NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Monotonic use of space and computational
complexity over abstract structures

Daniel Leivant
October 31, 1989

CMU-CS-89-212

School of Computer Science
Camegie Mellon University
Pitisburgh, PA 15213

Abstract

We use relational pointer machines as a framework for generalized computational complex-
ity. Non-reuse of memory space, dubbed monotonic computing, is proposed as a fundamental
concept that threads together various abstract generalizations of PTime. Depending on the
use of space, relational machines generalize DLogSpace, PTime, NPTime and PSpace, We
show that alternating first order machines are equivalent, over all finite structures, to mono-
tonic machines with positive queries, generalizing the Chandra-Kozen-Stockmeyer Theorem
ASpace(f)= DTime(?), and showing that the latter does not depend on any counting mecha-
nism. We also show that of two generalizations of PTime, deterministic monotonic machines
and nondeterministic monotonic positive machines, the former can simulate the latter on all
structures, and the latter can simulate the former on enumerated structures. Finally, first order
inductive definitions are shown to be equivalent to monotonic pointer machines with random
selection.

Research sponsored in part by the Defense Advanced Research Projects Agency (DOD) under Contract F33615-
87-C-1499 , ARPA Order No. 4976 (Amendment 20) and monitored by: Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Aeronautical Systems Division (AFSC), Wright-Patterson AFB, OH 45433-6543. The
views and conclusions contained in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or of the U.S.
Government. F :wif‘:’*‘g'?y !.i?fgries)
EEERENE .

Introduction

Models of computing over arbitrary structures have been studied for several decades,
but have attracted increased interest only in recent years, in Logic of Programs, Compu-
tational Complexity, Database Theory, and Generalizes Recursion Theory. For foundations
of computing, computing over arbitrary structures is motivated by the search for unifying
principles, analogies between complexity and definitional specifications and hierarchies. re-
lations with finite model theory, and an understanding of the limitations of structures and
of computation models.

Generalized complexity theory was initialized in [Fri70] and pursued by Tiuryn, Kfoury,
Urzyczyn and others. One goal of the theory is the generalization of Turing machine based
complexity classes, such as the identification of generalized forms of PTime. These general-
izations clarify the nature, importance, and stability of the Turing class considered. If several
generalizations of the same Turing class TC (such as PTime) are equivalent in general, the
stability of TC is demonstrated. If two generalizations of TC are shown to differ on some
structures, then two orthogonal aspects of TC are identified. Dually, if the generalizations
of two classes TC, and TC, are shown to differ on some structure, then we go some of the
way towards separating TC, and TC;, and we know that if they coincide as Turing classes
then a characteriztic feature of the Turing model, such as counting configurations within the
model, is crucial in the equivalence.

In another vein, generalized computational complexity theory might shed light on rela-
tions and tradeoffs between various computational complexity measures for specific hardware
models (e.g., Turing machines, various models for concurrency), such as time, space, rever-
sals, alternations, number of processes, depth of circuits, extent of comimunication, etc.

In [Lei87] we proposed the explicit use of higher order objects in computation models, a
direction that has already borne additional interesting results [Goe89]. The model defined
in [Lei87] is that of relational pointer machines (see §2 below). In this paper we study the
effects of natural restrictions on such machines: disallowing reuse of space (monotonic comn-
puting), and disallowing negative information {by requiring queries to be positive, i.e. abort
on negative response). These restrictions lead to generalizations of deterministic and non-
deterministic PTime.

We show that of two generalizations of PTime, deterministic monotonic machines and
nondeterministic monotonic positive machines, the former can simulate the latter on all
structures, and the latter can simulate the former on enumerated structures. We further
show that the most natural generalization of PTime, nondeterministic monotonic positive
machines, is equivalent over all structures to alternating first order pointer machines, thereby
generalizing one of the main results of [CKS81|. This shows that the equivalence between,
e.g., alternating logarithmic space and deterministic polynomial time, is in fact independent
of the exhaustive enumerability (within the computational model) of the structure elements
or of configurations. This should be contrasted with other results on Turing complexity.
such as Savitch’s Theorem and Immerman-Szelepcsényi Theorem {Imm88, Sze87], which

1

have so far resisted such generalizations, and may well depend crucially on the ability of the
computation model to count configurations.

Our theorem equating alternation with monotonic use of space is related to the equiva-
lence proved in [HK84], between alternating programs and first order inductive definitions.
However, the proofs are different, and the present equivalence seems to relate more natural
generalization of time and space.

The use of monotonic (i.e. non-reused) space seems to be of independent interest, as an
abstract generalization of time complexity, and as a unifying concept for several generaliza-
tions of PTime. The concept of non-reused space goes back at least to Hao Wang [Wan57],
who showed that non-erasing TM’s are as general as unrestricted TM’s. Our results sug-
gest that monotonic space is a fundamental concept which manifests itself in a number of
guises, and threads together several generalizations of PTime. The significance of monotonic
space computing is illustrated by an interesting result in Thermodynamics: Charles Bennett
{Ben87| has discovered a surprising and beautiful resolution of the paradoxes of Thermo-
dynamics, such as Maxwell’s Demon, in terms of informational entropy: the point where
thermal entropy decreases, in all idealized machines that violate the Second Law, is pre-
cisely ehere information space is being reclaimed, thereby assuming a gratuitous decrease in
information entropy. In another vein, Girard’s Linear Logic is based on related observations
about the cost of reusing information, and in fact the provably recursive functions of Linear
Logic with counters on space reuse are precisely the PTime computable functions [GSS89].

1. Preliminaries on computing over structures

1.1. Abstract machines

The simplest computation model over arbitrary structures are the program schemes of [LP64,
Pat68), and their notational variants such as register machine [Fri70] and first order pointer
machines [Lei87]. (The concept of programs over arbitrary structures goes back at least to
(Ian60].) When the underlying structure is the Turing Tape, the model becomes a multi-
head read-only Turing machine. We use the concrete syntax of first order pointer machines
from [Lei87], to which we refer as 1M’s. The basic machine has a finite set of states, with
a designated initial state and an accepting state, a finite set of pointers (to objects), and
transition rules of two types: Valuation, that places a pointer at the value of a structure
function applied to the current values of designated pointers (and alters the state); and Test,
that branches to one of two states depending on whether a structure relation evaluates
as true or false for the current values of designated pointers. The default control flow is
nondeterministic. The machine accepts its input if there is an accepting computation, with
designated pointers initialized to the input. A more general model arises from enriching
the control flow to allow alternation [CKS81]: the non-accepting states are classified as
existential or universal, and accepting alternating computations are defined as in [CKSS81].
The machine accepts a structure if there is an accepting alternating computation for the
input.

1.2. Global relations

The issue of interest when computing over finite structures is global (i.e. uniform} com-
putability: a global relation [function, boolean] over a class C of structures is a mapping that
assigns to each structure § € C a relation [function, boolean value] in § [Tar52, Gur87]. Sup-
pose M is a 1M over structures in C, with some canonical ordering 7y ..., of its pointers.
For each r M determines a global r-ary (partial) function [M], on C, where M).S(z,...z.)
is the value (if there is one) obtained by running M on &, with pointer = initialized to z;
for i = 1...minlr,¢).

The nature of computing over structures is greatly affected by the nature of object name-
ability. A structure is denoted if each element is the value of some closed term of the
underlying vocabulary.

If me is a model of computation over structures, a class C of structures is mec-accessible
if there is an M € mc such that, in each § € C, every a € |S| is the value of some pointer of
M along some computation of M (without input). The pebbling technique of (Fri70] shows
that there exists a class of denotable finite structures that is not accessible by a 1M (even
allowing nondeterminism or alternation).

The greatest nameability is present in enumerated structures S, whose elements come
enumerated (ordered) by some structure (or computable) unary function n, starting from a
structure constant 0: |S| = {0,n(0),...,n*(0)=0}. Structures presented on a Turing tape
come enumerated by virtue of their presentation. '

1.3. Measuring space complexity

A computation space traditionally consists of addressable memory locations, where informa-
tion can be stored, retrieved, and replaced. The computation space need not be the input
structure itself; in Turing computability this separation allows making sense of low space
measures, and for computing over abstract structures it permits the very definition of space
complexity.

To make sense of space complexity for computing over a structure S we consider compu-
tation over § joint with an auxiliary memory, in the form of a Turing Tape. This structure-
joining method has appeared in several independent accounts of computing over abstract
structures [Fri71, Fen80], and in Turing computability to make sense of sublinear resources
[SHL65]. For sets A, B, let A @ B denote the disjoint union of A and B. If S, A are
structures over vocabularies ¢ and a, respectively, then § @ A is the structure of signature
o ¢ o whose universe is |S| @ |A| (disjoint union), where F584 = FS for each identifier
Fe€o,and F®4 = FA foreach F € a. A (¢ § a)-machine M and structure A determine
r-ary global functions over o-structures S, [M]A(S) =p; [M].(S & A).

Our canonical auxiliary structure is the Turing Tape Tape, whose elements are pairs

of stacks over the alphabet {0,1, B}, with the obvious operations. A computation over
S 3 Tape is then in space k if it uses only elements of 7ape of length < k. An r-ary global
function p over o-structures is Turing computable in space f if p = [M}F?* for some M over
the vocabulary ¢ @ r (where 7 is the vocabulary of Tape), such that, for a g-structure S,
(M), (S Tape) uses < f(|S]) of Tape, for all input. Turing computability in time f is defined
analogously.

THEOREM 1 (Har72, Gur87, CKS81) The global relations over enumerated structures
defined by IM’s (deterministic 1M’s) are precisely the ones Turing computable in NLogSpace
(DLogSpace, respectively). The global relations defined by alternating IM'’s are precisely the
ones Turing computable in PTime.

1.4. Relational pointers and transitions

A relational (second order) machine [Lei87], abbreviated 2M, is a 1M enriched with relational
pointers, each assigned a unique arity, and transitions rules for them: Store, that places the
value of a vector of first order pointers into a relational pointer P, Delete, that removes such
a value vector from P, and Query, that branches to one of two states on testing the presence
of such a vector in P. Thus, a 2M is a 1M enriched with a memory of size polynomially
related to the size of the underlying structure, whereas a 1M has only a fixed size “CPU."
Relational pointers are initialized to the empty set (more generally, they might be used to
allow relational input, i.e. oracles).

THEOREM II (Lei87) The global functions over enumerated structures definable by a
(deterministic or nondeterministic) 2M are precisely the ones Turing computable in PSpace.

2. Monotonic and positive uses of space

2.1. Monotonic Turing computability

A Turing machine T is monotonic (non-erasing) if it never writes a 0 on top of a 1. Hao
Wang [Wan57] showed that non-erasing TM’s are as general as unrestricted TM’s.

THEOREM IIl A language L C {0,1}* is accepted in monotonic DSpace(f) (where
f(n) > n) iff it is accepted in DTime(f). Similarly, L is accepted in monotonic NSpace(f)
iff it is accepted in NTime(f).

Proof. We give the proof for the deterministic case, the nondeterministic case being similar.
A TM machine T that runs in monotonic space f will repeat a configuration after at most
k- f(n) steps, where k is the number of states, and hence is in DTime(f).

4

For the converse, assume that 7 runs in DTime(f). Simulate T bya TM T’ that generates
a list of successive “local configurations” of T, i.e. triplets (state, scanned symbol. position),
where position is the distance of the scanned cell from the first tape cell. T’ can compute
the next local configuration by scanning already-listed local configurations. For example,
suppose that the last local configuration is {g,0, k}, and the control of T dictates moving the
head (of T') to the right and changing state to ¢’. To determine the next scanned symbol,
T’ will serach backwards through the list of local configurations, until a triplet of the form
(P, s, k+1) is encountered. T’ then returns to the last local configuration on its own tape,
and write (¢', s, k+1) to its right. If the search fails, then 7" returns to the end of its tape
and writes (¢’, B, k+1).
O

2.2. Monotonic relational machines

A 2M is monotonic (abbreviated M) if it uses no Deletion transition. Thus, an M2M cannot
“reuse its store.”

THEOREM IV A global function over enumerated structures is definable by a determin-
istic (nondeterministic) M2M iff it is Turing defined in DPTime {NPtime, respectively).

Proof. This is a simple modification of the proof of Theorem II. The monotonic use of
space trivially implies a time bound similar to the space bound. Conversely, if computing is
within polynomial time, then the relational pointers used to capture PSpace can be modified
to have extra dimensions, in which a time stamp of the computation {using the structure
enumeration) can be placed. This renders the computation monotonic.

]

A related result for Turing computability is:
THEOREM V Let f be a numeric function, f(n) 2 n, The global relations over enumer-

ated structures definable by deterministic (non-deterministic) M2M’s running in space f are
precisely the ones computable in DTime(f) (in NTime(f), respectively).

2.3. Positive queries

A query s positive if on a negative response the machine enters an aborting state. A 2M
1s positive (abbreviated P) if all its queries are positive.

THEOREM VI Let C be a P2M-accessible class of finite structures (in particular, any
class of enumerated structures). If a global function ® over C is PSpace Turing definable,
then it is definable already by a P2M.

o

Proof. Suppose @ is defined by a 2M M. Let M’ be a 2M that has the pointers of .M
plus, for each relational pointer P of M, a fresh pointer P, with arity(P) = arity(P). M’
simulates M, while maintaining in P the complement of P (this is doable using the structure’s
accessibility and the presence of both Store and Delete transitions). Then M’ simulates an
unrestricted query of M, # €; P, by nondeterministically branching to a positive query
€2 P and to a positive query 7 €, P.

0

2.4. Monotonic positive relational machines

We have three types of restriction on 2M’s: storage restricted by monotonicity, queries
restricted to be positive, and control restricted to deterministic. The conjunction of all
three eliminates the computational advantage of relational pointers, except possibly for a
quadratic reduction in computing time:

THEOREM VII Every deterministic MP2M can be simulated by a deterministic M.
Therefore, these two computation models define the same global functions.

Proof. Define a first order configuration of M as consisting of the state and the value of
the first order pointers, disregarding the values of the relational pointers. Note that in a
deterministic MP2M, if a first order configuration repeats, then there is divergence.

Suppose M is a deterministic MP2M, say with one relational pointer P, which is unary.
Let M’ be a deterministic 1M that simulates M, disregarding Store transitions, until a
query ¥ €7 P is encountered. M’ then suspends the simulation, saves the value v of 7 and
the first order configuration cfg of M, and restarts the simulation of M from the initial
configuration, this time checking values stored in P against v, until the return of cf. If v
has been encountered along the second simulation, M’ proceeds as M would with a positive
response to the query. Otherwise M’ aborts.

This procedure is iterated, except that to simulate the n’th query of M, for n > 1,
M’ reruns as above the computation of M, as if all queries up to the return of cfg are
answered positively (M’ has already verified in previous iterations that these queries have
had a positive response). Note that the second phase of that procedure brings M’ to the first
occurrence of cfg, even if simulation was suspended at a repeated occurrence (with possibly
a different contents for P); this will produce divergence, but then M diverges too, as pointed

out above.
a

2.5. Abstract equivalents of PTime

From Theorem III we know that DM2M is equivalent to PTime over enumerated struc-
tures. We show that so is {nondeterministic) MP2M. One containment holds for arbitrary

6

structures:

THEOREM VIII If a global relation (over finite or infinite structure) is definable by an
MP2M, then it is definable by a DM2M.

Proof. The key idea is that in MP2M’s the order of relational-type transitions is immaterial.
because Deletion is absent and all queries are positive. Let M be an MP2M with r object
pointers. Construct a DM2M M’ that simulates M, as follows. M’ has the relational pointers
of M, plus, for each state g of M, an r-ary relational pointer §, intended to accurmulate value
vectors T such that the first order configuration (g, %) is accessible in M from the initial
configuration. M’ iterates a process C, where each run of C cycles deterministically through
all transitions of M, and for each such transition, with target state ¢ say, stores in § the target
values of the object pointers of M. Also, if such transition is a Store, then M’ simulates that
Store, and if the transition is a Query, then M’ tests (fully, not merely positively) for the
query, and updates the appropriate ¢ only on positive response. M’ accepts when a vaiue is
stored in §acc Where g, is the accepting state of M.

(]

Lemma 1 If a global relation over enumerated structures is definable by a DM2M, then it
is definable by an MP2M.

Proof. Let M be a DM2M, say with one relational pointer £. The monotonicity implies
that there is a polynomial f that bounds the length of repetition free computation sequences.
Let 7 be an r-ary vector of fresh object pointers that can serve, on enumerated structures
of size < n, as a counter up to f(n).

Define an MP2M M’ that simulates M, as follows. M’ keeps in 7 count of the number of
queries encountered so far by M. M’ also has fresh r-ary relational pointers L and R, with
t € L intended to indicate that the ’th query was answered positively, and ¢ € R that it
was answered negatively.

On a query # €; P of M, with target states g* and q~, M’ branches nondeterministically
to processes Y and N, after incrementing #. Process ¥ queries # €; P, aborting on negative
response, or storing, on positive response, the current value ¢ of # in L, and proceeding to
simulate M from g*. Process N saves the current values © of # and # of #, and restarts a
simulation of M from its initial configuration, using nondeterministic guessing for member-
ship in L or R to decide on proper branching at queries, and counting queries until reaching
the #'th (i.e. the suspended) query. If, during that rerun, ¢ is one of the values stored in P,
then N aborts. Otherwise N proceeds with simulating M from ¢~, after storing { in R.

a

Combining Theorems IV and VIII, and Lemma 2..1, we have

THEOREM IX The global relations over enumerated structures defined by MP2M's are
precisely the ones Turing computable in PTime.

7

2.6. The spectrum of relational machines

We summarize the classification obtained above for pointer machines, as generalizations of
five natural Turing complexity classes. Writing Cy 2 C; if every global function (over finite
structures) definable in computation model C; is definable in computation model €, and
Cl = C'z if both C, 2 Cz and CQ 2 Cl, we have

THEOREM X

Turing class | Generalizations
P2M

PSpace 2M D DM 2 DP2M

NPTime M2M

PTime DM2M D MP2M

NLogSpace | 1M

DLogSpace | DMP2M = D1IM

3. Monotonic space and alternation

The following theorem is a generalization to arbitrary structures of the Chandra-Kozen-
Stockmeyer Theorem on the equivalence of alternating space f and deterministic time 2/
[CKS81, Theorem 3.4]. Note that the proof is not an adaptation of the proof in [CKS81],
which uses the exhaustive enumerability of configurations. The formulation of the theorem
relates generalizations of ALogSpace and DPTime, but the general form of the CKS Theorem
falls out by considering, in place of the given structure, the structure already expanded with
a workspace (by joining an auxiliary structure as in 81).

THEOREM XI A global relation over finite structures is definable by an alternating 1M
iff it is definable by a (nondeterministic) MP2M.

Proof. Forward direction. Let M be an alternating 1M with states ¢ ...qs, where
gx is the accepting state. Let M’ be a MP2M with r-ary relational pointers §i,..., gx.
The intention is to store in §; the r-ary tuples of values & for which (gi, %) is an accepting
configuration of M. M’ iterates the following process 5, until the initial value vector is stored
in pointer §;. S simulates nondeterministically some execution sequence of M. At any time,
S may nondeterministically choose to cease simulation and to check for acceptance of the
current configuration (g;,): if g; is accepting, the check is successful; if ¢; is existential,
M’ chooses some applicable transition, with target configuration (¢:, %) say, and considers
the check successful if either i = k or the query & €+ §; succeeds; if g; is universal, M’
considers the check successful if, for every target configuration (gi, &), either: = k or & €- §;

8

is answered positively. If the check of the current configuration is successful, S stores & in
g5, and returns control to M’ (otherwise S aborts). Af’ accepts the input iff M accepts.

Backward direction. Let M be a deterministic M2M. Suppose, without loss of generality,
that the relational pointers of M consist of a single, r-ary, pointer P. We define an alternating
IM M’ that simulates M. The basic process S of M’ takes as input first order configurations
cfgo and cfg, of M and a value v, and determines whether cfg1 is accessible in M from cfygo,
by a computation sequence that stores v in P. S simulates M from ¢fgo, comparing v to
each value stored in P. When a (positive) query © €, P is encountered, on a first order
configuration ¢fg; say, S branches universally to S for input (¢fgo, ¢fga, value(r)), and to
S for input (efg;, ¢fgr, v). So is a variant of S with no search for a value v (though such
searches may be activated by the spawned processes).

Without loss of generality, M has a unique accepting first order configuration. To de-
termine whether M accepts its input it remains for M’ to run S, with, as input, the initial
configuration and the accepting first order configuration of M.

a

Bounded computational formulas are defined in [Lei87]. A corollary of Theorem XI is:

THEOREM XII A global relation is definable by an M2M iff it is definable by a bounded

computational formula.

Alternating transitive closures are defined in (Imm87]. Another corollary of Theorem XI
1s:

THEOREM XIII A global relation is definable by an M2M iff it is definable by the alter-

nating transitive closure of an existential first order formula.

4. Relational machines and PTime

4.1. [Equivalents of monotonic relational machines

MPZ2M’s are a simple computational model that captures exactly DPTime over enumer-
ated structures. In this section we list other methods of defining global functions that are
equivalent, over all finite structures, to MP2M'’s.

Papadimitriou observed [Pap85] that pure uninterpreted logic programs, without negation
on defined relations, define exactly the DPTime global relations over enumerated structures.
This computation model, which arose first as a database query language [HN84], is basically
the same as our MP2M’s (the latter refers also to functions, but these can be simulated by
their graphs). Hence the result of [Pap85] is the same as Theorem IX above. Note that

9

computability by logic programs without negations is trivially equivalent to definability by
positive fixpoints over £, formulas, which therefore define again the same global relations
as MP2M's. (Compare {Fit81, BG85]).

Dually, one can consider structures with functions only. The evaluation rules for func-
tional computing can be simulated by monotonic and positive relational programs. Theorem
IX is therefore another guise of the theorem of Sazonov and Gurevich {Saz80, Gur83], that
global functions over enumerated structures are in PTime iff they are definable by recursion
equations.

Two aspects of our models make them a particularly attractive generalization of PTime.
First, the use of machine-like terminology allows a clear statement, in a single framework,
of control mechanisms (deterministic, nondeterministic, alternating). In addition, we have
explicit forms of interaction between relations and objects, allowing a single framework for
describing use and reclaim of memory.

A result related to Theorem XI is Harel and Kozen’s [HK84}, where it is shown (by argu-
ments different from ours) that alternating programs with random assignments are equivalent
to first order inductive definitions. MP2M’s and 1M’s seem, however, to be more straight-
forward generalizations of PTime and ALogSpace.

4.2. Selection transitions

The elements of a structure need not be denotable: in a graph no element is denotable, and
in a non-standard model of arithmetic the denotable elements are the standard numbers.
Such elements become computationally accessible by Selection transitions, that nondeter-
ministically assign random values to value pointers. The most natural semantics of Selection
transitions is existential nondeterministic, but they may equally well be given a universal
nondeterministic semanticsemantics. With the former, Selection can be used to simulated
control nondeterminism (over structures with at least two elements). Vice versa, Selection
can be simulated in accessible structures by control nondeterminism.

The use of Selection is essential in characterizing computationally global relations defined
by formulas with quantifiers. We have:

THEOREM XIV The following models define the same global relations (over arbitrary
structures):

1. MP2M with (ezistential) Selection transitions.
2. Alternating IM with Selection transitions.

3. Positive first order inductive definitions [Mos69, Acz77].

10

Proof. The equivalence of (1) and (2) is similar to Theorem XI. The equivalent of (1) and (3}
is straightforward; alternatively, the equivalence of (2) and (3) is proved in [HK84], since (2)
is equivalent to [HK84]'s language IND of alternating programs (Selection nondeterminism
enables control nondeterminism).

O

The equivalence of first order inductive definability and PTime Turing computability for
defining global relations over enumerated structures is due to Immerman and Vardi [Imma82.
Var82].

11

References

Acz7T Peter Aczel, An introduction to inductive definitions, in Jon Barwise (editor), Hand-
book of Mathematical Logic, North-Holland, Amsterdam, 1977, pp.739-782.

Ben87 Charles H. Bennett, Demons, engines and the Second Law, Scientific American.
November 1987, 108-116.

BG85 Andreas Blass and Yuri Gurevich, Ezistential fized-point logic.

CKS81 Ashok Chandra, Dexter Kozen and Larry Stockmeyer, Alternation, Journal of
the ACM 28 (1981), 114-133.

Fen80 Jens E. Fenstad, General Recursion Theory, Springer-Verlag, Heidelberg and
New York, 1980.

Fit81 Melvin Fitting, Fundamentals of Generalized Recursion Theory, North Hol-
land, Amsterdam, 1981.

Fri70 Harvey Friedman, Algorithmic procedures, generalized Turing algorithms, and elemen-
tary recursion theory, in R.O. Gandy and C.M.E. Yates (eds.), Logic Colloquium
*69, North-Holland, Amsterdam, 1970. 361-389.

Fri71 Harvey Friedman, Ariomatic recursive function theory, in Logic Colloquium ’'69
(R.O. Gandy and C.E.M. Yates, editors), North-Holland, Amsterdam, 1971, 113-137.

Goe89 Andreas Goerdt, Characterizing complezity classes by higher type primitive recur-
sive definitions, Proceedings of the Fourth Annual Symposium on Logic in
Computer Science, IEEE Computer Society Press, Washington DC, 1989, 364-374.

GSS89 Jean-Yves Girard, Andre Scedrov and Philip Scott, Bounded Linear Logic I: A mod-
ular approach to polynomial time computability, Preliminary report, Feasible Mathe-

matics Workshop, Cornell, June 1989.

Gur83 Yuri Gurevich, Algebras of feasible functions, Twenty Fourth Symposium on
Foundations of Computer Science, IEEE Computer Society Press, 1983, 210-214.

Gur87 Yuri Gurevich, Logic and the challenge of Computer Science, in Current Trends
in Theoretical Computer Science, (Egon Borger, editor), Computer Science Press,
1987.

Har72 Juris Hartmanis, On nondeterminacy in simple computing devices, Acta Informat-
ica 1 (1972) 336-344.

HKB84 David Harel and Dexter Kozen, A programming language for the inductive sets, and
applications, Information and Control 63 (1984) 118-139.

HNS84 L.J. Henschen and S.A. Naqvi, On compiling queries in recursive first order databases,
JACM 31 (1984) 47-85.

12

Imm82 Neil Immerman, Relational queries computable in polynomial time, Information
and Control 68 (1986) 86-104. Preliminary report in Fourteenth ACM Sympo-
sium on Theory of Computing, 1982, 147-152.

Imm87 Neil Immerman, Languages which capture complerity classes, Siam Journal of
Computing 16 (1987) 760-778.

Imm88 Neil Immerman, Nondeterministic space is closed under complement, IEEE Struc-
ture in Complexity Theory Third Annual Conference, IEEE Computer Society.
Washington DC, 1988, 112-115.

Lei87 Daniel Leivant, Characterization of complezity classes in higher order logic, Pro-
ceedings of the Second Annual Conference on Structure in Complexity
Theory, IEEE, New York, 1987, pp. 203-217. Revised version to appear In the
JCSS.

LP64 David Luckham and David Park, The undecidability of the equivalence problem for
program schemata, Report 1141, Bolt, Beranek & Newman Inc., 1964.

Mos69 Yiannis Moschovakis, Abstract first order computability II, Trans. American Math-
ematical Society 138 (1969) 465-504.

Pap85 Christos Papadimitriou, 4 note on the expressive power of PROLOG, Bull. EATCS
26 {June 1985) 21-23.

Pat68 Michael Paterson, Program schemata, Machine Intelligence 3 (1968) 19-31.

Saz80 Vladimir Sazonov, Polynomial computability and recustvity in finite domains, Elec-
tronische Informationsverarbeitung und Kybernetik 7 (1980) 319-323.

SHL65 R.E. Stearns, J. Hartmanis and P.M. Lewis, Hierarchies of memory limited compu-
tations, Conference Record on Switching Circuits Theory and logic Design,
IEEE Press, 1965, 179-190.

Sze87 Robert Szelepcsenyi, The method of forcing for nondetreministic automata, Bull.
EATCS 33 (1987) 96-100.

Tar52 Alfred Tarski, Some notions and methods on the borderline of algebra and meta-
mathematics, Proceedings of the International Congress of Mathematicians
(1950), Volume I, American Mathematical Society, 1952, 705-720.

Var82 Moshe Vardi, Complezity and relational query languages, Fourteenth Symposium
on Theory of Computing, 1982, 137-146.

Wan57 Hao Wang, A variant to Turing’s theory of computing machines, JACM 4 (1957)
63-92.

13

Allocation of Secretarial Rescurces
School of Computer Science

Name
Lesly Adkins-Shellie

Kathleen Cywinski

Lydia DeFilippo

Colleen Everett

Laura Forsyth
Barbara Grandilloe
Maria Intrieri

Michelle Jackson

Jennifer Jones

Annamarie Mackuliak

Joan Maddamma

Pat Miller

Phyllis Pomerantz
Marjcrie Profeta

Barbara Sandling

Jean Scavincky

Cleah Schlueter

Marian Sodini
Terri Stankus

Teralyn Thompson(Rcb.)

+answer telephone only

Ext .
6246
38353

3063

7674

2619
7550
3342
5025

7660

3775

7656

3825

2592
7675

8860

3802

7884

7665
3731
3838

=

a oo

T 2

w

[N

o

w

a4 I

ma X UX

ax » 3

Erdmann

Cocper,
Wing

McKeown

Accetta
Wactlar

Barbacc
Brookes
Clark,

Forin+,

Carbone

Burks,
Miller

Lehoczk
Tokuda,

Bates,
Maxion,

Haberma

r C. Seger,

December 13,

Faculty Distribution

R. Dannenberg, E.

, D. Scott

Rollins,D.

B. Vander Zanden, A.

, D. Adams, F. Alleva+,

i+, H.

, H. T.

Berliner, D.

R. Taylor

Siewiorek

Kung, D. O‘Hallaron+, R.

Introductory Lecturers,

P. Lee, F. Pfenning,
Satyanarayanan, B. Scherlis

11, E.

D. Giuse+,

Clarke

R. Kannan,

p. Miller

Witxin

Sansom

J. Reynolds,
va), M. Shaw

{1

(Visitor), D. Sleator,

Yy (Stat

istics), D.

M. Tomita

B. Bruegge,
B. Myers,

nn

L. Tygar

Leivant, J. Mo

John, D. Miller+, A. Newell,

Bryant,
Lindsay

Mason,

Blellec
Lerner,

Bisiani
Fisher,

Hebert
Thorpe

M. Herlihy
A. Rudnicky

aA.

C. Chien, S. Fahlman,
erlin, P. Steenkiste

+, M. P

T. Mitchell,R.

h, J. Lehman,

5. Rudich

, T. Gross,

M. Furst

(Rob.),
(Rob .},

K. Ikeuchi,
J. Webkb

Simmons,

R. Rashid,

5.

(LCA),

Wwaibel

K. Lee,

rris,

J. Schlimmer

R. Harper, A. Kutay

S. Young

Shafer,

{(Rob .,

ToureTIxy,

14+,

