
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Higher-Order and Modal Logic
as a Framework for

Explanation-Based Generalization

Scott Dietzen Frank Pfenning

C M U - C S - 8 9 - 1 6 0 <

O c t o b e r 16 , 1 9 8 9

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

A b s t r a c t . Certain tasks, such as formal program development and theorem proving, are in­
herently higher-order because they fundamentally rely upon the manipulation of higher-order
objects such as functions and predicates. Computing tools intended to assist these higher-order
tasks are at present inadequate in both the amount of 'knowledge' they contain (i.e., the level
of support they provide) and in their ability to 'learn' (i.e., their capacity to enhance that sup­
port over time). The application of a relevant machine learning technique — explanation-based
generalization (EBG) — has been limited to first-order problems. We extend EBG to generalize
higher-order values, thereby facilitating its application to higher-order domains.

Logic programming provides a uniform framework in which all aspects of explanation-based
generalization and learning may be defined and carried out. First-order Horn logics (e.g.,
Prolog) are not, however, well suited to higher-order applications. Instead, we employ AProlog,
a higher-order logic programming language, as a framework for realizing higher-order EBG.
This requires extending AProlog with the necessity operator • of modal logic, which leads
to the language ADProlog. The necessity operator elegantly captures the distinction between
domain theory and training instance upon which EBG depends. We develop a meta-interpreter
realizing EBG for ADProlog and provide examples of higher-order EBG.

E B G has been described as 'speed-up' generalization in that its results, while improving per­
formance, do not address previously unsolvable problems. By extending the framework with
user interaction, EBG becomes a means by which user-provided search-control knowledge may
be made manifest. This facilitates application to domains in which unguided problem solving is
often intractable. Of particular interest to us, and thus investigated here, are theorem proving
and formal program development.

T h i s r e s e a r c h w a s s u p p o r t e d in p a r t by t h e Office of N a v a l R e s e a r c h u n d e r c o n t r a c t N 0 0 0 1 4 - 8 4 - K - 0 4 1 5 a n d in p a r t by t h e

D e f e n s e A d v a n c e d R e s e a r c h P r o j e c t s A g e n c y (D O D) , A R P A O r d e r N o . 5 4 0 4 , m o n i t o r e d by t h e Office of N a v a l R e s e a r c h u n d e r

t h e s a m e c o n t r a c t . T h e v i e w s a n d c o n c l u s i o n s c o n t a i n e d in th is d o c u m e n t a r e t h o s e of t h e a u t h o r s a n d s h o u l d not be i n t e r p r e t e d

as r e p r e s e n t i n g t h e official pol ic ies , e i t h e r e x p r e s s e d or i m p l i e d , of D A R P A o r t h e U . S . G o v e r n m e n t .

1 Introduction

Certain tasks, such as program development and theorem proving, are inherently higher-order
because they fundamentally rely upon the manipulation of higher-order objects such as functions
and predicates. To enhance the support computing tools can provide for such complex domains, it
will be necessary to increase considerably the 'knowledge' represented in these tools. Successfully
coding all this knowledge a priori is impossible due to the scope, complexity, and evolutionary
nature of these domains. Rather , tools must support assimilation of problem solving experience.
However, simply memoizing particular solutions will be insufficient; instead experience must be
abstracted or generalized. Learning, the ability to generalize and assimilate from experience, will
therefore have a significant impact on the success of future tools.

Much of machine learning research may be divided between inductive, or similarity-based learning,
and analytical, or explanation-based learning. To date , work on the latter relies primarily on
explanation-based generalization (E B G) as its central mechanism [35,5,34,13]. Through the analysis
of a formal problem solution (i.e., a proof or explanation), E B G determines the preconditions
sufficient to apply the same solution strategy in general. E B G yields a derived rule that more
efficiently solves the original as well as related problems. Under E B G a single example may be
generalized since the proof constrains the space of possible results. Similarity-based learning and
generalization (S B G) , on the other hand, rely upon multiple training examples (often both positive
and negative) to arrive at an articulation of the sharing among those (positive) instances [1,8].
While the proof-based generalizations of E B G are necessarily valid, similarity-based generalizations
are guaranteed only to the extent that they cover the given examples. Hybrids of these approaches
are a current topic of research; see Hirsh [21], for example.

Generalization and learning performance are intimately tied to the underlying language for repre­
sentat ion, or representation domain. If knowledge is encoded in an inappropriate representation
domain, then it is less likely that the desired generalizations can be expressed in a natural and
concise manner, and also less likely that they can even be found. In particular, the cumbersome
encoding of higher-order domains within first-order languages inhibits reasoning and generaliza­
tion. But to date , the application of E B G has been limited to first-order representation domains.
To facilitate E B G ' s application to higher-order domains, we extend the technique to higher-order
explanation-based generalization — that is, E B G in which functions and predicates as well as first-
order constants may be abstracted, or replaced with variables.

Recently, the logic programming paradigm has been used as a foundation for E B G [27,40,22,2].
One argument put forward in favor of the logic programming framework is that it admits a uni­
form representation for all aspects of E B G : domain theory, training instance, goal, derived rule,
opera t iona l ly criteria, etc. (These concepts are defined in Section 2.) This helps in explicating the
underlying principles in a uniform way and clarifies semantic issues. In this paper we explore two
ways of enriching the representation domain of Horn logic (e.g., Prolog): integrated support for
higher-order objects including variables ranging over such objects , and support for modal concepts.
Both of these have a significant impact on E B G .

E B G has often been characterized as 'speed-up' generalization in that its derived rules improve
performance by reducing or eliminating search, but cannot enable the solution of previously un-
solvable problems. This description becomes misleading if user interaction is combined with E B G

' A n e x t e n d e d a b s t r a c t a p p e a r s in t h e Sixth International Workshop on Machine Learning (9) .

in the treatment of intractable domains, such as those that arise in theorem proving and program
development. Under such a scenario, the user guides problem solving and E B G becomes a means
by which user-provided search-control knowledge may be made manifest. Although the resulting
generalizations are in the deductive closure of the rule-base (i.e., the set of existing rules), the
intractabil ity of the domain can preclude discovery without user guidance.

We begin, in Section 2, by introducing first-order E B G within the logic programming framework.
Our formulation of E B G differs from the traditional in that operationality criteria have been re­
placed with an explicit separation between domain theory and training instance. Section 3 explores
the enrichment of the representation domain with higher-order values, leading to the higher-order
logic programming language AProlog and higher-order E B G . In Section 4 E B G ' s reliance upon
the partitioning of its rule-base into domain theory (i.e., general rules) and training instance (i.e.,
particular facts) is addressed by extending AProlog with the • operator of modal logic. This yields
a rich language for E B G , A n Prolog . Sections 5 and 6 illustrate higher-order E B G through its ap­
plication to theorem proving and program development tasks. We then explore, in Section 7, the
ramifications of our examples, and in particular user interaction, upon assimilation and learning.
A D Prolog is further formalized in Section 8. We develop, in Sections 9 and 10, an implementation
of A D Prolog and E B G through a series of meta-interpreters written in AProlog. All the examples
contained herein were actually produced with the prototype. Section 11 then motivates an en­
hanced A D Prolog interpreter currently under construction. Finally, we offer some suggestions for
future work in Section 12.

A c k n o w l e d g m e n t s . Our meta-interpreter depends on the eLP, the implementation of AProlog
developed by Conal Elliott and Frank Pfenning in the framework of the Ergo project at Carnegie
Mellon University [12]. We thank Conal Ell iott , Masami Hagiya, Haym Hirsh, Dale Miller, Tom
Mitchell , and William Scherlis for their thoughtful comments on our presentation.

2 First-order E B G in the Logic Programming Framework

We begin by briefly illustrating explanation-based generalization with a first-order example from
DeJong &; Mooney [5, pages 158 166]. (We apologize to any readers offended by the morbidity of
this example, but it has become standard in the literature.) E B G problems consist of a domain
theory, or set of general rules:

kill A B :- hate A B, possess A C, weapon C.
hate V/ V/ :- depressed V/.
possess U V :- buy U V.
v:eapon Z : - gun Z.

and a training instance, or set of particular facts:

depressed John,
buy j ohn obj1.
gun obj1.

2

kill John John

W = J o h n) (U = John, V = C)

depressed John buy John C
depressed John. buy John objl

Figure 1: First-order proof.

weapon C
hate W W :- depressed W. possess U V : - buy U V. weapon Z : - gun Z.

Z = C)

gun C
gun obj1.

c = o bJ 1) (C = objl)

T h e above example, as well as those to follow, is formulated in AProlog. As in Prolog, variables
are distinguished by capitalization and denotes conjunction. T h e variables of clauses, such as Z
in weapon Z : - gun Z, are implicitly universally quantified.

The E B G algorithm is additionally provided with a goal or query, such as

kill John John.

E B G then requires a proof, or explanation, that solves the given query. Within the logic program­
ming paradigm, such a proof may be expressed as a trace of AProlog search. A proof of the above
query is illustrated in Figure 1. Goals of the proof are underlined, while the program clause which
reduces a particular goal appears underneath. In the course of applying a clause, its variables may
be unified, or instantiated, with constants or variables of the goal. These associated unification
constraints appear enclosed by ' () ' .

E B G produces an encapsulation of the proof strategy by generalizing this explanation. In Figure 2
a generalized proof is constructed that corresponds to the specific one except that training instance
clauses are omitted. At the root of the new proof is a generalized query, which is derived from
the original query by replacing all of the first-order constants with logical variables: the goal
(kill John J o h n) becomes the fully general goal (kill X Y) . Each domain theory rule applied
in the first proof is correspondingly applied in the second. This potentially restricts the outcome
by propagating unification constraints through the proof tree (for example, (kill X Y) becoming
(kill X X)) . Leaves of the generalized proof (e.g., (gun V)) correspond to suhgoals of the original
proof that were derived from the rules of the training instance. These leaves are accumulated in a
conjunction of conditions sufficient to establish the generalized query:

kill X X :- depressed X, buy X C, gun C.

We will frequently refer to the resulting derived rule, or proof encapsulation, as an explanation-based
generalization, or simply a generalization.

3

kill A B :- hate A B,
possess A C, v/eapon C.

(A = John, B = John)

hate John John possess John C

kill X Y
kill A B :- hate A B,

possess A C, weapon C.
(A = X. B = Y)

hate X Y possess X C weapon C
hate W W :- depressed W. possess U V :- buy U V. weapon Z :- gun Z.
(V/ = X = Y) (U = X, V = C) (Z = C)

depressed X buy X C gun C

Figure 2: First-order generalized proof.

O p e r a t i o n a l l y . Suppose we revise the example by replacing the last rule of the domain theory

with

weapon Z :- gun Z; knife Z; grenade Z; ...

where ' ; ' represents dis junction. Although this version yields the same generalization as above, the

new clause suggests we might prefer a more generally applicable result in terms of weapon rather

than gun:

kill X X :- depressed X, buy X C, weapon C.

Our formulation of E B G already affords a means for achieving the above result: since only domain
theory rules are included in the generalized proof, we may rewrite the example with domain theory

kill A B :- hate A B, possess A C, weapon C.
hate V/ V/ :- depressed V/.
possess U V :- buy U V.

and training instance

weapon Z :- gun Z; knife Z; grenade Z; ...
depressed John,
buy j ohn obj1.
gun objl.

This yields the desired derived rule and the associated generalized proof shown in Figure 3.
Traditionally, the means of restricting the depth of the generalized proof tree is termed operation ni­
tty: by establishing that a particular goal (e.g.. weapon Z) meets an operationality criteria, the
subtree deriving it is pruned from the generalized proof. Under such a formulation of E B G , the
distinction between training instance and domain theory is meaningless, at least with respect to
generalization. Our approach differs in that operationality is expressed as a predicate over clauses
(whether or not they are domain theory) , rather than a predicate over goals. T h a t is, we have
essentially replaced a 'goal-based' notion of operationality with a 'clause-based' one. Section 4
continues this discussion.

4

kill X Y
k i l l A B : - h a t e A B,

p o s s e s s A C, weapon C.

(A = X, B = Y)

hate X Y possess X C
h a t e V/ V/ : - d e p r e s s e d IV. p o s s e s s U V : - buy U V.

(V/ = X = Y) (U = X, V = C)

depressed X buy X C

Figure 3: Alternate first-order generalized proof.

weapon C

3 Higher-order Representation Domains

A domain is higher-order if it contains higher-order values such as functions or predicates. A
language or application over such a domain is itself said to be higher-order. For example, a higher-
order programming language allows functions to be bound to variables, passed as parameters,
and returned from function calls. Similarly, a higher-order logic provides for quantification over
functions and predicates. Higher-order EBG is. then, explanation-based generalization in which
the candidates for variable replacement include higher-order objects .

A representation domain is a language for expressing the values of an application. When higher-
order values are expressed in first-order representation domains, reasoning and programming with
these ad hoc encodings is difficult: We often need 'new variables' , need to check conditions such
as 'where ... does not occur in or must implement substitution in a way that 'renames
bound variables if necessary.' We advocate, instead, higher-order representation domains that
provide for natural expression and manipulation of higher-order objects . For example, the function
f(x) — g(x, 2) might be represented as / — Ax. g(x, 2) , or the quantified expression Vx 3y. x < y
as V (Ax. 3 (Ay. x < y)) . T h e use of the single name-binding operator A allows the following oper­
ations to be implemented once within the representation domain rather than within the rules of
each of its clients [39,20]:

• a-conversion — the renaming of bound variables (e.g., Xx.x — Ay.y)

• /i-conversion — capture-avoiding substitution (e.g., (Xx.Xy.fxy)y — Xy'.fyy1)

• ^-conversion — a weak extensionality principle (e.g., Xx.fx — f)

E x a m p l e 1 . Consider the following higher-order rules for symbolic integration: The first treats
exponentiation (missing is the restriction that a ^ - 1) , the second extracts a constant factor, and
the third splits a sum.

5

intgr X\((3 * (expn X 2)) + cos X) R

Va. JXx. xa = Xx. x ' a + 1) / (a + 1)

V a V / V / ' . Jf = f => f\x.a*f{x) = Xx. a * f'(x)

vfvfvgvg'. If = f a fg = g*
=> f\x.f{x) + g(x) = \x.f'(x) + g'(x)

(The traditional binding notation dx has been replaced with explicit function definition via A.)
Within a higher-order representation domain, that is, one that supports name binding (via A), the
restriction that x not be free in the expression a is captured without complicating side conditions.

To encode the previous integration rules within our representation domain, AProlog, we use a
predicate 'intgr' to relate a function and its indefinite integral:

pi A\ (
intgr X\(expn X A) X\((expn X (A + 1)) div (A + 1))).

pi A\ (pi F\ (pi G\ (
intgr X\(A * (F X)) X\(A * (G X)) :- intgr F G))).

pi F\ (pi Fi\ (pi G\ (pi Gi\ (
intgr X\((F X) + (G X)) X\((Fi X) + (Gi X))

:- intgr F Fi, intgr G Gi)))).

'V binds the variable that immediately precedes it, thus acting as infix A-abstraction. The symbol
pi stands for universal quantification: My . B is represented as pi Y\B, expressing that Y is bound
in B. Although the pi's would have been inferred by AProlog, they are explicitly included to
simplify future discussion.

With the additional training instance fact

intgr cos sin.

the query

6

intgr X\((F X) + (G X)) X\((Fi X) + (Gi X))
:- intgr F Fi, intgr G Gi.

(F = X \ (3 (expn X 2)) , G = cos, R = X\((Fi X) + (Gi X)))

intgr X\(3 * (expn X 2)) Fi intgr cos Gi
intgr X\(A <• (HX)) X\(A (Hi X)) :- intgr H Hi. intgr cos sin.
(A = 3 , H = X\(expn X 2) , Fi = X\(A • (Hi X))> (Gi = sin)

intgr X\(expn X 2) Hi
intgr X\(expn X Al) X\((expn X (Al + 1)) div (Al + 1))

(Al = 2 , Hi = X\((expn X (Al + 1)) div (Al + 1)))

Figure 4: Higher-order proof.

GG

intgr X\((F X) + (G X)) X\((Fi X) + (Gi X))
:- intgr F Fi, intgr G Gi.

(GG = intgr X\((F X) + (G X)) X\((Fi X) + (Gi X)))

i n t g r F F i i n t g r G Gi

intgr X\(A ; (H X)) X\(A (Hi X)) :- intgr H Hi.
(F = X\(A • (H X)) , Fi = X\(A • (Hi X)))

i n t g r H Hi

intgr X\(expn X Al) X\((expn X (Al + 1)) div (Al + 1))

(H = X\(expn X Al), Hi = X\((expn X (Al + 1)) div (Al + 1)))

Figure 5: Higher-order generalized proof.

i n t g r X\(3 * (expn H) + cos X) F

yields the solution

F = X\ (3 : (expn X (2 + 1) div (2 + 1)) + s i n X)

and the generalization

i n t g r G Gi =>
i n t g r X\(A * expn X B + G X) X\(A * (expn X (B + 1) div (B + 1)) + Gi X)

We will often use implication ' => ' in place of A => B is a notational variant of B : - A.

The proof and generalized proof associated with this example are given in Figures 4 and 5. The
generalization space of higher-order E B G is significantly larger than that of first-order since higher-
order constants are additionally subject to variable replacement: consider that in the first-order
case of Figure 2, the goal (k i l l X Y) is fully general, while for higher-order, a single variable GG
ranging over propositions is fully general.

Also unlike the proofs of Section 2, the integration proofs make use of higher-order unification, which
allows variables to be instantiated with functions as well as first-order constants . For example,
(F a) and (g a a) may be unified by instantiating F to X \ (g X X) , X \ (g a X) , X \ (g X a) , or
X \ (g a a) . Since none of these alternatives is an instance of another, this example illustrates the
nondeterministic nature of higher-order unification. Restrictions on free and bound variables are
enforced by higher-order unification: consider that X\(expn X A) will not unify with X\(expn X
X) , since A may not contain occurrences of X. Donat & VVallen [111 also use higher-order unification,
but their representation of integrals does not use functions in the same way. and some of the
problems that arise when trying to apply generalizations are avoided in our representation.
Many other domains naturally involve name binding constructs , and are thus best represented in
a higher-order language: logics (when viewed as an object language to be manipulated) , program­
ming languages, and natural language [39,32,29]. This same lack of adequate representation also

7

arises when one wants to reason 4 at the meta-level ' — that is, about control strategies for logic
programming, theorem proving, or the E B G algorithm itself. One would like facts (propositions)
or properties (predicates) to be objects themselves. Prolog and other first-order representation
domains allow this to some extent , but in a way that is only operationally, but not logically moti­
vated. This complicates reasoning about these concepts and in practice prohibits the application
of methodologies such as E B G .

Nadathur & Miller introduce AProlog, a logic programming language supporting higher-order func­
tions and predicates [36]. Although AProlog is a typed language, we will omit type declarations
from our examples for simplicity. AProlog utilizes Huet's complete algorithm for higher-order
unification [24]. Although higher-order unification is only semi-decidable and can be highly non-
deterministic , Huet's algorithm is very effective in practice.

4 Modal Logic and E B G

E B G relies upon the separation of domain theory and training instance since only rules of the
former are incorporated into the generalized proofs. To differentiate the two, we prefix domain
theory clauses with T h e • (or L) operator is borrowed from modal logic — i.e., logics in which
propositions have multiple levels or modes of t ruth, such as 'may be ' and 'must b e ' (see, for example,
Hughes & Cresswell [26]). Intuitively, • precedes necessarily true sentences, or equivalently, those
true in all possible states or at all times. Non-prefixed sentences are only contingently true, true
in the current state or at the current time.

We illustrate the use of • on the first-order example cited previously. Within AProlog • is replaced
with box. T h e set of rules and facts , or program, may now be expressed as

box (pi A\ (pi B\ (pi C\ (kill A B :- hate A B, possess A C, weapon C)))).
box (pi V/\ (hate W V/ :- depressed V /)) .
box (pi U\ (pi V\ (possess U V :- buy U V))).
box (pi Z\ (weapon Z :- gun Z)).
depressed John.
buy John obj1.
gun obj1.

Due to the inclusion of box , we may no longer rely upon AProlog's implicit universal quantification.

This is because our E B G algorithm differentiates between the clauses box (pi X\ (G X)) and

pi X\ (b o x (G X)). Section 8 continues this discussion.

From the query (kill John J o h n) , E B G produces the generalization

kill X X :- depressed X, buy X C, gun C.

This derived rule holds for all X and C and, moreover, is necessarily true in that it follows from the
domain theory. Thus , it may be better expressed as

box (pi X\ (pi C\ (kill X X :- depressed X, buy X C, gun C))).

8

Although, the latter representation of the generalization is preferred, it is the former which is
generated by the current implementation. T h e issue is resolved in Section 11.

E B G ' s distinction between domain theory and training instance corresponds to the modal logic
distinction between necessary and contingent truth in that boxed clauses (domain theory) represent
knowledge which is already general in that it is necessarily true, while unboxed clauses (train­
ing instance) represent contingent or particular knowledge. Clauses of the training instance, as
they are excluded from generalized proofs, can safely be removed without invalidating the derived
generalizations. Such revision can be explained semantically as changing states .

Suppose that within the suicide example of Section 2, we replace the last program clause with
(box (gun o b j l)) . This has the effect of anchoring the generalization to o b j l , with the result of
the identical query being

box (pi X\ (depressed X, buy X objl => kill X X)) .

T h e generalized proof associated with this result is similar to that of Figure 2, except that its
rightmost branch is solved. By converting training instance clauses to domain theory, we have made
the resulting generalization more specific. This is, however, dangerous in that the generalization
then depends upon the validity of (box (gun o b j l)) . In another configuration where o b j l is not
a gun, the derived rule becomes false!

In realizing our version of opera t iona l ly , we have already illustrated the conversion of clauses in
the opposite direction, that is, from domain theory to training instance (Section 2, Figure 3) . Such
a transformation is benign in that the resulting derived rules can not be invalidated by revising
the training instance.

Traditional notions of operationality do offer the advantage of allowing more localized pruning
of the generalized proof: by declaring only a single subgoal to be operational , the entire branch
underneath is excluded. Accomplishing the same pruning within our paradigm requires that each of
the program clauses applied within the branch be removed from the domain theory. If a particular
rule is used pervasively in a proof, alternate occurrences might have to be artificially discriminated
for the purposes of E B G . Operationality criteria suffer a corresponding problem in the treatment
of recurring subgoals.

Furthermore, clause-based operationality is more powerful in that clauses associated with interior
nodes of the generalized proof tree may be abstracted. For example, consider a new formulation of
the suicide problem in which the first clause is made training instance:

pi A\ (pi B\ (pi C\ (kill A B :- hate A B, possess A C, weapon C))).

This yields the generalized higher-order proof of Figure 6 captured in the following generalization:

boxpi (GG :- depressed V/, buy U V , gun Z,
(hate \'l V/, possess U V, weapon Z => GG)).

T h e above introduces a notational convention: rather than explicitly universally quantifying each of
the variables of a domain theory clause as in (box (p i GG\ (p i W\ . . .))) , we use the abbreviation
b o x p i . This should not yet be considered an extension to A D Prolog, but merely a device to make
presentation more concise.

9

GG
GG :- hate X Y,

possess U V, weapon Z.

hate X Y possess U V weapon Z
hate W \1 :- depressed V/.

(W = X = Y)
possess U V :- buy U V. weapon Z :- gun Z.

depressed X buy U V gun Z

Figure 6: Alternative higher-order generalized proof.

Higher-order E B G allows goals, as well as functions and first-order ob jects , to be abstracted from
the proof. The derived rule that results is more generally applicable in that GG may be given
alternative instantiations. T h e expressive power of AProlog exceeds that of present E B G languages
by affording the higher-order quantification of GG, as well as the inclusion of an implication within
the preconditions of a derived rule.

Del Cerro takes another approach incorporating modal logic into the logic programming framework
which is independent of E B G [6,7]. For treatments of automated theorem proving in modal logics
outside of logic programming, see [45,44].

A n P r o l o g . As has already been suggested, the motivation for the extended language, A D Prolog,
is that higher-order E B G may be realized within its underlying architecture. A D Prolog is currently
implemented with an interpreter written in AProlog. Before discussing the implementation, we
present further examples of higher-order E B G .

5 Theorem Proving

T h e logic programming paradigm is itself based on a theorem proving methodology, and its support
for search and unification suggest it as an implementation language for theorem provers. First-
order logic programming does not, however, provide the higher-order representation domain which
facilitates the manipulation of logical formulas. AProlog is more expressive in its support for higher-
order ob jects , .and in its inclusion of implication and quantification. This promotes its use as a
meta-logic for theorem proving. Felty & Miller present this case in more detail [16,15].

E x a m p l e 2 . T h e previous integration example relied upon AProlog search to solve queries. Addi­
tional levels of control (to constrain search) need not, however, interfere with the underlying E B G
process! To confirm this, we implemented a tactic-style theorem prover over the same domain. At
the bot tom level, the rules of integration are each represented as tact ics by giving them a name:

10

boxpi (c f _ l (i n t g r (X\ (A * (B X))) (X\ (A * (Bi X))))
(i n t g r B Bi)).

boxpi (pv; (i n t g r (X\ (expn X A)) (X\ ((expn X (A + 1)) div (A + 1))))
t r u e) .

Tact ics perform goal reduction: c f _1 (for 'constant factor left ') reduces the integration task by
removing a common factor, while pw (for 'power') solves the integration of an exponent.

Tacticals control the application of tact ics ; in other words, tacticals are rae£a-tactics. T h e tacticals
which we implemented where borrowed from Felty and Miller [16, page 73], and include t h e n (com­
position), r e p e a t (i terat ion) , t r y (optional) , and o r e l s e (al ternative) . We additionally defined an
interactive predicate providing for the incremental application of tact ics or tact ical combinations
of tact ics . For example, applying the tactical (t h e n c f _1 pw) to the query

i n t g r X\(3 * (expn X 2)) F.

yields

F = X\(3 * (expn X (2 + 1) div (2 + 1)))

and the generalization

boxpi (i n t g r X\(B * expn X C) X\(B * (expn X (C + 1)) div (C + 1))).

For a further discussion of tactic-style theorem proving, see, for example, L C F [17,37] or Nuprl [4].

6 Program Development

One paradigm for formal program development is that of program transformation [3,25,42,14,43] .
Under such an approach, an abstract specification of an algorithm is refined, or specialized, through
a sequence of formal elaboration steps, or transformations, into a program with acceptable per­
formance. T h e resulting sequence of transformations along with the initial specification serve as
a derivation, or justif ication, of the optimized program. T h a t this process may be realized within
a higher-order logic programming language is supported by Hannan & Miller [19]. And once the
paradigm has been formalized within A D Prolog, our E B G algorithm becomes applicable.

E x a m p l e 3 . To substantiate the claim that higher-order E B G is applicable to a program de­
velopment methodology, we will generalize over a simple transformational system which we have
applied to induce tail recursion in certain situations. This example is also treated tentatively in
Dietzen &: Scherlis [10], among others. From a tail recursive version, an iterative form could easily
be derived. It is not our intention that the example be grasped in detail: rather we present it for
the interesting generalization that results. Hence we defer a full discussion of the derivation to
Appendix A.

We begin with a functional specification of the factorial program:

11

fix Fact\ (lam N \
(ife (equals I ! 0)

1
(times (appl Fact (minus I I 1)) I I)))

T h e above is AProlog abstract syntax for a simple functional language, lam and a p p l represent
explicit A abstraction and application, respectively; the incorporation of explicit notation provides
control over computat ion (^-reduct ion) , rather than leaving it to AProlog. f i x is the fixpoint or
recursion operator: it is evaluated by substituting f i x ' s body for each occurrence of the bound
identifier in that body.

T h e derivation proceeds by applying transformations, or rewrite rules, to this specification. For
example, the following rule replaces an occurrence of (G X) with (Op (G X) A), where A is a right
identity of Op (e.g., Op = p l u s &c A = 0).

boxpi (add_oper_ridl Op C
(C (X\ (G X)))
(C (X\ (Op (G X) A))) :- right.identity Op A).

T h e second argument C is a context that determines the particular subexpression to be replaced.
T h e third and forth arguments match the input and output object programs, respectively. For
example, the following invocation of the transformation

add_oper_ridl plus G\(lam X\ (times (G X) (H X)))
(lam X\ (times (succ X) (pred X)))
Fn

instantiates

Fn = lam X\ (times (plus (succ X) 0) (pred X))

T h e full* derivation consists of a sequence of ten such transformation rules and the contexts of their
application. This constitutes a meta-program — a program to manipulate an object program (e.g.,
factorial) . Such a meta-program could be constructed interactively by alternatively selecting rules
and contexts : rules could be chosen from a menu, while contexts would require a more elaborate
mechanism, such as pointing with a mouse. (We hope to implement an interface to A D Prolog
facilitating such interaction.) Although this is ideally how such a meta-program would arise, ours
was instead hand-coded. (A full listing appears in Appendix A.) T h e result of applying the
meta-program to F a c t is the tail recursive expression

appl (fix Factl\ (lam M \ (lam I I \
(ife (equals I I 0)

M
(appl (appl Factl (times II I I)) (minus I I 1))))))

1

But more interesting is the generalization:

12

boxpi
(derv Op

(fix F\ (lam Y\
(ife (HI Y)

A
(Op (appl F (H2 Y)) (H3 Y)))))

(appl (fix Fl\ (lam X\ (lam Y\
(ife (HI Y)

X
(appl (appl FI (Op X (H3 Y)) (H2 Y)))))))

B)

:- right_identity Op B,
left.identity Op A,
associative Op).

derv is the name of the meta-program. T h e second argument to derv is the initial specification,
while the third argument is the tail recursive output.

The generalization produced by our prototype is not as elegantly expressed: it consists instead of
a series of constraint equations. We took the liberty of collapsing them into their 'most obvious'
solution above for presentation. T h e problem of more elegantly displaying these constraints requires
further consideration. In either form, however, the generalization may be applied to analogous
programs such as list reversal

fix Rev\ (lam L\
(ife (null L)

nil
(append (appl Rev (cdr L)) (cons (car L) nil))))

yielding the tail-recursive version

appl (fix Revl\ (lam K\ (lam L\
(ife (null L)

K
(appl (appl Revl (append (cons (car L) nil) K))

(cdr L))))))
nil

T h e above result requires only the addition of a final simplification to make the reduction from
(append (c o n s (c a r L) n i l) K) to (c o n s (c a r L) K). Hence, the generalized f a c t derivation
is sufficient for r e v .

7 Conclusions from Higher-order Examples.

F i r s t v s . H i g h e r - o r d e r . It may be the case that the above examples could be reproduced
using a first-order encoding and first-order E B G . However, the additional complexity required to

implement side conditions on variables, substitution, etc. seem prohibitive. For such inherently
higher-order problems, the designer of a rule-base will demand the expressiveness afforded by
higher-order language. Higher-order E B G , then, provides a means by which explanation-based
learning can be realized for problem domains formulated within higher-order language.

L e a r n i n g a n d A s s i m i l a t i o n . We have concentrated on how a rich representation language
supports E B G , and have largely ignored questions concerning how these generalizations may be
assimilated and applied automatical ly. Under the traditional approach, the underlying architecture
produces and assimilates generalizations in the course of solving each query (at least when learning
is 'switched on ') . This assimilation may be selective or may involve the forgetting of those derived
rules only infrequently referenced. For a discussion of these issues see Prieditis &i Mostow [40,
pages 4 9 6 - 4 9 7] , Minton [33], and Don at & Wallen [11].

T h e calculus integration example of Section 5 reinforces our belief that E B G should be a feature of
the language rather than a 'black bo x ' within the architecture. Consider that adding rules produced
by E B G directly to the rule-base is not generally desirable. In this particular example, the client
has made a commitment to control the application of integration rules via tact ics and tacticals .
T h e incorporation of a derived rules into the program is undesirable and ineffective since it would
still remain absent from the tact ics . Instead, it is the client that may desire to assimilate the
generalization as a new, derived tact ic . T h e point is that the client, rather than the architecture,
is in a position to control assimilation. This approach stands in sharp contrast to systems such as
S O A R in which learning is confined to the underlying architecture [28,41].

I n t e r a c t i o n a n d E B G . Explanation-based generalization is often labeled 'speed-up' learning
in that E B G extends the domain theory by constructing new rules in the deductive closure of
that domain theory; that is, nothing new may be proven, but the solution of problems covered
by the derived rules is (hopefully) quicker. This characterization of E B G is not entirely accurate .
Consider the addition of a user to the system, as in the integration and program development
examples of Sections 5 &, 6. (Actually, in the latter case the user is only hypothetical .) This user
selects rules (and, in the latter case, rule contexts) thereby guiding or eliminating the search for a
solution. His role is essential for domains in which the search problem is intractable , which is more
clearly the case for the tail recursion derivation. T h e resulting problem solution and generalization,
while in the deductive closure of the rule set, are not accessible without user guidance. Here
E B G becomes a vehicle to transfer knowledge from the user to the learner. T h e combination of
learner and user, when viewed as a whole, still only accomplish speed-up learning. B u t , after a
jo int derivation of f a c t , the learner could handle r e v without user assistance. T h a t is, from the
individual perspectives of the learner and user, more than speed-up learning has taken place.

8 AL1Prolog and E B G

L o g i c . A D Prolog does not distinguish sequences of the modal prefix; that is, DDA = OA. For
those familiar with the subject , in this respect A°Prolog is akin to the modal logic S5 [26]. However,
A D Prolog is at most a subset of S5 since it lacks negation (-<) and the second modal operator of
possibility O or M , which may be defined as -->. T h e difference between possible and contingent
truth is conceptually similar to that between contingency and necessity: O j 4 is to A as A is to C\A.

14

G :: = t r u e A
BG t r u e A

D : : = t r u e A

A D Prolog could equally have been formulated with unprefixed clauses representing domain theory
and clauses prefixed with O standing for training instance.

T h e syntax of A D Prolog is summarized by the following inductively defined classes:

Gi , G2 | Gi ; G2 | D => G | p i X\ G | s igma X\ G | box BG
BGi , BG2 | p i X\ BG | box BG
Di , D 2 | G => D | p i X\D | box D

where G is a goal, BG is a boxed goal, D is a program clause, A ranges over atoms (i.e., predicates with
arguments) , and X ranges over variables. The construct s igma stands for existential quantification.
Although our examples have only used • at the top-level, it is not restricted to outermost oc­
currences. T h e use of • does not, however, extend to arbitrary AProlog contexts . In particular,
A D Prolog disallows goals of the form box (D => G) , b o x (s igma X\ G), and box (Gi ; G 2) . This
is because it is unclear how to give an operational definition to these constructs . It is also unclear
what additional expressiveness would be provided.

T h e formulation of A D Prolog we give here is sound and (non-deterministically) complete for an
extension of first-order modal Horn clauses to permit higher-order hereditary Harrop formulas [31]
(i.e., AProlog) in unboxed contexts . This can be proven by a combination of the methods of del
Cerro [6,7] and Miller, et al. [30]. Without giving a precise definition here, we conjecture a similar
result for a more general formulation in which • may be applied to arbitrary AProlog constructs .

T h e B a r c a n F o r m u l a . The Barcan formula is as follows:

Vx. • P(x) > n V j . p (i)

In A r , Prolog this is equivalent to

p i P\ (p i X\ (box (P X)) => box (p i X\ (P X)))

While the converse of Barcan — that is,

• Vx. P(x) => Vx. DP(x)

is true in all modal logics, the validity of Barcan varies. It seemed most natural to include Barcan
within A D Prolog.

However, the generalization algorithm differentiates between the left and right side of Barcan; that
is, the relative order of box and p i , while not affecting provability, can affect generalization. In
particular, variables whose universal quantifiers are outside of box are not generalized. For example,
should a proof using the following clause

p i Z \ (b o x (w e a p o n Z : - g u n Z)) .

instantiate Z, Z will be correspondingly instantiated within the generalization. T h a t is, by nesting
box within p i , the generalization may be restricted. Inserting the above clause into the suicide
example of Section 2 yields

15

wsolve true
wsolve (GI , G2)
wsolve (GI ; G2)
wsolve (D => G)
wsolve (pi G)
wsolve* (sigma G)
wsolve (box G)
wsolve Ga

wsolve GI, wsolve G2.
(wsolve GI; wsolve G2).
hyp D => wsolve G.
pi X\ (wsolve (G X)).
wsolve (G T).
ssolve G.
hyp D, wmatch D Ga SG, wsolve SG.

ssolve true
ssolve (GI , G2)
ssolve (pi G)
ssolve (box G)
ssolve Ga

ssolve GI, ssolve G2.
pi X\ (ssolve (G X)).
ssolve G.
hyp D, smatch D Ga SG, wsolve SG.

Figure 7: Meta-interpreter without E B G : goal analysis.

boxpi (kill Y Y :- depressed Y, buy Y objl, gun objl).

This difference in treatment provides for greater expressiveness without sacrificing power. It is also
possible to revise the implementation so that the E B G behaves identically for either side of Barcan ,
but we do not illustrate that version herein.

I m p l e m e n t a t i o n . It is important to distinguish the programming language A D Prolog from the
underlying architecture which potentially produces generalizations of A D Prolog computation. To
simplify the development of E B G within A D Prolog, we first present, in Section 9, a basic inter­
preter for A n Prolog without the generalizing component. T h a t interpreter is written in AProlog.
Due to the closeness of the correspondence between object language (A D Prolog) and meta-language
(AProlog), we frequently refer to the interpreter as a meta-interpreter . This meta-interpreter is
extended to perform E B G within a second prototype in Section 10. T h e expanded meta-interpreter
exemplifies the generalization algorithm underlying A D Prolog, and has reproduced first-order ex­
amples from the l iterature (Section 2) , as well as new higher-order examples (Sections 3,5 &; 6) .
T h e full meta-interpreter may be found in Appendix C.

9 Implementing AnProlog

In our discussion, we shall use G and D for arbitrary goal formulas and program clauses, respectively.
The full program, or rule-base, is comprised by the A D Prolog clauses of tin1 domain theory and
training instance. Prior to invoking the meta-interpreter , each D has been asserted as a hypothesis
via hyp D. This allows the meta-interpreter to enumerate the rules with AProlog's backtracking
search, although obviously the performance of such an approach suffers in comparison with the
hashing schemes employed by more low-level Prolog implementations.

T h e s o l v e predicates of Figure 7 are responsible for proving a given goal G. Goal solution is divided
between two sets of clauses: w s o l v e for 'weak solve' and s s o l v e for 'strong solve. ' This distinction

16

v/match (Dl , D2) Ga SG - ! , (v/match Dl Ga SG; v/match D2 Ga SG)
v/match (G => D) Ga (G, SG) - ! , v/match D Ga SG.
v/match (pi D) Ga SG - ! , v/match (D Y) Ga SG.
v/match (box D) Ga SG - ! , v/match D Ga SG.
v/match Da Ga true - !, Da = Ga.

smatch (Dl , D2) Ga SG - !, (smatch Dl Ga SG; smatch D2 Ga SG)
smatch (G => D) Ga (G, SG) - !, smatch D Ga SG.
smatch (pi D) Ga SG - !, smatch (D Y) Ga SG.
smatch (box D) Ga (box SG) - ! , v/match D Ga SG.

Figure 8: Meta-interpreter without E B G : clause analysis.

arises from the more stringent proof required by the necessary truth of boxed goals: from p we
cannot derive box p, but p does follow from box p.

Within s o l v e , the solution of A D Prolog goals is largely realized by the corresponding AProlog
constructs . For example, a A n Prolog conjunction (Gi , G 2) is derived by establishing the AProlog
conjunction of G\ and G 2 , while a universally quantified A n Prolog goal is universally derived under
AProlog. Similarly, an implicational goal (D => G), or equivalently (G : - D) , is proven by first
assuming D, and then attempting to derive G. Such sharing between object language (A D Prolog)
and met a-language (AProlog) makes for elegant interpretation. The rules of s s o l v e do not address
the range of AProlog constructs because additional restrictions are placed upon boxed goals (see
Section 8) .

The final clauses of wsolve and s s o l v e select a potentially pertinent clause D from the program,
which the match predicates subsequently a t tempt to apply in the proof of G. At the point of
invoking match, G has been reduced to an atomic goal, i.e., a predicate followed by some number
of arguments. As we shall see, match may produce a subgoal (represented by SG) that must then
be solved to complete the proof.

T h e two match predicates of Figure 8 analyze the program clause D to find a sufficient condition
for the pending atomic goal Ga. For a conjunction (Dl , D2) => Ga, the logic programming
paradigm requires that either Dl or D2 individually derives Ga. If D is an implication (G' => D') ,
we conjoin G' with the subgoals that arise from establishing that D' implies Ga. For example, the goal
(weapon o b j l) matches the program (weapon Z : - gun Z) generating the subgoal (gun o b j l) .
A universally quantified clause (p i D) is reduced by replacing the bound variable with a new
logical variable (in logic programming terminology) that may later be instantiated in the course of
the proof. When smatch encounters a box in the program, the nested clause need only be weakly
matched with the current goal. This is because proving a goal 'strongly* simply means that any
utilized clauses must themselves be necessarily true.

In the final clause of wmatch, the unification of an atomic Da and atomic Ga is a t tempted. This
is analogous to the unification of a goal and clause head within Prolog interpretations (e.g.,
weapon o b j l and weapon Z). If successful, this has the effect of 'returning 1 the accumulated
conjunction of subgoals to the last clause in wsolve or s s o l v e , which will then solve SG recur­
sively. The predicate smatch is, however, missing the analogue to the last clause of wmatch. This

17

wsolve true true true _ i

wsolve (GI , G2) (GG1 , GG2) (DDI , DD2) • - !, wsolve Gl GG1 DDI, wsolve G2 GG2 DD2
wsolve (GI ; G2) (GG1 ; GG2) DD - !, (wsolve Gl GG1 DD; wsolve G2 GG2 DD)
wsolve (D => G) (DDI => GG) DD2 - !, ghyp D DDI => wsolve G GG DD2.
wsolve (pi G) (pi GG) (DD X) - !, pi X\ (wsolve (G X) (GG X) (DD X)).
wsolve (sigma G) (sigma GG) (DD T) - !, wsolve (G T) (GG T) (DD T).
wsolve (box G) (box GG) DD - !, ssolve G GG DD.
wsolve Ga GGa DDI ghyp D DD2,

wmatch D Ga DD2 GGa MG,
meta.wsolve 14G DDI.

wsolve Ga GGa (DDI , DD2) - !, hyp D,
wmatch D Ga DDI GGa MG,
meta.wsolve MG DD2.

ssolve true true true : - ! .
ssolve (Gl • G2) (GG1 , GG2) (DDI , DD2) :- !, ssolve Gl GG1 DDI, ssolve G2 GG2 DD2
ssolve (Pi G) (pi GG) (DD X) :- !, pi X\ (ssolve (G X) (GG X) (DD X)).
ssolve (box G) (box GG) DD : - !, ssolve G GG DD.
ssolve Ga GGa DDI :- ghyp D DD2,

smatch D Ga DD2 GGa MG,
meta.wsolve MG DDI.

ssolve Ga GGa (DDI , DD2) :- !, hyp D,
smatch D Ga DDI GGa MG,
meta.wsolve MG DD2.

Figure 9: Generalizing meta-interpreter : goal analysis.

is because an unboxed atomic clause cannot be used to prove a boxed atomic goal; that is p is not
sufficient to derive box p. As AProlog does not admit disjunction and existential quantification in
programs [36], neither does A n Prolog.

10 Implementing E B G

T h e A D Prolog meta-interpreter of Section 9 may be extended to perform E B G . As in the first-
order approach of Kedar-Cabell i and McCarty [27], our generalizing meta-interpreter develops two
parallel proofs simultaneously: a specific proof of G and a generalized proof of GG. These proofs are
not explicitly constructed; rather they are implicit in the AProlog search. In the course of proving
G and GG, the implementation accumulates the conjunction of generalized clauses DD sufficient to
establish GG — that is, the leaves of the generalized proof. Thus the generalizing s o l v e predicates
accept three arguments - the goal G (instant iated) , the generalized goal GG (uninstantbited) ,
and the conjunction of generalized clauses DD (uninstantiated) . The resulting explanation-based
generalization is then b o x p i (DD => GG).
In the extended wsolve and s s o l v e of Figure 9, the decomposition of G guides the corresponding
instantiation of the generalized goal GG. It is only at the atomic level — the predicates nested
within the A D Prolog operations — where G and GG diverge. Solving an implicational goal requires
a new predicate ghyp (for 'generalized hyp') because it is no longer sufficient to simply recall D for

18

later proof: the associated generalization DD must be retained as well, ghyp then appears parallel
to hyp at the end of the s o l v e predicates to recall D and DD for matching. (T h e DD2 argument of
ghyp need not be included in the generalized clause to be returned at this level as it has already
been incorporated higher in the recursion.)

The MG's (for meta-goals) in the final clauses of s o l v e assume a role analogous to that of the subgoal
SG in the previous meta-interpreter — that is, MG retains subproof tasks for later derivation. T h e
transition from the subgoals of the first interpreter to the current meta-subgoals is due to the need
to retain both G and GG. This is accomplished by the predicate g s o l v e , or 'generalized solve. ' The
straight-forward clauses meta_wsolve and m e t a _ s s o l v e for meta-goal solution may be found in
Section C.

When s o l v e selects a clause D from the program to prove an atomic Ga, the match predicates of
Figure 10 yield a generalized atom GGa and the generalized clause DD sufficient to derive GGa. At the
atomic level where Da is unified with Ga (analogous to the last clause of the original wmatch), DDa
is instead unified with GGa. T h a t neither the pair Ga and GGa nor the pair Da and DDa are unified
at the atomic level is essential for generalization: DD and GG need only be instantiated to the point
that GG necessarily follows from DD. How then do any of the constants of D (first or higher-order)
ever end up in DD? T h e answer is that unless some of the D's employed in the proof are boxed,
none ever will. The following degenerate generalization results from running the ubiquitous suicide
example with all clauses training instance:

boxpi (GG :- (GG
(GG1
(GG2
(GG3
GG4,
GG5,
GG6)

- GG1, GG2, GG3)
" GG4) ,
- GG5) ,
- GG6) ,

Unrestricted higher-order E B G , in which the entire program is training instance, is so overgeneral
as to be uninteresting: each goal is simply abstracted with a variable. O f course, the derived rule
is still valid, but cannot be used in a very directed way. (For an approach that tries to exploit
similar, very general higher-order rules see Donat &: Wallen [11].)

Generalization is suppressed when matching boxed D's by explicitly unifying D and DD in the invo­
cation of smatch (for 'boxed m a t c h 1) . Unlike wmatch and smatch, within bmatch DD is instantiated,
initially to the same value as D. However, distinct logical variables X and Y are substituted within
universally quantified programs because D will subsequently be unified with Ga and DD with GGa.
(The type declaration ' : A1 insures that the substituted variables have the same type. This is im­
portant in restricting higher-order unification.) Thus through universal quantification, D and DD
may again diverge.

As both boxed and unboxed clauses are used in the proofs we have developed, the reader might
rightfully expect both to appear in DD. the resulting sufficient conditions of the generalization.
However, boxed clauses are necessarily true, and hence need not be re-checked in the application of a
derived rule. Instead, it is the conjunction of utilized unboxed clauses which consti tute the simplest
expression of the sufficient conditions for GG. Removing boxed clauses from DD requires a simple
reduction predicate, whose definition may again be found in Section C. It is more general to remove
boxed clauses from the completed generalization than to avoid their initial incorporation, since only

19

wmatch (Dl , D2) Ga DD

wmatch (G => D) Ga (GG => DD)

wmatch (pi D)
wmatch (box D)
wmatch Ga

Ga DD
Ga (box D)
Ga GGa

GGa MG :- !, (wmatch Dl Ga DD GGa MG;
wmatch D2 Ga DD GGa MG).

GGa (gsolve G GG, MG)
:- !, wmatch D Ga DD GGa MG.

GGa MG :- !, wmatch (D X) Ga DD GGa MG.
GGa MG :- !, bmatch D Ga D GGa MG.
GGa true.

smatch (Dl , D2) Ga DD

smatch (G => D) Ga (GG => DD)

smatch (pi D)
smatch (box D)

Ga DD
Ga (box D)

GGa MG :- !, (smatch Dl Ga DD GGa MG;
smatch D2 Ga DD GGa MG).

GGa (gsolve G GG, MG)
:- !, smatch D Ga DD GGa MG.

GGa MG :- !, smatch (D X) Ga DD GGa MG.
GGa (box MG)

:- !, bmatch D Ga D GGa MG.

bmatch (Dl , D2) Ga (DDI , DD2) GGa MG :- !, (bmatch Dl Ga DDI GGa MG;
bmatch D2 Ga DD2 GGa MG)

GGa (gsolve G GG, MG) bmatch (G => D)

bmatch (pi D)

bmatch (box D)
bmatch Ga

Ga (GG => DD)

Ga (pi DD)

Ga (box D)
Ga GGa

: - ! , bmatch D Ga DD GGa MG.
GGa MG :- !, bmatch (D X:A) Ga

(DD Y:A) GGa MG.
GGa MG :- !, bmatch D Ga D GGa MG.
GGa true.

Figure 10: Generalizing meta-interpreter: clause analysis.

20

top-level boxed clauses could reasonably be recognized in s o l v e . These simplification predicates
will unavoidably destroy degenerate generalizations such as the example above, something which
will be addressed in future, more efficient implementations (see Section 11) .

11 Weaknesses of the Implementation

D i r e c t I n t e r p r e t a t i o n . T h e current A n Prolog implementation in AProlog has been extremely
valuable for experimenting with different variations of A n Prolog and the E B G algorithm. It is,
however, extremely slow due to the additional level of interpretation, which also precludes the
application of AProlog optimizations (such as hashing rules based upon predicate names) . Fur­
thermore, the meta-interpreter is not powerful enough to handle AProlog primitives (e.g., cut or
ar i thmet ic) , or to realize the boxpi notational convention. 2 Moreover, the prototype generalizing
meta- interpreter contains a deficiency in its application of higher-order unification that can only be
addressed at the level of the AProlog implementation. Higher-order unification underlies AProlog
and its E B G extension. T h e prototype relies on parallel unifications between D and G and between
DD and GG. However, recall that higher-order unification is nondeterministic. It is thus not suffi­
cient to enforce that two unifications occur; rather, the unifications themselves must correspond —
that is, represent an analogous nondeterministic choice . 3 It is not possible to address this problem
within the meta-interpreter since AProlog does not permit control over the underlying unification.
T h e generalizations that otherwise result, although not what the user expects , are still valid. None
of the examples herein employ the nondeterministic unification required to exhibit this behavior.
We plan to address the above weaknesses by extending an existing AProlog interpreter, eLP , to
realize A D Prolog and E B G . e L P is based in C o m m o n L i s p , and was developed at C M U by Conal
Elliott and Frank Pfenning [12]. It is available free of charge (send mail to elp-request@cs.cmu.edu
on the Internet for more information) and includes all the examples in this report.

I n t e r f a c i n g A ° P r o l o g a n d E B G . T h e prototype produces a generalization in association with
each solved query. T o realize learning within the system, we need simply assimilate (i.e., add to
the program) each of these resulting generalizations. The problem with such an approach is that
it confines learning to the architecture, and therefore precludes client control (Section 7) .
We suggest, instead, that the programming language A°Prolog be extended with primitives for con­
trolling learning. By providing the programmer with an explicit means to address generalization
and assimilation, we defer the difficult problem of determining when to generalize and assimilate;
that is, generalization and assimilation are provided as features of the language rather than as
aspects of the architecture. Clients have the advantage of bringing domain knowledge and user in­
teraction to bear in determining what is to be learned. Such explicit control requires that A D Prolog
include primitives to (1) produce a generalization (the extra cost involved suggests that application
be selective), to (2) access the resulting generalization, and to (3) dynamically extend the program
with a derived rule (perhaps modified by the cl ient) .

"In fact b o x p i represents more than just a convenience . T h e problem is that, the generalizations produced by our
p r o t o t y p e contain variables t h a t must be universally quantified before applicat ion. Consider the derived rule p X.

p X = > (p a , p b) is not t rue since in the course of proving (p a) , X is ins tant ia ted to a . Of course , p i X \ (p X)
= > (p a , p b) is t r u e because the universal quantif icat ion allows X to be multiply i n s t a n t i a t e d . AProlog provides
no m e c h a n i s m by which exist ing free variables (such as X above) can be c a p t u r e d with an inserted quantifier.

1 We are grateful for M a s a m i H a g i y a for this observat ion .

21

mailto:elp-request@cs.cmu.edu

12 Future Work

F u r t h e r e x p e r i m e n t a t i o n . Our method of generalization is independent of the depth-first
search strategy of the underlying logic programming language: as we have shown, it also ap­
plies to heuristic search paradigms or user-guided deduction. More general approaches to search
facilitate application of our algorithm to more difficult problem solving domains. We plan to ap­
ply our techniques to larger domains, particularly program derivation [10,19] and theorem proving
[16], as well as hybrids of the two [38]. Much of our original motivation for the work reported
here comes from these areas. Such experimentation should be substantially facilitated by the new
implementation suggested in Section 11.

D y n a m i c o p e r a t i o n a l i t y . Hirsh introduces dynamic operationality criteria, which allow the
operationality of goals to be defined and redefined within the computational framework [22]. In
Sections 2 & 4 , we illustrated our alternative realization of operationality based on the separation
of domain theory and training instance. This partitioning of the rule-base need not be static;
instead, we plan to investigate a dynamic box predicate over program clauses analogous to dynamic
operationality over goals. T h e expressive power of dynamic operationality is afforded by this
dynamic box, which may shift domain theory rules to training instance. (T h e reverse direction is
dangerous; see Section 1.)

A d d i t i o n a l m o d a l o p e r a t o r s . Other modal operators (such as 'knows') can be added to the
language in a sound and complete way (following [6]) while still preserving its basic character as a
logic programming language. Would such a more general language admit E B G ?
Parameterized modal operators such as knows also introduce the additional complexity of gener­
alizing over modal functions: when the 'knower' is also part of the object language (for example,
knows a (h a t e s b a)) , we would like to generalize over occurrences in the modal function as well
as those in the object language.

22

A Tail Recursion via Program Transformation

As it may be of interest to the less casual reader, this section includes the details of the transforma­
tional derivation summarized in Section 6. The following development assumes that the functional
object language is side-effect free. This restriction allows individual transformations to preserve
correctness in the weak sense (ignoring terminat ion) , although we have not at tempted to prove ei­
ther weak or strong (termination preserving) correctness. Figure 11 lists the necessary higher-order
transformations, while Figure 12 contains a specific meta-program for applying these rules. For
example, the transformation d i s t _ i f e_2 distributes a binary function F over an z/-statement. An
associated step in the meta-program applies d i s t _ i f e_2 by specifying F and a particular context C
in which an if is currently nested within F. In general, the higher-order context variable C indicates
the position in the program where the rule is to be applied. Without such contexts , the application
of a single transformation can be highly nondeterministic. The bound variables (e.g., X and Y in
d i s t _ i f e_2) that appear directly within some contexts are necessary for higher-order matching:
because certain parameters are not free within the program to be matched, higher-order unification
requires that they be bound within the transformation as well. T h e numerical suffixes given to
rules (e.g., 2 of d i s t _ i f e_2) indicate the number of bound variables within the context . Although
rules are only defined with the quantity of context parameters necessary for this derivation, one
may envision a family of rules for each transformation. 4

Hand-coding a meta-program is a tedious and error prone process. We wish to emphasize that we
do not advocate the unaided construction of meta-programs as an attract ive means for developing
programs. However, we do claim these meta-programs could be the output of an interactive tool
for the selection of transformations and their associated contexts . Assuming the plausibility of
such interaction, A G Prolog provides an elegant means to generalize user-guided transformational
development of programs or proofs.

The application of the rules and meta-program (i.e., the domain theory) additionally requires the
following training instance:

associative times.
left_identity times 1.
right.identity times 1.

We now enumerate the individual steps in the derivation of the tail recursive factorial as dictated
by the transformations and meta-program (Figures 11 k 12, respectively).

0. T h e initial definition.

fix Fact\ (lam I I \ (ife (equals I I 0)
1
(times (appl Fact (minus II 1)) I I)))

T h a t mul t pie v e r s u s of rules are required ,s a d r a w b a c k o f AProlog , and could p o t e n t i a l l y h inder genera l izat ion
in thu c o n c e p t u a l l y equivalent rules require mul t ip le e x p r e s s i o n . If AProlog provided a p r o d u c t t y p e , this prob lem
could be addressed using a p r o d u c t of logical var iables represented as a single a r g u m e n t as shown in [30)

23

r/-expand term; that is, insert a A and application. (' . . . ' elides the body of f a c t .)

lam Il\ (appl (fix Fact\ ...)
H)

Insert a multiplication by 1.

lam 1I\ (times (appl (fix Fact\ ...)
ID

1)

Abstract over the argument 1; that is, make 1 a parameter . This introduces a second argu­
ment which is to become the accumulator in the eventual tail recursive version.

appl (lam M\ (lam 1 I \ (times (appl (fix Fact\ ...)
I D

M)))
1

Name the resulting two argument function Fnew — Since f i x specifies the expansion of
recursive functions, one may think of it a mechanism for function definition in general. Such
a method avoids the global binding and recall of function names and bodies. This initial
definition of Fnew will be used later in the derivation.

appl (fix FnevA (lam M\ (lam II\ (times (appl (fix Fact\ ...)
ID

M))))
1

Unfold the recursive definition of F a c t ; that is, expand the fixpoint operator once.

appl (fix FnevA (lam M\ (lam II\
(times (appl

(lam
(ife (equals III 0)

1
(times (appl (fix Fact\ ...)

(minus III 1))
I I I)))

ID
M))))

1

/?-reduction — (a p p l (lam Hl\ (G III)) II) > h e t a (G II).

appl (fix FnevA (lam M \ (lam II\
(times (ife (equals II 0)

1
(times (appl (fix Fact\ ...)

(minus I I 1))
I D)

1 0)))
1

24

7. Distribute t i m e s over the if-then-else.

appl (f i x FnevA (lam M \ (lam I I \
(i f e (equals IJ 0)

(t imes 1 11)
(t imes (t imes (appl (f i x F a c t \ . . .)

(minus U 1))

I D)

1

8 . Simplify the fArn-clause using the fact that 1 is the left identity of t i m e s .
appl (f i x FnevA (lam I ! \ (lam I I \

(i f e (equals I I 0)
. M

(t imes (t imes (appl (f i x F a c t \ . . .)
(minus I I 1))

I D)
I D)))

l

9. Reassociatc the multiplicative expression of the e/se-clause.

appl (f i x FnevA (lam ! 1 \ (lam H \
(i f e (equals II 0)

M
(t imes (appl (f i x F a c t \ . . .)

(minus I I 1))
(t imes I I I I))))))

1

10. Observe that

(t imes (appl (f i x Fac t\ . . .)
(minus I I 1))

(t imes I I I D)

within step 9 is an instance of the original definition of Fnew given in step 4:

(f i x FnevA (lam M \ (lam I J \ (t imes (appl (f i x F a c t \ . . .)
I D

I D)))

The only difference is the values of the arguments M and II. This means that we may fold the
expression into an Fnew invocation.

appl (f i x FnevA (lam M \ (lam ! I \
(i f e (equals I I 0)

M
(appl (appl Fnev: (t imes Ii 1 1)) (minus II 1))))))

1

This completes the derivation.

25

b o x p i (i n s e r t _ l a j n C
(C (f i x F \ (l a m II \ (G F I I))))

(C (l a m I I 1 \ (a p p l (f i x F \ (l a m I I \ (G F I I))) I I I)))) .

b o x p i (a d d _ o p e r _ r i d l Op C
(C (X \ (G X)))
(C (X \ (Op (G X) A))) : - r i g h t . i d e n t i t y Op A).

b o x p i (a b s t r a c t . a r g Op CI C2
(CI (C2 A))
(CI (a p p l (l a m M\ (C2 I I)) A))).

b o x p i (name_fn C
(C G)
(C (f i x Fnev/\ G)))

b o x p i (u n f o l d C
(C (f i x F \ (G F)))
(C (G (f i x F \ (G F)))))

b o x p i (r e d u c e _ l C
(C (X \ (a p p l (lam II \ (G I I)) X)))
(C (X \ (G X))))

b o x p i (d i s t _ i f e _ 2 Op C
(C (X \ Y \ (Op (i f e (B o o l X Y) (E l X Y) (E2 X Y)) (H X Y))))
(C (X \ Y \ (i f e (B o o l X Y) (Op (E l X Y) (H X Y))

(Op (E2 X Y) (H X Y)))))) .

b o x p i (l e f t _ i d _ 2 Op C
(C (X \ Y \ (Op A (H X Y))))
(C (X \ Y \ (H X Y))) : - l e f t . i d e n t i t y Op A)

b o x p i (a s s o c _ 2 Op C
(C (X \ Y \ (Op (Op (HI X Y) (H2 X Y)) (H3 X Y))))
(C (X \ Y \ (Op (HI X Y) (Op (H2 X Y) (H3 X Y)))))

. - a s s o c i a t i v e Op A).

b o x p i (f o l d _ t v / o _ 3 CI C2 C3
(C2 (f i x F \ (lam M\ (lam I I \ (C3 G II I I)))))

(CI (F \ X \ Y \ (C3 G (HI X Y) (H2 X Y))))
(CI (F \ X \ Y \ (a p p l (a p p l F (H2 X Y)) (HI X Y)))))

Figure 11: Transformation Rules

26

b o x p i (d e r v Op FO F 1 0

i n s e r t _ l a m G\G
FO F I ,

a d d _ o p e r _ r i d l

a b s t r a c t _ a r g

Op
G \ (l a m !I \ (G II))
F I F 2 ,

Op
G\G
G \ (l a m II\ (Op (V/O II) G))
F2 F 3 ,

name_fn G \ (a p p l G V/)
F 3 F 4 ,

u n f o l d G \ (a p p l (f i x F l \ (lam M\ (lam II\
(Op (a p p l G II) M)))) W)

F4 F 5 ,

r e d u c e 1 G \ (a p p l (f i x F l \ (lam M\ (lam II\ (Op (G II) M))))
F5 F 6 ,

d i s t _ i f e _ 2

l e f t _ i d _ 2

a s s o c 2

Op

G \ (a p p l (f i x F l \ (lam M\ (lam II\ (G M I I)))) W)
F 6 F 7 ,

Op

G \ (a p p l (f i x F l \ (lam M\ (l a m II\
(i f e (V/l II II) (G M II) (V/3 li I I))))) W)

F7 F 8 (

Op

G \ (a p p l (f i x F l \ (lam M\ (lam II\
(i f e (V/l M II) (V/2 M II) (G M I I))))) W)

F8 F 9 ,

f o l d _ t v / o _ 3 G \ (a p p l (f i x F l \ (lam M\ (lam II\
(i f e (Wl M II) CU2 M !I) (G FI !•! I I))))) V/)

G \ (a p p l G V/)
G \ H l \ H 2 \ (0 p (a p p l G HI) H2)
F4 F9 F 1 0)

Figure 12: Meta-program

27

v/solve Ga GGa DD

v/solve Ga GGa DD - i

ghyp D DDI,
v/match D Ga DDI GGa MG,
meta.v/solve MG DD2,
((oper Ga, DD = GGa)
; DD = DD2).
hyp D,
v/match D Ga DDI GGa MG,
meta_wsolve MG DD2,
((oper Ga, DD = GGa)
; DD = (DDI , DD2)).

Figure 13: New clauses

B Implementing Operationality

Although we have replaced the traditional notion of operationality, for those who prefer the former
approach, we illustrate its realization within our prototype. A a Prolog supports both dynamic and
goal-based operationality criteria within the same uniform framework of higher-order logic. (This
is similarly possible in Prolog through its meta-programming facilities [22,23].) Incorporating
operationality into our implementation requires providing the meta-interpreter with access to an
operationality predicate. T h e revision, which is illustrated in Figure 13, involves the last two clauses
of the wsolve predicate; an analogous change is necessary in s s o l v e . T h e computation proceeds
in the same manner, but subgoals encountered in the course of the proof of operational goals are
simply not incorporated in DD. It is then the client's responsibility to specify the computation
necessary to determine o p e r of particular goals. Should no clauses be provided for o p e r , the above
implementation behaves in the same manner as that given previously.

28

C Generalizing interpreter for ADProlog

For the sake of completeness, we list the unabridged AProlog implementation discussed in Sections
9 through B .

module metaebg.

v/solve true true true :- !.
17 solve (Gl , G2) (GG1 , GG2) (DDI , DD2) :- !,

v/solve (Gl ; G2) (GG1 ; GG2) DD : - ! ,

v/solve (D = > G) (DD => GG) DDI : - I ,
v/solve (Pi G) (pi GG) (DD X) :- ! ,

v/solve (sigma G) (sigma GG) (DD T) :- ! ,
v/solve (box G) (box GG) DD : - ! ,
v/solve Ga GGa DDI :-

./solve Ga GGa (DD , DDI) :- ! ,

ssolve true true true :- | .
ssolve (Gl , G2) (GG1 , GG2) (DDI , DD2) :- !.

ssolve (pi G) (pi GG) (DD X) :- ! ,

ssolve (box G) (box GG) DD : - ! ,
ssolve Ga GGa DDI :-

ssolve Ga GGa (DD , DDI) :- !,

v/solve Gl GG1 DDI,
v/solve G2 GG2 DD2.
(v/solve Gl GG1 DD;
v/solve G2 GG2 DD) .

ghyp D DD => v/solve G GG DDI.
pi X\

(v/solve (G X) (GG X) (DD X))
v/solve (G T) (GG T) (DD T) .
ssolve G GG DD.
ghyp D DD,
wmatch D Ga DD GGa MG,
meta_v/solve MG DDI.
hyp D,
v/match D Ga DD GGa MG,
meta.v/solve MG DDI.

ssolve G2 GG2 DD2.
pi X\
(ssolve (G X) (GG X) (DD X))

ssolve G GG DD.
ghyp D DD,
smatch D Ga DD GGa MG,
meta__ v/solve MG DDI.
hyp D,
smatch D Ga DD GGa MG,
meta.v/solve MG DDI.

ssolve (Gl ; G2) (GG1 ; GG2)
: - ! , error (v/ritesans

ssolve (D => G) (DDI => GG)
: - ! , error (v/ritesans

ssolve (sigma G) (sigma GG)
: - ! , error (v/ritesans

DD
"Illegal disjunction in boxed goal")
DD2
"Illegal implication in boxed goal").
(DD T)

"Illegal existential in boxed goal").

29

wmatch (Dl , D2) Ga DD GGa MG :- !

v/match (G => D) Ga (GG => DD) GGa (gsolve

v/match
v/match
v/match

(pi D)
(box D)
Ga

Ga
Ga
Ga

DD
(box D)
GGa

GGa
GGa
GGa

MG
MG
true

(wmatch Dl Ga DD GGa MG;
v/match D2 Ga DD GGa MG) .

G GG, MG)
, v/match D Ga DD GGa MG.
, wmatch (D X) Ga DD GGa MG.
, bmatch D Ga D GGa MG.

smatch (Dl , D2) Ga DD GGa MG :- !, (smatch Dl Ga DD GGa MG;
smatch D2 Ga DD GGa MG).

smatch (G => D) Ga (GG => DD) GGa (gsolve G GG, MG)
:- !, smatch D Ga DD GGa MG.

smatch (pi D) Ga DD GGa MG :- !, smatch (D X) Ga DD GGa MG.
smatch (box D) Ga (box D) GGa (box MG)

:- !, bmatch D Ga D GGa MG.

bmatch (Dl , D2) Ga (DDI , DD2) GGa MG :- !, (bmatch Dl Ga DDI GGa MG;
bmatch D2 Ga DD2 GGa MG).

bmatch (G => D) Ga (GG => DD) GGa (gsolve G GG, MG)
:- !, bmatch D Ga DD GGa MG.

bmatch (pi D) Ga (pi DD) GGa MG :- !, bmatch (D X:A) Ga
(DD Y:A) GGa MG.

bmatch (box D) Ga (box D) GGa MG :- !, bmatch D Ga D GGa MG.
bmatch Ga Ga GGa GGa true.

v/match (Dl ; D2) Ga DD GGa MG
:- !, error (v/ritesans "Illegal disjunction in program"),

v/match (sigma D) Ga DD GGa MG
:- !, error (v/ritesans "Illegal existential in program").

smatch (Dl ; D2) Ga DD GGa MG
:- !, error (v/ritesans "Illegal disjunction in program"),

smatch (sigma D) Ga DD GGa MG
:- !, error (v/ritesans "Illegal existential in program").

bmatch (Dl ; D2) Ga DD GGa MG
:- !, error (v/ritesans "Illegal disjunction in program"),

bmatch (sigma D) Ga DD GGa MG
:- !, error (v/ritesans "Illegal existential in program").

30

°/0 Meta-interpreter invocation,

dosolve G GG DD :- ! , v;solve G GG DDI, breduce DDI DD2, reduce DD2 DD.

% Solution of accumulated Meta-goals.

meta_v/solve true
meta_v/solve (MG1 IIG2)

true
(DDI , DD2)

meta.v/solve (box MG) DD
meta_v/solve (gsolve G GG) DD

- I

- i meta_v/solve MG1 DDI,
meta_v/solve MG2 DD2.
meta_ssolve MG DD.
wsolve G GG DD.

meta_ssolve true
meta_ssolve (MG1 MG2)

true
(DDI

meta.ssolve (box MG) DD
meta_ssolve (gsolve G GG) DD

DD2) :- !, meta.ssolve MG1 DDI,
meta.ssolve MG2 DD2.

:- !, meta_ssolve MG DD.
: - ! , ssolve G GG DD.

31

% Replaces "(box H)" with "true" in DD --- the set of sufficient
% conditions.

breduce true true :- !.
% Above should be first to avoid infinite recursion on logical variables
°/0 This allows uninstaniated variables to be 'reduced1 out of the picture
% (Good for all but degenerate higher-order generalizations.)

breduce
breduce
breduce
breduce
breduce
breduce
breduce

(HI , H2)
(HI ; H2)
(HI => H2)
(pi H)
(sigma H)
(box H)
Ha

(Hli , H2i)
(Hli ; H2i)
(Hli => H2i)
(pi Hi)
(sigma Hi)
true
Ha

breduce HI Hli
breduce HI Hli
breduce HI Hli
pi X\ (breduce
pi X\ (breduce

breduce H2 H2i.
breduce H2 H2i.
breduce H2 H2i.
(H X) (Hi X)).
(H X) (Hi X)).

% Simplifies sufficient conditions by removing superfluous true's.

reduce true true :- !.
% Above should be first to avoid infinite recursion on logical variables
7o This allows uninstaniated variables to be 'reduced' out of the picture
7, (Good for all but degenerate higher-order generalizations.)

reduce (HI , H2) H

reduce (HI ; H2) H

reduce (HI => H2) H

reduce (pi HI) H

reduce (sigma HI) H

reduce (box HI) H

reduce Ha Ha

reduce HI Hli
reducel (Hli
reduce HI Hli
reducel (Hli
reduce HI Hli

reduce H2 H2i,
H2i) H.
reduce H2 H2i,
H2i) H.
reduce H2 H2i,

reducel (Hli => H2i) H.
pi X\ (reduce (HI X) (Hli X))
reducel (pi Hli) H.
pi X\ (reduce (HI X) (Hli X)),
reducel (sigma Hli) H.
reduce HI Hli,
reducel (box Hli) H.

reducel true true
reducel (true , H2) H2
reducel (HI , true) HI
reducel (true ; H2) true
reducel (HI ; true) true
reducel (true => H2) H2
reducel (HI => true) true
reducel (pi X\ true) true
reducel (sigma X\ true) true
reducel (box true) true
reducel H H

32

References

[lj Dave Angluin and Carl H. Smith. Inductive inference: theory and methods. Computing Surveys,
1 5 (3) : 2 3 7 - 2 6 9 , 1 9 8 3 .

[2] Neeraj Bhatnagar . A correctness proof of explanation-based generalization as resolution theorem prov­
ing. In Proceedings of the AAAI Spring Symposium on Explanation-Based Learning, pages 2 2 0 - 2 2 5 ,
1 9 8 8 .

[3) R. M. Burstall and John Darlington. A transformation system for developing recursive programs.
Journal of the Association for Computing Machinery, 2 4 (l) : 4 4 - 6 7 , January 1 9 7 7 .

(4) Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall , Englewood Cliffs, New Jersey, 1 9 8 6 .

[5] Gerald DeJong and Raymond Mooney. Explanation-based generalization: an alternate view. Machine
Learning, 1 (2) : 1 4 5 - 1 7 6 , 1 9 8 6 .

[6] Luis Farinas del Cerro. Molog: a system that extends P R O L O G with modal logic. New Generation
Commuting, 4 : 3 5 - 5 0 , 1 9 8 6 .

[7] Luis Farinas del Cerro and Martt i Penttonen. A note on the complexity of the satisfiability of modal
hoi n clauses. Journal of Logic Programming, 4 (1) : 1 - 1 0 , 1 9 8 7 .

[8 j T . M. Dietterich et al. Learning and inductive inference. In Paul R. Cohen and Edward A. Feigenbaum,
editors, The Handbook of Artificial Intelligence, pages 3 2 5 - 5 1 1 , William Kaufmaim, 1 9 8 2 .

[9] Scott Dietzen and Frank Pfenning. Higher-order and modal logic as a framework for explanation-based
generalization. In Alberto Maria Segre, editor, Sixth International Workshop on Machine Learning,
pages 4 4 7 - 4 4 9 , Morgan-Kaufmann Publishers, San Mateo, California, June 1 9 8 9 .

[1 0) Scott Dietzen and William L. Scherlis. Analogy in program development. In J . C. Boiidreaux, B. W.
Hamill, and R. Jernigan, editors, The Role of Language in Problem Solving 2, pages 9 5 - 1 1 7 , North-
Holland, 1 9 8 7 . Also available as Ergo Report 8 6 0 1 3 , School of Computer Science, Carnegie Mellon
University, Pit tsburgh.

[1 1) Michael R. Don at and Lincoln A. Wallen. Learning and applying generalised solutions using higher
order resolution. In Ewing Lusk and Ross Overbeek, editors, 9th International Conference on Automated
Deduction, Argonne, Illinois, pages 4 1 - 6 0 , Springer-Verlag LNCS 3 1 0 , Berlin, May 1 9 8 8 .

[1 2) Conal Elliott and Frank Pfenning. e L P : a Common Lisp implementation of AProlog in the Ergo Sup­
port System. Available via anonymous ftp from a.ergo.cs.cmu.edu, October 1 9 8 9 . Send mail to elp-
request (Clcs.cmu.edu on the Internet for further information.

[1 3] Thomas Ellman. Explanation-based learning: a survey of programs and perspectives. , 4 C M Computing
Surveys, 2 1 (2) : 1 6 3 - 2 2 1 , June 1 9 8 9 .

[1 4) Martin S. Feather. A survey and classification of some program transformation approaches and tech­
niques. In IFIP TC2 Working Conference on Program Specification and Transformation, North-Holland,

[15| Amy F e l t y S p e c i f y i n g and Implementing Theorem Proven in a Higher-Order Log,,- Programme, Lan­
guage. I l,D ».hes,s, Department o f Computer and Information Science. University o f Pennsylvania. h,lv

[1 6 | A m y F e l t y a n d D a l e A . M i l l e r . S p e c i f y i n g t h e o r e m p r o v e r s i n a h i g h e r - o r d e r l o g i c p r o g r a m m i n g l a n ­
g u a g e ^ I n E w . n g L u s k a n d R o s s O v e r b e e k , e d i t o r s , 9th International Conference on AuLated D.Z-
tion, Argonne, Illinois, p a g e s 6 1 - 8 0 , S p r i n g e r - V e r l a g L N C S . { 1 0 , B e r l i n , M a y 1 0 8 8 .

f 1 7 ' ^ N C C 1 ? 7 8 ! ' l 9 m , 0 , , ' R ° b i n M i I , , e r ' n , ™ t o ' , h e r R W » d * w o r t h . Edinburgh LCF. S p r i n g e r - V e r l a g

33

http://cs.cmu.edu
http://cmu.edu

[1 8] Masami Hagiya. Generalization from partial parameterization in higher-order type theory. Theoretical
Computer Science, 6 3 : 1 1 3 - 1 3 9 , 1 9 8 9 .

[1 9] John Hannan and Dale Miller. Uses of higher-order unification for implementing program transform­
ers. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Programming: Proceedings of the
Fifth International Conference and Symposium, Volume 2, pages 9 4 2 - 9 5 9 , M I T Press, Cambridge,
Massachusetts , August 1 9 8 8 .

[2 0] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. In Symposium on
Logic in Computer Science, pages 1 9 4 - 2 0 4 , I E E E , June 1 9 8 7 .

[2 1] Hay in Hirsh. Combining empirical and analytical learning with version spaces. In Sixth International
Workshop on Machine Learning, Morgan-Kaufmann, June 1 9 8 9 . To appear.

[2 2] Hay in Hirsh. Explanation-based generalization in a logic-programming environment. In Proceedings of

IJCAI, pages 2 2 1 - 2 2 7 , 1 9 8 7 .

[2 3] Haym Hirsh. Reasoning about operationality for explanation-based learning. In Proceedings of the Fifth
International Machine Learning Conference, June 1 9 8 8 .

[2 4] Gerard Huet. A unification algorithm for typed A-calculus . Theoretical Computer Science, 1 : 2 7 - 5 7 ,
1 9 7 5 .

[2 5] Gerard Huet and Bernard Lang. Proving and applying program transformations expressed with second-
order patterns. Acta Informatica, 1 1 : 3 1 - 5 5 , 1 9 7 8 .

[2 0] G . E . Hughes and M.J . Cresswell. An Introduction to Modal Logic. Methuen and Co. , Ltd. , London,

1 9 0 8 .

[2 7] Sniadar T. Kedar-Cabelli and L. Thorne McCarty. Explanation-based generalization as resolution
theorem proving. In Proceedings of the Fourth International Workshop on Machine Learning, pages 3 8 3 -
3 8 9 , 1 9 8 7 .

[2 8] John E. Laird, Paul S. Rosenbloom, and Allen Newell. Soar: an architecture for general intelligence.
Artificial Intelligence, 3 3 : 1 - 0 4 , 1 9 8 7 .

129] Dale Miller and Copalan Nadathur. Some uses of higher-order logic in computational linguistics. In
Proceedings of the 24th Anual Meeting of the Association for Computational Linguistics, pages 2 4 7 - 2 5 5 ,
1 9 8 0 .

[3 0] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a foundation
for logic programming. Journal of Pure and Applied Logic, 1 9 8 8 . To appear. Available as Ergo Report
8 8 - 0 5 5 , School of Computer Science, Carnegie Mellon University, Pit tsburgh.

[3 1] Dale Miller, Gopalan Nadathur, and Andre Scedrov. Hereditary Harrop formulas and uniform proof
systems. In Second Annual Symposium on Logic in Computer Science, pages 9 8 - 1 0 5 , I E E E , June 1 9 8 7 .

[3 2] Dale A. Miller and Gopalan Nadathur. A logic programming approach to manipulating formulas and
programs. In Symposium on Logic Programming, San Francisco, I E E E , September 1 9 8 7 .

[3 3] Steven Minton. Quantitative results concerning the utility of explanation-based learning. In Proceedings

of AAAI, pages 5 0 4 - 5 0 9 , 1 9 8 8 .

[3 4] Steven Minton, Jaime Carbonell, Craig Knoblock, Daniel R. Kuokka, Oren Etzioni, and Y ^ h n d a
Gil. Explanation-Based Learning: A Problem-Solving Perspective. Technical Report CM 1 J - (' S - 8 (> - 1 0 3 ,

Carnegie Mellon University, Pittsburgh, PA, January 1 9 8 9 .

[3 5] Tom M. Mitchell, Richard M. Keller, and Smadar T. Kedar-Cabelli . Explanation-based generalization:
a unifying view. Machine Learning, l (l) : 4 7 - 8 0 , 1 9 8 0 .

[3 0] Gopalan Nadathur and Dale Miller. An overview of AProlog. In Robert A. Kowalski and Kenneth A.
Bowen, editors, Logic Programming: Proceedings of the Fifth International Conference and Symposium,
Volume 1, pages 8 1 0 - 8 2 7 , M I T Press, Cambridge, Massachusetts , August 1 9 8 8 .

34

[37J Lawrence Paulson. Tactics and Tacticals in Cambridge LCF. Technical Report 39, University of
Cambridge, Computer Laboratory, July 1983.

[38] Frank Pfenning. Program development through proof transformation. In Wilfried Sieg, editor, Logic
and Computation, AMS, Providence, Rhode Island, 1988. To appear. Available as Ergo Report 8 8 - 0 4 7 ,
School of Computer Science, Carnegie Mellon University, Pit tsburgh.

[39] Frank Pfenning and Conal Elliott. Higher-order abstract syntax . In Proceedings of the SIGPLAN }88
Symposium on Language Design and Implementation, Atlanta, Georgia, pages 1 9 9 - 2 0 8 , A C M Press,
June 1988. Available as Ergo Report 8 8 - 0 3 6 , School of Computer Science, Carnegie Mellon University,
Pit tsburgh.

[40] Armand E. Prieditis and Jack Mostow. Prolearn: toward a Prolog interpreter that learns. In Proceedings
of AAAI, Spring 1987.

[41] Paul S. Rosenbloom and John E. Laird. Mapping explanation-based generalization onto Soar. In
Proceedings of AAAI, pages 5 6 1 - 5 6 7 , 1986.

[42] William L. Scherlis. Program improvement by internal specialization. In Eighth Symposium on Princi­
ples of Programming Languages, pages 4 1 - 4 9 , A C M , ACM, January 1981.

[43] Douglas R. Smith and Thomas T. Pressburger. Knowledge-Based Software Development Tools. Tech­
nical Report K E S . U . 8 7 . 0 , Kestrel Institute, June 1987.

[44] P .B . Thistlewaite, M.A. McRobbie, and R.K. Meyer. Automated The orem-Proving in Non-Classical
Logics. Pi tman, London, 1988.

[45] Lincoln A. Wallen. Automated Proof Search in Non-Classical Logics: Efficient Matrix Proof Methods
for Modal and Intuitionistic Logics. PhD thesis. University of Edinburgh, 1987.

35

