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Abstract 

We present an overview of the novel aspects of Avaion/Common Lisp: (1) support for remote 
evaluation through a new evaiuator data type; (2) a generalization of the traditional client/server 
model of computation, allowing clients to extend server interfaces and server writers to hide 
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processing of transactions and automatic crash recovery of atomic data. These capabilities 
provide programmers with the flexibility to exploit the semantics of an application to enhance its 
reliability and efficiency. 
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language. 
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1. Introduction 

Large networks of computers supporting both local and distributed processing are now commonplace. 
Application programs running in these environments concurrently access shared, distributed, and possibly 
replicated data. Examples of such applications include electronic banking, library search and retrieval 
systems, nation-wide electronic mail systems, and overnight-package delivery systems. Such applications 
must be designed to cope with failures and concurrency, ensuring that the data they manage remain 
consistent, that is, are neither lost nor corrupted, and available, that is, accessible even in the presence 
of failures such as site crashes and network partitions. 

A widely-accepted technique for preserving consistency in the presence of failures and concurrency 
is to organize computations as sequential processes called transactions. Transactions must satisfy three 
properties: serializability, failure atomicity, and persistence. Serializability means that transactions appear 
to execute in some serial order. Failure atomicity ("all-or-nothing") means that a transaction either 
succeeds completely and commits, or aborts and has no effect. Persistence means that the effects of a 
committed transaction survive failures. We use the term atomic to stand for all three properties. 

Although transactions are widely used in the database community, demonstrating that they can be 
a foundation for general purpose distributed systems remains a challenge and is currently of active 
interest. Appropriate programming language support for application programmers would greatly enhance 
the usability and thus, generality, of such systems. 

Avalon is a set of linguistic constructs designed as extensions to familiar high-level programming 
languages such as C++ [24] and Common Lisp [15]. The extensions are tailored for each base language, 
so the syntax and spirit of each language are maintained. The constructs include new encapsulation 
and abstraction mechanisms, as well as support for concurrency and recovery. The decision to extend 
existing languages rather than to invent a new language was based on pragmatic considerations. We felt 
we could focus more effectively on the new and interesting issues such as reliability if we did not have 
to redesign or reimplement basic language features, and we felt that building on top of widely-used and 
widely-available languages would facilitate the use of Avalon outside our own research group. 

This paper presents an overview of some of the more novel aspects of Avalon/Common Lisp. The 
distinguishing characteristic of Avalon/Common Lisp, in contrast to Avalon/C++ [5] and other transaction-
based distributed programming languages (see Section 6), is its support for remote evaluation [22]. Lisp's 
treatment of code as data provides a natural and easy way to implement remote evaluation since we simply 
transmit code, as well as data, between clients and servers. Moreover, we exploit remote evaluation to 
extend and generalize the traditional client/server model of distributed computing. Thus, the programmer 
gains more flexibility in structuring an application, while often simultaneously improving its performance. 

We have implemented the Avalon/Common Lisp constructs presented herein on top of Camelot [20], 
a distributed transaction management system (written in C) built at Carnegie Mellon. Camelot provides 
low-level facilities like lock management, two-phase commit protocols, and logging to stable storage. 

The particular extensions we designed for Common Lisp are applicable to any Lisp-like language, 
though for concreteness, all our examples will be expressed in Avalon/Common Lisp. We assume the 
reader has a reading knowledge of Common Lisp. 

In Section 2 we give an overview of Avalon/Common Lisp's model of computation and program 
structure as they relate to distribution, persistence, and concurrency. Sections 3 and 4 explain the novel 
features of Avalon/Common Lisp related to distribution, in particular remote evaluation and our gener-
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E: Evaluator 

R: Recoverable Store 

Figure 1: Model of Distributed Evaluators and Recoverable Storage 

alization of the traditional client/server model. Section 5 illustrates features of Avalon/Common Lisp 
related to persistence. Section 6 compares Avalon/Common Lisp with other transaction-based, distributed 
programming languages and closes with a summary of our current status. 

2. Overview 

Distribution 

An Avalon/Common Lisp computation executes over a distributed set of evaluators (Figure 1), each of 
which is a distinct Lisp process. An evaluator resides at a single physical site, but each site may be home to 
multiple evaluators. A user starts a computation at an initiating evaluator, which may communicate with 
other remote evaluators. To a first approximation, evaluators communicate through remote procedure 
calls with call-by-value semantics. The dotted lines in the figure indicate possible call paths between 
evaluators. 

As in Common Lisp, an Avalon/Common Lisp program consists of a set of packages. Each evaluator 
is host to one or more packages. We map the standard client/server model of distributed computing onto 
our more general architecture as follows: We put a client's code in one package and execute it on the 
initiating evaluator, and for each server, we put its code in a separate package and execute it on a remote 
evaluator. 

Section 3 will explain how we extend this standard client/server model by using remote evaluation in 
combination with the feature that an evaluator can be host to multiple packages. The combination frees 
us from the above one-to-one correspondences between client code (or server code) and a package, and 
between a client process (or server process) and an evaluator. In short, in our full extended client/server 
model, client code can cross evaluator boundaries, can be split into more than one package, or can coexist 
with server code at the same evaluator. Similar remarks hold for server code. 

Persistence 

Since Avalon/Common Lisp provides transactions, we need to provide a way to support failure atom
icity and persistence. When a crash occurs, we need to recover the state of the system to some previously 
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saved consistent state, one that reflects all changes performed by all committed transactions. 

Each evaluator has access to at most one private recoverable store (see Figure 1), which itself is 
managed by a separate process. 1 Normally, there would be no recoverable store associated with the 
evaluator where the client code resides, but there would be one per evaluator that is host to a server. 

At the programming language level, each server package encapsulates a set of object bindings and 
exports a set of functions. Each object binding is a mapping between a symbol and an object. A 
binding can be declared to be persistent, otherwise it is considered to be volatile. Persistent bindings (and 
the objects to which they map) are allocated from recoverable store; hence, persistent bindings survive 
crashes, while volatile ones do not. A server's functions provide the only means for a client and other 
servers to gain access to the server's object bindings, and thus its recoverable objects. 

It makes sense to access recoverable objects only when executing a transaction so Avalon/Common Lisp 
provides control primitives to begin, commit and abort transactions. Section 5 shows a use of these prim
itives. 

Concurrency 

Avalon/Common Lisp supports concurrent transactions ("heavy-weight" processes), but no concurrency 
within a transaction. Serializability of transactions is guaranteed by using standard two-phase read/write 
locks on objects [7]. A transaction holds its locks until it commits or aborts. 

Since Common Lisp does not support multiple threads of control, in particular "light-weight" processes 
as in C Threads [4], we have a simpler model of computation with respect to concurrency than that for 
other languages such as Avalon/C++. Specifically, only one thread of control executes within an evaluator 
at once. For example, suppose two clients each make a request at a single server. The (server's) evaluator 
processes these two requests serially. On behalf of the first request, it accesses the recoverable store, 
acquires appropriate read or write locks, and returns appropriate result values. The evaluator then services 
the second request. If the second request creates a lock conflict, the (server's) evaluator blocks until the 
lock is freed. Lock conflicts can arise because locks are released as transactions complete, not when 
function calls return. 

Avalon/Common Lisp supports nested transactions, but, again because of the limited kind of con
currency we can support in Common Lisp, each transaction can have at most one child transaction. A 
transaction commits only if its child commits or aborts; a transaction that aborts aborts its child. A 
transaction's effects become persistent only when it commits at the top level. 

The most interesting and novel aspects of Avalon/Common Lisp relate to its way of handling distributed 
computing, and not persistent storage or concurrency. Thus, the next two sections will focus on the issues 
related to distribution: remote evaluation and the extended client/server model. 

'Each recoverable storage manager is a C process since we currently use Camelot's implementation of recoverable storage; 
hence, each of our Lisp processes communicates with a C process whenever recoverable storage is accessed. 
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3. Remote Evaluation 

3.1. Example Uses of Extensions 

Suppose, for simplicity, there are two evaluators, one local and one remote, where the local evaluator 
might be the initiating evaluator for some computation. The following expressions: 

(let ( (a 123) (b 45) ) (+ a b) ) 
(let ((a 123) (b 45)) (remote (-1- a b) ) ) 
(let ((a 123) (b 45)) (remote ( + (local a) (local b)))) 

all return the same value to the user, namely the number 168 . Given that the function + refers to the 
built-in generic addition function, all three expressions have the same semantic meaning. How they differ 
is where the various subexpressions are evaluated. 

In the first expression, all computation (new binding creation, variable lookup, function application) 
occurs on the local evaluator. 

In the second expression, the creation of bindings for a and b occurs on the local evaluator, while the 
remote special form directs the evaluation of the (+ a b) to be performed on the remote evaluator. 
The lexical environment, containing the local bindings for a and b, is transmitted along with the expression 
(+ a b ) to the remote evaluator. 

The evaluation of the third expression occurs similarly to the second, except that the evaluations of the 
expressions a and b (within the (+ (local a) (local b) ) expression) are performed back on the 
local host. Since + is already defined on the remote evaluator, this process is equivalent to a traditional 
remote procedure call (RPC), where the arguments (and not the actual function) are evaluated locally and 
then transmitted to a remote server for application. 

3.2. New Functions, Special Variables, and Macros 

As an extension, Avalon/Common Lisp provides one new data type, the evaluator, two new special 
variables, *remote-evaluator* and *local-evaluator*, and a small number of new special 
forms, the most important of which are remote and local. Intuitively, the two forms are used to 
translate the thread of computation from one evaluator to another, e.g., from the designated local evaluator 
to some remote evaluator. Below we give the meaning of each in the style of the Common Lisp manual 
[15]. 

make-evaluator string [Function] 

This function finds and returns the evaluator whose name is specified by the string argument. If none 
exists, it builds and returns a new evaluator object. Evaluators are first-class objects: one can store an 
evaluator away in other data structures, perform remote evaluations on it at some future time, and transmit 
them. 
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*remote-evaluator* [Variable] 

This special variable names the evaluator used to evaluate expressions of the form (remote expr). 
On an initiating evaluator, it is bound by default to the initiating evaluator itself until the user changes 
it to point to some other (remote) evaluator. On a remote evaluator, it is bound by default to the remote 
evaluator itself. If desired, the programmer can explicitly reset this binding dynamically. 

* local-evaluator* [Variable] 

This special variable names the evaluator used to evaluate expressions of the form (local expr). 
In the case of an initiating evaluator, it is normally unbound. In the case of a remote evaluator, it is 
bound by default to the evaluator from which the remote was called. If desired, the programmer can 
explicidy reset this binding dynamically. 

remote expr & optional evaluator [Macro] 

This special form's semantics is identical to identity except that: (1) The actual computation 
is performed by the evaluator bound to * r e m o t e - e v a l u a t o r * (or to the evaluator specified as the 
optional argument) with the same lexical environment as the current evaluator, but a different current 
package and dynamic state; and (2) the object returned is a copy of the result, as opposed to the result 
object itself. Even in the case where the evaluator bound to * r e m o t e - e v a l u a t o r * is specified to be 
or defaults to the current evaluator, a copy of the resulting object is returned. 

Since the process for transmitting data from one evaluator to another necessitates creating copies 
of objects, mutable objects 2 are not eq to their remotely referenced analogues. This is the primary 
incompatibility introduced by the use of remote expressions in a program. Despite the loss of identity, 
we still preserve sharing of common substructures among transmitted objects, so that values that are 
comparable on one evaluator are still comparable on another. Hence, we have: 

(let* ((a (the (not (or number symbol character)) 
<arbitrary lisp object>) ) 

(b a)) 

(eq a (remote a)) nil 
(remote (eq a (remote a))) => nil 

(equalp a (remote a)) => t 
(remote (equalp a (remote a))) => t 

(remote (eq a b)) t 
(eq (remote a) (remote b) ) unspecified 

Here an object that is neither a number, symbol, nor character is locally bound to a and b. The first 
two comparisons return nil since the object bound to a and its copy are different objects, regardless of 
where the comparison is evaluated. The next two comparisons return t because the values of a 's object 
and its copy are the same. The next comparison shows that remotely comparing the identities of a and 

2In Common Lisp, all objects, except for numbers, characters and symbols, are mutable. 
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b is identical to comparing them locally. Finally, the last comparison shows that while remote and local 
copies are not identical, the results of different r e m o t e calls to the same evaluator may return the same 
object. 

l o c a l expr [Macro] 

This special form has meaning only when evaluated dynamically within a r e m o t e expression. Its 
semantics is identical to i d e n t i t y except that: (1) Computation occurs at the evaluator specified in 
* l o c a l - e v a l u a t o r * ; normally, this is the evaluator where the most dynamically immediate r e m o t e 
expression was evaluated; and (2) the object returned is a copy of the object, instead of the object itself. 

Avalon/Common Lisp gives the programmer the flexibility to redirect the thread of computation, if 
desired, by using the optional parameter to r e m o t e , or by explicitly setting * r e m o t e - e v a l u a t o r * 
to an evaluator different from the default. Hence, the user can make third-party calls, i.e., calls by one 
remote evaluator to another evaluator. Third-party calls would be common when one server calls another 
server on behalf of the original computation performed for the client. The calling evaluator is then defined 
to be the local evaluator and the third evaluator to be the remote evaluator. For example, in Figure 1, if 
E l remotely calls E2 which then remotely calls E3, then E3's * l ' o c a l e v a l u a t o r * is automatically 
set to E2 and its * r e m o t e - e v a l u a t o r * , to E3. 

Note that since special variables can be set dynamically, they need not reflect the call chain, though 
normally they would. In the previous scenario, for example, if E3's * l o c a l - e v a l u a t o r * is explicitly 
reset to E l , then l o c a l ( . . . ) expressions would be evaluated at E l , not E2, even though E2 made the 
remote call to E3. Results are still returned to the evaluator that initiated the r e m o t e call; hence they 
would be returned to E2, not E l . 

33. Abstract Interpreter 

Figure 2 shows a simplified abstract interpreter, giving a more formal semantics to the evaluation of 
the special forms, r e m o t e and l o c a l . It does not handle the case of preserving (remote) side effects 
on shared, mutable objects. 

We first define a d y n a m i c - s t a t e to include the lexical environment, control-related tags and labels, 
and names of the local and remote evaluators. The lexical environment includes both local variable and 
local function bindings. We define an e v a l u a t o r to be a name and a set of packages. 

To see what e v a l does, we first explain what the helping function h a n d l e - r e m o t e does. It takes 
four arguments: the expression being evaluated; a dynamic state that includes some lexical environment; 
and two evaluators, one to indicate where l o c a l expressions are to be evaluated and one to indicate 
where r e m o t e expressions are to be evaluated. A new dynamic state is created and used as the state 
in which the argument expression is evaluated. The d e e p - c o p y function preserves internal sharing 
of objects. It is similar to the r e a d of a p r i n t on printable Common Lisp objects. The recursive 
calls to e v a l and d e e p - c o p y ensure that expressions with nested r e m o t e ' s and l o c a l ' s are handled 
properly. 

The e v a l function itself takes three arguments, the expression being evaluated, a dynamic state that 
includes some lexical environment, and an evaluator. If the expression to be evaluated is a r e m o t e then 
first a check is made to see if a specific evaluator is bound to the optional argument in the r e m o t e 
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(defstruct dynamic-state 
lexical-env 
catch-tags 
labels 
local-evalr 
remote-evalr 
) 

(defstruct evaluator 
name 
packages 
) 

(defun eval (expr state evalr) 
(case expr 

;; other cases . . . 

(remote 
(handle-remote (remote-body expr) 

state evalr 
(or (remote-evalr expr) 

(dynamic-state-remote-evalr evalr)))) 
(local 

(handle-remote (remote-body expr) 
state evalr 
(dynamic-state-local-evalr evalr))))) 

(defun handle-remote (expr state oevalr nevalr) 
(deep-copy 

(eval 
expr 
(make-dynamic-state 

:lexical-env (deep-copy (dynamic-state-lexical-env state)) 
:catch-tags (dynamic-state-catch-tags state) 
.•labels (dynamic-state-labels state) 
:local-evalr oevalr 
:remote-evalr nevalr 
) 

nevalr))) 

Figure 2: Abstract Interpreter for Handling Remote Evaluation 
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call; if not, then the remote evaluator bound in the dynamic state is passed as the new remote evaluator 
to h a n d l e - r e m o t e . Handling a l o c a l is simpler; the local evaluator bound in the dynamic state is 
passed as the new remote evaluator to h a n d l e - r e m o t e . 

3.4. More Examples 

The following example shows that only local variables, not Common Lisp "special" (global) variables, 
are included in the environment passed with a call to r e m o t e : 

(defvar a 123) 
(let ((b 45)) 

(remote (+ (local a) b))) 

The explicit call to l o c a l will look up the binding to a on the local evaluator. Note also that 
by default, Avalon/Common Lisp supports explicit callbacks since a l o c a l expression nested within a 
r e m o t e is evaluated at the evaluator from which the remote call was made. 

Since one of Avalon's design goals is to minimize interference with the target language's semantics, 
nearly all Common Lisp expressions can be "wrapped in" a r e m o t e to give the desired and expected 
effects. The lambda expression below is transmitted to the remote evaluator along with its argument for 
evaluation, illustrating that even procedural objects are permissible within r e m o t e expressions: 

(remote ((lambda (x) (* x x)) 4)) 

We also support recursively defined functions such as: 

(labels ((fact (n) (if (< n 2) 1 (* n (fact (- n 1)))))) 
(remote (fact 20))) 

since the current lexical environment is transmitted along with the expression. During the evaluation of 
the above code, the recursive function f a c t , bound in the lexical environment, is applied to 20 on the 
remote evaluator, and the result is transmitted back to the local evaluator. 

The effects of mutating operations in the lexical environment are preserved across evaluator boundaries. 
For example, the following returns 10 : 

(let ((a 5)) 
(remote (setq a 10)) 
a) 

We also handle exits, both local and dynamic, transparently. The result below will be 12 , just as if 
the r e m o t e call had never existed: 
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(block tag 
(remote (+ 9 (return-from tag 12)))) 

Likewise with the following, the result is also 12: 

(progn 
(remote (defun add9 (x) (+ x (throw 'foo 12))) ) 
(catch 'foo (remote (add9 1)))) 

3.5. Transmission of Objects 

Avalon/Common Lisp supports transmission of all Common Lisp readable types. A type is readable if all 
its instances can be created through the Common Lisp reader using the type's default print representation. 
Some examples of readable types include s i m p l e - a r r a y s , l i s t s , and s t r u c t s . Most readable types 
are trivially transmissible since from one evaluator we simply pass an object's print representation and 
at the other evaluator we reconstitute a copy of the object using the built-in r e a d function. We also 
support transmission of some non-readable Common Lisp types like f u n c t i o n s and h a s h t a b l e s . 
For a more complex type, like object classes, users would need to define their own marshall function, 
which traverses an object's abstract representation and creates a transmissible version, and unmarshall 
function, which reverses that mapping. 

As an optimization, we plan to add to our current implementation support for both partial transmission 
of large objects and transmission of partially evaluated objects. For large readable objects, such as a 
complex network of s t r u c t s , we would not copy and transmit the entire object but just its root and its 
descendants up to ^-levels deep, where n is user-definable. Hence transmitted objects might include remote 
references, i.e., names of objects that reside remotely. Currendy our support for partial transmission of 
large objects is limited to only immutable s t r u c t s . Finally, for conceptually infinite objects akin to 
streams in Scheme [1] ox futures in Multilisp [13], we need transmit only a partial evaluation of their 
values. 

4. Extended Client/Server Model 

The client/server model is a common paradigm for distributed computing, especially in systems based on 
remote procedure call. By introducing remote evaluation into Avalon/Common Lisp we can extend this 
model in useful and powerful ways. In this section, we explore these extensions, by presenting several 
models of how distributed programs may be structured in Avalon/Common Lisp . 

In the traditional client/server model, the RPC interface serves two purposes. It defines both the calling 
interface between a client and server and the boundary along which a computation is distributed. The 
caller (client) is also the initiator process of some computation; the callee (server) is also some initiated 
process executing on behalf of the caller. 

Avalon/Common Lisp separates these two functions. We use the terms client and server to distinguish 
between the caller and callee. This client/server distinction defines the interface between the facilities 
provided by the server programmer, and those provided by the client programmer, just as is true for 
interfaces in non-distributed programs. We use the terms local and remote to distinguish between the 
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initiator and initiated processes, i.e., evaluators, of a distributed computation. The local/remote distinction 
serves to define the boundary along which a computation is distributed. A computation is local if it is 
performed at the evaluator initiating the computation, while it is remote if it occurs at some evaluator 
different from the initiator. Remote evaluation is the mechanism by which Avalon/Common Lisp expresses 
this change in computational locus. 

In what follows, we suggest alternative ways to organize the remote and local aspects of client and 
server interfaces, ranging from traditional RPC to a scheme where both the client and the server do 
computation both remotely and locally. 

As a motivating example, we consider a simple distributed database of bibliography entries such as 
that used for Scribe or LaTex .bib files. We assume that the user of the database is computing on some 
local site, e.g., a personal workstation, while the database itself resides on some remote site. The database 
interface consists of set operations like intersection and union; a matches function that takes as 
input a query and returns a set of matching bibliography entries; and a print-bib-entrys function 
that takes as input a set of bibliography entries and returns its print representation. Thus, a typical 
bibliography database user might write: 

(print-bib-entrys 
(union 

(matches author-named-Edsger) 
(matches author-named-Butler))) 

to print all the database entries authored by people named Edsger or Butler. 

The Traditional Client/Server Model 

To get the effects of RPC as used in the traditional client/server model in Avalon/Common Lisp, we 
simply put a remote around the outermost function call. If the database, the set operations, and the 
printing and matching functions all reside remotely, then the following code fragment shows how our 
original single-site query would be expressed: 

(remote 
(print-bib-entrys 

(union 
(matches author-named-Edsger) 
(matches author-named-Butler)))) 

The Extensible Server Model 

In Avalon/Common l i sp , a client can extend a server's interface by transmitting function definitions 
to the server and can then execute them remotely. In our example, the client first uses a remote def un 
to define a more complicated match function: 

(remote 
(defun match-Edsgers-or-Butlers () 

(union 
(matches author-named-Edsger) 
(matches author-named-Butler)))) 
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The client executes the following code locally, which evaluates the newly defined function remotely: 

(remote 
(print-bib-entrys (match-Edsgers-or-Butlers))) 

A client would normally make multiple remote definitions at one time, perhaps as part of its initial
ization code. There are several advantages to providing extensible servers. The client programmer gains 
flexibility by tailoring the server interface to the needs of his or her application. Concrete examples 
of software with extensible interfaces are Emacs and Postscript [25]. The programmer also can greatly 
enhance the application's performance by allowing a complex computation to take place near the resource 
it is manipulating. For example, NeWS [11], an extensible windowing system, can support the smooth 
rubber-banding of spline curves, while X [19], which essentially uses the standard RPC paradigm, has 
difficulty smoothly rubber-banding even straight lines. 

The Hidden Distribution Model 

By permitting some or all server code to run locally, that is, at the local evaluator, Avalon/Common Lisp 
allows clients to be completely unaware of the distributed nature of a computation. Server writers are 
free to hide some or all of the distributed aspects of the program from a client. In the most extreme case, 
the client may never even know that it is using a distributed service. 

In the hidden distribution model, our example looks as follows. On the local side, the server writer 
makes the following definitions (we define macros instead of functions to suppress one level of evalua
tion): 

(defmacro matches (query) 
"(remote (matches ,query))) 

(defmacro union (setA setB) 
'(remote (union ,setA ,setB))) 

(defmacro print-bib-entrys (db) 
'(remote (print-bib-entrys ,db))) 

The client code is the same as for the non-distributed case: 

(print-bib-entrys 
(union 
(matches author-named-Edsger) 
(matches author-named-Butler) ) ) 

Here, when the client calls the three functions provided in the local side of the server code, the 
makes the explicit remote calls to the remote side of the server code. 
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L: Local R: Remote 
C: Qient 
S: Server 

Figure 3: The Full Extended Client/Server Model of Distributed Evaluators 

The Full Model 

The full model allows both the client and the server to compute both at the local and the remote 
evaluators. Figure 3 depicts this situation where again, the dotted lines indicate possible call paths. 
Support for this generality is useful if we want both the ability to perform complex client computations 
at the remote site, and to allow the server to hide key aspects of the distributed computation, such as 
caching. 

To illustrate both of these capabilities, suppose the server writer implements the m a t c h e s and u n i o n 
functions to manipulate the database entries using some compact, but incomplete representation of each 
entry, while p r i n t - b i b - e n t r y s must have the entire entry before printing it. Caching the complete 
entries at the local site prevents them from being repeatedly shipped from evaluator to evaluator (i.e., re
mote to local) while hiding this caching in the server interface allows the client to ignore the complications 
introduced by the cache. 

For our example, on the local side, the server writer makes the following definitions: 

(defun print-bib-entrys (s) 
(set-map #'print-db-entry s)) 

(defun print-db-entry (set-entry) 
(unless (value-cached-p set-entry) 

(add-to-cache (get-remote-object set-entry))) 
(print-entry (cached-value set-entry))) 

The client makes the following remote definition (as before in the Extensible Server Model): 

(remote 
(defun match-Edsgers-or-Butlers () 

(union 
(matches author-named-Edsger) 
(matches author-named-Butler) ) ) ) 
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The client executes it: 

(print-bib-entrys (remote 
(match-Edsgers-or-Butlers))) 

The reader should compare the above call to that used in the Extensible Server Model. 

The above example illustrates what would commonly be done for querying a large database. In 
general, application programmers need the ability to write split queries, where part of the query is 
performed remotely through a server interface, and part performed locally through client code. A typical 
query might be split into a search predicate executed remotely and a filter predicate executed locally. For 
example, the search predicate might return a stream of bibliography entries to the client who might then 
further filter out every fifth entry. 

5. Persistence 

In this section we show how Avalon/Common Lisp supports failure atomicity through the w i t h - t r a n s a c t ion 
construct and persistence through declarations of persistent bindings. We first illustrate these features by 
showing the relevant pieces of the package for the bibliography database server. 

5.1. Example Uses of Extensions 

Here we make the database's binding persistent and initialize it: 

(defpersistent $bib-database$ (make-persistent (empty-set))) 

By convention, we use the " $ " characters to distinguish those symbols used for persistent bindings from 
those used for volatile ones. M a k e - p e r s i s t e n t creates a recoverable object; d e f p e r s i s t e n t de
fines $ b i b - d a t a b a s e $ as a binding to be recoverable, and creates a binding between $ b i b - d a t a b a s e $ 
and the recoverable empty set. 

We use transactions for standard database operations such as adding, modifying, and deleting entries. 
Consider the function for adding a bibliography entry: 

(defun add-bib-entry (entry) 
(with-transaction 
(if (valid-bib-entry-p entry) 

(adjoin $bib-database$ (make-persistent entry)) 
(abort-transaction 'invalid-bib-entry)))) 

If the entry is valid, i.e., well-formed and not already in the database, then we make the volatile value of 
the e n t r y argument persistent and add it to the database. Otherwise, we abort the transaction signalling 
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the abort condition invalid-bib-entry. Since the update is done within a transaction, if a crash 
occurs during the update, the state of the bibliography database will be as if the update never occurred; 
Camelot's recovery algorithm will guarantee the database is restored to a previously saved consistent 
state. 

The counterpart to make-persistent is make-volatile. Since an evaluator communicates 
with a recoverable store, retrieving a persistent binding from it gives us a handle on a recoverable object. 
Upon retrieval, we are free to continue to use the object as a recoverable object until we need to either 
call a standard Common Lisp function or transmit the object back to the local evaluator. Thus as a 
server writer, we have some latitude as to when to make the make-volatile call. For example, both 
print-bib-entrys below have the same eventual effect: 

(defun print-bib-entrys () 
(set-mapc #'(lambda (set-entry) 

(print-bib-entry (make-volatile set-entry))) $bib-database$)) 

(defun print-bib-entrys () 
(set-mapc #'print-bib-entry (make-volatile $bib-database$))) 

In the first version, set-mapc operates on a persistent set (and uses rec-car, rec-cdr, etc. to tra
verse the $bib-dat abase$ 3). In the second, set-mapc operates on a volatile object. Make-persistent 
and make-volatile are each idempotent and are inverses of each other. 

Avalon/Common Lisp currently supports recoverable versions of a large subset of Common Lisp's built-
in types, e.g., f ixnum, list, simple-string, simple-vector, as well as any type constructed 
using struct ' s . 

5.2. New Macros and Functions 

Here is the programmer's interface to the new macros and functions: 

defpersistent variable [ initial-value [ documentation ] ] [Macro] 

This form is similar to the d e f v a r form, except that any binding to variable is recoverable, i.e., 
survives crashes and supports failure atomicity. If given, initial-value is assigned to variable, as long as 
variable has not previously been bound. Initial-value must evaluate to a recoverable object and is only 
evaluated if it is used to initialize the binding. 

All subsequent setq operations to variable will change the binding atomically; setq operations to 
persistent variables can be aborted if evaluated within a transaction. 

Avalon/Common Lisp supports "recoverable" versions of some standard Lisp functions like car, cdr, eq, eq l , etc. They 
operate on objects retrieved from recoverable store, rather than normal non-recoverable Lisp objects. 
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make-persistent object 
make-volatile object 

[Function] 
[Function] 

These functions create a persistent (volatile) representation of object. If object is already persistent 
(volatile), it is returned as the result. 

with-transaction body [Macro] 
with-t op-level-trans act ion body [Macro] 

Both forms initiate a new transaction and evaluate body. With-transaction, if evaluated dynam
ically within another transaction, will begin a nested transaction; otherwise it starts a top-level transaction. 
With-top-level-transaction always initiates a new top-level transaction. Both forms return a 
mutiple value consisting of a status signifying whether or not the transaction committed, and the result 
of the last expression in body. 

Normal evaluation of either form results in a committed transaction. Exceptional exits from the body 
(via catch/throw and local exits) result in the transaction aborting. Transactions can also be explicidy 
aborted via use of abort-transaction. 

abort-transaction retval &optional top-level [Macro] 

This form aborts the currently executing transaction. If the optional argument is nil (the default), the 
innermost dynamically nested transaction is aborted and the value of retval is returned as the status in the 
multiple-value result of with-transaction. Otherwise, the current (dynamically scoped) top-level 
transaction is aborted. 

6. Related Work and Discussion 

Our work on remote evaluation is closest in spirit to Stamos's Ph.D. work [22] for which he designed 
extensions to the programming language CLU to support remote evaluation in the context of atomic trans
actions. Since the target languages differ, so do our concrete designs. We designed and packaged our 
language extensions in a way that avoids modifying the compiler and instead exploits the interpretative 
programming style of Common Lisp. Since CLU is a compile-time (strongly) typed language, Stamos 
defines static checks that must be performed to ensure a remote evaluation request is valid. Client exten
sions to servers and code arguments further complicate both these checks and the compiler's subsequent 
encoding of a remote evaluation request. We avoid some of these difficulties since our new evaluator 
data type gives us not only a run-time boundary (each is a process), but a compile-time boundary (each 
defines a global namespace for a set of packages). 

Our extensions to the client/server model are similar to that supported by Falcone's Heterogeneous 
Distributed System architecture, prototyped at DEC [9]. Falcone focuses on support at the operating-
system level, rather than at the programming-language level, though he does provide a small Lisp-like 
language interface to the system facilities. By our extending Common Lisp rather than defining a new 
language, we have the advantage of completely integrating our extensions with an existing, familiar, and 
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widely-available programming language. Also, Falcone handles only primitive data types such as lists 
and byte vectors, and does not address persistent and recoverable storage of data. 

Avalon/Common Lisp is distinct from other distributed programming languages such as CSP [14], SR 
[2], Linda [10], Nil [23], and Ada [18], since we have direct support not only for remote evaluation, but 
for transactions, and in particular the following features: commit and abort processing, crash recovery, 
atomic objects, and management of persistent data. 

On the other hand, transactions themselves have been a primary focus in both distributed and central
ized data bases ([3], [7], [12], [8]). Several research projects have chosen transactions as the foundation 
for constructing reliable general-purpose distributed programs, including Argus [16], Arjuna [6], Clouds 
[17], TABS [21], and Camelot [20]. Of these projects, however, only Argus and Arjuna have addressed 
the linguistic aspects of the problem. Argus extends CLU and Arjuna extends C++. None of these 
projects have direct support for remote evaluation or our extended client/server model. 

Avalon/C++ and Avalon/Common Lisp differ in significant ways even though they address the same 
application domain, reliable distributed computing, and are motivated by the need to provide programming-
level support for transactions. Avalon/C++ ,s primary design focus was on user-defined atomic data types, 
in particular, support for hybrid atomicity. Programmers can define (hybrid atomic) objects that provide 
higher degrees of concurrency than that provided by using standard two-phase read/write locks, such 
as that used for Avalon/Common Lisp. In contrast, Avalon/Common Lisp's primary design focus is on 
remote evaluation and support for a client/server model more general and flexible than the traditional 
one such as that used for Avalon/C++. Thus, Avalon/Common Lisp relies on well-known techniques for 
dealing with serializability (read/write locks) and persistence (write-ahead logging, recoverable virtual 
memory), but introduces a new model for distributed computing. 

Currently, all Avalon software runs on IBM R T s in the Mach and Camelot environments. Avalon/C++ 
runs on Sun's and Vaxes as well. Avalon/C++ has been operational for a year and we are not doing any 
further design or implementation work with it. Avalon/Common Lisp is nearly complete as of this writing. 
All Avalon/Common Lisp code presented in this paper runs. 

In summary, Avalon is a set of linguistic constructs that extend the capability of existing programming 
languages by directly supporting transactions. For each of our target languages, C++ and Common Lisp, 
we designed our extensions to be unintrusive and modular. For example, a Common Lisp programmer 
can load one set of packages if support for only remote evaluation is desired, a different set if support 
for only recoverable store is desired, or both sets if both features are desired. These language extensions 
relieve users from the burden of doing low-level system activities such as locking and managing stable 
storage, and instead allow them to concentrate on the logic required of their application. At the same 
time, however, they are given enough flexibility to exploit the semantics of their applications to increase 
their programs' reliability and efficiency. 
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