a generic, pre-defined procedure. = 2
second, generate-production-units, is a method to be constructed by the model builder (i.e. a decis
making policy much like the control-policies associated with resources and control points). From "2
standpoint of providing an experimental environment, we also assume that the demand-manacg:r
contains a demand-generator and a related set of DEMAND-GENERATOR-PARAMETERS.

.

{{demand-manager
generate-demands: demand-generator-fun
DEMAND-GENERATOR-PARAMETERS:
generate-production-requirements: explode-material-requirements-fun
generate-production-units:
CURRENT-DEMANDS:
range: (SET (TYPE instance demand)) }}

Figure 5-18: The demand-manager definition

6. Final Remarks

Our aim in this paper has been to define a modeling framework that supports realistic simulation and
scheduling of large-scale manufacturing systems. In this regard, we believe the modeling primitives
presented in the preceding sections provide a structural base for constructing interpretable models that
reflect the full complexity of a particular manufacturing facility. Before closing, we briefly consider some
aspects of this modeling framework that remain underspecified.

The modeling framework as presented does not provide a complete semantics with respect to material
flow within @ manufacturing facility. In particular, the framework does not explicitly address the issue of

55

inventory management, which impacts both the demand management process (i.e. whether
manufacturing is actually required to satisfy production requirements) and the coordination of assembly
processes. On the other hand, extension of the framework to address this issue seems straightforward.
All that is missing is the notion of “inventories”; stores into which products (or component products) are
moved after they are manufactured and from which products are drawn to satisfy producti.a requirements
(or to enable assembly processes). Inventories can be modeled in a manner sirilar to the
control-points 1 Section 3.6.2. If the products comprising production units are explicitly modeled, then
the structure maintained by an inventory is similarly a queue (of products i~ this case). Otherwise, a set of
scalar quantities is maintained.

The specification of control policies is another aspect of the modeling framework that requires further
consideration. From the standpoint of both expressibility and flexibility, a more declarative framework for
expressing control decision procedures would be preferable to the current use of attached methods. One
general approach to this problem is to view a control policy as a specification of a set ot decision-making
preferences, and focus on developing an interpretable representation of preferences. In this regard, the
constraint representation defined in [3] is directly relevant.

Acknowledgements

The modeling framework presented in this paper has evolved through the collaborative efforts of the
OPIS scheduling group. Don Kosy, Claude LePape, Nicola Muscettola, Peng Si Ow, and Chris Young, in
particular, have each contributed substantially to its development. Thanks also to Don Kosy for his helpful
comments on earlier drafts of this document.

(1]

(2]

56

References

Clevelland. SA.
The Temporal Database of the HSTS Space Telescope Observation Scheduler.

ISL Working Paper, Robotics Institute, Carnegie Mellon University, 1989.

Dean, T.
Temporal Imagery:An Approach to Reasoning about Time for Planning and Problem Solving.

PhD thesis, Yale University, Computer Science Department, October, 1985.

Fox, M.S., and S.F. Smith.
ISIS: A Knowledge-Based System for Factory Scheduling.
Expert Systems 1(1):25-49, July, 1984.

Knowledgecrafrt Reference Manual
Carnegie Group Inc., Pittsburgh, PA, 1986.

Kosy, D.
A Simulation Kernel for OPIS Models of Factory Operation.
ISL Working Paper, Intelligent Systems Laboratory, Carnegie Mellon University, January, 198S.

LePape, C. and S.F. Smith.

Management of Temporal Constraints for Factory Scheduling.

In C. Rolland, M. Leonard, and F. Bodart (editors), Proceedings IFIP TC 8/WG 8.1 Working
Conference on Temporal Aspects in Information Systems (TAIS 87). Elsevier Science
Publishers, held in Sophia Antipolis, France, May, 1987.

Muscettola, N. and S.F. Smith.
State-Based Scheduling: An Architecture for Space Telescope Observation Scheduling.
In 1989 NASA Conference on Space TeleRobotics. Pasadena, CA, January, 1989.

Smith, S.F.
A Constraint-Based Framework for Reactive Management of Factory Schedules.

In M. Oliff (editor), Proceedings 1st International Conference on Expert Systems and the Lead/ng

Edge in Production Management. Charleston, SC, May, 1987.

