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ABSTRACT

An improved outer-approximation algorithm for MINLP optimization has been
recently proposed which is aimed at the solution of problems where convexity conditions
may not hold. This algorithm has been implemented in the computer package DICOPT++.
Computational experience is presented on a set of SO test problems. Included are
problems for optimum feed tray location and number of plates for distillation columns
whose models are described in detail. The results show that the proposed algorithm can
effectively handle these design problems.



Introduction

There has been recently an increased interest in the development and application of
nonlinear optimization algorithms that can handle both continuous and integer variables,
especially of the 0-1 type (see Grossmann, 1989). These problems, which are commonly
referred to as mixed-integer nonlinear programming (MINLP) problems, have many
applications in engineering design, planning, scheduling and marketing. Often the
corresponding MINLP models exhibit special structures (e.g. graphs, networks, separable
functions) that can be effectively exploited for developing specialized solution procedures.
However, it is also very often the case, particularly in engineering design, that
nonlinearities in the continuous variables do not exhibit any special form since they result
from complex engineering models. Thus, there is clearly a strong motivation to develop
MINLP algorithms that that are not overly restrictive in the assumptions of the form and
properties of the functions that are involved.

Among the general purpose algorithms for MINLP, we can cite branch and bound
(Beale,1977; Gupta, 1980), Generalized Benders Decomposition, GBD, (Benders, 1962;
Geoffrion, 1972), the Outer-Approximation/Equality-Relaxation Method, OA/ER (Duran
and Grossmann, 1986; Kocis and Grossmann, 1987), and the Feasibility Technique
(Murtagh and Mawengkang, 1986; Mawengkang, 1988). The branch and bound method has
the drawback that it can require the solution of a large number of NLP subproblems in the
search tree, unless the NLP relaxation is very tight. GBD has the advantage that one can
exploit more readily special structures in the NLP subproblems, but has the drawback that
it may require a significant number of major iterations where NLP subproblems and MILP
master problems must be solved successively. The OA/ER algorithm has the advantage that
it typically requires only few major iterations, but has the drawback that the size of its
MILP master problem is considerably larger than in GBD. Finally, the Feasibility Technique
requires the least computational expense since it is based on the idea of finding a feasible
integer point that has the smallest local degradation with respect to the relaxed NLP
solution. However, it has the drawback that it does not guarantee optimality. Other related
procedures for MINLP have been reported by Yuan et al. (1987) who extended the CA
algorithm for convex nonlinear 0-1 variables, and by Floudas et al. (1988) who applied
partitioning of variables in GBD to induce convex NLP subproblems.

The branch and bound, GBD and OA/ER algorithms require that some form of
convexity assumption be satisfied in order to guarantee that they can find the global
optimum of the MINLP. On the other hand, the OA/ER algorithm, which tends to be the most
efficient method when the NLP subproblems are expensive or difficult to solve, is the most
stringent in terms of convexity requirements. In particular, the OA/ER algorithm relies on
assumptions of convexity of the functions f and g and also the quasi-convexity (resp. quasi-
concavity) of nonlinear equality constraints, h (Kocis and Grossmann, 1987). When these
conditions are met, the algorithm will determine the global optimum. Otherwise, the
linearizations of the master problem can cut into the feasible region of candidate integer
points which may result in sub-optimal solutions (Kocis and Grossmann, 1988).

to overcome this problem, a two-phase strategy was proposed by Kocis and
Grossmann (1988) where in the first phase the OA/ER was applied. In the second phase,
linearizations of nonconvex functions are identified by local and global tests so as to relax
the master problem. This scheme proved successful in locating the global optimum in abou'.
80 % of a set of test problems. The implementation of the local and global tests is, however,
somewhat difficult and they are not guaranteed to identify all the nonconvexities.



Motivated by observations with our experience in solving MINLP problems, it is the
purpose of this paper to develop a new variant of the OA/ER algorithm which does not
require the explicit identification of nonconvexities. As will be shown, this can be
accomplished with a new MILP master problem that incorporates an augmented penalty
function for the violation of linearizations of the nonlinear functions. Furthermore, the
proposed algorithm (AP/OA/ER) has the important feature of not requiring the
specification of an initial set of 0-1 variables since the algorithm starts with the solution
of the relaxed NLP problem. Also, if appropriate convexity conditions hold, the AP/OA/ER
algorithm has embedded the OA/ER algorithm. Numerical results are reported for a set of
20 test problems which include distillation column design problems. Although convergence
to the global optimum cannot be guaranteed, the numerical results suggest that the proposed
algorithm is not only computationally efficient, but also very robust for finding the global
optimum solution.

Outline of the AP/OA/ER Algorithm

We consider here the MINLP (mixed-integer nonlinear program) of the form:

Min z := cT y + f (x)
s.t. Ay + h (x) = 0

By + g (x) < 0

Cy + Dx < 0

x e X = {X€ R n : x L < x < x u } ( p )

y e Y ={0,1}m

Here, x denotes the vector of continuous variables and y denotes the vector of binary
variables corresponding to logical decisions (e.g. the existence of units). The functions f, g
and h are defined over appropriate domains and have continuous partial derivatives. The

matrices A, B, C and D have compatible dimensions. For each fixed binary vector yK, we
assume that the corresponding NLP (nonlinear program):

Min z := cTyK + f (x)
s.t. AyK + h (x) = 0

ByK + g (x) < 0

CyK +Dx <0 [P(yK)l
X € X = {X€ R n : x L < x < x u }

satisfies any of the constraint qualifications (Mangasarian, 1969) so that the solution
vector is a KKT (Karush-Kuhn-Tucker) point.

The algorithm that we propose involves the following steps :



1. Solve the NLP relaxation of (P) with y € Yr = { ye Rm, 0 < y < e} ,

where e is the unity vector, to obtain the KKT point (x y ). If y is integer, stop.
Otherwise, go to step 2

2. Find an integer point y with an MILP master problem
that features an augmented penalty function to find the
minimum over the convex hull determined by the half-spaces

at the KKT point (x°fy°) .

3. Solve the NLP [P(y1)] at y1 to obtain the KKT point ( x\y1).

2
4. Find an integer point y with the MILP master program
that corresponds to the minimization over the intersection
of the convex hulls determined by the half-spaces of the

KKT points at y and y

5. Repeat steps 3 and 4 until there is an increase in the
value of the NLP objective function. (Repeating step 4 means augmenting
the set over which the minimization is performed with additional
linearizations - i.e , half-spaces - at the new KKT point).

The above algorithm is in the spirit of earlier algorithms proposed by Duran and
Grossmann (1986) and Kocis and Grossmann (1987), but there are some important
differences.

In both the previously cited algorithms it was assumed that an initial integer point

y was supplied so that steps 1 and 2 were absent. Also, the termination criterion used in
these algorithms, viz:

5 . Repeat steps 3 and 4 until the objective function of the
MILP was greater than or equal to the lowest value of
the objective function among the previously solved

NLP minima at fixed values of the integer vector y .

is different from the one proposed here.

While the OA/ER algorithm has proved to be quite successful in solving a variety of
problems (Kocis and Grossmann, 1989a), its major limitation has been that it relies on
assumptions of convexity of the functions as discussed previously.

For the algorithm proposed here, no assumptions concerning convexity of the
functions in the MINLP are made. The main idea relies on the definition of a new MILP
master problem the uses a linear approximation to an exact penalty function (Zhang, Kim



and Lasdon, 1985), and therefore allows violations in the linearizations of the nonlinear
functions. The algorithm is also based on extensive computational experience that has
confirmed the desirability of starting with the solution of the relaxed NLP and the use of

termination criterion 5 instead of 5 . The algorithm embeds the OA/ER algorithm in the case
the assumptions concerning convexity of the latter are fulfilled. Although the proposed
method has no theoretical guarantee of finding the global optimum, it was able to locate
global optima in virtually all test problems despite the presence of nonconvexities in the
MINLP problem. Our experience includes solving some challenging problems in distillation
column design

The following sections describe the three major items of the proposed algorithm:
starting point, MILP master problem and the termination criterion. Implementation of the
algorithm is discussed and numerical results are also presented.

Starting point

Both Generalized Benders Decomposition (Geoffrion, 1972) and the OA/ER
algorithm (Duran and Grossmann, 1986; Kocis and Grossmann, 1987) assume that an

initial integer value y is supplied. On the other hand, the branch and bound method (Gupta,
1980) and the feasibility technique of Mawengkang (1988) start the calculations by
solving the relaxed MINLP problem. This means that :

1. If the relaxed MINLP provides an integer solution,
further calculations are not necessary.

2. The user need not provide an initial integer vector.

It is also reasonable to expect that the solution of the relaxed MINLP will provide
very good estimates of the continuous variables and, hence, the linear approximation to the
MINLP at this point will often be of good quality.

Thus, we begin computations by solving the relaxed MINLP:

Min z := cT y + f (x)
s.t. Ay + h (x) = 0

By +g(x )<0
1 Cy +Dx <0

xe X = {X€ R n : x L < x < x u } ( 1 )

y€ Y r = { y € R m , 0 < y < e }

The solution to this problem may be obtained by any NLP solver such as MINOS, SQP, etc .
0 C 0

Let the solution be (x y ) If y is integer, we stop. Otherwise, we proceed for the search of
an integer solution. Note that if problem (1) is infeasible or unbounded, the same is true of
the original problem (P). As may be expected, the solution of the relaxed MINLP generally
takes longer time to solve than the time required for the case of a NLP with fixed binary
vector. Also, it should be noted that the NLP solution in (1) is only guaranteed to correspond



to a global optimum if appropriate convexity conditions are satisfied (see Bazaraa and
Shetty, 1979).

Master Problem

o 1
If y is not integer, we wish to find an integer vector y , whose corresponding NLP

solution is a likely candidate to the global optimum of the program (P). For the case where
the objective function is convex and the MINLP has only inequality constraints which are
also convex, the "best" integer point lies in the convex hull determined by the half-spaces

at (x y ) (see Duran and Grossmann, 1986). The motivation is to find an estimate of the
KKT point but with integer coordinates.

That is, given

Min z° := cTy°+ a

s.t. f(x)- a < 0
Ayo + h (x) =0
By0 + g (x) < 0
Cy° + Dx < 0

X€ X = { X € R n : x L < x < x u } (2)

the convex hull C(x,a,y) determined by the half-spaces of the KKT point of (2) at y° is
given by

f(x°) + Vf(x°)T(x - x°) - a < 0

T° [ Ay0 + h(x°) + Vh(x°)T(x - x°) < 0

B y<> + g(x°) + Vg(x°)T (x-x<>) < 0 (3)

C y° + D x < 0

where T° is the relaxation matrix of the equations afy + hj (x) = 0, given by

T° = { t$} , tfi = sign{ X\ }, with X? being the Lagrange multiplier of equation i.

The following proposition can then be established:



Proposition 1: If (x°, a) is a KKT point of (2) at y°, then (x°, a) is a KKT point of
the problem

Min z:= cTy°+ a (4)

with (x°, a) satisfying (3).

Proof: The KKT conditions of (2) are given by :

1 - a = 0

aVf (x°) + X fciVhj (x°) +X W 9̂i (*°) +X v(di +pu -

Ay0 + h (xO) = 0

By0 + g (x°) < 0
Cy° + D x° < 0

xL < x < xu

[f(x°)-a]a =0, a>0

j=O, VJ>0

Jp|- = O. p|->0

These conditions are also identical for problem (4) at (x°, a) by setting

ajy° + hj(x0) + Vhj(x°) T(x - x°) < 0 if Xj > 0

ajy° + hpfi) + Vhj(xO) T(x - x°) ^ 0 if Xj < 0

Q.E.D.

If f and g are convex and tjjhj is quasiconvex (see Bazaraa and Shetty, 1979), then

the integer vector y that has the "best" potential for yielding the lowest value for the
objective function is given by the solution of the following MILP (see inequalities (3)) :

z[= Min cTy + a
(5)

s.t (x,a,y) €C(x,a,y)n (0,1 }m



1
Furthermore, z L provides a valid lower bound to the solution of problem (P) (see Duran
and Grossmann, 1986).

In the general case, where the assumptions concerning the convexity of f, g and h are
not met, we cannot assert that problem (5) will provide a valid lower bound nor that it has
a feasible integer solution even when problem (P) has. To circumvent this problem, we
consider the following MILP with an augmented penalty function :

z% := Min cTy + a+w°s° + X w fP i
i

s t f(x°) + Vf(x°)T(x - xO) - a <s<>
O.I.

T°[ Ay + h (x°) + Vh(xO)T(x - x°) < p

By +g(xO) +Vg(x°)T (x-x©) <q

Cy + Dx <0

ye {0,1}m s°>0,p>0,q>0

where w > a , ws > XL w, > are the weights on the slack variables.

Using a similar argument as before, the following proposition can then be easily
proved:

Proposition 2: If (x°, a) is a KKT point of (2), then it is also a KKT point of (6) at

Thus, problem (6) can be used to formulate a master problem which has the
flexibilty of violating inequalities should this prove necessary when searching for a new

integer vector y . We also note that in case the convexity assumptions are met and the
weights are sufficiently large, problem (6) reduces to problem (5) Qualitatively, the
convex hull described by (6) is an expansion of the convex hull determined by (3).

Assuming that the integer vector y has been found and its corresponding NLP solved,
2

we need to find a new integer vector y where there is a further decrease in the objective
function. Since an improved representation of the MILP master problem is required, we

o 1
will consider the intersection of half-spaces at x and x following a similar reasoning as
in the OA/ER algorithm, but the master problem will be defined with an augmented penalty

k 0
function as in (6). More generally, if x , k = 0,1,...K, with x the solution of the relaxed
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MINLPandx , k= 1,...K, are the NLP solutions found at the previously determined integer

vectors, the MILP for determining the integer vector y * is :

k ik Ik

subject to :

• Vf (x*)T(x - xk) - a < sf>

By + g(xk) + Vg(xk)T (x-x*) £ qk

C y + D x < 0

),1,..K ( 7 )

i € B k i e N k

y €

* 0 , k = 0,1,... K

In the MILP (7) above, integer cuts have been introduced to eliminate the
1 2 K

previously determined integer vectors y ,y ....y from further consideration. Note also that
if convexity conditions hold, then for sufficiently large weights the above MILP reduces to
the master problem of the OA/ER algorithm by Kocis and Grossmann (1987).

Infeasible NLP Subproblems

In the proposed algorithm it is possible that the MILP master problem in (7) may
predict an integer vector y K + 1 for which there is no feasible solution in the corresponding
NLP subproblem. In this case there are two possible schemes to handle this problem. One is
to simply disregard the associated infeasible continuous point xK+1for the linearization,
and just introduce an integer cut for yK+1 for the next master problem. The other option is
to also add to the master problem the linearization at the infeasible continuous point.
However, since in this case information on the Lagrange multipliers is required to relax the
equations, it is desirable that the equations be satisfied at the infeasible NLP subproblem.
This can be accomplished by reformulating the MINLP problem (P) as (Kocis and
Grossmann, 1987):



Min z := cT y + f (x) + r|u

s.t. Ay + h (x) = 0

By + g (x) < u

Cy +Dx < u

XE X = {X€ R n : x L <x<x u }

u>0,U€R1

where u is a scalar variable and ^ is a large positive constant. In this way the idea in (8) is
that if the NLP subproblem has a feasible solution, the variable u is driven to a zero value.
If it is infeasible for the given integer vector, it will determine a continuous point that
satisfies the equations and minimizes the violation of the inequalities. It is clear that care
must be excercised in this reformulation to ensure that these properties in fact hold.

Termination Criterion

The MILP in (7) will not, in general, produce valid lower bounds for the objective
function of problem (P) unlike the convex case (Duran and Grossmann, 1986; Kocis and
Grossmann, 1987). Therefore, we resort to termination based on the progress of the
objective function of the NLP sub-problems. For the case when no integer solution is found

in the NLP relaxation problem, the search is stopped when at iteration k > 2 , we have

z (yk) > z (yk"1) assuming the corresponding NLP subproblems are feasible. When this is
not the case, the termination criterion is applied between two successive feasible NLP
subproblems. Interestingly, for the convex case, we have observed that if we use this
criterion for all the test problems we have examined, the global solution is correctly found
in all cases. Hence, this criterion has been adopted in this work. Note that if an integer

solution y is not obtained in the relaxed NLP, the proposed algorithm would examine at
least two additional NLP sub-problems with fixed 0-1 variables.

Finally, it should also be noted that for the implementation it would always be
possible to use a termination criterion based on the lower bound of the MILP master
problem for those cases when it is known a-priori that the convexity conditions are
satisfied.

Summary of Algorithm

The main steps in the proposed AP/OA/ER algorithm are as follows:

Step 1. Solve the relaxed NLP problem in (1) to determine a KKT
point (x°, y°). If y° is integer, the solution is found, stop.

Otherwise, set K=0, z O L D « +°©̂  and go to step 2.

Step 2. Set up the MILP master problem in (7), and solve to find the integer
vector y K + 1 .
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Step 3. Solve the NLP subproblem [P(yK+1)l to determine the KKT
point ( x K + 1 , y K + 1 ) with objective value z K + 1 . If the NLP is
infeasible set FLAG-0. If the NLP is feasible, set
2 N E W e Z K + 1 f F L A G s 1 .

Step 4. (a)lf FLAG-1, determine if z N E W > zO L D ; if satisfied, stop.
The optimal solution is zOL D . Otherwise, set zOL D « z N E w , set K-K+1
and return to step 2.

(b) If FLAG-0, set K-K+1 and return to step 2.

It should be noted that the above algorithm will terminate in one iteration if an
integer solution is found in step 1, or else it will terminate after 3 or more iterations when
the termination condition in step 4 (a) is satisfied. Note that in the latter case, N iterations
implies the solution of N NLP subproblems, and N-1 MILP subproblems. Also, as was
mentioned previously, if convexity of the MINLP can be established a-priori, the
termination criterion in step 4 can be replaced by the use of the lower bound predicted by
the MILP master problem as in the OA/ER algorithm.

Computer Implementation

The proposed AP/OA/ER algorithm has been implemented as the program DICOPT++
in the GAMS system (Brooke et al, 1988) for both IBM/CMS and VAX/VMS systems. The
NLP solver used is MINOS (Murtagh and Saunders, 1985). On IBM, the MILP step is
executed by MPSX/370 (IBM, 1979), and on VAX by ZOOM (Marsten, 1986) or SCICONIC
(SCICONIC, 1986). The authors may be contacted about the availability of DICOPT++.

As for some of the implementation details, the weights in the penalty function for the
master problem in (7) have been set to 1,000 times the absolute magnitude of the Karush-
Kuhn-Tucker multipliers. Also, as indicated previously, for the case of infeasible NLP
subproblems, only the corresponding integer cut to that NLP is added to the master problem
in step 2. Addition of linearizations of infeasible NLP problems are only added to the master
problem if the original MINLP is reformulated with a slack variable for inequalities with a
large penalty as in (8). Finally, for the case when there is a very small difference between
two successive NLP solutions, no new linearizations are added to the master problem for the
second NLP since they are commonly almost identical. The default value of 1x10'4 for the
relative tolerance between successive NLP's has shown to yield satisfactory results.

Computational Results

The AP/OA/ER algorithm in DICOPT++ has been tested on the set of 20 MINLP
problems that are shown in Table 1. Note that in terms of size, these problems involve up to
60 0-1 variables, 709 continuous variables and 719 constraints.

Following is a brief description of the test problems. LAZIMY is a bilinear MINLP
reported by Lazimy (1982). HW74 is a small convex planning problem for the selection of
3 processes by Kocis and Grossmann (1987). NONCON is a small nonconvex MINLP and
CAPITAL is a quadratic capital budgeting problem reported in Kocis and Grossmann (1988).
YUAN is a convex MINLP problem by Yuan et al (1987). Since the problems LAZIMY,
CAPITAL and YUAN exhibit nonlinearities in the 0-1 variables, these problems were
reformulated with additional continuous variables in order to have linear 0-1 variables,
(see Kocis and Grossmann, 1989a).
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Problem FLEX is the MINLP formulation for the flexibility analysis of a heat exchanger
network with uncertain flowrate by Grossmann and Floudas (1987). REL1 is a nonconvex
reliability design problem considered by Kocis and Grossmann (1989a). Problems EX3 and
EX4 are taken from the work of Duran and Grossmann (1986). The former corresponds to a
small synthesis problem, and the latter to an optimal product positioning problem. EX4 was
in fact the only problem that was reformulated as in (8) since it has the tendency of
producing many feasible solutions. The three BATCH problems correspond to convexified
formulations for the design of multiproduct batch plants described in Kocis and Grossmann
(1988), while TABATCH corresponds to a batch design with tasks assignments to be
determined.

The last set of 7 MINLP problems correspond to various types of process
applications. Problem UTILRED corresponds to the retrofit of a utility plant where the
replacement of turbines by electric motors is considered (Kocis and Grossmann, 1989a).
TFYHEN corresponds to the retrofit of a small heat exchanger network that involves the
aftercooler of a compressor and the reboiler of a column (Yee and Grossmann, 1988).
EX5FEED, UNI5FEED, EX5T11 and EX5T12 are distillation column design problems for
optimal feed tray location and number of trays. The formulation of these problems is
described in detail in the next section. Finally, HDASS corresponds to the MINLP model for
the synthesis of the hydro-dealkylation of toluene process developed by Kocis and
Grossmann (1989b).

The results in Table 1 were obtained on the IBM-3090 computer at the Cornell
Theory Center. MINOS 5.2 was used as the NLP solver and MPSX 1.7 as the MILP solver. As
can be seen in Table 1, the computational requirements with the AP/OA/ER are quite
modest. Note that the solution of 4 problems, NONCON, LAZIMY, EX5FEED and UNI5FEED was
achieved in one single major iteration since the integer solution was found in the relaxed
NLP. All the other problems required only between 3 and 5 major iterations, which implied
solving between 3NLP/2MILP and 5NLP/4MILP problems, respectively.

Table 2 shows the integrality gap between the relaxed NLP and the optimal integer
NLP solution. As can be seen, this gap is quite significant in a number of problems (FLEX,
CAPITAL, HW74, EX3, EX4, TFYHEN). Also shown in this table is the objective value of the
MILP master problem at the last iteration. For the case of convex problems these
correspond to rigorous lower bounds for integer solutions other than the ones examined
previously in the iterations. Note that in the convex problems HW74, YUAN, EX3, EX4,
rigorous termination is achieved with the lower bound since it exceeds the optimal integer
NLP solution. On the other hand, in the three BATCH problems which are convex, the lower
bound lies below the integer NLP solution (in the case of BATCH the difference is very
small). Nevertheless, in the three cases the global optimum was identified . As for the rest
of the problems which are nonconvex, the MILP solution at the last iteration exceeded the
optimal integer NLP, except for the case of problem REL1.

Perhaps, one of the more significant facts from the results shown in Tables 1 and 2
is that,the global optimum was found in all cases despite the fact that 11 out of the 20
problems are in fact nonconvex . Thus, although the proposed algorithm has no guarantee of
finding the global solution, it is clear that the AP/OA/ER algorithm has shown a remarkable
degree of robustness. We feel that this is mainly due to a combination of two factors. First
the initialization with the relaxed NLP which seems to provide very good linearization
points. Secondly, the new MILP master problem which allows if needed the violation of any
function linearization.
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Distillation Column Design Problems

In this section the detailed description of the MINLP models EX5FEED, UNI5FEED,
EX5T11 and EX5T12 will be presented. These problems deal with the optimization of feed
tray location and number of trays using rigorous plate by plate models.

Optimum Feed Plate Location

Consider a distillation column (see Fig.1) with N stages including the condenser and
the reboiler (We consider the total condenser case; the other cases are dealt with
similarly). Let the trays be numbered bottom upwards so that the reboiler is the first tray
and the condenser is the last (N th) tray.

Let I = { 1,2,...N } denote the set of trays and let R - {1} , C « { N }f COL - { 2,3,
...N-1 } denote the subsets corresponding to the trays in the reboiler, the condenser and
those within the column respectively.

Let c be the number of components in the feed and let F, Tfy Pfy z/, hfy denote
respectively, the molar flowrate,temperature,pressure, the vector of mole-
fractions( with components z/y, j = 1,2,...c ) and the molar specific enthalpy of the feed.

The pressure prevailing on tray i is denoted by Pi. Let Preb = Pi , Phot = P2,

Ptop = PAM, Peon = PN be given. We have Pi^Pi^ ••• ̂  PNI ^ PN t and for simplicity we

assume Pf^

Let Li M ,/zf , and ft; denote the molar flowrate, the vector of mole-fractions, the
molar specific enthalpy and the fugacity of component j, respectively of the liquid leaving

tray i . Similarly, let V,- ,y* A and fij denote the corresponding quantities of the vapor
leaving tray i. Denoting the temperature of tray i by 7, f we have

( 9 )

hj = hfiTi, Pi9yn9yi2,...yiC)

where the functions on the right hand sides depend on the thermodynamic model used.

Pi and/>2 will denote the top and bottom product rates, respectively.

The subset of (contiguous) candidate tray locations for the feed are specified by the

index set LOC, where LOC c COL<= I. Let z; , i € LOC , denote the binary variable associated
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with the selection of i as the feed tray; i,e., z,- = 1 iff i is the feed tray. Let Fit i e LOC
denote the amount of feed entering tray i.

The modelling equations are then as follows:

(a) phase equilibrium : fij =fij J = l.—c , i e / (^ 0)

(b) phase equilibrium error : 2, * ( / - 2* yi/ = 0 / € / ( 1 1 )
; j

(c) component material balances :

Vi.iyi.ij -(Li + Pi) xij =0 j = l,...c, / € C

= 0 j = l,...c , /€ COL-LOC
( 1 2 )

i2/; = 0 J = L - C , 16 LOC

&ij + Pi xij - Li+1xi+ij = 0 ; = l,...c,/€ R

(d) enthalpy balances :

/€ LOC
( 1 3 )

+ V,/!̂  - LMhi.i - V^hli =0 i6 COL - LOC

(e) constraints on feed location :

I z, =1
i 6 LOC

( 1 4 )

i s LOC

F, - Fzi < 0 , / € LOC

.The last constraint expresses the fact that if / e LOC is selected as the feed tray,
then the amount of feed entering other candidate locations is zero. In addition, there may be
constraints on purity, recovery, reflux ratio.etc. The MINLP problem, then, is to minimize
(or maximize) a given objective function subject to the equality and inequality constraints
(9) to (14).
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The data for the test problem EX5FEED, which involves 10 candidate trays for the
separation of benzene and toluene, are given in Table 3. The optimal solution is given by:

Obj. function
r
Pi
Pi
feed plate

« 20.823
= 0.9324
- 67.44
= 32.56

- tray no. 10

The solution was found in the first step (relaxed NLP) . The CPU time required was 5.56
seconds (IBM 3090) .

The data for problem UNI5FEED are given in Table 4. This problem has been adapted
from Naka et al. (1979). The form of the objective function is due to Kumar and Lucia
(1988). As pointed out in Vasantharajan et al. (1989), the GAMS modelling system allows
the problem to be solved in a completely equation-based manner.

The optimal solution for this problem is given by:

Objective function
Px
Pi
reflux ratio
feed plate
purity of acetone
in top vapor product

- -79.90
9.11

= 90.89
= 16.59
= tray no. 9

= 0.913

The solution was found in the first step (relaxed NLP). The CPU time required was 66.8
seconds (IBM 3090).

Optimization of number of trays

It is assumed that reasonable upper bounds are known on the number of trays
required in the rectification and stripping sections. (Rough estimates may be obtained, for
example, using the Gilliland correlation). If lower bounds on the number of trays are also
known, they may be used to speedup the solution as will be seen below.

We consider the case of a column with a single feed and a total condenser(see Fig. 2).
Modifications required for other cases are straightforward.

As before, let I = { 1,2,...N } denote the set of all possible trays and let R = (1},C =
{N} and COL = {2,...,N-1 }. Let FLOC - {//} denote the set consisting of the feed tray location
and let

AF = { i: if<i<N } = the set of trays above the feed tray
(excluding the condenser)

BF = { i: 1 < / < if } = the set of trays below the feed tray
(excluding the reboiler)
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Note that COL « FLOCvAFvBF . The location //is to be fixed based on the
estimates of the number of trays in the stripping and rectifying sections.

The amount of reflux entering tray i will be denoted by refi, i € AF and let

but , / e BF denote the amount of reboiled vapor (boil-up) entering tray i .

Let zi , ie COL denote the binary variable indicating whether or not tray i is
required to achieve the desired objective. For ease and uniformity in writing many equations
and inequalities, we will introduce two additional binary variables i\ and zN , but will fix
them at zero, i.e, z\ - z# • 0 . For the same reason, the continuous variables LH and V]
are set to zero.

The idea is to 'disable* all trays above the tray on which the reflux enters and all
trays below the tray on which the reboiled vapour enters. That is, if L is the tray on which
the reflux enters , we ensure that no heat or mass transfer takes place on trays L+1,... N-
1. We do this by ensuring that: (a) no liquid leaves the trays L+1,...N-1; (b) the
temperatures and pressures of the vapour leaving trays L+1,...N-1 are the same as that
leaving tray L Analogous reasoning applies for the stripping section.

In practical terms, item (a) takes effect as follows. Nonlinear optimization
programs require that bounds on variables be specified. One sets the lower bound on all
flowrates at zero and any reasonable value for the upper bound .

The notation is as in the previous section. We assume that the values of
Preb Phot tftop » and Peon are given, although one may treat them as quantities to be
determined, if desired. (One may, of course, simplify matters by assuming that they are all
equal to the same value — this may be quite adequate in most cases). As before, for

simplicity, we assume that

The modelling equations are as follows:

(a) phase equilibrium : fij =fij J' = l'—c » ' € ^ (15 )

(b) phase equilbrium error : • . * „ - , . „ , - » »e / ( 1 6 )

refi - r P\ = 0 M 7
(c) reflux ratio: ~ ( '

(d) elimination of variables
introduced for simplification : LH = V\ = 0

( 1 8 )
z\ = zN = 0

(e) component material balances : ( for j = 1,... c)
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( X refi + Pi) Xij - Vi.xyi.Xj =0 / € C
i

ij + VMJ - Li+1xMJ - Vi.iyi.ij - refi xNj = 0 i € AF
( 1 9 )

+ Vyj - L^iX^u - Vuyuj -Fzjj=0 i e FLOC

iKij + Vjyij - LMxi+ij - Vi.tfi.ij - bui y\j =0 i e BF

U Xij + ( X fcu,) y,y - LM xM%j = 0 i e R
i '

(f) enthalpy balances :

t t f -L^hlx-V^hl, -ref^^O ie AF

M -Fhf =0 /e FLOC (2Q)

xh
V

iA -bu}i\ =0 i

(g) configurational constraints :

Z; - Z;.i < 0 I € AF (21.a)
0 ieBF (21.b)

(h) monotonicity of

U - f,-.i < 0 ie AF vC

0 i.BFuR ( 2 2 )

(i) Let S = (p^o/ -Ptop)l(N - 2 ) . The constraints on pressure may be expressed as

PN -Peon

Pi-\ ' Pi ^ Ptop - Peon i € C

P M - P I > Szi i e AF

Pi-PM > Szi i € BF

Pi - p l + i £ /v*fc - phot i € /?
P. -

{ M )
(P«-l " P*) + 2* (P* " P«+l) - Pbot ' Ptop

ieAF ieBF
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(j) constraints on reflux and boil-up : Let fmax be an estimate on the upper bounds of refi
and bui. Then

refi Zfmac (zi - z»i) i e AF
bui <fmax {it - ztt) i e 5F (24.b)

We comment briefly on the constraints (21) and (24). (21 .a) says that if tray i is
required (i.e. exists), then so is tray (i-1). (Recall that trays are numbered bottom
upwards). A similar argument applies for (21 .b). (24.a) ensures that all reflux enters
exactly on one tray. (24.b) ensures that a similar situation obtains for the reboiled vapor.

If it is known that a certain minimum no. of trays are always required in the
stripping and rectifying sections , then we can form the s6t FIX (including, of course, the
feed tray) and introduce the following additional constraint :

(k) fixed locations : z, = 1 , / e F/X (25)

In addition to the constraints above, there may be constraints on purity, recovery, reflux
ratio,etc.

The MINLP problem, then, is the minimization (or maximization) of an objective
function subject to the equality and inequality constraints (15) to (25).

The data for problem EX5T11 are given in Table 5. It is interesting to see the path of
the binary variables for this problem during the solution process of the proposed algorithm
in Table 6. In the solution of the relaxed NLP, the binary variables z-j, zg, zixan, and Z23

have fractional values, z,- = 1 , / = 9,...,20 , and z, = 0 , / = 2,.. . ,6 and z, = 0, z = 24,. . . ,29. .
The first MILP determines z ,= 1 ,/ = 6,...,20 ( and zero for other binary variables),but
this is found to be infeasible . The second MILP determines z; = 1 , / = 7,. . . ,21, but this is
also found to be infeasible. The third MILP determines z, = 1 , / = 6,...,21 and the fourth
determines z,- = 1 ,1 = 7,...,22.

The configuration Z[ = 1 ,/ = 6,...,21 (16 trays, feed at 5th tray) is selected as it
entails a smaller value of the reflux ratio, 1.086, as against z; = 1 , / = 7,...,22 (also 16
trays, but feed at 4th tray) which requires a reflux ratio of 1.094. Thus, the optimal
configuration is :

No. of trays in the stripping section 4
No. of trays in the rectifying section 11

Feed tray 1

Total no. of trays required 16
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Problem EX5T12 is identical to EX5T11 except that the upper bound on the reflux
ratio was increased to 1.2 . The results are shown in Table 7. The optimal configuration
corresponds z,= 1 , i = 7,...,20 (14 trays, feed at 4th tray) and the optimal value of the
reflux ratio is 1.191.

The differences between the results between the two cases are striking. The advantages
of the MINLP approach are clearly illustrated even on the simple, ideal system considered
here .

Conclusions

This paper has presented an augmented penalty version of the outer-
approximation/equality-relaxation algorithm. The proposed'algorithm has as main features
that it starts with the solution of the NLP relaxation problem, and that it features an MILP
master problem with an augmented penalty function that allows violations of linearizations
of the nonlinear functions. This scheme provides a direct way of handling nonconvexities
which are often present in engineering design problems. The proposed algorithm has been
implemented in DICOPT++ as part of the modeling system GAMS. The numerical
performance, which has been tested on a variety of applications, has shown that the
computational requirements of this method are quite reasonable while providing a high
degree of reliability for finding global optimum solutions. Finally, MINLP models have been
presented for the optimization of feed tray location and number of trays to illustrate the
capability of the proposed algorithm for handling complex nonlinear problems.
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TABLE 1. Computational Results with DICOPT++

Problem

LAZIMY
HW74
NONCON
YUAN
CAPITAL

FLEX
REL1
EX3
EX4

BATCH
BATCH8
BATCH12
TABATCH

UTILRED
TFYHEN
EX5FEED
UN15FEED
EX5T11
EX5T12
HDASS

0-1 Var.

2
3
3
4
10

4
16
8

25

24
40
60
24

28
30
10
12
30
30
13

Cont. Var.

8
9
3
4
3

12
21
26
7

23
33
41
71

118
74
238
587
338
338
709

Constr.

5
9
6
10
7

16
18
32
31

74
142
218
129

168
144
239
586
467
467
719

Nonzeroes
(nonlinear)

22(5)
28(2)
17(2)
32(9)
46(2)

47(4)
69(36)

101(5)
227(127)

191(22)
353(32)
545(40)
462(124)

467(10)
465(18)

1103(826)
3318(2336)
1943(1278)
1943 (1278)
2204(462)

Iterations1

1
4
1
3
4

3
3
5
5

3
4
4
3

3
3
1
1
4
3
4

Time2

(sec)

0.06
0.33
0.03
0.35
0.35

0.37
3.77
0.82

12.33

1.67
5.06
9.96
4.23

8.2
22.7
5.4

66.8
114.1
53.48

123.9

%
NLPrMILP

100:00
45:55

100:00
66:34
48:52

67:33
52:48
51:49
12:88

92:08
76:24
52:48
68:32

19:81
20:80

100:00
100.00
43:57
79.21
77:23

'N iterations require N NLP subproblems and N-l MILP master problems.
2Total CPU time, NLP:MINOS 5.2/MILP: MPSX 1.7, IBM-3090.



TABLE 2. Integer Gan in Test Problems

Problem

LAZMY
HW74
NONCON
YUAN
CAPITAL

FLEX
REL1
EX3
EX4

BATCH
BATCH8
BATCH12
TABATCH

UTILRED
TFYHEN
EX5FEED
UN15FEED
EX5T11
EX5T12
HDASS

Relaxed
Optimum

333.89
-6.299
7.931
4.488
-3.5

-4339
178.9
15.08
-16.42

259.2
361.9
2537
256.7

999.5
3777.2
20.79
-79.9
14.46
14.05
-5746

Integer
Optimum

333.89
-1.923
7.931
4.579

1.5

-7.077
216.5
68.01
-8.064

285.5
412.6
2687
262.8

999.6
24066
20.79
-79.9
17.086
15.19
-5459

% Gap1

0
227
0
2

333

61200
17
77
104

9
12
6
0

l x l ( H
84
0
0
15
8
5

MILP Master
Last Iteration

-1.433
—

4.672
10.25

-5
179.4
72.56
-7.832

284.9
380.4
2669
273.1

999.6
29094
20.79

17.13
15.98
-1831

i Gap = lOOx | (Integer optimum-relaxed optimum)/Integer optimum)|



Table 3. Data for EX5FEED

System Benzene-Toluene

Thermodynamic model liquid - ideal

vapor - ideal

Source of thermodynamic data Reid et al. (1987)

Condenser type Total

No. of trays ( N ) ' 2 5

LOC { 3,4,... 12 }

F = 100 ,pf = 1.12 bar ,Tf = 359.6 K,zf-(0.70,0.30 )

Preb = 1 - 2 0 , pbot = 1 . 1 2 ,ptOp = 1 . 0 8 ,pcon = 1 . 0 1 bar

Constraints : r = reflux ratio ^ 1

xNA > 0.99

Objective function : Pi-50* r



Table 4. Data for UNIFEED5

System

Thermodynamic model

Source of thermodynamic data

Condenser type

No. of trays ( N )

LOC

Acetone-
Acetonitrile-

Water

liquid -UNIQUAC
vapor - virial

Prausnitz et al (1980)

Partial

17

{ 4,... 14 }

F = 100,/?f= 1.055 bar , 7>= 348.67 K , Zf= ( 0.10 , 0.75 , 0.15 )

preb = 1.10 j)bot = L055 yptop = 1.035 ,pcon = 1.015 bar

Constraints : r = reflux ratio ^ 20

Obj. function = 3.3e-07 * (qreb - qcon) - (vikc +kkr)

where qreb = reboiler duty

qcon = condenser duty

vlkc = flowrate of light key (acetone)
in top vapor product

lhkr = flowrate of heavy key (acetonitrile)
in bottom liquid product



Table 5. Data for EX5T11

System

Thermodynamic model

Source of thermodynamic data

Condenser type

Estimated max . no. of trays

Feed tray location

Benzene-Toluene

Liquid - ideal
Vapor- ideal

Reid et al. (1987)

Total

30

10

F =100 ,pf= 1.12 bar ,Tf= 359.6 K , zf= (0.70, 0.30)

preb = 1.20 , pbot = 1.12 , ptop = 1.08 , pcon = 1.01 bar

Constraints : x#.i -

r = reflux ratio < 1.1

Objective function :



TABLE 6. Progress of Iterations in EX5T11

Step Iteration Number Obj. Function CPU Time

NLP

MILP

NLP

MILP

NLP

MILP

NLP

MILP

NLP

1

1

2

2

3

3

4

4

5

14.436

16.000

*
OO

16.042

OO

16.945

17.086

17.134

17.094

24.04

6.60

9.48

5.40

7.70

7.80

8.15

54.00

6.28



TABLE 7. Progress of Iterations in EX5T12

Step Iteration Number Obj. Function CPU Time

NLP 1 14.045 28.81

MILP 1 15.045 4.80

MLP 2 15.191 6.72

MILP 2 15.976 6.60

NLP 3 16.137 6.55
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Figure 1. Optimum Feed Plate Location



N - 1

refi

N

Figure 2 . Determination of number of trays to achieve
a specified objective of separation


