
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A PROBABILISTIC POLYNOMIAL ALGORITHM FOR
SOLVING A DIRECTED HAMILTONIAN PATH PROBLEM

by

G.L. Thompson »* S. Singhal

December, 1933

DRC-7O-16-H3

A PROBABILISTIC POLYNOMIAL ALGORITHM

FOR SOLVING A DIRECTED

HAMILTONIAN PATH PROBLEM*

11 May 1983

(Revised July 1983)

by

Gerald L. Thompson

and

Shared Singhal

The original title of this paper was A Polynomial Algorithm which has

Positive Probability of solving a Hamiltonian Path Problem.

This report was prepared as part of the activities of the Management Science Research Group,
Carnegie-Mellon University, under Contract No. N00014-82-K-0329 NR 047-048 with the U.S.
Office of Naval Research. Reproduction in whole or part is permitted for any purpose of the
U.S. Government

Management Science Research Group
Graduate School of Industrial Adminstration

Carnegie-Mellon University
Pittsburgh, Pa 15213

University Libraries
Carnegie Milton University

Pittsburgh, Pennsylvania 15213

Abstract

In this paper we present a graph-theoretic polynomial algorithm which has positive
probability of finding a Hamiltonian Path in a given graph, if there is one; if the
algorithm fails, it can be rerun with a randomly chosen starting solution, and there is
again a positive probability it will find an answer. If there is no Hamiltonian Path,
the algorithm will always terminate with failure.

Some basic theoretical results concerning spanning arborescences of a graph are
given. The concept of a ramification index is defined and it is shown that
ramification index of a Hamiltonian Path is zero. The algorithm starts with finding
any spanning arborescence and by suitable pivots it endeavors to reduce the
ramification index to zero. Probabilistic properties of the algorithm are discussed.
Computational experience with graphs up to 30,000 nodes is included.

1. Introduction

Hamiltonian Cycle problem is the problem of finding a path in a graph which passes through

each node exactly once. This problem is well known and has been discussed in most graph

theory books such as [1, 3, 5] .

A polynomial algorithm will be presented in this paper which has positive probability of

finding a Hamiltonian Path in a given graph if there is one. If a graph has a Hamiltonian

Path, this algorithm will either find it or end with a message that it cannot proceed further.

However, if there is no Hamiltonian Path in the graph, the algorithm will always end with the

"cannot proceed further" message.

Despite the fact that the algorithm can fail, we have found it to be of great practical value

due to the following reasons :

• With positive probability the algorithm finds the Hamiltonian path if there is one in
the graph. See Section 5 for a probabilistic analysis of the algorithm.

• In case the algorithm does not find a Hamiltonian path, it can be restarted with a
different randomly chosen starting solution, where again there is a positive
probability of finding a Hamiltonian Path.

• It takes only a few milliseconds to solve a problem of 100 nodes. Thus it is more
efficient to repeatedly use this algorithm in the hope that eventually an answer may
be obtained rather than use other large scale algorithms [2, 4, 7, 8].

• The algorithm has solved problems having 30.000 nodes. Such a large problem takes
less than one minute of DEC-20 CPU time. If the algorithm does not find a
Hamiltonian path, it is very economical to run it again with a different starting
solution. Our method is constrained by memory limitations and not computation
time. It would be possible to overcome the memory limitation by packing data or
by making use of secondary storage devices.

2. Exact statement of the problem

Let G = (V,A) be a directed graph with V as the set of nodes and A as the set of arcs. G

has n nodes and they are numbered sequentially from 1 to n. The indegree of node / is zero.

The outdegree of node n is also zero. The problem is to find the HP from node / to node

n which goes through all the intermediate nodes exactly once.

2.1. The Hamiltonian Cycle Problem

The problem of finding a Hamiltonian cycle in a directed graph can be easily converted to a

problem of finding a HP as shown in Figure 11. We split any node of the graph into two

nodes so that one node has no incoming arc and the other has no outgoing arc. The

Hamiltonian Path between these two nodes would be a Hamiltonian cycle in the original graph.

In Figure 2-1 HP between nodes 7 and 1a is equivalent to a HC Thus we are solving the

general Hamiltonian Path problem rather than for a specific type of graph.

, , , n

Figure 2.1: Converting a Hamiltonian Cycle Problem to a Hamiltonian Path Problem

2.2. The Postman Pickup Problem

This is a problem which can be translated into a Hamiltonian Path problem. A postman has

to pick up one letter from each of n locations and deliver them to the main post office.

Starting from his home, how can he do this while covering the minimum possible distance ?

Let node 1 represent his home and node n represent the post office. Nodes 2 through n-1

are the locations from which letters have to be picked up. The Hamiltonian Path from node 1

to node n is a possible path on which the postman should travel in order to minimize his total

distance traveled.

3. Preliminary concepts and definitions

We give some preliminary definitions with interpretations related to the postman pickup

problem.
Definition 1: An arboresence is a directed tree having one node called the

root node which can be reached by a unique directed path from any node.

For the postman pickup problem, the root node is the post office.
Definition 2: Let G = (V,A) be a directed graph. Then arborescence T = (V,AT)

is a spanning arborescence of G if A is a subset of A.

Definition 3: Let i and j be two nodes of a spanning arborescence of G and
(lj) € A - AT.

1. If there exists a directed path in T from i to j then (ij) is said to be an
up arc.

2. If there exists a directed path in T from j to i then (ij) is said to be a
down arc.

3. Otherwise (ij) is called a cross arc.

Definition 4: If i, j € V and (ij) € A , then predecessor node of i is said to be
j or symbolically p(i) - j.

One can interpret predecessor of i to be like the "father" of i in the sense of a family tree.

Definition 5: A node i € V is said to be a junction node of arborescence
T = (V,A) if it is the end node of at least two arcs belonging to A .

Definition 6: A node i € V is said to be a beginning node if it is not the end
node of any arc 6 A .

Definition 7: For each i € V we define the successor set V = {h : p(h) = ih
Thus ¥ is the set of nodes which are immediately below i, i.e. the set of nodes for
which i1 is the predecessor node.

Lemma 8: If || Y || = 0 then i is a beginning node.

L e m m a 9 : I f I * 1 ^ 2 t h e n i i s a j u n c t i o n n o d e .
i

Definition 10: The successor function of i represented by s(i), for i G V is
defined inductively as follows :

n € V S (h >

In other words, s(i) = 1 *+ number of nodes in T below i. For the postman pickup
problem s(i) is the number of letters the postman will carry after leaving node i.

Lemma 11: If i is a beginning node then s(i) = 1.

Definition 12: The ramification index R of an arborescence T = (V,A) is
defined as follows: T

R = R(T) = n*(n-l)/2 - ^_ v { n }

Lemma 13: The maximum possible ramification index of an arborescence is
<n-lMn-2)/ l

Proof: The arborescence for which the ramification index is maximum is the one
for which the only junction node is the root node and each of the n-1 arcs in A
has the root node as its end node. For this case the values of the successor
function at each node i for i = 1 n-1 is 1 and we get from Definition 12 :

R = n*(n-l)/2 - (n-1) = (n-l)*(n-2)/2
Definition 14: Let J be the set of junction nodes of arborescence T. The

ramification index of a junction node j € J is defined as :

The significance of Definition 14 is due to the following theorem.
Theorem 15: The ramification index of an arborescence T can be computed from

the following equation:

R = R(T) » X R
j € J j

Proof: Assume T = (V,A) has n nodes. We will first prove the proposition for
the case in which T has only one junction node j. The nodes above j do not
contribute to the ramification index because as will be seen in Theorem 16 (4 => 5),
a tree with no junction nodes has zero ramification index. Let s to s be the
successor functions of the m arcs coming into j. Note that j=n implies s +s™+...+s =
n-L According to Definition 12,

R = R(T) = n*(n-l)/2 -
or

....•[zrr- i - z-. i-S • - . •* +1 ^ " l - l
1 m-1

= s *s + (s +s)*s + . . . + (s +s +..+s)*s
1 2 1 2 3 1 2 m-1 m

The last expression is equivalent to the expression in Definition 14.

We have proved the proposition when there is just one junction node in T. By
induction, assume that the proposition is true for up to k-1 junction nodes in T.
We will now show that the proposition is also true for k junction nodes in T.

Let J be the set of k junction nodes of T with j designating the top most junction
node. We again assume that j=n. The proof is stated for the case in which (i^j)
and (ivj) are the only two arcs coming into j. Let successor functions of i and i^ be
s snd s^ respectively. Let V denote all the nodes below and including1 i and" V^
denote ah the nodes below anci including iv Furthermore, let J and J^ denote the
sets of junction nodes below i and i^ respectively. Then by Definition 12

R(T) = bx+s+Mt+s3)/2 - X, , v s(i) - X.
v

= bx+s+Mt+s3)/2 - X, ,

1 11 it it

J £ k-1 and || J 1 £ k-1. we can write
1 2

R(T) = (si+s,)(s+s:+l)/2 - [si(si+l)/2 - 2 1 . f J R J -

[s2(Vl)/2 - X,

= s *s

s2(Vl)/2 X, , ^ R,

: • X, f , V X , ; i, RJ

This completes the proof. If there were more then two arcs entering j, the proof
would simply require more summation terms.

Theorem 16: Let T = (V,A) be a spanning arborescence of a directed graph
G = (V,A). The following statements are equivalent :

1. T is a Hamiltonian Path starting from node 1 and ending at node n.

2. There is a directed path in T from node 1 to any other node x 6 V.

3. T has node 1 as its only beginning node.

4. T has no junction nodes.

5. T has zero ramification index.

Proof: Proof f o r l = £ 2 = £ 3 ^ 4 i s obvious.

4 => 5 The assertion follows directly from Theorem 15. Because J = f
there are no terms in the first summation and thus ramification
index must be zero.

5 =£ 1 Because ramification index of T is 0, from Definition 12, we have

^ , . v-{.>
 s(i) - n * to"" ' 2

Since all s(i) are integer, the only way in which this is possible is if
there is an ordering of the nodes such that s(i)=1, s(î)=2
s(i)=n-l. Because the number of successors mcreasel sequentially,
it YoUows that T must be a Hamiltonian Path. Because indegree of
node 1 is 0, i = 1 . Also because the outdegree of n is 0 we can
choose i = n. *

4. A Polynomial Algorithm Which Has Positive Probability Of Finding A Hamiltonian

Path (If there is one)

Let G=(V,A) be a directed graph with n nodes as described in Section 2. The algorithm to

be described makes use of Theorem 16 which says that the ramification index of a Hamiltonian

Path is zero. We first find a spanning arborescence of G denoted by T by constructing a

greedy starting solution. By performing a sequence of pivots we try to reduce the ramification

index of T and when (and if) the ramification index of T becomes 0, we have found a

Hamiltonian path.

The algorithm can get stuck at a given arborescence T with R(T) > 0 if it is unable to find

a pivot which will result in a decrease in the ramification index. This may mean : (a) that

the graph has no Hamiltonian Path, or (b) that the algorithm made an unfortunate choice of

pivots which led it to get stuck. The alternative to stopping in this case is to choose a

different starting solution and go through the algorithm again. As evident from the discussion

in Section 5, there exists a starting solution which will lead with positive probability to a

Hamiltonian Path, if there is one, after a finite number of pivots.

For ease of exposition, we present the algorithm in three separate parts.

4.1. Algorithm 1 : Finding a Spanning Arborescence

We want to find a spanning arborescence T = (V,A) of a directed connected graph

G = (V,A). For this purpose we define M which we call the set of marked nodes. This

algorithm begins with A = f and ends when set A has been completely defined

• Step 0 : Set M = {nh AT = ^, and k=0.

• Step 7 : Choose any arc (ij) G A such that i ^ M and j 6 M.

• Step 2 : Set M = M U « } . A? = Ay U «i,j)} and k=k+l.

• Step 3 : If k = n - 1 then STOP, else go to Step 1.

The above is the greedy form of the algorithm for finding-a spanning arborescence because it

chooses as many as possible of those arcs to enter the solution which have their end points

already marked to belong to T. A random greedy starting arborescence can be found by

letting p be any number satisfying 0 < p < 1 and altering Step 2 as follows :

• Step 2 : Let x be a random number between 0 and 1; if x < p go to step 1,
otherwise set M = M U {j} and A? = AT U {(i,jH.

4.2. Algorithm 2 : Calculating the Change in ramification index

Given a spanning arborescence, it is possible to compute its ramification index either by using

Definition 12 or else by using the equations of Theorem 15. However we now present a

method of calculating the change in ramification index which is much faster than those

methods.

Given an arborescence, a cross arc (ij) is to be brought into the solution. Let there be n^

arcs on the path from node i to node n and m^ arcs on the path from node j to node n. Let

the successor function of i be denoted by 5. Noting that an increase in successor function

means an equal decrease in the ramification index, consider what happens when the cross arc

(ij) is brought into the solution :

1. The successor function of each of the nodes on the path from node i to node n
(excluding node n) goes down by 5 so that the corresponding change in ramification
index is

AR = m * 5 (1)
i i

2. The successor function of each of the nodes on the path from node j to node n
(excluding node n) goes up by 3 so that the corresponding change here is

AR, = - in, • i (2)

3. Finally, the extra arc (i,j) is added to the arborescence giving us
AR3 = - 6 (3)

The sum of equations 1 to 3 is the total change in ramification index if arc (i,j) is brought

into the solution. We have now proved the following Theorem.
Theorem 17: The change in ramification index of an arborescence due to the

introduction of a cross arc (ij) into the solution is given by
AR = (in, - m - 1) * 5

where

m = Number of arcs on the path from node i to node n.

m^ = Number of arcs on the path from node j to node n.

<5 = Successor function of node i before arc (ij) is brought into the
solution.

Now Algorithm 2 can be very simply stated.

• Step 1 : Find a cross arc.

• Step 2 : Using Theorem 17 find the change in ramification index if that arc were to
be brought into the solution.

4.3. Algorithm 3 : Finding A Hamiltonian Path

• Step 0 : Find Initial Solution. Find a directed rooted spanning arborescence of G
with n as the root node by using Algorithm 1.

• Step 1 : Calculate the successor function and ramification index of T. Using
Definition 10 calculate s(i) for all i € V. Then from Definition 12 or from Theorem
15 calculate R(T). If R(T) = 0 STOP — T is a Hamiltonian Path. Else go to next
step.

• Step 2 : Find incoming arc. For each cross arc (i,j) 6 A - A calculate the
ramification index if that arc is brought into A using Algorithm 1 Let R be
the minimum of these ramification indexes and lei (i J) be the corresponding arc.

• Step 3 : Check possible cases. If

R =0 STOP - A Hamiltonian Path has been found.
new

R £ R STOP - The algorithm failed to find a Hamiltonian path on this
new

trial If another trial is desired go back to Step 0 and generate a
new, different spanning arborescence.

R < R Go to next step
new

• Step 4 : Perform Pivoting. Bring the cross arc (i j) having ramification index R
into the solution by setting Ay = A? -(j^k) G V} U U i ^ H . Let R = RT
Update the successor function. Go to Step1 2.

4.4. Algorithm 4 : Finding a maximal R Spanning Arborescence

It is interesting to note that with minor modifications Algorithm 3 can be used to find a

spanning arborescence with maximal ramification index. The modified algorithm is described

now.

• Step 0 : Find Initial Solution. Find a spanning arborescence of G using Algorithm
1.

• Step 1 : Calculate successor function and ramification index of T. Using
Definition 10 calculate s(i) for all i 6 V. Then from Definition 12 or from Theorem
15 calculate R(T).

• Step 2 : Find incoming arc. For each cross arc (i,j) G A - A calculate the
ramification index if that arc is brought into A using algorithm 2. Let R be the
maximum of these ramification indexes and let 6 j) be the corresponding arc.

• Step 3 : Check possible cases. If

R < R STOP - A maximal R spanning arborescence has been found.
new

R < R Go to next step
new

• Step 4 : Perform Pivoting. Bring the cross arc (i J) having ramification index R

into the solution by setting A? = A? - {(j^k) : (j ,k) € A T } U {(i^^)}- Let R =
R . Update the successor function. Go to step i

new

There are applications in which spanning arborescences which have maximal ramification index

can be useful. One such application is the design of computer terminal networks in which

signal concentrators are located at junction nodes [61.

It is obvious that a random choice of incoming arcs can be made in Step 2 of each of the

last two algorithms by letting R be any incoming arc which decreases the ramification index

in Algorithm 3 (or increase the ramification index in algorithm 4). We will use the

probabilistic versions of these algorithms in the next section.

STATE OF NATURE FOR G
There exists HP There is no HP

Succeeding 1 0
PROBABILITY OF

ALGORITHM
Failing p 1 - p

Note that p < 1 and pk => 0 as k => infinity

Figure 4.1: Probabilities associated with Algorithm 3

5. Probabilistic Analysis of the algorithm

Let A be the set of all spanning arborescences of a graph G. Then for any starting

arborescence T € A, let p be the probability of the algorithm failing to find the Hamiltonian

Path when there is one. We know that p is less than one for every graph because this

algorithm starts with a greedy random starting arborescence which has a miniscule chance of

being a Hamiltonian Path. Since pk -> 0 as k -> infinity we know that this algorithm

converges in probability to the Hamiltonian Path. In other words, if G has a Hamilton Path,

then Algorithm 3 will find it if it is run sufficient number of times. From empirical runs it

appears that p is very small so that for a reasonably small k we can bring the probability of

the algorithm failing when there is a Hamilton Path as close to zero as we please. This can

be seen graphically from Figure 4.1 which is valid for any algorithm which has a positive

probability of success.

Theorem 18: Algorithm 3 is a polynomial algorithm.

Proof: The maximum possible loop value of an arborescence is of the order of
O(n2) [Lemma 13]. We decrease the loop value by at least 1 in each pivot, and
each pivot step is linear in number of arcs plus number of nodes, so that Algorithm

10

3 is also (Xn2).

Figure 5.1: Example of a 4X4 Directed Rectangular Lattice Graph. A Hamilton Path
is indicated by the darkened edges.

6. Computational Experience

We ran Algorithm 3 on Directed Rectangular Lattice Graphs1 because they are easy to

generate and it is possible to predict whether there is or is not a Hamilton Path in a given

DRLG. The computational experience is shown in Figure 6.1.

We now make some observations about the computational results.

• The algorithm was coded in FORTRAN and all the runs were performed on the
DECSYSTEM-20 at Carnegie-Mellon University.

• The starting value of ramification index is about 98% of the maximum possible value
of ramification index [Lemma 13]. A large value of R indicates a bushy tree which
is a good start since it has less chance of getting stuck.

Directed Rectangular Lattice Graphs or DRLG's arc planar graphs which look like J grid as shown in Figure 5 .1 . They always have

Hamilton Path when the number of nodes is even be lore runic 1 is spl i t . Sec [9] for details

11

Grid #Nodes # Arcs Starting R

10
20
30

40
50
60

70
80
90

100
110
120

130
140
150

160
170
174

100
400
900

1,600
2,500
3,600

4,900
6,400
8,100

10,000
12,100
14,400

16,900
19,600
22,500

25,600
28,900
30,276

180
760

1,740

3,120
4,900
7,080

9,660
12,640
16,020

19,800
23,980
28,560

33,540
38,920
44,700

50,800
57,460
60,204

4,080
72,360
378,840

1,217,520
3,002,400
6,267,480

11,666,760
19,974,240
32,083,920

49,009,800
71,885,880

101,966,160

140,624,640
189,355,320
249,772,200

323,609,280
412,720,560
453,079,992

ivots

24
99
224

399
624
899

1,224
1,599
2,024

2,499
3,024
3,599

4,224
4,899
5,624

6,399
7,224
7,568

CPU Time(Sec)

.062

.142

.292

.631
1.138
1.868

2.792
4.113
5.688

8.118
10.365
14.232

17.531
21.587
26.204

39.976
43.856
38.434

Figure 6.1: Computational experience for Algorithm 3 with a Greedy Start

odes

100
400
900

1600

2500
3600
4900
6400

Arcs

180
760

1,740
3,120

4,900
7,080
9,660
12,640

Starting R

4,064
72,008
337,488

1,213,976

2,994,828
6,251,360
11,654,952
19,949,896

Pivots

46
177
481
852

1,323
2,151
2,889
3,994

CPU Time(sec)

.118

.442
1.773
7.474

11.965
22.966
35.652
86.459

Figure 6.2: Computational Results for Random Starting Solution

12

• According to Theorem 18, The upper bound on the number of pivots is the
maximum possible ramification index. However, we can see from Figures 6.1 and
6.2 that number of pivots required to obtain the solution is much less than the
starting value of the ramification index.

• When a random starting solution is chosen, Algorithm 3 takes little more than twice
the computing time compared to when a greedy starting solution is used. The
number of pivots required are also double. Why this is to be expected is explained
next

• A greedy starting solution for a DRLG happens to be a good starting solution having
a structure reasonably close to a Hamiltonian Path. As can be seen from Figure 6.1,
ft is even possible to predict the number of pivots required by 1 subsequent problem
using the formula

Change in number of Pivots = One-fourth the change in number of nodes
For a random start, there is no regular pattern.

• Number of CPU seconds required per pivot per node is a constant indicating
empirically that each pivot requires a linear amount of work.

7. Conclusions

• We have devised a way of improving the performance of algorithm 2 which is
expected to decrease the CPU times noted in Figures 6.1 and 6.2.

• We have proved that Algorithm 3 will never fail when applied to DRLG with even
number of nodes (before any transformations are performed). A DRLG with odd
number of nodes does not have any HP so that the algorithm will always fail.

• Algorithm 3 as stated is very inefficient for symmetric graphs2 . We have developed
a modification of Algorithm 3 which has proved to be very effective for finding a
Hamiltonian Path on an undirected graph. The results will be reported in a later
paper.

"in a Symmetric graph, if ihcrc is a direeled arc between nodes i and j then there i> also a directed arc between nodes j and i.

13

References

1. Bondy J. A. and Murty U. S. R.. Graph Theory with Applications. North Holland, 1978.

2. Christofides, Nicos and Eilon Samuel. "Algorithms for Large-scale Travelling Salesman
Problems." Op/ Res. Q. 23 (1972), 511-518.

3. Christofides, Nicos. Graph Theory - An Algorithmic Approach. Academic Press, London,
1975.

4. Crowder, Harlan and Padberg, Manford W. "Solving Large Scale Symmetric Travelling
Salesman Problem to Optimality." Management Science 26, 5 (May 1980).

5. Garfinkel, Robert S. and Nemhauser, George L.. Integer Programming. John Wiley and
Sons, 1972.

6. Gavish, BezaleL Topological Design of Centralized Computer Networks - Mathematical
Formulations. Working Paper 1981.

7. Smith, T. H. C A UFO Implicit Enumeration Alorithm for the Asymmetric
Travelling Salesman Problem Using a One-arborescence Relaxation. Ph.D. Th., Carnegie-
Mellon University, 1975.

8. Smith, T. H. C and Thompson, Gerald L "A LIFO Implicit Search Algorithm for the
Symmetric Travelling Salesman Problem Using Held and Karp's One Tree Relaxation." Annals
of Discrete Mathematics 1 (1977).

9. Thompson, Gerald L "Hamiltonian Tours and Paths in Rectangular Lattice Graphs."
Mathematics Magazine 50, 3 (May 1977), 147-150.

