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Solution of
Constrained Generalized Transportation Problems

Using The Pivot-and-Probe Algorithm

By

Awanti P. Sethi and Gerald L. Thompson

Abstract

In this paper we use a specialized version of our pivot and probe algorithm to solve

generalized transportation problems with side constraints. The dual of an m x n generalized

transportation problem with t side constraints is a linear program with m + n + t variables and

up to m x n constraints. We solve the dual problem using the probe operation to select only

the most important constraints to consider. We present computational experience on problems

of sizes up to 180 x 180, having various degrees of density and having as many as 10 side

constraints. It was found that for a given size and density, problems become harder to solve as

the number of side constraints increases. Also, for a fixed number of side constraints, the

solution difficulty increases with size and density. We found that our method was able to solve

problems of the quoted sizes relatively quickly, with relatively few pivots, and without using

basis reinversion.
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1 INTRODUCTION

The Generalized Transportation Problem (GTP) was introduced by Ferguson and Dantzig [13]

in their study of an aircraft routing problem. Eisemann and Lourie [12] applied it to the

machine loading problem which we discuss briefly in Section 2. The loop-technique of the

stepping-stone algorithm for the ordinary transportation problem was extended to the GTP in

[5] by Balas and Ivanescu and other theoretical results were also given there. Eisemann [11]

and Lourie [24] also gave further results concerning the topology of a feasible solution to a

GTP. Balas [6] gave some post optimization results and methods for including additional

constraints. In Volume 2 of [9] Charnes and Cooper treated the GTP from the point of view

of dyadic models and sub-dual methods. Balachandran and Thompson [1, 2, 3, 4] derived the

operator theory of parametric programming for the GTP.

In the 1970's a number of authors presented efficient algorithms for solving network

problem, see Bradley, Brown and Graves [7] , Glover, Karney and Klingman [16], and

Srinivasan and Thompson [28, 29]. Other authors extended the work to network problems with

side constraints, see Chen and Saigal [10], Glover, Karney, Klingman and Russell [17], Glover,

Hultz and Klingman, [14], Klingman and Russell [23]. For work on generalized network

problems with side constraints, see Glover and Klingman [18], Hultz and Klingman [22],

Glover, Hultz, Klingman, and Stutz [15], Helgason and Kennington [21], and McBride [25],

Brown and McBride [8] , and Gupta and McBride [20].

In this paper we use the pivot-and-probe algorithm (PAPA) which we introduced in [27] to

solve uncapacitated GTP having some side constraints. We take advantage of the fact that the

dual of an uncapacitated GTP has fewer variables than constraints, and use the probe operation

to select only the most important constraints to consider. We present computational experience

which indicates that the PAPA algorithm works better on sparse than dense problems, and

better with fewer than more side constraints.

2 PROBLEM FORMULATION

The most familier application of GTP is the machine loading problem [12]. In that problem

there are m types of machines which can produce n types of products. When machine i is

used to produce product j it requires e.. hours per unit and costs c.. dollars per unit It is

assumed that during the planning period the available time in machine i is a. hours, and the

demand for product j is b.. The problem is to determine x.., the amount of product j to be

produced on machine i during the planning period, so that the required production is achieved

without exceeding available machine hours, and also so that the total cost is minimized. In



addition, there may be other constraints called side constraints which also have to be satisfied.

Formulated as a linear program, the GTP is:

Min {f = I 1 "! 1 1 , ex . . }

Vu * a* for i=U'"'

x.. £ b. for j=l,2,..,n

x.. £ 0.

f o r k = u -

We call this problem P . .
r mm

mm

In this problem, the first set of m constraints makes certain that the available hours on each

machine are not exceeded. The second set of n constraints requires that the the stated demands

are met The next set of t constraints are the extra or side constraints. In the above problem
Pmm li ls a s ^ u m e d that e.., a., b. > 0, and also that c.. £ 0. (In Section 4, we discuss the case

in which some of the c.. are negative).

The dual of the above problem is given by:

M a x { z = - Z ? a . u . + Z " b . v . - Z ! f d w l
i-l it j - l j j k-l k k

c i f o r i = 1 ' 2 —» m a n d j=1.2—,s.L

We call

~V

u.,

this

I + V
> j

V W ^
j ' ij

problem

0.

P .

For convenience, we also assume that, in the dual problem, a regulanzation constraint of the

form:



is included in the constraint set as the mth constraint (M is a very large number).

3 DESCRIPTION OF THE PIVOT AND PROBE ALGORITHM

In order to make this paper self-contained, we present a shortened version of the Pivot and

Probe Algorithm given in Sections 2 and 3 of [27]. The meanings of symbols used are to hold

only in the present section.

Consider a linear programming problem stated in maximization form:

Max {z = ex}

S.L Ax ^ b (H)

x * 0

where A i s m x n , b i s m x l , c i s l x n , x i s n x l and z i s a scalar. We assume that

the problem has been transformed so that b £ 0 which makes x = 0 a feasible solution. For

convenience, we also assume that a regularization constraint of the form

r x x. <> M (1)
is included in the constraint set as the mth constraint where M is a very large number.

Constraint (1) insures that the primal constraint set of II is bounded.

Next we define the following index sets:

I = (I, 2, 3 , m}

J = (I, 2, 3 , n)

Using the above we define the index sets K° and K1 of candidate constraints of degrees 0

and 7, see also [26], as the sets of indices of those constraints satisfying the following

requirements:

K° = 1m), m being the index of the regularization constraint (2)

K1 = U {i | b./a..= min b/ak. where i, h G I, a >0 } U K ° (3)

In words, K1 consists of the set of indices of all rows which could possibly be pivoted on at

the first step of the simplex method together with the regularization constraint

m. Geometrically, K1 consists of the constraints which have an intercept on some coordinate

axis which is closest to the origin together with constraint m. Note that K1 will include.all

constraints i for which b. = 0.



In general we define the index set Ks of candidate constraints of degree s as:

Ks = U {i | b./a.^ min bh/ahj, ahj>0 where i,h G IxljJ Kl for t=l,..,s-l } (4)

Geometrically, K5 consists of the indices of those constraints which have an intercept on

some coordinate axis which is the sth closest to the origin, and which have no other intercept

that is ranked closer than s on any coordinate axis.

We now define index sets

Is = t > , Kh (5)
IN = I \ Is (6)

By means of these sets we define the linear programming problem IIs as follows:

max ex

s.L 2JJ a..x. * b. for i € Is (ff)

Because IIs contains fewer constraints than II, it follows that problem IIs is a relaxation of

problem IL Because Is includes the regularization constraint (1), Problem IT always has a

solution if problem II does. Let xD and wD be primal and dual solutions to problem IIs which

can be found by applying the simplex method to IIs, then wD, when extended by adding 0

components for indices i G IN, is dual feasible for problem II; it also follows that w°b is an

upper bound to the optimal objective value z° of II. Of course, solution xD may or may not

be primal feasible for problem II.

Let xp be any primal feasible (not necessarily basic) solution for problem II. We now want

to define a probe in terms of the vectors xD and xp. A probe is the operation of finding the

piercing points (if any) of the line segment between xp and xD and the constraints whose

indices are in IN; in particular we want to find the piercing point which is closest to xp. If x

is an arbitrary point on the line segment between xp and xD it can be written as:

x= (1-X)xp + XxD for some X G [0,1] (7)

Let h G IN; then the piercing point of the line segment (7) and constraint h is obtained by

solving the equation



Ax = ( 1 - \ ) A / + X A x° (8)
n h n n n

for Xh. This gives

\ =

If xD violates constraint h, that is, A xD > b\ then since xp is primal feasible, it follows
n

that X in (9) lies in the interval [0,1). Substituting this value of Xu into (8) gives the required
h n

piercing point

We shall say that constraint i is the most violated constraint if

X. = min Xh for h € H (10)

where the set H is defined by

H = { h G IN I A x D > b } (11)
• h b

Substituting in the value of X. from (10), the piercing point x of line segment (7) and

constraint i is given by

x = (1-X.)xp + X.xD (12)

From (9) and (10) it follows that x is primal feasible for problem II; and it also follows that
cx is a lower bound for the optimal value z° of n. Note also that xp is determined by

substituting into a single constraint, the most violated one, and hence is determined very

accurately. If X. = 1 in (10), Le., A.xD £ bh for all h G IN, then xD is feasible for problem

II, and there is no most violated constraint; hence xD is optimal for II.

Note that, during the probe step, it is possible to probe to any previously known primal

feasible point xp from the dual feasible point xD. Hence we keep a list, L, of primal feasible

points which we wish to use for probing as the method proceeds. There are many ways to

generate this list; we usually use the rule that L consists of the origin 0, and the most recent

primal feasible solution. For each x in L we calculate its piercing point xwith most violated

constraint We then calculate the one whose objective value is largest, as follows:

Z = max cx (13)

It follows that Z is a new lower bound to the optimal value of the linear program. If L

contains the most recently found primal feasible solution, the new bound is no smaller than

the previously found lower bound.



We now give a general description of the pivot and probe algorithm. A specialized

implementation is discussed in Section 4.

PAPA (Pivot and Probe Algorithm!

1. (Initialization). Select the degree s; calculate V using (2)-(5); let I* = Is. Let IT be
the linear program with constraints in I*. Let the list of primal feasible solution be

L = {0} where 0 is the 0 vector corresponding to the origin. Set LB = 0 and
UB = oo be the initial lower and upper bounds to the optimal objective value.

2. Use the primal simplex method to solve problem II*; let xD be its primal solution;
let UB = cxD.

3. Let V = 4>. For each x in L, probe to find the most violated constraint and
piercing point x; put the index of the most violated constraint in set V. Let xp be
found as in (13) as the piercing point giving the largest lower bound; let LB = cxp.
Update L.

4. If V = <f> go to 7. Otherwise go to 5.

5. Replace I* by I* U V.

6. Use the dual simplex method or the artificial variable method to solve IT; let xD be
its primal solution; let UB = cxD. Go to 3.

7. Stop. The most recent xD solution is optimal for problem n.

For some applications in which only an approximate optimal solution is needed, we can

replace step 4 of the algorithm by step 4a below:

4a. If V = • or ( UB - LB ) £ E, go to 1. Otherwise go to 5.)

Here E is the allowable error, and we decide to stop the computation whenever we find a

primal feasible solution which is known to be within E of the optimum. Some computational

experience with this rule will be discussed in Section 4. The way that L is updated in our

current code is also discussed in Section 4.

4 SOLUTION OF GENERALIZED TRANSPORTATION PROBLEMS

We now describe how we solve a GTP by the Pivot and Probe Algorithm. The meanings of

symbols in this section and all later sections is the same as those in Section 2.

If we return to problem P . in Section 2, we see that it has m x n variables and m + n +
mm



t constraints; similarly P has m + n + t variables and m x n constraints. For example, if m

= n = 100 and t = 10, then P . is 210 x 10,000 while P is 10,000 x 210. In spite of the
mm max

large number of constraints in P we will make our primal problem and use the fact that

PAPA considers only a very small number of constraints at any one time. In fact the number

of constraints in the relaxed linear program which is solved by PAPA will never exceed m + n

+ t, and usually considerably smaller.

We assumed in Section 2 that c. are non-negative. Hence a feasible solution to P is u. =
ij w max t

0, v.=0 and wfc = 0. All of the computational experience in Section 5 is based on the

assumption of the non-negativity of c...

In case c < 0 for some pairs i and j we could use the following solution

u i = - y e u for %< °

u. = 0 if c.. £ 0

and v.=0 and wfc = 0

We have not, as yet, tested problems with c.. < 0.

We define the supply-demand ratio as the ratio of the total available supply to the total

available demand Thus, the supply-demand ratio, R will be given by

In the computer implementation we chose the degree of candidate constraints to be s = 1,

which we had previously found in [27] to be a good choice. Also, as in [27], we let L

consist of the two vectors 0 and Xp, where Xp was the most recently found primal solution.

Each time a probe was made from the origin, the most violated constraint was saved, and also

the second, third, ..., up to fifth or sixth most violated constraints were also saved and added

to the relaxed problem. Also when a probe was made from Xp, the most recently found

primal feasible solution, only the most violated constraint was added to the relaxed problem.

Thus, at each probe step, as many as 5 or 6 new constraints were added to the relaxed

problem.

We also found it necessary to drop constraints prior to each probe step to prevent the

relaxed problem from becoming too large. The rule was to drop constraints in the relaxed



problem whose slacks were positive. It should be noted that basis reinversion was never needed

for the solution of the problems reported on in this paper.
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5 COMPUTATIONAL RESULTS

Computational results were obtained on a DEC VAX-11/780, using a FORTRAN 77 compiler.

These results are summarized in Tables 1 through 7.

In Tables 1, 2 and 3, we solve dense problems (all the possible arcs exist) whereas in Tables

4 through 7, only sparse problems are solved. Also, in the former three tables, the coefficients

e.. are uniformly distributed between .1 and 3 as against between .5 and 1.5 in the latter four

tables.

Table 1 gives the effect on solution time of varying supply-demand ratio, R. It can be seen

that the problems become more and more difficult as this ratio approaches 1. However, with a

fixed supply-demand ratio, it is more difficult to solve larger problems than smaller, and even

more difficult if these problems have some side constraints. This conclusion is drawn from

Table 2 where R is held constant at 2. The column ft=0f corresponds to problems with no side

constraints and the column under the heading *t=5v to problems with 5 side constraints. In

Table 3, it can be seen that for a fixed size (60x60) and fixed supply-demand ratio (R=1.5),

the solution time goes up. For example, it took only half minute, on the average, to solve a

pure GTP (line 1) as against more than 3 minutes in the presence of 10 side constraints (line

6). The last column in this table give the percentages of the side constraints which are binding

at the optimum.

The dependence of solution time on the size of a GTP and the number of side constraints

in a GTP, as seen above, holds true in case of sparse problems too. However, as evident in

Table 4, it is much easier to solve a sparse problem than a dense one. By density of a

problem, we mean the ratio of the constraints (arcs) in the problem to the total number of

constraints possible. Thus, a 100x100 GTP can have 10,000 possible arcs. But a GTP of the

same size with a density equal to .2 will have only about 2,000 arcs. As mentioned earlier, in

this and the rest of the tables, the coefficients e.. range between .5 and 1.5. The supply-

demand ratio R in these four tables is fixed at 3.

Tables 5 and 6 show the effect on solution time of changing problem size with no side

constraints (Table 5), and with 5 side constraints (Table 6). In both these tables, as also in

table 7, the density of the problems solved was .1. It can be seen from Table 7 that like the

dense problems, sparse problems too are harder to solve for a larger number of side

constraints. Note that the number of pivots, as shown in some of the tables, is quite small
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Number of

Problems solved

5

5

11

8

Supply-demand

Ratio, R

2.0

1.8

1.6

1.4

Solution time

in Seconds

47

92

86

87

Number of

Pivots

291

484

444

460

Table 1. The effect on solution time of varying supply-demand

ratio R is shown here. Calculations were done on dense

problems with m=n=60, side constraints t=4. Thus,

in problem P , the number of variables was 124,
r max

and the number of constraints was 3600. Note that the

solution time goes up rapidly as R approaches 1.

Problem

Size

40x40

60x60

80x80

100x100

Number of

Constraints

1600

3600

6400

10000

Time

t=0

7.2

18.0

52.6

98.0

in Seconds

t=5

18

34

117

218

Number of

t=0

103

137

214

251

Pivots

t=5

226

254

397

554

Table 2. The effect on solution time of changing problem size

for cases of no side constraints (t=0) and five side

constraints (t=5). Here the supply-demand ratio was held

constant at R=2. Each solution time was computed as the

average time of five randomly generated dense problems.
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Problems

Solved

# of Side

Constraints

Time % of side Constraints Number

in Sees binding at Optimum of Pivots

5
5

5

5

5

2

0
2

4

6

8

10

32
65

121

125

153

190

70

80

70

81

70

214

295

596

581

702

845

Table 3. The effect on solution time of changing the number

of side constraints. All P problems had 120+t

max

variables and 3600 constraints. The supply-demand

ratio was held constant at R = 1.50.

Problem

Size

100x100

100x100

100x100

100X100

Problem

Density

.1

.3

.5

.7

Number of

Constraints

1028

2985

5088

6755

Time in

Seconds

8.72

15.23

24.64

28.30

Number

of Pivots

155

152

158

151

Table 4. The effect on solution time of changing problem density.

There were no side constraints in P
rain

Here the

supply-demand ratio was held constant at R=3. Each

solution time was computed as the average time of seven

randomly generated problems.
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Problem

Size

60x60

100x100

140x140

180x180

Number of

Constraints

388

1085

2032

3323

Solution Time

in Seconds

2.45

8.21

23.21

52.01

Table 5. The effect on solution time of changing problem size for

case of five side constraints (t=0) in P
m1n

Here the

supply-demand ratio was held constant at R=3. The density of

the problems solved was 0.1. Each solution time was computed

as the average time of seven randomly generated problems.

Problem

Size

Number of

Constraints

175

391 '

651

1029

1508

Solution Time

in Seconds

3.07

9.84

24.25

45.04

87.50

40X40

60X60

80X80

100X100

120x120

Table 6. The effect on solution time of changing problem size for

case of five side constraints (t=5) in P
m1n

Here the

supply-demand ratio was held constant at R=3. The density of

the problems solved was 0.1. Each solution time was computed

as the average time of seven randomly generated problems.
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Problem

Size

70x70

70X70

70X70

70X70

70X70

# of Side

Constraints

0

2

4

6

8

Number of

Constraints

518

499

502
537

525

Time

in Seconds

3.08

6.62

13.46

25.50

35.54

Number

of Pivots

103

137

185
217

288

Table 7. The effect on solution time of changing the number of side

constraints in P
rain

About 70-90% of the side

constraints were binding at the optimum. Here

the supply-demand ratio was held constant at R=3. Each

solution time was computed as the average time of seven

randomly generated problems each having density 0.1.

6 CONCLUSION

It is probable that the Pivot and probe Algorithm is slower than existing network codes in

solving a GTP without side constraints. However, we know of no network code that can solve

a GTP with more than 1 or 2 side constraints. Recently, Gupta and McBride in [20] have

developed a specialized linear programming code for solving a GTP which has an arbitrary

number of side constraints (and also side variables). We have found our version of the simplex

method to be very slow as compared to PAPA for solving constrained GTFs. Further work

along these lines is in progress.
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