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to be the core of the entire process. Before the level of automation can be significantly
increased over current levels, integrated systems that can perform many more of the tasks
required for design than is possible with existing artificial systems, will have to be developed.

The knowledge requirements of a complex activity such as chemical process design are
enormous. Endowing a system with the knowledge needed to perform this activity, an
enterprise referred to as knowledge engineering, can be a laborious, time-consuming and costly
effort. Many person-years of work may be required. Furthermore, it is a task that never really
ends. The knowledge required to perform design, as is needed to perform any other activity, is
dynamic. That which is imparted to a system at creation time may not be adequate at problem
solution time. This implies a need by a design system of an ability to learn. Learning can aid in
two ways. First, it can help alleviate the knowledge acquisition bottleneck alluded to above,
thereby significantly reducing, and perhaps even completely eliminating, the knowledge
engineering effort. Second, it can allow design systems to improve with experience, thus
enabling them to increase the efficiency and effectiveness with which they perform their tasks.

Recent work in the fields of artificial intelligence (AI) and cognitive science has resulted
in the development of a number of integrated software architectures that combine problem
solving and learning in their functionality. One of these systems, Soar [Laird et at 87] has
already demonstrated its potential in both these functions.

The primary motivation of our research has been to understand the issues involved in
building artificial design systems that integrate both learning and problem solving in their
performance. This is crucial if machine learning is ever to play a role in chemical process
design. Since Soar has already shown itself to be a powerful problem-solving engine and its
learning mechanism, chunking, has been applied in a wide variety of learning situations, it was
decided to conduct our experiments within the framework provided by this architecture. The
work presented here describes our experiences thus far in this arena. We report on two systems
that were constructed using the Soar architecture. The first, CPD-Soar, is a system for the
design of unintegrated distillation sequences. The second, Interval-Soar, is a system that can
learn the intersection point of two arbitrary and unknown functions. In this latter system, we
solve what appears to be an extremely easy problem and discover that we need a few hundred
production rules to do it We will try to make clear the actual complexity of the learning
activity required. A description of each system is provided together with its performance. We
also indicate how the functionality of a system like Interval-Soar could be used to further
improve the performance of a chemical design system such as CPD-Soar.

2 The Soar Architecture

Soar is a general model of human cognition [Newell 89] that has been implemented as a
software system. Problems ranging from traditional AI "toy" problems such as the eight-puzzle
and the Tower of Hanoi to complex real world knowledge-intensive tasks such as a portion of
the computer configuration performed by the Rl (XCON) expert system [Rosenbloom et al



85] have been solved by Soar systems. The system has five key architectural features: problem
spaces, recognition memory, decision cycle, impasse-driven subgoaling and chunking. We
shall illustrate these features later when we step through the execution of CPD-Soar and
Interval-Soar.

2.1 Problem Spaces

All tasks in Soar are formulated as search in problem spaces. A problem space consists
of a set of states and a set of operators. Applying an operator to the current state generates a
new state and a goal is achieved when a desired state is reached. The task is accomplished
when the top-level goal is attained. Multiple goals correspond to a task decomposition and
each of these may require different problem spaces to be searched. All search is realised by
two generic functions: task-implementation and search-control. Task-implementation functions
involve the retrieval or generation of problem spaces, states and operators. Search-control
functions, on the other hand, involve the selection of objects (problem spaces, states,
operators) from among those competing.

22 Recognition Memory

All long-term knowledge in Soar is stored in an associative recognition memory, realised
as a production system. All knowledge about the current problem-solving situation is stored in
working memory as a collection of data elements. Each production consists of a set of
conditions and a set of actions. The conditions test working memory for the presence or
absence of simple patterns (attribute-value elements) whereas the actions add new elements to
it Productions encode all knowledge required to perform a task. This knowledge can pertain to
either task implementation or search control. An important characteristic of Soar as a
production system is the absence of any conflict resolution. All productions that are
instantiated, i.e., have their conditions satisfied, are selected to fire, thus allowing the retrieval
of knowledge in parallel. Although the attribute-value representational scheme employed by
Soar is basic, both attributes and values may be other objects, hence complex frame-like
structures can be constructed.

23 Decision Cycle

All problem solving in Soar revolves around a number of decisions; what goal should be
attained, what problem space should be searched to attain the goal, what state should the
search proceed from and what operator should be applied to the state. These decisions occur in
a sequence of decision cycles, each of which consists of two phases. During the first phase, the
elaboration phase, all instantiated productions fire. Since productions may create working
memory elements that satisfy other productions, this process could continue for many
elaboration cycles. It terminates when it runs to quiescence, i.e., when no more productions
can fire. Elaboration results in two kinds of data elements being added to working memory.
The first kind are new task-implementation objects such as problem spaces, states and



operators or augmentations to existing objects. The second kind are preferences. Preferences
are special elements that encode knowledge about the acceptability and desirability of problem
spaces, states and operators for any role in the total problem-solving context. This selection of
an object for a role is made during the second phase of the decision cycle, the decision
procedure phase. Begining with the oldest goal, the decision procedure considers each slot in
the goal-context-stack. Within a context, the problem-space role is considered first, followed
by the state and operator roles respectively. All preferences relevant to a slot are gathered and
interpreted to determine an object for its role. If a unique decision can be made for an object
for one of the slots in the context hierarchy, that object will be selected. This act signifies the
end of the current decision cycle and problem solving then proceeds with the elaboration phase
of the next cycle.

2.4 Subgoals

A situation may arise in the problem solving when a unique decision cannot be made for
any of the slots in the current context. This may be due to either incomplete or inconsistent
information. Soar deals with such a situation, known as an impasse, by subgoaling. This
happens dynamically. Furthermore, subgoals may occur within subgoals, thus resulting in a
hierarchy. The architecture recognises four kinds of impasses: rejection, no-change, tie and
conflict To illustrate some of these, consider the following examples. An operator tie impasse
occurs when several operators have been made acceptable, but not enough knowledge exists to
select one. A state no-change impasse occurs when a state has been selected, but no operators
are proposed to apply to it The operator tie impasse would be resolved when preferences that
allow Soar to uniquely select one of the candidate operators are thrown into working memory.
The state no-change impasse would be resolved when a preference for an operator that can be
applied to the state is generated.

2.5 Chunking

Soar learns from its experiences in resolving impasses by constructing productions,
known as chunks, for insertion into its long-term or recognition memory. The chunks
summarise the problem solving that occurred in the subgoals and are created whenever results
are generated. These results form the actions of the chunks. The conditions are the pre-impasse
situation upon which these results depend. This requirement that the chunk conditions only be
working memory elements that existed prior to the subgoal that were instrumental in
generating the results is one way the chunks are generalised Another involves converting
identifiers to variables, a process known as variablization. Also, results created in a subgoal
whose function is solely to guide the research, i.e., search-control knowledge, are not used in
the creation of chunks. These generalisation processes thus ensure that the chunks learned may
apply in future problem-solving situations that aren't exactly the same as the ones they were
created under, only similar. Like any other learning system, it is possible for Soar to acquire
incorrect knowledge. This may result if the system either makes an incorrect inference or
receives incorrect information. Laird [Laird 88] has described how Soar systems can recover



from any incorrect knowledge they may have captured in their long-term memories.

3 CPD-Soar

CPD-Soar is a system for the design of distillation sequences. It can currently create
unintegrated sequences of sharp-splitting columns only. Given a feed specification, it first
generates the splits that have to be applied to the feed stream to create the desired products and
then sequences these splits. Multicomponent products can be handled. Search is controlled
through the application of a number of heuristics commonly used in distillation sequence
design.

3.1 Problem Spaces

There are eight problem spaces in CPD-Soar design1, feed, order, split, sequence,
update, output and selection. All of them, except design and selection are operator-
implementation spaces. The top space, design, has eight operators: get-feed,
order-components, link-components, make-splits, identify-forbidden, sequence-split,
update-stream and write. Figure 1 shows the decomposition of the system into its problem
spaces and operators.

The get-feed operator interacts with the user to obtain the feed specifications. This
operator is implemented as a problem space called feed which contains two operators,
make-feed and get-comp. Make-feed prompts the user for the name of the feed stream and the
number of components. Get-comp obtains the following information about each component
from the user flowrate, volatility and product in which it is desired.

Order-components ranks the components in a stream in descending order according to
volatility. The lightest component, i.e., the one with the highest volatility, is given a rank one.
The order-components operator is instantiated for all streams that are unordered and is
implemented as a problem space called order. This space contains a single operator, rank,
which is instantiated for all unranked components in the selected stream.

Streams are represented as linked lists and columns are modelled as list-splitters, i.e., as
perfect splitters. Each component in a stream, other than the one with the highest rank, has an
attribute "lighter-than" whose value is the identifier of the component that is adjacent to and
heavier than it The operator link-components links all the components in a stream that has
already had its components ordered.

Make-splits generates all the possible sharp splits that can be applied to the feed stream.
For a stream with N components, the number of possible sharp splits is (N - 1). Each split is

*We will use the convention of boldface TfmesRotnan font to denote problem spaces and boldface italics font to
denote operators.
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Figure 1: Hierarchy of Problem Spaces and Operators in CPD-Soar2

characterised by a light and heavy key. The split problem space implements the make-splits
operator. This space also contains a single operator with the same name which generates a split
and computes the ratio of the volatilities of the light and heavy keys. Identify-forbidden tags

2Each problem space is depicted by an oval and the operaton it contains are listed in the box next to iL Impasses arc
noted next to the directed lines linking problem spaces. (ON refers to an Operator No-change impasse).



each of the splits generated by make-splits as either allowed or forbidden. A split is forbidden
if its two keys coexist in the same product

The operator update-stream computes the mole fractions of a stream's components,
normalises their volatilities with respect to the heaviest component and computes the total
flowrate of the stream. It is implemented as a problem space called update, which contains
three operators: compute-flow, compute-fraction and compute-normvol.

When all the allowable splits have been sequenced, the write operator writes them to the
screen in the order they are to be applied. The operator is implemented as a problem-space
called output. This space contains a single operator called print which outputs a split to the
screen.

The selection space is selected to resolve ties or conflicts among competing problem
spaces, states or operators. It contains one operator, evaluate-object, whose function is to
compute an evaluation for a competing object The next section describes the use of the
selection space to resolve ties or conflicts among competing sequence-split operators in CPD-
Soar.

3.2 Resolving Ties and Conflicts among Splits

The above described operators are all concerned with routine book-keeping and
input/output functions required by the design problem. The most important operator is
sequence-split. This ranks all the allowable splits in the order they are to be applied. It is
implemented as a problem space called sequence which contains two operators, make-new
and compute-vaprate. The make-new operator performs a number of functions. It generates
two new streams corresponding to the distillate and bottoms products and augments these
streams with their components. It also generates a column that is augmented with its feed and
product streams. Compute-vaprate computes the vapour flowrate in the column using a
simplied function that Douglas [Douglas 88, p. 463] has proposed for a binary column.

The sequence-split operator is made acceptable for all unranked allowable splits that may
be applied to streams that have not already been split and are not products. Splits that apply to
different streams are made indifferent to each other. The following heuristics are used to select
among splits that apply to the same stream: easiest separation best (similar to hardest
separation worst), removal of lightest key best and removal of component with largest flowrate
best Since these heuristics discriminate on the basis of different attributes, conflicts are to be
expected in many cases. Most previous works in the field have dealt with this problem in one
of a number of ways. One approach involves ranking the heuristics in order of importance. In
all cases however, the ranking function used is very subjective and usually does not have any
basis. A second approach does away with the use of heuristics altogether. Instead, evaluation
functions are employed to rate all the competing splits. However, this is a policy that can prove
to be computationally expensive for even moderately sized problems. A third approach uses



only a small subset of all the heuristics that have been shown to be useful. This subset is
selected carefully so as to avoid the possiblity of conflicts arising. However, this approach
loses out in situations where the weeded-out heuristics could have applied. Soar's ability to
deal with inconsistent and incomplete information by subgoaling avoids the weaknesses of all
these approaches. The power of using heuristics as a means of controlling search is exploited,
and only when the heuristics are in conflict, or result in ties, are the evaluation functions
employed. CPD-Soar resolves conflicting and tieing splits by applying in turn, each split to the
stream, generating the product streams and the column, and computing the vapour flowrate in
the column. The split resulting in the column with the lowest vapour rate is selected. In other
words, the search strategy employed in tie or conflict instances is a simple one-step lookahead.

TASK GOAL

DESIGN PROBLEM SPACE

OPERATOR TIC OR
CONFLICT SUBGOAL

SELECTION PROBLEM SPACE

EVALUATION SUBGOAL /A

DESIGN PROBLEM SPACE

Figure 2: Selecting among Competing Splits in CPD-Soar

Figure 2 depicts the subgoaling CPD-Soar would undergo in the case of a tie or conflict
impasse. Consider the simple, but representative, situation in which a stream consisting of
three components, A, B and C, is to be split Suppose that CPD-Soar, on the basis of its current
knowledge, i.e., its heuristics, is unable to decide between the two possible splits, A/B or B/C.



This could be due to one of two reasons. Either its knowledge indicates both splits are equally
good, in which case a tie impasse will be encountered, or its knowledge is conflicting, with one
piece of information stating A/B is better and another stating B/C is better, in which case a
conflict impasse will arise.

In both cases, CPD-Soar subgoals into the selection space to generate the knowledge
required to resolve the impasse. In the selection space, the evaluate-object operator is made
acceptable for each of the tieing or conflicting objects; in this case, the two sequence-split
operators. Since it does not matter in which order the splits are evaluated, the evaluate-object
operators are made indifferent to each other. CPD-Soar evaluates the competing splits by
trying each one out in turn and comparing the results. Suppose the B/C split is selected first to
be evaluated. If CPD-Soar encounters an operator no-change impasse in trying to apply the
evaluate-object operator, the design space is made acceptable. The B/C split is applied to the
stream and the vapour flowrate of the resulting column computed. Suppose it is X in this case.
This knowledge is passed back to the selection space. CPD-Soar next performs the same
sequence of operations for the second split Suppose the vapour flowrate for the A/B split is
Y. The two evaluations, i.e., flowrates, are then compared in the selection space and a better-
than preference is generated for the split corresponding to the smaller one with respect to the
other. Since in this case X is smaller than Y, the split B/C is chosen.

3J Performance of CPD-Soar
CPD-Soar is an attempt to emulate the behaviour of a human process designer working

without the use of any external computational aids except a device to perform simple
arithmetic calculations. Hence its performance should not be measured relative to man-
machine computing systems where the machine is an extremely powerful number cruncher.
With this in mind, it would probably be fair to state that CPD-Soar's performance is
acceptable.

Two points will be made concerning the strategy used by CPD-Soar to resolve ties or
conflicts among competing splits. The first concerns the one-step lookahead search and the
second concerns the vapour flowrate evaluation function.

The one-step lookahead search employed was decided upon for the following reasons.
Since the heuristics are employed to select the next step, i.e., operator, to be applied, using
each operator in turn and selecting which resulted in the best state was deemed sufficient in
providing a functional equivalence to the knowledge encoded in the heuristics. Of course, the
decision resulting from such a limited lookahead is only optimal locally. Searches that look
beyond the first step are certainly possible. One potential search would be a lookahead to the
completion of a sequence. It should be noted however, that the deeper a search is, the more
expensive it will be computationally. The main motivation, however, for resorting to the
one-step lookahead in the current version of CPD-Soar was to get an appreciation of the sort of
chunks that would be generated.
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In many instances the vapour flowrate is a good indicates- of the cost, both construction
and operating, of a column. Lower vapour rates result in smaller columns and lower utility
usage. Hence, it was decided to use this parameter as being indicative of the quality of the state
generated. However, this does not imply that the strategy employed by CPD-Soar is
dependent upon this evaluation function. For the design of heat-integrated sequences, this will
probably change.

The chunks generated in response to the above-described impasses are too specific, i.e.,
their condition elements have numeric attributes whose values are specific constants. An
example chunk is presented in Figure 33. Such a chunk can be extremely useful within the
same problem-solving trial. A chunk acquired earlier on in the problem solving can fire during
later stages of the same trial. Such a transfer can help in making much larger design problems
(than are routinely attempted today) tractable. In process design problems, it is usually the case
that many computations have to be repeated several times over during the same problem
instance. Also, decisions among the same competing choices may also be repeated. An
example from the domain of distillation-sequence design would be the calculation of the
column parameters for a particular split A search down one branch of the tree may require the
A/B split to be evaluated. However, further down the branch a decision may be made not to
explore it any further and to switch the search to another branch. This new branch may now
also require the A/B split to be evaluated. However, since the design system would have
chunked away the results of the A/B evaluation carried out during the search of the previous
branch, this evaluation will not have to be repeated. In process design problems, it is also
often the case that decisions from among the same competing choices may also have to be
remade several times within a single problem instance. For example, while searching a
particular branch of a tree, a decision may have to be made between two competing splits, say,
A/B and B/C, which in turn may require their full evaluations. Later, when some other branch
of the tree is being searched, it is possible that a decision may again be required between A/B
and B/C. This time however, the system would be able to make a decision straight away based
on the knowledge it had acquired the previous time. The example chunk presented encodes
such knowledge.

However, the power of a learning mechanism lies in its ability to acquire knowledge that
can be employed in a situation that is not exactly the same as the situation it was acquired in,
i.e., its ability to generalize. Chunks that are more general in their applicability than those
currently learned by CPD-Soar are possible. One kind include those that would refer to
intervals or ranges rather than specific values of numbers. Such chunks, it is conceived, would
prescribe domains within which volatilities, for instance, or flowrates, would have to fall in
order for the chunks to apply. However, before CPD-Soar can acquire such chunks, an
understanding of how intervals of numbers may be learned and represented within Soar
systems has to be acquired. The following section describes another system, Interval-Soar, that

3The syntax of the production presented here differs from those presented later since CPD-Soar was developed
using Soar 4, whereas Interval-Soar employs a newer version, Soar 5
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(sp p43 elaborate
(goal <gl> Aproblem-space { <> undecided <pl> )
Astate { <> undecided <nl> } Adesired <dl>)
(desired <dl> Abetter lower)
(operator <o2> Aname sequence-split Asplit <sl>
Astream <s3>)
(split <sl> Ahk <hl> Alk <11> Arelvol 3/2)
(hk <hl> Anaxne b)
(stream <s3> Acoxnponent < d > { <> < d > <c2> )
{ <> <c2> <> <cl> <c3> >)
(component <cl> Aname b Aflowrate 2)
(Ik <11> Anaxne c)
(component <c2> Anaxne c Aflowrate 3)
(operator ( <> <o2> <ol> } Aname sequence-split)
(operator <ol> Asplit { <> <sl> <s2> } Astream <s3>)
(split <s2> Ahk { <> <hl> <h2> } Alk { <> <11> <12> )
Arelvol 2)
(hk <h2> Aname a)
(component <c3> Anaxne a Aflowrate 1)
(Ik <12> Anaxne b)

- - >
(preference <o2> Arole operator Avalue worse
Areference <ol> Agoal <gl> ^problem-space <pl>
Astate

If there is a sequence-split operator <o2> that
implements split <sl>

and split <sl> has light key C and heavy key B
and the ratio of volatilities between B and C is 1.5
and C has flowrate 3
and B has flowrate 2
and there is a sequence-split operator <ol> that implements

split <s2>
and split <s2> has light key B and heavy key A
and the ratio of volatilities between A and B is 2
and A has flowrate 1

then create a worse preference for operator <o2> with
respect to operator <ol>

Figure 3: Example of a Chunk Learned by CPD-Soar and its English Description.

possesses the ability to learn ranges for relatively simple problems. It is one of a series of
systems we are developing within the Soar framework to explore the issues involved in
understanding and developing systems that can perform useful learning in highly quantitative
domains.
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Our experiences with OPD-Soar have indicated that Soar as a problem-solving engine
seems to provide all that has thus far been sought in an architecture for design. As noted
earlier, the performance of CPD-Soar, as a system that attempts to emulate a human designer,
is acceptable and its performance will certainly be better than a corresponding non-learning
system.

4 Interval-Soar

Interval-Soar is a system that can learn the intersection point between two arbitrary and
unknown functions, fl and f2. This learning is performed as a welcome side-effect of
performing another task. The task consists of applying one of the two functions to each
element in a set of data points and computing the result. The data point, a scalar denoted by x,
is then labelled with the function that was applied to it When all data points have been
labelled, the task is considered accomplished.

Each function is characterized by a parameter called its bound. For function fl, this is
ub-ol (upper bound of operator 1) and for function f2, it is Ib-o2 (lower bound of operator 2)4.
The bounds of the operators thus demarcate the intervals or regions that the operators should
be applied in. The value at which the two bounds, ub-ol and Ib-o2, are equal, will correspond
to the intersection or crossover point between the two functions.

If a data point falls within a particular interval, then the operator to which that interval
corresponds can be selected to apply to the data point. If a data point does not fall within an
interval, then both operators will have to be fully evaluated in order to make a decision about
which to select. If, after a full evaluation, opl is selected as the operator to apply, the data
point will be learned as the new value of ub-ol. Conversely, if opl is selected, the value of
Ib-o2 will be updated to the data point. By such a process of refining the values of the bounds,
it is possible for Interval-Soar to incrementally converge to the intersection point of the two
intervals.

To perform the above-described task is not as simple as it may seem to be. The main
reason for this is that Interval-Soar must carry out this task without any knowledge of the
functions themselves5. Thus, it should be emphasized, it is not a question of solving two
equations in two unknowns. Instead, it is a problem of determining the intersection using
knowledge of a sample set of data points only. One assumption that Interval-Soar currently
makes is that the functions only intersect at a single point It is expected that future versions of
the system will relax this assumption. In order to perform this task, as will become clearer
later, the system must possess the ability to recognize and recall declarative knowledge.

4The lower bound of operator 1 is assumed to be minus infinity and the upper bound of operator two is assumed to
be plus infinity.

5The example problem described later shows the two functions since they are used for the purposes of illustration.
However, Interval-Soar does not have accesss to this knowledge per se.
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However, since chunking is the only learning mechanism within Soar, this memorizing of
declarative knowledge must be performed using it, and this is not so straightforward.

The problem spaces in Interval-Soar can be categorized into three major groups: the task
spaces, the function spaces and the memory space. Figure 4 shows the decomposition of the
system into its problem spaces.

4.1 Task Spaces

There are three task spaces in Interval-Soar the interval space, the selection space and
the refine space.

The interval space is the top-level space. It contains three operators: select-x, opl and
op2. Select-x selects a data point to be classified from among all those still unlabelled. Opl
and op2 implement functions f 1 and f2 respectively.

The selection space is chosen in response to a tie between operators opl and opl in the
interval space. It has four operators: memory, x-lte-ub-oly x-gte-lb-o2 and refine-interval.
Memory is used to retrieve the current values of the bounds, ub-ol and Ib-o2. X-Ue-ub-ol and
X'gte-lb-o2 are comparison operators. The first compares x to ub-ol and if it is less than or
equal to the bound, returns the value true. The second compares x to Ib-o2 and in this case
returns true if x is greater than or equal to the bound. The operator refine-interval is used to
refine the values of the bounds on the intervals. It does this by carrying out a full evaluation of
the operators opl and op2, comparing the evaluations and updating the bound of the operator
that has the higher evaluation.

The refine space, which implements the refine-interval operator, contains five operators:
opl, op29fl-eq'f2,fl-gt-f2 and memory. Fl-eq-f2 returns a value of true if fl is equal to f2.
Likewise, fl-gt-/2 returns a value of true if f 1 is greater than f2. In contrast to the memory
operator in the selection space, the memory operator in the refine space associates the value of
a bound with its corresponding cue, i.e., it learns a new bound value.

4.2 Memory Space

The chunking mechanism within the Soar architecture has been demonstrated to be
adequate for the acquisition of procedural knowledge7. On the other hand, the acquisition of
declarative knowledge8 is not so straightforward. Although the chunking mechanism can be
used to acquire such knowledge, the system must first perform some deliberate processing in

Procedural knowledge includes knowledge about which actions the system can perform, when certain actions
should be preferred over others and how to carry out the actions.

8Declarative knowledge includes facts. It is knowledge about what is true in the world.
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SELECT-X
0P1, 0P2

MEMORY
REFINE-INTERVAL
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Figure 4: Hierarchy of Problem Spaces in Interval-Soar6

6Each problem space is depicted by an oval and the operators it contains are listed in the box next to it Impasses are
noted next to the directed lines linking problem spaces. (ON refen to an Operator No-change impasse).
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order to do so. This processing occurs in the memory space, which implements the memory
operator. An involved discussion of representing, storing, retrieving, using and acquiring
different forms of knowledge, including both procedural and declarative, has been provided by
Rosenbloom et al [Rosenbloom et al 89],

The memory operator provides Interval-Soar with the means to memorize and retrieve
declarative knowledge. It provides an ability to learn to recognize and learn to recall objects.
The operator takes two arguments: an input object (the object to be learned) and a cue object.
The cue constrains the situations in which the input object is to be retrieved. When the memory
operator is applied, all objects that were previously associated with the given cue are recalled.
If the input object is not among those retrieved, then it is learned (and will thus be retrieved the
next time the memory operator is applied with the same cue). The absence of a cue is
effectively taken to be the cue if the memory operator is applied without one. The operator
will only perform retrieval of earlier memorized objects if it applied without an input object.
However, if no objects had been previously associated with the cue, then nothing is retrieved
and the operator is simply terminated.

The following example will hopefully serve to provide a clearer description of the
functioning of the memory operator. Suppose we wish to associate the objects "Fido" and
"Bozo" with the cue "dog." This means that whenever the system is presented with the cue
"dog," the objects "Fido" and "Bozo" should be recalled. This association, which is a form of
memorization, is carried out by selecting and applying the memory operator, in this case,
twice. Suppose the first time the operator is applied with the cue "dog" and the input object (or
object to be learned) "Fido." The result of applying the memory operator will be a chunk that
delivers, i.e., retrieves, the object "Fido" on any future occasion that the operator is applied
with the cue "dog." Suppose the operator is applied for a second time. However, this time we
wish to associate the object "Bozo" with the cue "dog." This application will result in the
object "Fido" being retrieved (since it was previously associated with the given cue) and the
object "Bozo" being memorized, i.e., a chunk being created that will, on future occasions,
deliver the object "Bozo" when the cue "dog" is presented. If the memory operator is applied
for a third time with the cue "dog" and no object to be learned, then only retrieval of the
objects "Fido" and "Bozo" will occur. An application of the memory operator with the cue
"cat" will not retrieve anything since no objects have been associated with that cue. In Interval-
Soar, the cues are "ub-ol" and "Ib-o2n and the learned objects are the values of the bounds.

The application of the memory operator results in the learning of two kinds of chunks:
recognition chunks and recall chunks. The recognition chunks allow the system to determine if
it has seen an object before and the recall chunks allow it to generate a representation of an
object seen before.

The memory operator is implemented as the memory space. This problem space contains
seven operators: examine-input, examine-cuey generate-symbol-table, generate-output,
recognize-input, memory and compare. The examine-input and examine-cue operators cycle
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through all the symbols the input and cue objects are respectively constructed of so that tests of
these symbols appear in the recognition chunks learned. Gene rate-symbol-table creates a
symbol table relating the input symbols to the output symbols, which generate-output uses to
construct the output object from. Recognize-input recognizes the input object and the input-
cue pair. The memory operator augments the parent memory operator (which was
implemented as the memory space) with the recalled object The compare operator compares
the previously learned bound (which has now been retrieved) with the current bound to be
learned. If they are not equal (which will always be the case since the interval is being refined),
a reject preference is generated for the old bound The memory space is complex and subtle
and the above is a very basic description of the functions of its operators. A more detailed
description of the space has been provided by Rosenbloom [Rosenbloom 89].

4 J Function Spaces

The function spaces contain knowledge about performing basic logical, arithmetic and
control functions. This knowledge allows Interval-Soar to symbolically execute the
mathematical functions it needs, such as computing f 1 and f2, comparing f 1 to f2, comparing x
to ub-ol and ub-o2 and comparing the new value of a bound with an old one, all without
recourse to an external computing device. A detailed description of the function spaces has
been given by Rosenbloom & Lee [Rosenbloom & Lee 89].

4.4 Example Task

The functioning of Interval-Soar will now be illustrated by a simple example. Consider
the two functions, fl = 7 - x and f2 = x + 1, and consider three data points: x = 1.3, x = 3.0 and
x = S.8. As described earlier, the task is to apply one of the functions to each of the data points,
compute the results and label the points with the names of the operators corresponding to the
functions that were applied to them. As a by-product of this problem solving, the system must
learn the values of two bounds, ub-ol and Ib-o2. These parameters demarcate the intervals
where the functions should be selected. If a data point has a value less than or equal to ub-ol,
f 1 should be applied. If it has a value greater than or equal to Ib-o2, f2 should be applied.

Problem solving begins in the interval space. The initial state consists of a set of (three
in this case) unlabelled data points. The desired state is one in which each data point has had
its function value computed and is labelled. The operator select-x is first applied to choose a
data point to be worked on. Since the order in which the data points are selected is irrelevant,
they are all made indifferent to each other. Once a point has been selected (suppose in this case
it is x = 5.8), operators opl and op2 are proposed to apply. Opl implements fl and op2
implements f2. Since both operators are equally acceptable at this stage, a tie impasse results.

To resolve the tie between opl and opl r the interval space, a subgoal is created and the
selection space is chosen. In the selection pace, Interval-Soar first tries to retrieve any
existing bounds on the tieing operators. It does this by proposing the memory operator twice,
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one with the cue ub-ol and the other with the cue Ib-o2. Since the order in which the bounds
are retrieved is irrelevant, the two memory operators are made indifferent to each other.
However, nothing is retrieved because no values have yet been associated with the cues since
this is the first time Interval-Soar is solving the problem.

Thus, to make a decision that resolves the impasse, a full evaluation of the tieing
operators must be made. To do this, Interval-Soar selects the refine-interval operator. If there
is an operator no-change impasse in attempting to apply the refine-interval operator, the refine
space is selected. The schemes used to evaluate the operators opl and opl are just the
functions themselves. Thus, opl and op2 are first applied in random order to the data point In
this case fl = 1.2 and f2 = 6.8. Next, the comparison operators fl-eq-J2 and fl-gt-fl are
selected and applied in turn to determine the relative magnitude of fl with respect to f2.
Fl-eq-fl returns a value of false (indicating the two parameters are not equal) and fl-gt-gl
returns a value of false (indicating that f 1 is not greater than f2). Before this knowledge is
passed back to the higher-level spaces, the value of Ib-o2 (since f2 is greater than fl) is
memorized as 5.8. Interval-Soar carries this out by selecting and applying the memory operator
with the cue object as Ib-o2 and the learned object as 5.8. The knowledge that f2 is greater than
fl is now passed back to the higher spaces to resolve the initial tie between opl and op2.
Interval-Soar thus applies op2 to the data point x = 5.8, which is consequently labelled op2.
The state of affairs at this stage of the problem solving is depicted in Figure 5.

The entire problem-solving behaviour is now repeated for another data point There are a
few differences since Interval-Soar uses some of the knowledge it had chunked away when
running the first point. Suppose the point x = 3.0 is selected this time. The selection space is
again chosen in response to a tie between opl and opl in the interval space. In the selection
space, the memory operators first apply to retrieve any bounds, i.e., any numbers associated
with the cues ub-ol and Ib-o2. Since 5.8 has been associated with Ib-o2, it is recalled
instantly. The comparison operator x-gte-lb-ol is next selected and applied to determine the
relative magnitude of the data point with respect to the bound. Since x is not greater than or
equal to Ib-o2 in this case, a value of false is returned. This knowledge does not allow a
decision to be made between the competing operators; hence, the refine-interval operator is
selected to compute a full evaluation once again. Opl and op2 are applied in random order in
the refine space. In this case, both f 1 and f2 are determined to be 4.0. The operator fl-eq~f2 is
next applied and returns a value of true. Again, before this knowledge is passed back to the
higher spaces to resolve the tie, the values of the bounds are updated by applying the memory
operator. The value of ub-ol is memorized to be 3.0 by associating the number 3.0 with the
cue ub-ol. In the case of Ib-o2, the process is slightly different Since the number 5.8 is
already associated with the cue Ib-o2 (from the previous run), the number associated with the
cue is updated to 3.09. This updating is performed in the memory space (which is selected in
response to a no-change impasse for the memory operator) by applying the compare operator.

*In Soar, this is equivalent to having a chunk that generates a reject preference for 5.8 and another chunk that
generates an acceptable preference for 3.0.
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X = 5.8

F1 = 7 - X
F2 = X + 1

Figure 5: Location of Bounds after First Data Point is Employed

This operator compares the new value of the bound (the number to be learned) with its old
value. If they are not equal (which, as noted earlier, will always be the case since the interval is
being refined), a reject preference is generated for the old bound. After the memorization
process is completed, the knowledge that fl is equal to f2 is passed up to the higher spaces. In
this situation, opl and opl will be made indifferent to each other and one will be picked at
random. Figure 6 depicts the problem solving situation at this stage.

The final point from the set to be labelled is x = 1.3. By now the sequence of steps taken
to achieve this should hopefully be clear. In the selection space, memory operators are first
applied to retrieve the current values of the bounds. In this case, both ub-ol and Ib-o2 are
associated with the number 3.0. Next, the comparison operators, x-lte-ub-ol and x-gte-lb-o2
are selected to apply. The first returns a value of true since x is less than ub-ol, while the
second returns a value of false since x is less than Ib-o2. Since Interval-Soar possesses the
knowledge that if a data point is less than the bound ub-ol, operator opl should be selected, a
better-than preference is generated for opl with respect to op2. Hence* in this case, the tie
impasse in the interval space can be resolved without resorting to a full evaluation of the
competing operators, as was done during the two previous trials. The situation at this stage is
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F A UB-01
LB-02

Figure 6: Location of Bounds after Second Data Point is Employed

depicted in Figure 7.

It should be noted that operator no-change impasses are encountered when attempting to
apply opl, op2y the comparison operators (fl-eq-/2, fl-gt-f2, x-lte-ub-ol, x-gte-lb-o2 and
compare) and the memory operator. The memory space is selected in the case of the memory
operator and the function spaces are selected for the others.

4.5 Performance of Interval-Soar

To illustrate (he performance of Interval-Soar, the results from running the system using
three different sets of data points will be presented Each set consists of three points: set 1 is
(1.3, 3.0,5.8), set 2 is (1.8,3.7,6.6) and set 3 is (2.4,4.5,6.9).

Across-trial transfer occurs when chunks acquired when solving one instance of a
problem apply when another instance of the same problem is executed. Table 1 illustrates the
effects of across-trial transfer. The results presented there include the changes in decision cycle
numbers for each test case as well as the average over all three sets. As can be seen, the
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Figure 7: Lxxation of Bounds after Third Data Point is Employed

benefits of learning are encouraging. For the first trial, the average number of decision cycles
required was 355. For trial two, this dropped to 73, a percentage drop of 79.4 and for trial
three, this further dropped to 9 for a total percentage drop of 97.5 over the first trial.

Trial
Case

1

2

3

Ave

1

317

374

374

355

2

57

81

81

73

3

9

9

9

9

Table 1: Effects of Aero >-Trial Transfer of Chunks: Changes in Numbers of
Decision Cycles

Table 2 shows the number of productions learned by the system over the course of each
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of the three trials. In all cases the system begins with 934 productions. A Soar system that
learns on all goals during a trial will normally not acquire additional knowledge during
subsequent trials. This is because the system will have learned all that it can during the first
trial. The behaviour of Interval-Soar however, is an interesting example of how a system that
learns on all goals during a first trial can learn additional knowledge during a second trial. This
occurs in Interval-Soar since knowledge acquired during the first trial causes it to carry out a
different problem-solving process in the second trial. This new process creates a different goal
hierarchy, thus allowing the system to acquire knowledge that was not acquired through the
original problem-solving process. To illustrate this, consider the data points in example set 1.
At the end of the first trial, Interval-Soar learns that the values of ub-ol and Ib-o2 are both 3.
During the second trial, this knowledge is brought to bear. When Interval-Soar attempts to
decide which function to apply to 5.8, the first point in the set, it compares this number with
the retrieved bounds instead of carrying out a complete evaluation as it did during the first
trial. This comparison process requires Interval-Soar to subgoal into the arithmetic and
function spaces (rather than the refine space) and the chunking that takes place over these
spaces thus allows the system to acquire additional knowledge during a second trial. For case
1, the system acquires 65 chunks during the first trial and 10 chunks during the second trial.
No chunks are acquired during the third trial since the system has learned all that it can. During
this trial, no subgoaling occurs since productions learned in the previous trials fire to prevent
all impasses.

Trial
Case

1

2

3

1

65
76

76

2

10

15

15

3

0

0

0

Table 2: Numbers of Productions Learned during Different Trials

Table 3 illustrates the effects of across-task transfer. This occurs when chunks learned
when solving a problem in a particular domain apply during the solution of another problem
within the same domain. In the case of Interval-Soar, chunks acquired when using the data
from set 1, for instance, fire when performing the task using the data from set 2 or set 3. Again,
the benefits of learning are encouraging. Each data set was run independently with the chunks
acquired during the running of the other two data sets and in each case, the number of decision
cycles required was less than the number needed when no imported chunks were used. The
percentage decrease in decision cycles ranged from 12.6 (when running set 1 with chunks
learned during the running of set 3) to 71.4 (when running set 2 with chunks learned during the
running of set 1). The average decrease over all 6 runs was 38.1%.
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Case

1 with no imported chunks

1 with chunks imported from 2

1 with chunks imported from 3

2 with no imported chunks

2 with chunks imported from 1

2 with chunks imported from 3

3 with no imported chunks

3 with chunks imported from 1

3 with chunks imported from 2

No. Decision Cycles

317

252

277

374

107

257

374

169

232

% Decrease in DC

20.5

12.6

71.4

31.3

54.8

38.0

Table 3: Effects of Across-Task Transfer of Chunks

4.6 Analysis of Knowledge Learned by Interval-Soar

As described earlier, chunks acquired during problem solving prevent the system from
subgoaling should the same or similar situations arise in the future. Most of the chunks learned
in Interval-Soar are operator-implementation productions. These are productions that fire to
directly implement an operator in particular situations. Before learning, such an operator,
because of its complexity, would require subgoaling in order to be applied. Table 4 is a
summary of the number of operator-implementation productions learned for the different
operators in Interval-Soar.

Operator

opl

op2

x-lte-ub-ol

x-gte-lb'02

memory

fl-eq-fl

fl-gt-f2

compare

No. Implementation
Chunks Learned

7

5

4

4

3

3

4

3

Table 4: Numbers of Operator-Implementation Chunks Learned for Different
Operators
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The memory operator-implementation chunks deserve special attention. As noted earlier,
the purpose of applying the memory operator is to either recall or memorize declarative
knowledge. These chunks allow the system to recognize the input object, i.e., the object to be
learned, to recognize the combination of cue and input objects and to retrieve any previously
learned objects associated with the given cue. Typical examples of these chunks are presented
in Figure 8.

;; Recognize the combination of cue and input objects if the
;; cue is Ib-o2 and the object to be learned is the number 5.
(sp p293 elaborate

(goal <gl> ̂ operator <ol>)
(operator <ol> Aname memory Acue <c2> Alearn <yl>)
(class <c2> Aname Ib-o2)
(param <yl> Avalue <il>)
(integer <il> Asign positive Ahead <d> Atail <d>)
(column <cl> Aanchor head tail Adigit <dl>)
(digit <dl> Aname 5)

—>
(operator <ol> "recognized cue-input £, cue-input +))

;; Recognize the object to be learned if it is the number 5.
(sp p294 elaborate

(goal <gl> Aoperator <ol>)
(operator <ol> -Arecognized input Aname memory
Alearn <yl>)
(param <yl> Avalue <il>)
(integer <il> Asign positive Ahead <d> Atail <d>)
(column <cl> Aanchor head tail Adigit <dl>)
(digit <dl> Aname 5)

—>
(operator <ol> Arecognized input 6, input +))

;; Augment the memory operator with the recalled object, which
;; is the number 5.
(sp p295 elaborate

(goal <gl> Aoperator <ol>)
(operator <ol> Aname memory Acue <cl>)
(class <cl> Aname Ib-o2)

—>
(integer <x3> Asign positive + Ahead <xl> + Atail <xl> +)
(digit <x2> Anaroe 5 +)
(column <xl> Adigit <x2> +
Aanchor head + head 6, tail 6, tail +)
(param <x4> Avalue <x3> +)
(operator <ol> Arecalled <x4> =, <x4> +))

Figure 8: Example Memory Operator-Implementation Chunks
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Chunks are also acquired that reject previously learned values of the bounds. An
example of such a chunk is given in Figure 9.

;; Reject the recalled object if it is the number 5.
(sp p593 elaborate

(goal <gl> Aoperator <ol>)
(operator <ol> "name memory Acue <cl> Arecalled <x4>)
(class <cl> Aname Ib-o2)
(param <x4> Avalue <xl>)
(integer <xl> Atail <x3>)
(column <x3> Aanchor tail Adigit <x2>)
(digit <x2> Aname 5)

(operator <ol> Arecalled <x4> - <x4> 8))

Figure 9: Example Chunk to Reject a (Previously Learned) Bound

Besides operator-implentation chunks, search-control productions are also acquired by
Interval-Soar to resolve the tie impasses encountered between opl and opl in the Interval
space. An example of such a chunk is presented in Figure 10.

;; Prefer opl over op2 for the data point x • 2.
(sp pi051 elaborate

(goal <gl> Aoperator <o2> + { <> <o2> <ol> } +)
(operator <o2> Anaxne opl Aparam <xl>)
(operator <ol> Aname op2)
(param <xl> Avalue <il>)
(integer <il> Asign positive Atail < d > Ahead <cl>)
(column <cl> Aanchor head Adigit <dl>)
(digit <dl> Aname 2)

— >
(goal <gl> Aoperator <o2> > <ol>))

Figure 10: Example Search-Control Chunk

4.7 Potential Application to Chemical Process Design

The functionality of a system such as Interval-Soar could be employed in two areas to
improve the performance of a design system such as CPD-Soar. One area, which was first
alluded to in Section 3.3, is the learning of chunks whose condition elements refer to ranges of
numbers rather than specific values. Such chunks could then be used in situations that are
different from those under which they were created. This would be equivalent to learning an
"approximation" of the model used to evaluate the partial or total design solutions generated.
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A second area where a design system could employ the functionality of a system like
Interval-Soar is in learning to discriminate among the use of competing models. The example
used to illustrate the behaviour of Interval-Soar employs evaluation functions that are the same
as the operators they are evaluating. This simple example was used since the intention was to
convey an unambiguous description of the functioning of Interval-Soar. However, nothing
precludes the system from having a different evaluation function (than the operator itself) or
even a set of evaluation functions from which to select Furthermore, there is also no
restriction on the use of an external device to compute the evaluation. Since the functions
employed in the example are really simple, these can be computed by Interval-Soar itself using
the knowledge it possesses about basic arithmetic.

In fact, the existence of a suite of models for evaluating designs, some of which could be
computationally very expensive, accurately depicts the state of affairs in chemical process
design. For example, in the area of distillation sequence design, models can range from simple
list-splitters to those based on rigorous stage-by-stage calculations. Multiple models exist not
only for the unit operations and equipment, but also for the materials themselves. For instance,
a vapour could be analyzed using the ideal gas law or it could be subjected to extremely
detailed molecular theory. Of course these are extremes, but the point trying to be made is that
it is usually the case that choices exist. Thus, a critical design decision that often has to be
made is what model to use. Factors such as resources available and quality of solution desired
are usually taken into consideration when making such a decision. The use of a more detailed
model can result in a better quality solution, but at a dearer price.

Useful knowledge to acquire is that which would allow a design agent to decide what
situations warrant the use of what models. The ability to make such discriminations could
enhance the performance of a design agent considerably. Valuable resources could be saved by
selecting and employing simpler models in situations where the use of more complex models
would have yielded the same decisions.

It is possible to conceive that a design system such as CPD-Soar could learn to
discriminate among the use of multiple competing models if it were endowed with a
functionality that was similar to the one possessed by Interval-Soar in learning the intersection
point of two functions.

5 Conclusions

We have presented two Soar systems: CPD-Soar, for the design of distillation sequences
and Interval-Soar, for learning the intersection point of two functions. With CPD-Soar, we
have successfully demonstrated how a process design problem can be carried out within the
Soar framework. This is the first application of a cognitive architecture to chemical process
design problems.

With Interval-Soar, we have shown how the learning of declarative knowledge could be
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used to discretize a space of real numbers into two intervals. This learning is performed as a
beneficial by-product of performing another task, that of computing the function values of a set
of data points.

We have also described how the functionality of a system such as Interval-Soar could be
used by a system such as CPD-Soar either to acquire an approximate model of the domain or
to discriminate among competing models. Such abilities, it is hypothesized, could significantly
enhance the performance of the design system over its current levels.
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