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Abstract

This paper addresses the problem of developing a quantitative measure for the flexibility of a

design to withstand uncertainties in the continuous parameters and discrete states. The metric is

denoted as the expected stochastic flexibility, E(SF). For a given a linear model, a Joint distribution

for the parameters and probabilities of failure for the discrete states, the proposed metric predicts the

probability of feasible operation of a design.

A novel inequality reduction scheme is proposed to aid in performing the integration over the

feasible region characterized by inequalities. A bounding scheme is also proposed to avoid the

examination of a large number of discrete states when determining the E(SF). An example problem is

presented to demonstrate the fact that the proposed measure provides a framework for integrating

flexibility and reliability in process design.
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Introduction
The operation of chemical plants is subject to uncertainties in the parameters and in the

reliability of its design components. The uncertain parameters typically include such items as

flowrates, temperatures, and kinetic rate constants, while design uncertainties include the availability

of equipment. Note that these uncertainties are of two types: continuous and discrete, respectively. The

types of uncertainties are distinguished by the values they take. Continuous uncertainties may take on a

range of values while discrete uncertainties take on only specific values. Because the feasible operation

of a chemical plant is clearly dependent upon these uncertainties, it is important to be able to

quantitatively determine the effect of these uncertainties on plant operation.

This has been done for two cases, processes with only continuous parameter uncertainties-

flexibility (Swaney and Grossmann 1985, Saboo and Morari 1984, Pistikopoulos and Mazzuchi 1989)

and processes with only discrete state uncertainties-reliability, (Tzafestas 1980, Shooman 1968,

Dhillon 1988). Neither of these two problems, however, fully captures the nature of uncertainties in

chemical processes. There is obviously a great need to handle both types of uncertainties together,

since they show strong interactions in defining the feasible operation of a plant.

The goal of this paper is to develop a stochastic metric for feasible operation in systems that can

be represented by a linear model, and where we can simultaneously account for both types of

uncertainties. The proposed metric represents the probability of feasible operation for given

probabilities in the discrete states and for given joint distribution functions of the continuous

uncertain parameters. For the latter, a novel inequality reduction scheme is proposed that allows the

efficient numerical integration of the joint distribution function over the feasible region for a given

state. Since the proposed metric requires the enumeration of a large number of discrete states, an

effective bounding scheme is proposed that exploits the structure found in reliability problems.

Application of the proposed metric is illustrated with an example problem which shows that flexibility

and reliability can be integrated within a common framework.

Motivating Example

The most common example of a process containing both discrete and continuous parameter

uncertainties is a continuous chemical process with redundant equipment.

In continuous chemical processes there are typically uncertain continuous parameters such as

flowrates, product demands, and thermodynamic constants. There are also uncertainties in the discrete

states corresponding to the availability of equipment. For example pumps, compressors, or reactors

may experience failure modes and become inoperable. An example of this type of system is shown in

Figure 1.
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Figure 1. Process flowsheet with redundant chemical equipment

In this process there are redundant compressors in both the feed and recycle lines to increase

the reliability, given that the availability of the compressors is uncertain. The continuous

uncertainties in this process might include the flowrate of the feed and the kinetic rate constants. The

interaction between the types of uncertainties can take several forms. For instance, if all the

equipment is available for operation then some of the redundant or back-up equipment can be used to

compensate for increases in the flows. At the other extreme, if some of the equipment including its

redundant units fail, then the process becomes inoperable. Thus, it is clear that since the flexibility

and the reliability of a process are related, one must consider both aspects simultaneously for

predicting the expected capability of a process to have feasible operation.

Basic Concepts

The metric which will be proposed to characterize systems with discrete and continuous

uncertainties will be denoted as the Expected Stochastic Flexibility, E(SF). The stochastic flexibility,

SF, is a measure of a systems ability to tolerate continuous uncertainties for a given discrete state. The

discrete uncertainties are taken into account when determining the expected value of the stochastic

flexibility.

The concept of the stochastic flexibility is shown in Figure 2. The triangle represents the

feasible region of operation for the system in the space of the continuous uncertainties. Each of the

continuous uncertainties is described by a probabilistic distribution. In this case e1 and e2 are

independent parameters characterized by normal distributions, which gives rise to a Joint distribution

whose contours are circles. The stochastic flexibility is the cumulative probability of the joint

distribution that lies within the feasible region. Thus, mathematically, the stochastic flexibility is the

integral of the joint distribution over the shaded region.
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Figure 2 Diagram showing the stochastic flexibility of a feasible region
*

The discrete uncertainty involves changes in the state of a design which result in different

feasible regions. The effect of a design change is shown in Figure 3. Here normal operation is

represented by State 1 and results in the outer triangle. State 2 represents the process in which some

redundant equipment has failed. Intuitively, when equipment fails the size of the feasible region gets

smaller and may not exist at all.

92

State 1

State 2

81

Figure 3 Effect of the discrete uncertainty

The expected stochastic flexibility is calculated by summing up the products of the probability

for each state and its corresponding stochastic flexibility. In this way, the E(SF) represents,

qualitatively, the probability of feasible operation that we can expect on average over a large time

horizon.



Mathematical Description of System
The systems of interest are modeled mathematically with a set of equalities and inequalities,

which are assumed to be linear in this paper:
a) performance equations A1x+A2z+A3e-a (1)
b) specifications B1X4B2z^B3e^b ( 2 )
c) capacity constraints Cj x-^z+C^esd* I y ( 3 )

The variables in these equations can be classified as follows:

d vector of L design variables that define the capacity of units
e vector of M uncertain continuous parameters
x vector of state variables
z vector of control variables as degrees of freedom which can be

adjusted to compensate for changes in 9
y vector of Boolean variables defining the availability of the L pieces

of equipment

In this model the continuous uncertainties 9m (m«1,...,M) are characterized by probability

distribution functions. These distributions may or may not be independent. Typical distributions

would include normal, beta, uniform, and triangular. The model is rcrciified according to the

distributions being used with additional constraints. The constraints reflect the fact that after a certain

point the cumulative probability exhibits negligible changes. For example, it 9 was characterized by a

normal distribution sounds limiting the range of 8 from 91
nDm-4a to 91

nom+4a could be introduced.

These bounds prevent the integration over insignificant portions of the joint distribution. They also

prevent unbounded feasible regions which create difficulties with a quadrature integration scheme.

The discrete uncertainties corresponding to the availability of the L units in a process are
represented by the Boolean variables y / , /«1 L, that determine whether the corresponding /th unit

with capacity d/is available. When a discrete uncertainty is active, its Boolean variable y/will be set

equal to 1. Otherwise, it will have a value of 0. Therefore based on the way (3) has been written,
y/ -1 will represent the case when the / th piece of equipment is available.

Each Boolean variable y/ is associated with a probability of being active, p / . That is,

P{y/«1}«P/ f and P{y/-0}«1-p/. The determination of p/in the context of availability is explained in

Appendix A.
The Boolean variables give rise to different system states Sj and an associated state probability.

Each state Sj represents a different combinations of the 0-1 values for the vector y. Specifically
S j - fY^ } where Y 1

i - { / | y ' / - i } . For example, with two Boolean variables there are 4 states

(0,0)=> S H * ) ' (0.1)=> S2-{2}. 0.0)=> S3-{1}, and (1,1)=> S4-{1,2}. For each state there is a
corresponding state probability P(Sj). Assuming independent probabilities p/, the state probability

can be defined as follows:



o

( 4 )
where Yo'-f/ly'z-O} and Y^

This probability can be interpreted as the fraction of time that a process is expected to operate
in state Sj, for a large horizon time.

Finally note that in (1) the vector of state variables, x, has the same dimensions as the
equalities. Assuming the the square matrix A1 is nonsingular, the state variables can be eliminated by

solving the equalities for x in terms of z, and 6.
x - fA^- i [a-A2z-A3e] % ( 5 )

Substituting into the inequalities yields
[a-A2z-A3e]+B2z+B3e£b (6a)
{a-A2Z-A3eKC2Z+C3e<dt I yj (6b)

The inequalities in (6) which define the feasibility of operation along with the distribution constraints,

can be written in compact form as f(d',zf6)£0 where di»dt iy' represents the design variables for state

S,.

Stochastic Flexibility

Given the model for the system and the probability distributions for the continuous
uncertainties the SF for a given state Sj can be calculated. Mathematically the SF takes the form of the

integral,

SF(Si)=/ . JO)dB
JWlfiW (7)

where y(dj,6)^0 defines the feasible region of operation in the uncertain parameter space for the fixed
design d', that is dependent upon the state Sjv and j(6) is the joint distribution of the continuous

uncertainties. This integral will be solved using a guassian quadrature scheme described below.

In order to write the integral in quadrature form the order of integration needs to be

determined. For this purpose a new parameter xm (m«1 ,...,M) will be introduced, in order to relabel

the indices of the continuous parameters 8 so that the index of the variable corresponds to the order of
integration, which may not neccesarily be the same as the indices of G (e.g. x1«62, X

Initially, it is natural to write the integral in the following form

U U u
fl2-flM K*)«(T) drNf...dx2dt1

where 8(x)«1 if ytd'.x^O, and 8(x)-0 if v(d l,t)>0.



Here the integration is performed over a hypercube which encloses the feasible region. This region

corresponds to the dashed line in Figure 4. The dots in Figure 4 represent the selected quadrature

points for the integration.
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Figure 4 Quadrature points for integral equation 8

The bounds are determined using the following formulations for m*1,2,..,M:
L U

Xm=min Tm ^m==max xm
zt zx

s.t. f jCd!,z,T)£Oj€ J s.t. f/dU/O^O je J - n x

It is apparent that this computational scheme has the potential for being very inefficient. First, all the

parameter points used to evaluate (8) need to be distinguished as feasible or infeasible. Then for those

points which are feasible the value of the joint distribution is evaluated; for those points which are

infeasible the integrand is assigned a value of 0. Furthermore, a problem arises in that the resulting

approximating function is not smooth. For example, the crossection of a distribution generated in

Figure 4 might look like the one shown in Figure 5.

Value of joint
distribution

Figure 5 Surface crossection from Figure 4

Although Gaussian quadrature can still be adapted to this discontinuous curve, it will not be efficient

and will require a large number of points.

One solution to this problem is to redefine the region of integration as the one that exactly

corresponds to the feasible region of operation. In this way the integral takes on the following form:

6



u u
X2<xl>

u
dTM....dT2dT1

( 1 0 )

where xm
L (x1,x2,...,xm.1) and x m

u (x1fx2
 xm-i) a r e variable lower and upper bounds of parameter

xm that are evaluated at the parameter values x1,T2,...,xm.1. These bounds then define the boundary of

the feasible region. In order of apply a quadrature formula to estimate this integral the following

procedure can be applied.

First determine the upper and lower bounds for x^ Then discretize according to a specific

quadrature formula over this range. For each discrete point x<| determine the maximum and minimum

of x2. Then discretize over each of these ranges and keep repeating the procedure until all the elements

of x have been discretized. For the two dimensional case shown in Figure 4 the following points would

be obtained.

Figure 6 Quadrature points for modified region

This procedure has the advantage that it eliminates infeasible points for the integration. Also by

using this procedure the number of quadrature points necessary to get an accurate estimate of the

integral is greatly reduced. The price for this simplification is the increase in the number of

optimizations (similar to (9)) that have to be performed to determine the bounds. While the scheme

depicted in Figure 4 requires 2M optimizations, the scheme in Figure 6 requires

2 ( 1 + Q P 1 ( 1 + Q P 2 ( 1 + Q P 3 ( . . . . ( 1 + Q P M - I ) ) ) ) ) optimizations where QPm is the number of quadrature

points for parameter m. For the specific example in Figure 6, since QP<|-3, 2(1+3)«8 optimizations

are required. This scheme, however, can become very expensive, even for small problems. For a

problem with 4 continuous uncertainties each described by 7 quadrature points 800 optimizations are

necessary to solve the problem. Fortunately for the case with linear constraints the optimization

problems can be greatly simplified. As will be shown in the next two sections, by using an inequality

reduction scheme the optimizations can be solved analytically to get the bounds for every uncertain

parameter.



Inequality Reduction Scheme
The inequality reduction scheme successively eliminates variables from the constraints

f(d',2,t)^O. By successively eliminating variables one at a time from the constraints, starting with

the control variables we can generate new sets of constraints. Eventually constraints that only depend

on x1 can be obtained. These constraints give us the bounds on xv Having the bounds on xj we can

discretize this range to get the location of the quadrature points in x1 space. Having the quadrature

points in x1 space the constraints that just depend on x1 and x2 can be used to determine the range of t2
for each quadrature point in x1 space. This procedure can be repeated until the quadrature points for

xM are obtained using the constraints that depend on x-j, X2,..-1*4.1 •

The scheme will be demonstrated first with an example, and the general mathematical

formulation will be presented afterwards.

Example 1

Consider the following 4 constraints involving one control variable and two continuous

uncertainties for a given state:
f1«2z+3x1+x2+i£0 (11a)
f2«-z-3x1+x2 -0.5£0 (11b)
f 3 - - 22 -2x 1 - 3x 2 - 1^0 (11c)
f4- x1+x2-4^0 (11 d)

The first step is to eliminate the control variable from the constraints. This is accomplished with the

following parametric mathematical program.

=min u
zu

s.t.

f3(d\z,xi,x2)£u ( 1 2 )

Here y1 ' k£0 defines the first set of reduced constraints. The motivation for this program and the
method of solution are explained in Appendix B. There are several solutions to this problem depending
upon which constraints are active, that is fj-u. Because there are several possible active sets, the

index k is introduced in order to distinguish between solutions generated by the different active sets.
The first superscript on y represents the order of reduction. The order signifies the dependence of the
constraints, i.e. v r»k«y(d.T l,T2,...,TM. r+1). For problem (12) In which the control variables are

eliminated r - 1 .

As shown in Appendix B, the solutions of the problem can be written in term of the active constraints
as,

8



r.k

( 1 3 )
where Xjr>k are the non-negative multipliers and JAr'k is the set of active constraints for reduction r

and active set k. The multipliers are obtained from the optimality conditions described in Appendix B.

Here they lead to the following equations:
^•^•^• I ( 14a )
2X 1 1-X 2 1-2X 3 1-O ( 1 4 b )
X|Xj1 | -dim{z}+1«2 (14c )

Note that here |X|«0 if X-0 and |X|«1 if X>0. Given that there Is only one control variable z, only two X

can be non-zero (dim{z}+1*2). Here there are 2 solutions to these equations: X<|1 '1«1/3

X2
1*1«2/3, and Xi1»2«0.5 X3

1 '2«0.5. Note that only the solutions carry the superscript k, not the

defining constraint functions. Given these multipliers the first set of reduced constraints can be

generated.
•0.333 f, + 0.667 f2

« -x<\ +x2 £0 ( 15a )
«0.5 f«| + 0.5 f3
«0.5 Xi -x2 <0 ( 1 5 b )

y1,3 « X i + x 2 - 4 < 0 (15c )

Note that the fourth reduced inequality (11d) was not included in the mathematical program (12).

Since (11d) did not contain the variable being eliminated, it is automatically entered into the set of

reduced inequalities.

The resulting constraints define the feasible region in the space of the continuous uncertainties.

This feasible region is shown in Figure 7.
T 2

# 1 . 1

,1.2

0 1 2

Figure 7. Feasible region for the example problem



Since the goal is to determine the location of the quadrature points in the feasible region, the
constraints will be reduced further by eliminating x2. The formulation for this problem is as follows.

2Jc .
-minu

0.5 Ti~ 2

t l + t H * (16)

Here the multipliers are subject to the following equations.
• (17a)

(17b)
(17c)

Again only two multipliers can be nonzero since the elimination of only one parameter is considered.
Thus, there are two solutions X«|2»1«0.5 X2

2»1«0.5 and X2
2»2«0.5 X32f2-0.5. From these multipliers

the second set of reduced constraints can be generated:

y2,1 «0 .5 (y 1 ' 1 ) + 0 . 5 ( Y 1 ' 2 )
- 0 .25 x ^ O (18a)

y2,2 -0 .5(y 1 » 1 ) +0.5(y1 '3)
(18b)

These constraints lead to the bounds on x1: 0£ x-| £ 8/3. Now, assume that one of the quadrature points

for T-| turns out to be xi«2. Then from the first set of reduced constraints in (15) we get the following

bounds on x2.
(19a)
(19b)
(19c)

Thus O^x^ 8/3 , and 1£ x2^ 2 for x^*2 which are the correct bounds as shown in Figure 7.

Having the bounds on x2 it is clear that one can determine the corresponding quadrature points of x2 at

the value x«j«2.

For the general case the first step of the inequality reduction scheme is to eliminate the control

variables z, so that just the uncertain parameters remain. This is accomplished by identifying the

possible active ̂ constraints for the following formulation:

,t) • min u
zu

jeJ
(20)

10



The sets of active constraints are obtained from the optimality conditions of the problem:

j (fru)=0, X^O, fru£0 j€ J

j ( 2 1 )

After determining the possible active sets they are labeled k«1,..,NAS(r). Having determined the

active sets, the new constraints y1»k£0 can be generated using equation (13). The resulting

constraints y1*k(di
9t)^0 are important because they contain only dj and t as variables. Since the

constraints are linear each y1*k can be rearranged into the following form.

V (d,%vX2,...,%)£=* or
l.k i

If di,t1,...,TM.1 are known then the bounds for xM can be determined by choosing the largest £ 1 \ a n d

the smallest £1»k(j. In order to get bounds for xMs1 the following formulation is applied by treating xM

as a "control" variable:
2,k

V(d\t1...tM.1) = min U

s.t. y V t ) - u * 0 k=U,...,NAS(l) ( 2 3 )

In this way by solving problem (23) the feasibility constraints y2'k,k=1,2,...,NAS(2) can be

determined, from:

V = X V Vj k=lt...̂ AS(r)
J€J^(kf) ( 2 4 )

with r«2 and where the index k denotes the components of the inequalities for the reduction step r-1,

and kf is the index of active sets of constraints in step r. Given y 2 ' k the bounds on TM-1 can be

determined knowing dfT1fT2,...XM-2- T h i s procedure can be repeated until the bounds for x1 are

obtained in terms of dj.

It is important to note that the actual bounds are not determined at this stage, only a set of inequalities

for each parameter. The actual bounds are determined in reverse order of the reduction for each of the

selected quadrature points. That is the variables are eliminated from M to 1, while the bounds are

determined from 1 to M.

11



Numerical Integration for Determination of Stochastic Flexibility

Having applied the proposed inequality reduction scheme, the quadrature points are determined
successively for the parameters t1vx2 xM . These quadrature points will be represented in the

following form K%\ >T2 ••••fTM ' where qm-1 f . . . fQPm corresponds to the index of the

quadrature points for parameter xm. Only one superscript is necessary to describe the x1 coordinate of

the point. But since the quadrature points for x2 depend on t1 that functionality must be expressed

when describing the quadrature points for x2. The quadrature points for xm depend upon the values of

x1,...,xm.1 and thus must have m superscripts.

The indexing is best explained with Figure 8, where as ao example (x1
3,t2

3 '1 Represents the

first quadrature point for parameter x2 which is based on the 3rd quadrature point of x1.

1 1
U
1

Figure 8 Demonstrating the indexing of the quadrature points.

As mentioned before the bounds x-j L , t i u are obtained in the last step of the reduction scheme. The

quadrature points for t-| are then selected (e.g. T 1
1 , T 1

2 , T 1
3 in Fig. 8). The range of the second

parameter is then determined at each discrete point in fusing the reduced inequalities y M ; 1 > ,

k«1,2,...,NAS(M-1). For the example in Fig. 7, the bounds for t2 at the point x^are determined form

the inequalities y1 -kk-1,2 NAS(1) evaluated at t ^ .

The general procedure for determining the quadrature points can then be summarized as follows:

1 ) Eliminate the control variables from fsO to yield y1-k<;0, k-1 NAS(1)
2 ) Eliminate xM from y1-ks0 to yield y 2 * s 0 . k-1 NAS(2).

3 ) Repeat the elimination procedure until yM-k£0 k-1,2 NAS(M) is obtained.

12



4 ) Use vM'k£O , k-1,2 NAS(M), to determine the bounds of x1: x1
 L and x1

 u , and

generate the discrete points x^ 1 q1«1,....,QP(1)

5) Using yM-i.k^o , k«1,2 NAS(M-1), and the discrete points x ^ 1 , determine

the bounds x2
L (x^1) and x2

u ( T ^ 1 ) of x2 for each x ^ a n d then the discrete

points x2
<i1'^2 where q^-1 QP(1) and q2-1 ,QP(2)

6) Repeat until y1»k^0 , k«1,2,...,NAS(1), is used along with Ti<l1
fx2<lM2

xMiq1vq2f >MqM"1 t0 determine the ranges of xM, and discretize each range of xM.

After determining all of the quaflrature points the value of the joint distribution can be evaluated at

each point and combined according the the quadrature formula, derived in Appendix C.

w . a 2 ^ G M
2 ql=l 4 2 q2=l v 2 qM=l ^

( 2 5 )

Remarks

There are several important points about the formulation in (25). First, the number of quadrature

points does not have to be the same for each uncertain parameter. For instance the number of points for

xM can be much smaller than the number used for x1a The reason for this is evident if the above

procedure is viewed in terms of successively modifying the distributions of the uncertain parameters.

This concept is shown in Figure 9. There are 2 continuous uncertainties, both described by normal

distributions. The quadrature procedure essentially modifies the distribution of x^ using the feasible

region and the distribution of t2- First the feasible region cuts off the distribution at the largest and

smallest feasible values of t1 (x^u and x^) . For each discrete point T1 the integral of x2's distribution

over the feasible region is determined. This value(<1) then becomes a scale factor on x^s distribution.

The outer dashed lines extend from the ends of the feasible region down to the representation of x^s

distribution. These bounds define the point at which the modified distribution becomes 0. The dashed

line in the center shows how a particular point is modified. The dashed line extends down to the value of

x1 at which the integral over x2 is being determined. The integral value is then used to modify the

distribution where the dashed line crosses it.

13



fifeasibie region
^distributions

Origin*! Distribution

Modified Distribution

Figure 9 Modification of distribution

The more a distribution is modified the more irregular its shape can become and thus the more

quadrature points are necessary to accurately characterize it.

Another important point is that the order in which the 6 are arranged is significant. For

example consider the feasible region shown in Figure 10. Here the range of 82 is much smaller than

that of e1a Numerically by letting e2-x1 we are able to cover more area with the same number of

quadrature points. At the present time this topic has not been investigated thoroughly and thus will not

be discussed at length.

e2 * e2 •

8 1 s

Figure 10 Showing the difference of order makes

14



This stochastic metric differs from other measures of flexibility in several ways. As opposed to

the flexibility index (Swaney and Grossmann, 1985) it takes into account the entire feasible region. It

also eliminates the problem of infeasible nominal conditions. Most importantly it takes into account

uncertainty in the structure of the process, which is not accounted for in the flexibility index. It does

not however, give an explicit range of feasible values like the flexibility index does.

Although other metrics have been developed to measure the integral over a region described by

linear constraints, they are limited to continuous uncertainties characterized only by normal

distributions (Pistikopoulos and Mazzuchi, 1989). The proposed stochastic flexibility is calculated

using a method that allows the continuous uncertainties to be characterized by arbitrary distributions

(e.g. normal, beta, uniform, beta).

Example 2

An example will now be presented to demonstrate the calculation of the stochastic flexibility

with the proposed procedure. The state variables have already been eliminated resulting in four

reduced inequality constraints. There is one control variable, two continuous uncertainties and two

design variables.

1,-2-1.6 Gi -0.6 82 +d r 14 < 0 (26a)
f2*z-0.85 91-0.925 e 2+d 1+d 2 -20<0 (26b)
f3«z-1.1 Gi-1.4 62+d2-8<0 (26c)

(26d)

The design variables for the corresponding state are assumed to be given by the values, d-j «1 and d2«8.

In this example we arbitrarily select 6 1 * T 1 and 62-T2- T h e continuous uncertainties are described by

normal distributions with mean 20 and standard deviation 10: x1 N(20,10) and x2 N(20,10), they

are not correlated. The joint distribution for the continuous uncertainties is shown below.

628.32cxp
-(T r20)2-(t2-20)2

200
( 27 )

The first step is to eliminate the control variables from the constraints, eqn (26). Doing this results

in 3 reduced constraints:
yi.1.-0.3 xi +0.2 t 2 +di+0.5 d2 -10.5*0 (28a)
V1.2«o.O75 X! -1-0.0375 x2 +d1+d2-13.5*0 (28b)

V1.3..Q.05 X! -0.2x2 +0.5 6^ +d2 -7.5*0 (28c)

15



These constraints define the feasible region in the space of the continuous uncertainties. The region is

shown in Figure 11.

'2 80-

60-

40-

20-

0-

-20
-20 0 20 40 60 80 Tj

Figure 11 Feasible region

The first set of reduced constraints leads to the following bounds on t 2 , to which distribution

constraints have been added to prevent ntegration over areas where J(TI,T2) is negligible:

%2 * (0.3 t1 -di-0.5 d2+10.5)/0.2

T2 S (13.5-0.075 X) -d1-d2) /0.0375

T 2 * (0.5 6^ +d2-0.05 xv

T2 ^ t2
nom+4o2

X2 2t T2
nom-4o2

(29a)
(29b)
(29c)
(29d)
(29e)

Next t2 is eliminated from the feasibility constraints (28) using (23) to get the constraints in x-\

space. The values of the design variables have been substituted into these equations.

y 2 , 1 ( d 1 , 1 | ( j 2 « 8 ) . -0.875 t! -11.25*0

y 2 - 2 ( d 1 - 1 , d 2 - 8 ) - 0.875 T! -57.5*0

This leads to the following bounds on t 1 , again adding the distribution constraints:

x1 ^ -12.86

t ! S 65.71

(30a)

(30b)

(31a)
(31b)

t inom.4<Ji..2o (31 d)

16



These inequalities give the following bounds on 1^.-1

Having determined the bounds the quadrature can be evaluated. The specific equation that is used

is shown below.

( 3 2 )

Given the range of x1 the discrete points x ^ 1 can be determined. The discrete points are determined

from vjf the points in [-1,1] space, see Appendix C. The conversion to [x<|L,Xiu] space is accomplished

with equation (33), using the data for five point quadrature shown below (Camahan etc 1969).

Table 1 Quadrature points and weights

qi
1
2
3
4
5

points
v a1

-0.90617
-0.53846

0.0000
0.53846
0.90617

weights
wa1

0.23693
0.47863
0.56889
0.47863
0.23693

-36.43 vq1+23.57

The resulting discrete points are shown in Table 2. For each

using (29), these ranges are also shown in Table 2.

Table 2 Ranges of x2 for each

( 3 3 )

the range of i<i can be determined

qi
1

2

3

4

5

*1<1

•9.44
3.95
23.57
43.19
56.58

v-
7.36
4.01
•0.89
-5.80
-9.15

13.34
33.43
60.00
33.64
6.84

Having determined the ranges for t2 the discrete points can be generated in the same way than those that

were generated for x^ The points are shown in Table 3 and also plotted on the feasible region in Figure

12.
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Figure 12 Location of Quadrature Points
80

Given the location of the quadrature points the joint distribution can be evaluated and then combined

according the quadrature formula in (32). The calculations are summarized in Table 3. The first five

columns contain the quadrature point data. The sixth and seventh contain the value of the joint

distribution and the weights, while the eighth column contains the components of the inner summation.

The last column contains the inner sum and is also shown in the second part of the table. The second

part of the table contains the components of the outer summation.
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Table 3 Summary of Calculations

Point w # j
1 1
2 1
3 1
4 1
5 1
6 2
7 2
8 ;
9 2
10 2
11 2
12 3
13 3
14 3
15 3
16 A
17 4
18 4
19 4
20 4
21 5
22 S
23 S
24 5
25 5

1
2
3
4
5

I 1
! 2
! 3
! 4
I 5
E i
; 2
; 3
E 4
E 5
I 1
; 2
- 3
• 4

\ 5
; i

2
i 3

4
5

-9.44
-9.44
-9.44
-9.44
-9.44
3.95
3.95
3.95
3.95
3.95

23.57
23.57
23.57
23.57
23.57
43.19
43.19
43.19
43.19
43.19
56.58
56.58
56.58
56.58
56.58

7.64
8.74
10.35
11.96
13.06
5.39
10.80
18.72
26.64
32.05
1.96

13.16
29.55
45.95
57.14
-3.95
3.30
13.92
24.53
31.78
-8.40
-5.46
-1.15
3.15
6.09

9.72E-06
1.11E-05
1.31E-05
1.51E-05
1.64E-05
1.51E-04
2.88E-04
4.36E-04
3.52E-04
2.13E-04
2.94E-04
1.18E-03
9.46E-04
5.15E-05
1.51E-06
6.15E-06
2.68E-05
9.00E-05
9.77E-05
5.41 E-05
3.51 E-08
7.74E-08
2.11E-07
4.78E-07
7.51E-07

0.23693
0.47863
0.56889
0.47863
023693
023693
0.47863
0.56889
0.47863
023693
023693
0.47863
0.56889
0.47863
023693
023693
0.47863
0.56889
0.47863
0.23693
023693
0.47863
0.56889
0.47863
0.23693

2.30E-O6
5.30E-06
7.45E-06
723E-06
3.89E-06
3.58E-05
1.38E-04
2.48E-04
1.69E-04
5.03E-05
*.96E-05
5.66E-04
5.38E-04
2.47E-05
3.57E-07
1.46E-06
128E-05
5.12E-05
4.68E-05
128E-05
8.31 E-09
3.70E-08
120E-07
2.29E-07
1.78E-07

Q2

2.62E-05

6.40E-04

120E-03

125E-04

5.72E-07

Table 3 continued

U TL

Product
2.62E-05
6.40E-04
120E-03
125E-04
5.72E-07

2.988
14.709
30.446
19.712
7.991

023693
0.47863
0.56889
0.47863
023693

1.85E-05
4.51 E-03
2.08E-02
1.18E-03
1.08E-06

Sum- 2.65E-02
L
1 - 36.43

, U
T1 -

|SF« 0.9641
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The value of 0.964 was obtained using 5 point quadrature for both QP1 and QP2. The results for other

QP1 and QP2 are shown in Table 4.

Table 4 Comparison of Results for various QP1 and QP2

QP1
3
3
3
5
5
5
7
7
7

QP2
3
5
7
3
5
7
3
5
7

Total Points
9
15
21
15
25
35
21
35
49

SF
1.157
1.200
1.208
0.937
0.964
0.969
0.939
0.950
0.954

These results show that the stochastic flexibility converges to -0.95 as the number of quadrature

points increases. This table also shows that for a fixed number of quadrature points the integral is

more accurate if QP1>QP2.

The resulting SF-0.954 can be compared to two other methods of integration. The first being Monte

Carlo simulation. Using a 1000 point sample a value of 0.948 was obtained for the stochastic

flexibility. An IMSL, DQAND, routine was also adapted to the problem in a manner similar to the way

eqn. (8) was written. In this case the upper and lower bounds were [-20, 60] and the absolute and

relative errors were specified to be 0.01. The value obtained using this routine was 0.951. The

percent difference between the largest and the smallest is only 1.68%. This indicates that the proposed

method produces results that are in line with other methods.

Finally it is important to compare the number of function evaluations necessary to solve the

problem. This data is shown in Table 5.
Table 5 Comparison of Various Methods

Method
Proposed

IMSL
MC
MC

SF
0.954
0.951
0.948
0.952

Function Evaluations
49

- 1 5 0 0
1000

10 .000

It is clear that the proposed method is superior to both Monte Carlo and the adapted IMSL routine.

Recall that a function evaluation in the method of this paper only requires the evaluation of the joint

distribution at the quadrature point. The other two methods are more complicated in terms of the

function evaluation. Both methods generate values of e* for which it is necessary it is necessary to

determine if 6* lies within the feasible region. This is accomplished using the same math program that

20



was used in the equality reduction scheme, only here G replaces x (there is no concept of an order of

integration for either method):

V=min u
zu

s.t.fj(d\z,e )*u j€j ( 3 4 )

The solution to this problem indicates the feasibility, if y£0 then e# lies within the feasible region,

otherwise if y>0 then e* lies outside the feasible region. Note that (34) differs from (20) in that e*

is known in (34) but t is not known in (20). This makes (34) easier to solve than (20). But it is

also important to note that (34) must be solved for each function evaluation whereas (34) is solved

only once in the inequality reduction portion of the proposed methods. Thus (20) is not solved for each

quadrature point.

Expected Stochastic Flexibility

As mentioned previously in the paper there are two components involved in the calculation of

the expected stochastic flexibility: first the stochastic flexibility for a given state that is determined

from (25), and second the state probability that is computed from equation (4). Given the state

probabilities and the stochastic flexibility for each state the E(SF) can be calculated as follows.

1=1 ( 35 )

The E(SF) represents the average stochastic flexibility we would measure over the long run.

The summation however may involve a large number of terms even for small number of units, (e.g.

1024 states for L«10 units). In order to prevent the evaluation of the SF for a large number of states,

lower and upper bounds can be developed for the E(SF) as follows.

The basis for the bounding procedure is first the fact that the feasible region gets smaller as the

number of active states decreases. Or mathematically SF(Sa)£SF(Sb) for S5 c Sa and nA(Sa)>nA(Sb)

where nA(S) is the number of active components in system state S-,. The second fact is that for most

common systems p/>0.5, which implies that the probability of a unit being available is larger than

when it is unavailable. This would then suggest that a reasonably tight lower bound can be obtained by

considering a partial summation of (35) that includes those states with the highest number of active of

components. A valid upper bound can be obtained by adding to the partial summation the probability of

the remaining terms multiplied by a SFm a x which is larger than any SF in the truncated part of the

summation. More specifically assume that the partial summation is evaluated for L, L-1,..., nA active
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components. Based on the properties of the SF, the SF with nA active components bounds the SF for

nA-1 acitve components. But recall there may be more than one state with nA-1 in the truncated part

of the summation, thus there may be a large number of states in level nA. Thus, to ensure a rigorous

upper bound the largest SF in level nA is used.

To illustrate more clearly the idea behind the proposed bounding scheme, assume that there are
four possible states with nA (S 1 ) -3 , nA (S 2 ) -2 , nA (S 3 ) -2 , n A (S 4 ) - 1 . The expected stochastic

flexibility for this case is as follows.

E(SF)-SF(S1 )*P{S1 )+SF(S2)*P(S2)+SF(S3)#P(S3)+SF(S4 )*P(S4) ( 3 6 )

The lower bound for a one term approximation (nA«3) is obtained by truncating the summation.

LB-SF(S1 )*P(S1 ) . ( 3 7 )

The upper bound is obtained by selecting for the truncated part of the summation the largest SF in the
level nA-3, that is SF(S1).

UB-SF(S1)*P(S1)+SF(S1)*(P(S2)+P(S3)+P(S4)) ( 3 8 )

Note that the bounds in (37) and (38) only require the evaluation of SFfS^.

The bounds for three terms would then be as follows:

LB-SF(S1)#P(S1)+SF(S2)*P(S2)+SF(S3)*P(S3) ( 3 9 )
UB-SF(S1)*P(S1)+SF(S2)*P<S2)+SF(S3)#P(S3)

+P(S4)*(max {SF(S2), SF(S3)}) ( 4 0 )

The bounding procedure can then be stated in general as follows. Let nj be the number of

inactive components. Then, there are LI/{(L-nI)l njl} states that exhibit the same number of active

units for fixed rij. Thus, the following bounding scheme can be developed:

1 ) Set n r0,Ns«1.
2 ) Let N-LI/ttL-nj)! n^}
3) Evaluate the stochastic flexibility SF(Sj) for i-Ns.Ns+N-1 .
4 ) Evaluate the lower and upper bounds:

SF(Si)*P(Sj)

(41a)
L

UB=LB+SFmmx» 2 -
i"N+1 (41b)

where SFmax-max (SF(Sj)} for I-Ns.Ns+N-1
5 ) If UB-LB<e stop. Otherwise set Ns-N+Ns, n r n I + 1 , if Ns£2L go to step 2;

otherwise stop.

22



Several modifications to this procedure are discussed in Appendix D. These modifications allow the

upper bound to be tightened significantly by taking advantage of the relationship between the states and

substates.

Example 3

In this example the expected stochastic flexibility of a chemical complex will be determined.

The system, shown in Figure 6, converts species A to C by two different processes. The first involves

plants 1 and 2 (in parallel) for the production of intermediate B, and plant 3 for converting B to C.

The second process involves plant 4, producing C directly from A. Uncertainties are assumed in the

supply of raw material A (continuous), the demand of product C (continuous) and in the availability of

the four processes (discrete).

F

c
r

F2

1

2

4

F7

F6

F8

V

/

F9

F10

Figure 6 Chemical complex

The variables and parameters used to model this system are given below.

F Molar flow rates
a Conversion factors
d Processing capacity
S Supply of A
D Demand for C
y Boolean variable representing the availability of the plants

(1 if available, 0 if unavailable)

The equations used to model the system are as follows.

Mass Balance

F3 -F4 IF5
F10-F8+F9

^7"(X1 F5
Fg«a^ F4

Specifications

Y2

F2sd4 y4

F 9 «a 4 F2

The variables are classified as follows

State variables
Control variables

(42)

F2 , F4, F6 , F7 ,
F1.F3.F5

, Fg,
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Uncertain oontinuous parameters DandS
Uncertain discrete states y

Solving the mass balances for the state variables and eliminating them in the specifications the

following set of reduced inequalities is obtained.

fa: F3-d3

f4: F r F 3 - d 4 y 4 £ 0
f5: F, -SsO
f6: D- a 4 F1 - (a1*o3 -o4 ) F3£0 (43)

Table 6 Data for Example 1.

Supply Of A S N - 1 2 o A - 1 m N (12 ,1 )

Demand DN-7 O D - 1 =» N(12 ,1 )

Probability of operation p^O.95 p 2 -0 .95 p 3 -0 .92 p4«0.87

Mass balance coefficients c^-0.9 a 3 - 0 . 8 a 4 -0 .7

Processing Capacity d i - 5 d2-3.5 d3«7 d 4 -7

Given this data we can generate the first set of reduced constraints by eliminating the control variables.

V 1 - 1 - DS13.12 y! +13.80 y2 + 12.75 y4

V1.2»D£O.36 y^O.38 y2 +21.25 y3+12.75 y4

y1>3-D-0.85 SS0.36 y^O.38 y2

y1.4-D^12.75 y, +13.42 y2+0.60 y3+12.75 y4

y1.5-DS21.85 y3+12.75 y4

y i .6.Q.o.85 S^0.60 y3

L

y1.fl.SSSy

y1.10».S^SL (44)

Note that bounds on the continuous uncertain parameters have been added to this list of constraints.

This has been done to prevent unbounded regions. It also prevents quadrature points from being placed

where the probability distribution is negligable. The bounds depend on the distribution being used, for

example, with a normal distribution the bounds might be the nominal point ± 4 sigma. In this problem

D>x1 and S«r2* thus S should be eliminated from the first set of reduced constraints. All the equations

that do not contain S are automatically a part of the second set of reduced constraints, only the

inequalities that involve S are part of the inequality reduction scheme.
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y2 ,1 - DS13.12 i\ +13.80 y2 + 12.75 y4

y2.2-DS0.36 y1+0.38 y2 +21.25 y3+12.75 y4

D 5 K +13.42 y2+0.60 y3+12.75 y 4

5 y3+12.75 y4

y2,5-DS0.36 y^O.38 y2 +0.85
y2,6-Ds0.60 y3 +0.85 Sy

y2,7-DsDu
y2,8—DS-DL ( 4 5 )

Having both sets of reduced inequalities the E(SF) can be determined. The results using 7 point

quadrature for both continuous uncertainties is shown in Table 7.

Table 7 Summary of results
State y1 v2 y3

for calculation of Expected Stochastic Flexibility
y4 SF(Si) P(Si) P*SF

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0

1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0

1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

0.9897
0.1894

0.1472
0.0000
0.9891
0.0043
0.1472
0.0000
0.9839

0.00005
0.1472

0.0000
0.1472
0.0000
0.1472
0.0000

0.7224
0.1079
0.0628
0.0094
0.0380
0.0057
0.0033
0.0005
0.0380
0.0057
0.0033

0.0005
0.0020
0.0003
0.0002
0.0000

0.7149
0.0204
0.0092
0.0000
0.0376
0.0000
0.0005
0.0000
0.0374

0.0000
0.0005

0.0000
0.0003
0.0000
0.0000
0.0000

0.8209

The expected stochastic flexibility is 0.8209. This means that the chemical complex in Figure 6 has an

82.09% probability of feasible operation.

Although this is a small example assume that it is desired to compute bounds on the expected
stochastic flexibility. For example, with nj-0 the following bounds are obtained.

Using nj«1

LB
UB

LB

0.9897*0.7224-0.7149
-0.7149+0.2776*0.9897-0.9897

(0.7224*0.9897)+(0.1079*0.1894)+(0.0628*0.1472)
* +(0.0380*0.9891 )+(0.0380*0.9839)

-0.8196
UB-0.8196+(0.9891 *(1 -0.9692))

-0.8501

(46a)
(46b)

(47a)

(47b)
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Thus after evaluating 4 out of the 16 states the bounds on the E(SF) are fairly tight,
0.8196£E(SF)£0.8501. As discussed in Appendix D, a modified bounding scheme can be used to
further tighten these bounds to 0.8199sE(SF)$0.8233.

This example also brings out several important points. First, if only the stochastic flexibility
were calculated a value of 0.9897 would have been obtained for the state in which all components are
active. On the other hand for the given probabilities for the availability in Table 6. and using the
standard equations for reliability (Shooman 1969), the predicted reliability for the system is 0.9893.
These two metrics by themselves are somewhat misleading because when the interaction between the
continuous and discrete uncertainties are taken into account a much less optimistic probability of
feasible operation, 0.8209, is obtained. The reason is that the states in which some equipment has
failed do not have enough capacity to meet the demand. This is evident if the E(SF) is compared to the SF
for the case when all states are active, 0.8209:0.9897. This dearly indicates that the system has
difficulty tolerating the discrete uncertainties.

It is interesting to note that if the capacity of units 3 and 4 are increased from 7 to 10, the
E(SF)«0.9356, which is a significant improvement.

Conclusions

This paper has presented a new measure for process operability: the expected stochastic flexibility.

This measure provides a framework for integrating flexibility and reliability under a common

framework where interactions between these two aspects can be taken into account.

As has been shown, the integration over the continuous parameters can be performed effectively

with an inequality reduction scheme whose computational expense is small for linear constraints. Also,

a bounding procedure has been suggested that avoids the examination of a large number of states.

Finally, the example problem has shown not only the computational feasibility of the proposed

measure, but also the fact that it provides more complete information that when flexibility and

reliability are treated as separate measures.
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Appendix A Determination of p/

For each piece of equipment that is to be considered uncertain a probability that the equipment

will be available is needed. A simple approach to this is to use mean time to failure (MTTF) and mean

time to repair (MTTR) data. Qiven this data the probability necessary is given by the following

expression.

MTTF
r MTTF+MTTR (A1)

This measure is discussed by Van Rijn (1987). He also discusses more complicated models.
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Appendix B Reduction of the Constraints

An important part of the integration method is the reduction scheme for the constraints; that is
eliminating variables from the constraints while maintaining the same feasible region in the space of
those variables that were not eliminated. The variables that will be eliminated are the control
variables and the uncertain parameters.

The formulation used to accomplish the elimination is shown below.

minu
zu

s.t.fj(d,z,T)-u£0 j€ j ( B 1 )

It is important to note that the parametric solution is not just a term but part of an inequality of the
form y<0 . Although initially it looks as if the optimizations in (B1) are being replaced with equally
difficult problems, this is not the case. The optimization shown above can be solved quite simply once
the active sets are determined (Grossmann and Floudas, 1987). An active set is the set of indices of the
constraints that are active, fj-O. The active sets are determined from the optimality conditions. The

mathematics of the solution will be discussed after motivating the formulation of equation (B1).

The basic idea of the formulation is best described graphically. Consider the feasible region

shown in Figure B1. In this system there is one control variable and one uncertain parameter t.

.MIN .MAX X

Figure B1 Feasible Region for one control and one parameter

This figure shows the feasible region in z x space. The purpose of the formulation is to eliminate z from
the constraints, resulting in reduced constraints that define the feasible region in x space. That is, the
reduced constraints would define the following feasible region xmjn^x^xmax.

In order to understand the formulation one must consider the third dimension f, the value of the

constraints. Since feO for feasibility, the feasible region is the interval in which the value of all 3
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constraints are less than zero. Outside the feasible region at least one of the constraints is greater than
zero. Crossections for a x:T^tmjn and t:tmjr^T5tmax are shown in Figures B3 and B4.

Figure B2 Feasible Region in t-z space.

MAX t

Figure B3 Crossection for x:
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Figure B4 Crossection for x:x£xmjn :

In Figure B3 the region between zmin and zmax is a non-empty feasible region since all 3 constraints

are less than zero. In Figure B4 there is no feasible region since there is no value of z which results in

all 3 constraints being less than zero.

The formulation for the reduced constraints tries to minimize u, the value of the largest constraint.

Figure B5 shows the value of u for the crossection in Figure B3.

r
V(d,t)=m1n u

Figure B5 Crossection showing the value of u and the solution y

For given x and d the formulation searches for the smallest value of u along z, the point at which the

largest constraint is minimized. This value of u is the solution to the optimization problem at t.

Although a particular! was chosen to demonstrate how y is obtained when solving the problem it is not

necessary to choose a particular x. The solution can be generated in terms of x by knowing what
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constraints give rise to u, i.e. the active constraints. In this problem there are actually two sets of
active constraints, a crossection for x close to xmax might look like Figure B6.

Figure B6 Crossection for x close to xmax

In this case the active constraints are 1 and 3. For this problem these are the only two active sets. The

only other possible combination would be 2 and 3. The problem with 2 and 3 is that the sign of their

slope is the same, which would result in u—« for all x. This means that all x are feasible, in this case

determination of bounds is meaningless.

Each active set (1,2) and (1,3) will give rise to a different function y(d,x). These two y are shown in

Figure B7.

Figure B7 Plot of y for the two sets of active constraints

As shown the y maintain the same feasible region in the x space. It might appear that Figure B7 is

incorrect since it shows two values of y for any value of x. Actually it is just the larger value that is y,

the lower value is simply the intersection of the constraints that are not active. For example, the
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intersection of 1 and 2 in Figure B6 gives rise to the lower values of y in Figure B7 for t to the right of

the intersection.

To summarize the control variable z has been eliminated from the constraints while still maintaining

the feasible region in t space. Note that the control variable could just as well have been another

continuous parameter uncertainty.

Mathematical Formulation

Having motivated the formulation in equation (B1) an outline of the derivation of y will be presented.

For constrained optimization problems the solution (y) can be written in terms of the

Lagrangian of the problem. For the general problem in equation (B2);
*

minf(x)
s.t.g(x)£0 ( B 2 )

the lagrangian can be written as follows:

m
L=f(x)+£xjgj

j = 1 (B3)
The multipliers Xj are obtained from the optimality conditions for this problem

Vf(x)+5>jVgj(x)=0
j (B4)

The derivative is taken with respect to each degree of freedom, the variables over which the

optimization is performed. The other optimality conditions are called the complementarity conditions.

They specify that only active constraints can have X£0, inactive constraints must have X*0.
*j(gp-O. Xj*O, QjSO, je J (B5)

In equation the function f(x)»u,gj«fj-u, and the degrees of freedom are z and u. Thus the Lagrangian

can be written as follows for our problem.

X
i -1 (B6)

The optimality conditions thus yield the following:

J i (B7)

ZWro
i (B8)
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(B9)

Using equation (B6) the lagrangian can be simplified as follows:

X

J*1 (B10)

It can also be shown that the number of X that are active is equal to the number of variables being

eliminated +1(see Swaney and Grossmann, 1985), thus:

Z|X|-dim{z}+1 (B11)

here \\\~0 if JUO and |X|-1 if X>0.

The solution to the problem can then be written as follows:

I
J (B12)

the conditions on the multipliers are subject to the following equations:

jeJ

(B13)
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Appendix C Derivation of Quadrature Formula

The stochastic flexibility is described by the following integral.

Guassian Quadrature will be used to solve the integral. The guassian quadrature formula to be used is
shown below.

fD b-a Y1 (yi(

* M (C2)

where Vj is the location of the quadrature point in (-1,1] space, and w{ is the weight of the quadrature
point.
The first step to solve the stochastic flexibility integral is to define the inner integral as a variable that
depends on x1.

(C3)

Thus the SF can be written.
U

v l (C4)

The guassian quadrature formula can be applied to this resulting in the following.

XV-XVQPI ql U L U L
SF(S;)*-i—- Y. G(x7fwal ql Vjfx.-x,) + x, +x,

2 7^* where x j = —— -

Next the quadrature formula is applied to the second integral.

.U.qlv

(X2)
ax C t 2 ( t l )

G(x7)« I H
J L ql

(C6)

This procedure can be repeated until the last integral is put into quadrature formula.
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U ql ql.q2 ql.q2 qM-1

tqiqi.q2 .qU2 qM-i rxtfxl.%1 ~ *M- I ) :,t* ̂
X,,X2 ~XM4 ) -j j(T)dtM

Xj^tj ,t2 ^.XM-1 )U ql ql.q2 ql.q2 qM-1 L ql ql.q2 ql,q2 qM-1 Q J - .
_XM(T1 »T2 « ~ » T M - 1 ) - ^ M ( T l »T2 ~ - T M - 1 ) MS1 „ ql ql.q2 ql.q2 qM-1

i * x l T2 —XM )• 5
2 qM-1

<C7)

Thus the stochastic flexibility can be written in the following form.

42-1 '

U ql ql.q2 ql.q2 qM-1 L ql ql.q2 ql,q2,....qM-l (ypM , , „ , , w

rTM(Xl ,X2 ^ t M - 1 ) ~ X M ( T 1 »T2 »~»tM-l ^ 1 ^ . ,^ql ,,ql.q2 ql,q2 qM
...[ J Z>Ht i , t 2 _XM )

(C8)
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Appendix D Modification of Upper Bound

The bounding procedure described in the paper can be modified to improve the convergence of the upper

bound. Specifically, there are two modifications to the truncated term that can significantly improve

the upper bound. The first modification is most easily motivated with Figure D1.

S1 -{1,2,3.4}
(1111)

SF-0.9897

S2-{1,2,3}
(1110)

SF-0.1894

S3-{1.2,4}
(1101)

SF-0.1472

S5-{1,3.4}
(1011)

SF-0.9891

S942.3.4}
(0111)

SF-0.9839

S4-{1,2}
(1100)

SF-0.0000

S6-{1,3}
(1010)

SF-0.0043

S7-{1,4}
(1001)

SF-0.1472

SiO-{2,3}
(0110)

SF-0.00005

S11-{2,4}
(0101)

SF-0.1472

S13-{3,4}
(0011)

SF-0.1472

(1000)
SF-0.0000

S12«{2}
(0100)

SF-0.0000

S14.{3}
(0010)

SF-0.0000

S15-{4}
(0001)

SF-0.1472

S16«{0}
(0000)

SF-0.0000

Figure D1 States and SF from Example 2.

In this figure the lines connect a superstate to its substates. A substate is a state S& that is a subset of

the superstate Sa , St>cS a . For example S13-{3,4} is a subset of S5-{1,3.4} and S9-{2,3,4}.

Because S 1 3 is a subset of S5 and S9 its associated SF is subject to SF(S13)sSF(S5) and

SF(S1 3 )SSF(S9 ) . The first modification involves noting that each state in level nA-2 has 2

superstates in level nA«3. Thus, the largest possible SF for any state in nA-2 has to be smaller than
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the 2nd largest SF in nA-3. The idea being that the SF of a subset is less than or equal to the smallest

SF of its supersates. In general a state in level nA is a subset of L-nA states in level nA+1. Thus, the

largest possible SF for level nA is the (L-nA)'th largest SF in level nA+1. In example 3 the 2nd

(L-nA«4-2) largest SF in level 3 (nA+1) is 0.9839, equation (47b) can be modified as follows:

UB .0.8196+0.9839(1-0.9692)

-0 .8499 (D1)

This is not a significant improvement since the values of the first two SF are similar, but by exploiting

the structure further the upper bound can be improved.

Consider the following two levels of states, which do not correspond to Figure D1.

nA*3

nA«2 S7 S8 S9 S10 S11

Figure D2 Example states showing how the relation between the states can be used to improve the UB.

Assume that the states in level nA«3 are arranged in order from the largest, S1, to the smallest, S$.

The states in level nA«3 are also connected to their substates in level nA«2. Note that S1 has S7 and Sg

as substates, and S2 has S8 and S1 0 as substates. According to the previous section, if the states in level

nA-3 were the last to be included in the lower bound then SF(S2) (2nd largest) would be used to

approximate the SF of the unevaluated level nA«2. But note that S1 and S2 do not compose a family since

they have no common substates. Thus the largest SF in level nA-2 must be less than or equal to

SF(S3), since a substate is always bounded by its smallest superstate. Therefore S1 and S2 do not

represent tight bounds on the states in level nA«2 since each of the states is also bounded by S3 to S5,

which are smaller than S1 and S2. This suggests the following scheme, arrange the states in the last

level that has been evaluated from the one with the largest SF to that with the smallest SF. Proceeding
from the largest to the smallest, stop when any (L-nA) states , nA referring to the unevaluated level,

have a common substate. The last state examined would be used in the remainder term of the upper

bound. Unfortunately for example 3, both S5 and Sg (the two largest states in level nA-3 in Figure

D1) have a common subset S13 , thus the upper bound can not be improved.

But Figure D2 also suggests further improvements in the order in which the states in level nA-2 are

evaluated if the bounds obtained from level nA-3 are not sufficiently tight. The next state evaluated

should be the substate In level nA«2 that limited the progress of the examination of the states in level

nA«3 just described. In the case of Figure D2 this state is S7. If SF(S7) is evaluated both new upper

and lower bounds can be evaluated, but more importantly the SF in the upper bound remainder term can
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be modified. Referring back to Figure D2, the states SF(S1), SF(S2) and SF(S3) can be ignored and

"replaced" with the SF(S7).

nA«3 S1 S2

nA-2

Figure D3 Showing the states that bound the SF in the truncated part of the summation.

These states are ignored since they no longer represent the "tight" bound on any unevaluated states. The

tight bound is determined by the state with the smallest SF in a substates family. In this case Sg, S9>...

all have tight bounds determined by S4, S5,...t all of which are smaller than S1t S2 and S3. Now the SF

in the remainder term is the largest SF of the set of tight bounds and S7 since it replaced a tight bound.

From this point on the reduction of the upper bound becomes complicated. It is suggested that the

remaining set of tight bounds simply be used to evaluate additional terms in the next level rather than

doing so in order to find a smaller SF to use in the remainder term.

If this idea is applied to Figure D1 of Example 3, we would evaluate S1 3 and replace S5 and Sg.

The largest SF from the remaining group (S2, S3, S13) is S2 with a SF of 0.1894. The new upper and

lower bounds having evaluated S1 3 are as follows:

LB«(0.7224*0.9897) + (0.1 079*0.1894) + (0.0628*0.1472) + (0.0380*0.9891)

+ (0.0380*0.9839) + (0.0020*0.1472)

-0.8199 (D2)

UB-0.81 99+(0.1 894*(1 -0.9692-0.0020))

-0.8254 (D3)

These bounds are very tight and for this example it is not necessary to go further, but there is a second

modification which can tighten the upper bound even more without the evaluation of any more states.

The second modification also involves the remainder term. Recall that the probability portion of the

term takes on the following form.

*<£ N

ui+i w ( D 4 )

Note that the left hand side represents the total probability of the states that were not used in the

evaluation of the lower bound; some of which are infeasible. The right side simple subtracts the
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probability of the states that were evaluated from 1. The probability of the infeasible states are

included despite the fact that they have SF-0, and thus do not contribute to the E(SF). it is beneficial to

remove the probability of the infeasible states. The sum can be divided up into two portions, a sum

over feasible states and a sum over infeasible states.
L N

5;p(Si)
(D5)i«feasible i«infeaiible

By subtracting the infeasible states form both sides the desired sum over only the the feasible states is

obtained. The important point to note is that one minus the sum over the infeasible states is simply the

total probability of feasible states, which is simply the reliability of the system. This assumes that

none of the states that have already been evaluated (i-1 ,..,N) are infeasible.

Z P(Si)=l- Z P ( S i ) - X X
i=fc*sible i«infetsible

Thus by calculating the reliability of the system the upper bound can be reduced further. The upper

bound can be written as follows:
N

UB=LB+SFmax»(REL-X P(S|))
*"" (D7)

For example 3 the following upper bounds are obtained, the first uses the largest SF from nA-3,

similar to equation (47b).

UB- 0.8196+(0.9891 *(0.9893-0.9692))
-0.8395

The second uses the modified SF, equation (D3), in the remainder term

UB«0.8199 + (0.1894*(0.9893-0.9712))

-0 .8233

Recall that the actual value for the E(SF)-0.8209. Using these modifications the bounds have been

changed from 0.8196sE(SF)£0.8501 to 0.8199£E(SF)s0.8233 by simply evaluating one more state.
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