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Abstract
Branch-and-bound methods have been used with mixed results for globaF optimization

problems. The asymptotic convergence rate of a theoretical branch-and-bound algorithm for
twice-differentiable unconstrained optimization is examined to shed light on when branch-and-
bound methods can be expected to be successful. The Generalized Weber Problem from
location theory is considered as a special case, with two different lower-bounding functions
examined.

1. Introduction
The global optimization problem is given by

minflx)

where the continuous objective function/.Rn-»R, and the feasible region is the compact set
Se R* usually defined by a system of inequalities and equalities:

h£x) £ 0 Jfc=l,2,..^Tl

Since for this problem local methods frequently fail due to non-globally optimal local minima,
several other types of algorithms have been suggested. Among these are probabilistic methods
(see e.g. efforts reported in Dixon[3]), grid methods (see e.g. Shubert[12], Meewella and
Mayne [10], and Dixon [3]), and branch-and-bound methods (see e.g. Mitten [11] and Horst [7]).
We consider here problems that are essentially unconstrained with S a simple region such as
an n-dimensional rectangle.

A branch-and-bound algorithm, as described by Horst, partitions the feasible set S into a
collection of regions (e.g. hyper-rectangles or simplices), and then computes a lower bound of
the objective function for each region (and within the constraints if any). Then one of the regions
(generally the one with the lowest lower bound) is further partitioned into smaller regions, with
new lower bounds computed for these new regions. This procedure is followed until a
satisfactory convergence has been achieved. Horst gave some sufficient conditions for
convergence, and gave versions of the branch-and-bound algorithm that have been or could be
implemented for concave programs (convex region S, concave objective function f) and variants
(e.g. some constraints h(x)k£0 not convex).

Related is the grid algorithm as given by Shubert (for the 1-dimensional case) and Meeweite
and Mayne (for higher dimensions). They considered the problem for which S is an n
dimensional rectangle, and for which a Lipschitz number L is known for f over S. The function f
is evaluated at the points on a grid, and these values, combined with the Lipschitz number, s
used to a compute a lower bound for f over the individual cells or n-dimensional rectangles
(each of which has grid points for vertices). The best cell is partitioned, but the new small ceils
are generally not all of the same size. The reported results with these algorithms has not been
encouraging.

Branch-and-bound algorithms have been used for certain location problems. One example is
the BSSS (Big Square-Small Square) algorithm given in Hansen et. al. [6]. It was constructed
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for use in location problems with polyhedral constraints (including 'or' constraints), and used a
lower-bounding function that is related to one using the Lipschitz number (see Section 4). A
somewhat more complex lower-bounding function was used in Edahl [4] for a slightly more
restricted class of unconstrained location problems. It demonstrated significantly better
convergence than did the Hansen algorithm for the same unconstrained location problems.

While initially appealing, branch-and-bound and grid algorithms seem to be generally affected
by a very bad convergence rate, particularly in higher dimensions. Here we examine this
convergence rate for unconstrained problems and suggest sufficient conditions on the bounding
function for a more satisfactory convergence rate. A theoretical branch-and-bound algorithm is
given in Section 2. In Section 3, the convergence rate of this algorithm is analyzed for strictly
convex quadratic functions. The quadratic case would give the asymptotic rate of convergence
for a general locally strictly convex and twice differentiate function. In Section 4, the
convergence rates of two different lower-bounding functions for location problems (Hansen's
algorithm and Edahl's algorithm) are analyzed.

2. Branch-and-Bound Algorithm
A theoretical branch-and-bound algorithm is given in this section. Where both the branching

(including partitioning) and the bounding functions are normal, the selection rule for the region to
be subdivided is chosen for its theoretical rather than practical value. For purposes of analysis
here, the set S is primarily for convenience, for it is the asymptotic behavior of algorithm in the
unconstrained case that is of interest here. It is expected that the optimal solution lies in the
interior of S, which allows us to assume that S is some convenient region containing an open
neighborhood of the optimal solution. While the normal selection rule is to chose the cell with
the lowest lower-bounding function value, here the rule is to select and divide all active cells
simultaneously.

2.1. Partitioning and Branching
Two common choices for regions to be bounded have been n-dimensional rectangles and

simplices (see e.g. [7]). Here, the rectangle or cell oriented along the axes is selected as the
basic region. When a cell is sub-divided, it results in 2n new cells all of the same size. This
differs from the dividing method given in Property 4.4 of Horst [7] in that there, a single cell is
divided into only two equal sized rectangles by selecting the midpointsLOf..p_fJhe longest^edges
(assuming all dimensions of the rectangle are different) as the common vertices of the two new
cells. The sub-dividing here is much quicker (and would be the result of n of Horst s
subdivisions). Below this is formalized.

Definition 1: R is a cell in R" if

3ye R" and ct€ R",a>0 such that
R = R(y,a) m { xs Rn : | y - * | < of, /=1 n)

A partitioning P of a set S^R" is a collection of nonoverlapping cells [Rp}p€ /> whose
union covers S, where P is an index set. That is, {Rp)pe P satisfies the following three
conditions:



(a)

(b) SnRq*0, Vpe P ; (c) p p

For the analysis of the branch-and-bound algorithm, it will be assumed that all cells in a given
partitioning are of the same dimensions.

Definition 2: Let a be a fixed strictly positive n-vector and 8 a positive scalar.
Define:

the cell radius

£2; B(a) = *R(y,a))
i

the cell volume

V{R(yffa)} =(25)nna'*; C(a) = V{R(yta)}

Definition 3: P is a 8a-cell partitioning of S if

1) It satisfies the requirements of a partitioning from Definition 1

2) For eachpe P, 3 yps Rn such that Rp = R(yp,Sa)

We need the idea of a branching or dividing function that takes a single cell and generates 2n

new cells. Consider a general cell R. Let

c(m) = (cHm)9...SKm))

be the binary representation of m-1, so that

Definition 4: Let R be an arbitrary cell in Rn. Then the cel[ dividing function
•-{<h.$2-- ^2"} generates 2n cells <t>m(R), m=1,2 2n defined by:

<j>m ( f l ) = {xe Rn : \*-* '

where

am,i = a i / 2 ; yn,i = y +

Note that

2.2. Lower-Bounding Functions
Branch-and-bound algorithms operate by dividing the region into cells and finding lower

bounds for f(x) in each of the cells. It is necessary that for each subcell Rp, the lower bound
F(Rp) satisfy

minfix)



The lower bounds on the cells in a partition can be used to give an overall lower bound estimate
for f over S (by taking the minimum of F(Rp)), to eliminate cells from further consideration (if
F(Rp)>f* where f* is the value of the best feasible point found so far), and to direct the further
division of the cells (e.g. divide the cells with the lowest F(Rp)'s).

For a given partition, lower-bounding function, and best current objective function value r it
can be shown that cells for which F(Rp)£f* cannot contain a better solution. Such cells can be
discarded from further consideration. What is left will be a set of 'active cells' and an 'active
region'. Formally,

Definition 5: For a given cell partition P, a lower-bounding function F, and a given
best (lowest) upper bound f*t the active cell index set l(F,f*) is given by

I(Ff)=lpeP: F(/?p</}

and the active region by

1^={x: xeRp for somepeI (F f ) )

The cardinality of I(ff) is designated by \I(Ff) \.

In order for this sort of algorithm to work, some restrictions on F(R) are necessary. A
Consistency Condition for the lower-bounding function is given by Horst [7] as a sufficient
condition for the branch-and-bound algorithm to converge. In terms of 8cc-cells, this
Consistency Condition for unconstrained optimization reduces to:

Let [yp] -*y and {5p} -»0+ be arbitrary sequences. Then F satisfies the
Consistency Condition if {F(R(yp,5p<x)} ->fly)

Three classes of lower-bounding functions are given below. Each trivially satisfies the
Consistency Condition if f is differentiate over S, and hence the branch-and-bound algorithm
will converge for such bounding functions.

The simplest lower-bounding function utilizes the Lipschitz number for the function f(x) over
the region S. A Lipschitz number as used here satisfies:

\f(y)-Ax)\<L\\y-x\\2 VxjeS
Definition 6: Let f be a function defined on a set S with Lipschitz number L Then

F(R) is a Lipschitz Lower-Bounding Function (llbf) for f over S if

where y(R) is the center of the cell R, and r(R) is the cell radius.

One of the earliest grid algorithms was by Shubert [12], and used the Lipschitz number in a
more complex manner to construct a lower-bounding function. He did this for the 1-dimensional
case, and Meewella and Mayne[10]) extended this to higher dimensions. Both algorithms
operated by dividing the feasible region S into cells and evaluating the function f(x) on the
vertices of all of the cells. Letting L being a Lipschitz number for f over S, a lower bound for f
over a cell R could be found by solving

min max {fiXf^-LWx-x^}
x € R x L € R

Unlike the branching function defined in the previous section, the solution x, to this problem



would be used to define 2n new cells; the current cell containing x, is divided into new cells with
X| being the vertex common to all of these new smaller cells. This branching step results in new
cells usually of all different sizes.

One problem with using Lipschitz number is that is does not change for cells near the optimal
solution. If f is C1 over S, a valid L can be found by

L=max | |V^) | | 2

xcS

This follows since

|/(yH(*)| < Max\ V^vXy-*) | (By Taylor's Theorem. See e.g. Goldberg [5])
x*S

xaS

But f being C1 over S implies that at the optimal solution the gradient of f is the 0 vector. Hence
a Lipschitz number that is valid for all of S would be arbitrarily loose near the optimal solution. It
seems natural to use a lower-bounding function similar to a llbf but with the constant L changing
with the cell.

Definition 7: Let f be a differentiate function defined on a set S. Then F(R) is a
Gradient Lower-Bounding Function (glbf) for f over S if

F(R) £ minftx)
X€R

and 3 K>0 such that

f[y(R)) -F(R) £ Kr(R)L(R) V R^S

where I(R) =max ||V/[JC)||2
X€R

Another powerful lower-bounding function can be found by first finding a sub-function Jhat
bounds f from below over a cell, and then minimizing this function over the cell. The idea of
using a sub-function has been used for concave programming problems (concave objective
function, convex constraints) for example by McCormick [9] and Horst [7].

Definition 8: Let f be a differentiable function defined on a set S. Then F(R) is a rj_
Lower-Bounding Function (r2lbf) for f over S if there is a sub-function of f over R such
that

F(R) = minf{x\R)
xeR

where

and 3 Q > 0 such that

Ax)-Qr(R)2<Ax\R) Vie/?



Such an f(x|R) is an r2-sub-function of f over R.

2.3. Algorithm
Above were described a cell, a dividing function, and some lower-bounding functions. What

remains to complete a description of a branch-and-bound algorithm is a selection rule for
choosing what cells are to be divided and an upper-bound function for a cell. Horst showed in
[7] that the algorithm would converge for an upper-bound function consisting of evaluating the

function at any point xp in the cell Rp and for any selection rule as long as after a finite number
of steps the cell with the lowest F value were selected for division.

To examine the behavior of the branch-and-bound algorithm, we use the following algorithm.
Instead of branching on the most promising cell or node, all active nodes are branched on
simultaneously. Since it is not expected that the algorithm would converge in a finite number of
iterations, we use the idea of an e-solution. We consider x* € S to be an e-solution if

The problem shall be deemed solved if, for a given e > 0, an e-solution is found.

ALGORITHM: (Assume e>0 is given)

Step 1 For given 5 > 0, let P** be a 5a-cell partitioning of S). Set f* =

Step 2 For each Rpe P**, compute F(Rp) and f(Xp). Set

ft = minfiXp) (xt is xp solution)
p€

F*=minF(R )

if ft < f\ set f*=ft and x*=xt. For each cell, if F(Rp)> r, delete Rp from
Test whether f*-e £ F \ If no, go to Step 3. Otherwise, Stop (x* is then an
e-solution).

Step 3 Form partition P! by applying <|> to each Rp in P6**. Set P5** to P!, and 5 to 5/2
Go to Step 2.



3. Convergence Rate
We examine the case where f(x) is quadratic with a positive definite matrix M. Without loss of

generality, assume there is no linear term (hence 0 is the unique global minimizer). We do this
to analyze the behavior of the branch-and-bound algorithm near an optima, for near an isolated
optima, a C2 function is nearly a positive definite quadratic function. The method of analysis is
to form an arbitrary P** partition and then find bounds on the number of active cells using the
various types of lower-bounding functions from the previous section.

For this section, f is given by

fix) = xfMx

where M is a fixed positive definite matrix.

Definition 9: The ellipse E?by is defined by:

£7 = { * € R n : f

and its volume is designated by V{ET}. The volume of the unit ellipse is designated as
A = ^

Definition 10:

the maximal M distance from 0 to the cell

g{R(y,Sa)) = max ^Mfy D(ct) = g{R(0,a)}

the maximal gradient of f in an ellipse

Lit) = max 2^y*MMy L° = L(l)

Some elementary results that will be used later are:

V{R(y,Sa)) = 5"C(a); KR(yte)) = 55(a);

g{R(0,5a)) = 8D(a);

= tL°; [xfMx)1/2 S {(x-yyM(x-y)}m +{/Afy}1/2;

The last relation, the triangle inequality, is valid since {x^x}172 is a legal norm.

The analysis below is for a given symmetric positive definite matrix M and a given cell shape
a. To simplify notation, the argument a is suppressed from the functions B (unit cell radius), C
(unit cell volume), and D (maximal M distance to unit cell with the origin as center).

The following lemma gives bounds for the number of cells, in a given partitioning, whose
centers fall inside the given EY ellipse. It is used as the basis for theorems on bounds of the
number active cells for the three lower-bounding functions given in the previous section.

Lemma 11: Let P be an arbitrary 5a-cell partitioning of R*f and for a given y, let
Kfiyi-))^1) be the set of active cells. The number of active cells \l(f(y()),f)\ is
bounded by:
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Proof: Let y5 = y -8D ; •/- = y+ 6D. Then £^ c 7 ^ c ^ by Lemma 15 in the
Appendix. Therefore,

A(y-5D)n Z&QKflyi)),?)] ZA(y+ 5D)n

CO

Q.E.D.

The following theorem establishes bounds on the number of active cells after an iteration
using a Lipschitz based lower-bounding function. In the theorem, because f is not Lipschitz over
the entire space, confining the feasible region to compact set S is necessary in order to find a
Lipschitz number for f. S is chosen to be an ellipse for convenience. However, using such a
feasible region complicates the situation in that some part of the active region may be infeasible.
The restriction on 5 ensures that this is not the case.

Theorem 12: Let Y M > 0 and L > T M L ° be given. Let P be an arbitrary 5a-cell
partitioning of R* with

8S
BL+2-fD

Let S^E^1. Let F(R) be a Lipschitz Lower-Bounding Function with Lipschitz number
L Then for any iteration (and all subsequent iterations) of the algorithm for which 5
satisfies the above condition, the following bounds on the number of active cells after
that iteration hold:

Proof: Let f* be the value of the best point after an iteration for which the
hypothesis of the theorem is satisfied. Then

0 < / < {5D}2

because f is positive and the farthest the best point can be from 0 in M-distance is
g{R(0,5a)}=5D. Now cell Rp is active iff

Letting y equal to the right hand side of this last inequality, the condition becomes
ype &. y is bounded by

bBL<f <5SL+{5D}2

Thus the conditions of Lemma 16 in the Appendix hold, so ^ > 71- = y + 5D and
hence E^ c E^% which means the outer bounding ellipse is entirely in the feasible
region. By Lemma 11, the number of active cells is bounded by

Co C
Since the bounds are monotonic in y, plugging in the smallest value into the lower



bound and the highest value in the upper bound will yield new valid bounds:

Q.E.D.

Asymptotically, as 5 approaches 0, the number of active cells becomes

Letting 5=5°2*H where H is the iteration,

The ratio of the number of cells from the (H+1)th iteration to the H th iteration is 2n/2
f which

means that the number of cells (and thus the number of function evaluations) increases
exponentially with the number of iterations. After an iteration, the best function value f* and
lowest lower-bound for a cell F* are bounded by

{5D}2

Hence, the difference between the two is bounded by
55L- {5D} 2 < / - F * < 5£L+{5£>}2

which implies that the difference is linear in 5 or roughly halved for every iteration of the
algorithm.

The following theorem gives bounds on the number of active cells should a Gradient Lower-
Bounding Function be used.

Theorem 13: Let P be an arbitrary Sot-cell partitioning of R" Let f(x) be defined as
x*Mx, and let F(R) be a Gradient Lower-Bounding Function for f over S. Then for any
iteration of the algorithm, the following upper bound on the number of active cells after
that iteration holds:

Proof: By Lemma 17 in the Appendix, R is active only if y e E? where
Y = 6(KBL°+D). By Lemma 11, the upper bound of the number of active cells is

Q.E.D.

Finally, bounds are found for the number of active cells using an r2 lower-bounding function

Theorem 14: Let P be an arbitrary 5ot-cell partitioning of Rn Let f(x) be defined as
x!Mx, and let F(R) be a r2 Lower-Bounding Function for f over S with positive constant
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Q. Then for any iteration of the algorithm, the following upper bound on the number of
active cells after that iteration holds:

Proof: By Lemma 18 in the Appendix, R is active only if y € E* where
y = 8(D+>/D2+2S2). By Lemma 11, the upper bound of the number of active cells is

Q.E.D.

Hence, the number of active cells is bounded by the same constant for all iterations. The
bounds for f* and P are given by

Hence, the difference between the two is bounded by

f-F*< {8D}2 + G{85}2 = (D2+052

which implies that the difference is quadratic in 5 or quartered for every iteration of the
algorithm.
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4. Location Examples
The generalized Weber problem that is examined here is also called the general min-sum

location problem:

GW)

X€ R-

where the Zj's are points in Rn, d(y) is the Euclidean metric, and each fj is a continuous non-
decreasing function of the distance, d. If the fj are convex, GW can be shown to be convex and
algorithms exist that are globally convergent for it. (See e.g. Katz [8] and Cooper [2].) Weaker
restrictions on fj permit GW to have non-optimal local minima, hence the best that these
algorithms can demonstrate is local convergence. (See e.g. [8].)

The feasible region is itself a rectangle, and is more of a restriction on the region to be
searched derived perhaps from prior information rather than a set of requirements. For
example, for many location problems, it can be shown that the optimal solution must lie in the
convex hull of the locations of the fixed sources and sinks. Here, S could be the smallest
rectangle containing this convex hull.

In this section, two lower-bounding functions for a single-facility location problem are
examined with respect to their convergence rates. The first is the BSSS (Big Square-Small
Square) algorithm given in Hansen et al [6]. It was constructed for use in constrained location
problems and uses a simple lower-bounding function that has similarities to a Lipschitz lower-
bounding function. A somewhat more complex (and accurate) lower-bounding function utilizing
sub-functions is used in Edahl [4]. It demonstrated significantly better convergence than did the
Hansen algorithm for the same unconstrained location problems.

Letting v be the optimal solution to GW, for the theorems of the previous section to be applied
here, it is necessary that the objective function f(x) be able to approximated by a quadratic
function in a neighborhood of v. This means that each of the fj(d(x,Zj)) be C2 at v. Even if f̂ d)
were C2 for all positive d (as is the case for the power functions given below), it may not be
differentiate at d=0 (as is the case for c<1 for the power functions below). However, dfx.z^ not
being differentiate at x=Zj makes fJ(d(x,zj)) differentiate only in unusual cases (i.e. c>2 for the
power functions given below). Hence for our analysis, we assume that v is not any of the z, s
We also assume that none of the active cells contains a Zj.

4 .1 . BSSS Lower-Bounding Function
One of the simplest lower-bounding functions for GW is used in the BSSS (Big Square-Small

Square) algorithm given in Hansen et al [6]:

where wj is the solution to

min d(w:,Zj)
H».€ R
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The computation of Wj is a relatively simple procedure, being the finding of the closest point in a
cell to a given point z-y

While not strictly a Lipschitz Lower-Bounding Function, it can be shown that F(R) can be
bounded by two llbf s. Define L*m and Lfm by

fijpy, L?in = MinfJ<.d(x,zJ))
xeS xeS

Further, let

p = min <xV5(a)
i

For any cell R, the following clearly hold:

jj(d(y(R), zp) - KKtf" < fjWyp zp)

fj(d(yj9 zp) <S fj(d(y(R), zp) - r / m Q ' M i n

Letting
j J

7

we have
f[y(R)) - rLMa* <> F(R)

Hence F(R) is bounded from below by a Lipschitz lower-bounding function, and should have a
convergence rate at least as good as that one. It is trivial to show that for any C1 function f(x),
any positive number is a Lipschitz number for f(x) for all x sufficiently close to a given local
optima of f(x). Hence, for S sufficiently small and centered about the optima, the right hand side
is a llbf for f(x), and hence bounds F(R) from above.

4.2. Quadratic Sub-Function
The idea here is to determine, for each cost function fj, a sub-function over a cell R that is of

the form a+bd2. Were all the fj's actually such quadratics, then the problem would be trivial to
solve, for the problem would be a separable quadratic programming problem:

FQ(x) = X (<*j + bjd{xap2) = £ (a, + bfx-zp'ix-z,))
y=l 7=1

7=1 7=1 7=1 7=

Were f not of this special quadratic form, the quadratic sub-function for each fj could be used A
lower bound for f in R could be gotten by minimizing the quadratic FQ over R. All that remains is
to find the aj and bj coefficients (these depend of course on the cell R) to use in forming the
quadratic function FQ(x).
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4.2.1. Concave Cost Functions
Suppose that the fj(d) cost function were concave in d, besides being continuous and non-

decreasing in d. While efficient algorithms exist for the case of fj(d) being convex in d, they are
not guaranteed to be find the global optima should fj be concave.

Let Uj and Ij be given by (the subscripts on R are omitted here):

/; = min d(xfZj); Uj = max d(x,zp (2)
x€ R

That is, these are the minimum and maximum distances from Zj to points in cell R. (One may
use d(y(R),Zj)± r(R)) instead).

aj and bj are then given by:

Note that b: must be non-negative since fj is a non-decreasing function. Also note that

Hence this convex quadratic approximation must bound the concave fj from below for Ij < d < Uj.
That is,

qfd) = aj + bjd2 <>ffd) for ij << d £ uj

Consider a single fj(d) function. Let y be the center of cell R. For simplicity, suppress the
subscripts j. Let d be any distance u>d>l. This will cover any point x in the cell R.

f is approximated by

K) M / ( 0 (H) / ( l ) ( 0
Ad) =/(/) +/«X<H> +/i(5)(<H>2

The quadratic sub-function for f over R is given by

u2 - P- W--P-

Now, substituting for f(u) yields

if (0(4-0 + f\r\)(u-t)(d-0){ 1 + ^
u+l

-D +f(f)(d-0
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Hence,

Ad) - q(d) = f

Therefore, q(d) is an r2 sub-function for f(d) over R. Since q and f are actually subscripted by j
(for a single source or sink), it is f(x|R) given by

Ax\R) =

that is the r2 sub-function of f over R.

4.2.2. Power Cost Functions
Suppose that each of fj(d) cost functions are of the form

ffd) = Wjtfh Cj>0
This form is discussed is for example in [2] and [1], and allow for more accurate transportation
cost fitting than the simple linear function (Cj=1).

There are three cases to be considered. The first is l>Cj>0, the second is 2>cy> 1, and the
third is c ;>2. In considering these cases, the subscript of j will be suppressed for notational
simplicity. When the aj and bj terms have been computed, they can be used in forming FQ(x) to
compute F(R).

For the case l>c>0, f(d) would be concave, and the lower-bounding function from the
previous section could be used. As shown in [4], the previous lower-bounding function could
also be used for the 2>c> 1 case. In both cases, the coefficients a and b are given by:

t f f P i f t i f f
a = w———; b = w—-— (4)

ur -r ur- r

This would then result in a r2 lower-bounding function.

Now consider the case cy>2. As in [4], the lower-bounding function is constructed by making
q(d) tangent to f at at point l>r>u. r is then selected to minimize the error at the endpoints (I and
u). This results in the following lower-bounding function:

The difference between this formula for q(d) and the one for the other cases is simply the value
of the constant term.

To show that q(d) is a r2 lower-bounding function, let t be the designated tangent distance,
l<t<u. By construction, a and b satisfy:
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bi1*/®; 2bt=f(t)

Hence

Ad) = /« +f(t)(d-t)

5. Conclusion
Branch-and-bound algorithms may prove useful for the general global optimization problem.

For the case of an unconstrained problem with a C2 objective function, a lower-bounding
function utilizing sub-functions (a i.e. r2 lower-bounding functions) should give results far better
than a Lipschitz lower-bounding function (or a related one such as that from the BSSS
algorithm). It must be emphasized that these observations are for unconstrained problems.
Should constraints be present or should the objective function be piecewise smooth, a Lipschitz
lower-bounding function may give acceptable results.
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I. Lemmas
The following lemmas are used in the proofs of the theorems in Section 3. For all of them, a

fixed positive definite matrix M and positive cell vector a are assumed. Quantities such as A, B,
C, and D, and functions f, g, r, I, and E are as defined in Sections 2 and 3.

Lemma 15: For given Y>0, let P5'a be an arbitrary 5oc-cell partitioning of Rn and
•'-•'•" -*xi be the set of active cells. Let

Then

Proof: The two subset relations are proved separately:

a) Let x be any point in E^ and yk be the center of any cell Rk containing x. If YS<0,

then E^ will be empty, and the left subset relation satisfied trivially. Consider the case
where ^>0. The following hold:

[yk'Myk}
m <{(yrxyM(yrx))irl +{x?Mx)m (By the triangle inequality)

{(x-ykyM(x-yk)}
xri < g[R(0,S)) = 5D (xe Rk)

{xfMx^Z^ (xeF?)
Substituting the second and third of these relations into the first give:

[yjlMyk]
m <{(yrxyM(yk-x)}l/2 +{*Mx)1/2 < 5D + / = Y

Therefore ke /(/(yQXY2) and hence) xe 7^.

b) Let x be an arbitrary point in T̂ z and yk be the center of any active cell containing
x. Arguing in a similar way as in part a,

+{yk
tMylc}

1'2 < 5D + Y= Y^

Therefore, xfMx < {+}2. Hence xe E^. Q.E.D.

Lemma 16: Let Y M > 0 and L>Y M L° be given. Let P5'a be an arbitrary Sa-ceii
partitioning of Rn with

5<Jf
Let Ysatisfy Y2 ^ 6SL + {5D}2. Then

1) L is a valid Lipschitz number for the function f(x)=x!Mx over the ellipse

and

Proof: The first part follows directly from the definition of Lipschitz number.

1Rpisin li
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2) First we show that 8D < f1

"" BL+2i*D " 2y^D " 2D

Now,

5 < ^ ^
BL+lfD

—>

—>
8BL + {5D}2 < {T^} 2 - 2 5 ^ 0 + {5D}2

{5D}2+ 5D ^ y
Q.E.D.

Lemma 17: Let f(x) be defined as xfMx, and let F(R) be a Gradient Lower-Bounding
Function for R with positive constant K. Then R is an active cell only if

S(KBL°+D)

where y is the center of R.

Proof: R is active only if F(R) zf £ {5Z>}2, where f* is the value of the best point
found so far. By the definition of glbf, F(R) must also satisfy

therefore,

fly) - bKBL(R) < F(R) Z {SD}2

Now, since R must be in the ellii

L{R)

Therefore, the following must hold for R to be active:

J(y)-SKBL°{-4yMy+5D) < {5D}2

Rearranging terms,

- &{DKBL°+D2} =
- S(KBL0+D)) <, 0

Since the first term is always positive, R can be active only if

"lyMy Z 5(KBLQ+D)

Equivalent^, \iy e £Y where y= 8(KBL°+D). Q.E.D.
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Lemma 18: Let f(x) be defined as x!Mx, and let F(R) be a r2 Lower-Bounding
Function for R with positive constant Q. Then R is an active cell only if

where y is the center of R.

Proof: R is active only if F(R) </ < {5D}2 where f* is the value of the best point
found so far. For any x in R, the following holds true by the triangle inequality:

+ <(x-yyM(x-y)

By the definition of an r2lb function,

Ax\R)>Ax)-Q>iR)2
 VJCG/?

F(R) = minfWR) * minf{x)-Qr(R)2 >
x€ R xeR

Hence, R is active only if

fly) — l&D^lfty) + {8D}2 — Q

J(y) — 28zW/(y) — Q{SB}2 =

\B)2<.f <> {8D}2

!{85}2 £ {5D}2

Since the second term is always positive, we have R is active only if

Q.E.D.
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