
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Computer Supported Creative Design:
A Pragmatic Approach

by

Robert F. Coyne, Eswaran Subrahmanian

EDRC 05-46-89



Computer Supported Creative Design:

A Pragmatic Approach

Robert F. Coyne and Eswaran Subrahmanian

Engineering Design Research Center, Carnegie-Mellon University
Pittsburgh, PA 15213, U.S.A.

Abstract. Creativity is recognizable only in a given context thereby making its definition
elusive. In design, creativity in a domain may depend on characteristics of the process or the
product, or both. In this paper, we argue that a better understanding of creativity can occur by
focusing on the conditions that allow for creative acts. With respect to design research, we
believe that it would be most productive to create computer supported design environments that
stress the complementary nature of human and computer design capabilities. These capabilities
and their relationships are reviewed to identify some of the critical issues in designing and
building such environments. We argue for building such integrated design environments in
order to empirically test and evaluate hypotheses about design processes and creativity in the
context of real design tasks. In this regard we discuss LOOS: a partially automated approach
for the design of layouts which illustrates some of the features desired for a computational
design support environment.

1 Introduction

The idea that computers will actively aid design processes in various disciplines (or
perhaps transform those processes) has been around for at least a couple of decades.
Unfortunately, up to now reality has fallen far short of this promise. Each successive
revolution in computing power and new paradigm for symbolic processing has been heralded
by some as the needed potential that would allow Computer Aided Design [CAD] to fulfill its
promise. Along these lines at least three successive waves of development of CAD can be
crudely identified1.

In the first wave, CAD tools were limited to the role of mechanizing the production and
duplication of drawings and to some basic analysis programs. In the second wave, more
sophisticated modeling and analysis tools and systems that use design grammars, logic and
production systems were developed. These approaches can be roughly characterized as
attempts to computationally apply mathematical formalisms and AI knowledge-based
technology directly to design as problem solving. These capabilities, important though they
are, only capture routine or repetitive design and do not support the average complex design

^ychener [Rychener 88] has independently identified three generations in computational design research that
correspond very closely to what is presented here.

:-̂ :--- ^ —' c\f;*;£?.s*7



process in a fundamental way. The third wave of CAD recognizes that design processes have
unique and significant aspects which are distinctly different from other types of problem
solving. A clearer understanding of the requirements of design processes and the set of
evolving computational technologies, such as knowledge-based systems, provides an
opportunity for exploring sophisticated applications of these technologies and a promising
agenda for current design research.

Perhaps the two most important aspects of design that distinguish it from other types of
problem solving activity are the number and complexity of the representations required and the
open-ended and exploratory nature of design processes. Our understanding of these as critical
research issues is the key to building more effective design systems. Further, we believe that
these issues have a fundamental connection to the nature of, and possibilities for creativity in
design. We argue that a pragmatic and productive approach that design research can take right
now is to build computational design support environments which combine human and
computer design capabilities in a complementary, integrated manner. In this paper, we propose
a conjecture that addresses design creativity in this context.

This approach to creativity in design is illustrated in the context of a partially automated
design system for "generic" layout tasks. The system, LOOS, overcomes some of the
limitations and compromises of former approaches to layout design specifically and
knowledge-based design in general. The generative capability of the system is formally
modeled as systematic enumeration of structural design descriptions. This is combined with a
human-guided evaluative capability that is built-up incrementally, evolves and can be
customized. This division of labor within an overall integrated design process is crucially
supported by a representation that captures appropriate levels of abstraction. The observation
and evaluation of partial designs in context stimulates the designer to reformulate the layout
task in terms of performance requirements and their relative weights. Further opportunities for
exploration and knowledge-acquisition will be afforded by a framework now under
development for the flexible decomposition of layout tasks. We argue that the computational
design model incorporated in LOOS begins to satisfy some of the key features required of an
evolutionary computer supported design environment that will support the achievement of
creative results.

2 Computer Supported Design and Creativity

Design and creativity go hand in hand in the sense that a designed artifact or a process of
design is termed creative by its relative newness to the user, the domain or period in history.
Creativity is recognizable only in a given context, thereby making its definition elusive. The
context specific (individual, temporal and spatial) nature of what is considered creative is
inescapable2. In this paper, we view humans and computers as information processing systems

2The phrase "reinventing the wheel" captures this idea very well. However, we also know that due to temporal
constraints it is sometimes impossible not to reinvent the wheel; avoiding such repetition requires access to the long
term memory of human (design) history, which, even if it were available would make searching for relevant insights,
in the typical case, intractable.



and argue that with our current understanding of processes of creativity and current theories of
design the most pragmatic question to ask is, "How can we enhance the potential for design
creativity within a human-computer design environment?"\pagebreak

Within an information processing perspective, the objective of enhancing creativity leads
us to the following conjecture:

Creative solutions to a design task occur either when a new formulation of the task
is generated providing new solutions, or when a solution is found within a given
formulation in a region of the space of design solutions never examined before.

Given this conjecture, the ability to be creative can be enhanced when either or both of the
above processes are systematically supported. We believe that currently computational
systems can play the most effective role in enhancing creativity within human-machine design
systems where the division of labor between the two participants supports exploration of
problem formulations and solution spaces. We argue that this motivates investigating the
grounds(emironment) for the occurrence of a creative act from which the figure of creativity
itself may emerge.

Our approach to investigating the grounds for creativity is based on the current
understanding of the participants, the human and the computer, in solving design problems.
To this end, we examine cognitive models of design and computational models (largely
implicit in systems that have been built) to summarize this understanding. We then identify an
initial basis for integrating human and computational design strengths. We assert that the task
of designing a human-machine environment for design is a design problem in itself that should
be viewed from an evolutionary perspective. Further, such environments are needed to serve
as an empirical testbed for testing conjectures about design and creativity. Design research
structured around such environments will produce not only cumulative results, but also new
goals in enhancing the occurrence of creativity in design.

2.1 Cognitive models

Cognitive modeling has its origin in information processing theories of human problem
solving [Newell and Simon 72]. Modeling process behavior is the underlying objective of
cognitive science. Use of methods from cognitive science, such as protocol analysis, in
engineering is relatively new. Architects were the first to explore these possibilities [Eastman
69, Akin 86]; software design is another discipline that has used protocol analysis [Adelson
and Soloway 84]. More recently,it has been applied in mechanical engineering and civil
engineering [Ullman, et al. 88, Baker and Fenves 87]. Research in cognitive models of design
encompasses two levels. Most common is the construction of fine grained models of problem
solving in terms of design operators, heuristics and the design problem space; the granularity
of analysis and models vary. A second approach attempts to characterize the "generic" aspects
of design tasks that belong to the core of tasks commonly understood to be design tasks (such
as mechanical design, architectural design, software design) [Goel and Pirolli 89]. This model
is coarse grained and complements the fine grained models. Further research in these areas has



to be undertaken before complete cognitive theories of design are proposed. We present below
a summary of assumptions common to cognitive models, the characterization of the design
process that emerges from such studies, and the implications of these studies for understanding
the abilities and limitations of the human problem solver performing (creative) design.

Assumptions
The following are the basic structural assumptions underlying cognitive models within an
information processing theory of human problem solving(including design) [Newell and
Simon 72, Simon 73, Goel and Pirolli 89]:

1. the structure of the information processor consists of an short term memory, a
long term memory, and a processor for manipulating symbols; there exists a
bottleneck in the transfer of information between short term memory and long-
term memory.

2. the design problem-solving environment consists of a design problem space,
design task environment and the information processing mechanism(human).

3. the design task must be solvable within reasonable time constraints and limits on
resources.

The level of detail at which the design task environment is described or circumscribed for each
study varies; this leads to the difference in granularity of the models proposed

Process of Design
Design tasks are prime examples of ill-structured problems where a large part of the problem
appears to deal with the discovery of the very constraints or requirements that will be brought
to bear on proposed solutions. This exploratory progression of a design task is captured nicely
by Rychener in the following description of Simon's observations on the nature of ill-
structured problems: [Rychener 88, Simon 73]

" ..Architects [designers] were observed to formulate many items of information of importance
to their designs only by recognizing their applicability while working out the details of a
solution. They could not start out by making a list of criteria that they were seeking to satisfy
with the newly-created layoutfdesign]. Thus the search for a good solution is also a search for
proper information with which to evaluate it.

Conclusions about the cognitive process(es) of design that emerge from cognitive studies
support and elaborate on the exploratory characterization of the design process [Adelson and
Soloway 84, UUman, et al. 88, Goel and Pirolli 89, Baker and Fenves 87]:

1. Design activity falls into three categories: generative, evaluative and patching.
These permeate design processes in multiple ways, but some prominent
examples are the generation of partial solutions, evaluation of proposed solutions
(partial and complete), and patching incompatibilities in solutions that arise when
synthesizing partially dependent decomposition modules.



2. Control of design processes by human designers is dynamic, flexible and not
easily characterizable as algorithms. The decision making mode is largely one of
least commitment intertwined with nested cycles of generate and evaluate3.

3. Human designers use a variety of symbol structures to achieve their problem
objectives and use external memory aids.

4. Abstraction hierarchies are extensively used and appear to function coherently in
the context of a problem; however, there exist no formal theories of abstractions
yet.

5. Extensive problem restructuring occurs in non routine design, and the problem
structuring task and problem solving tasks are inseparable. More design time
seems to be spent on structuring than on solving.

We will use these conclusions about the nature of human design processes as a basis for
comparison with the nature of design processes currently captured in computational models.
But first, we examine how this characterization of the design process reflects both the strengths
and weaknesses of the human designer.

Limitations and capabilities of the human designer
The following limitations in the human designer's behavior are a natural consequence of the
cognitive limits imposed by the structure of the human information processor:

1. The human fails to adequately manage the complexity of the design problem
space through inadequate retrieval of relevant and useful design knowledge from
memory. Here, memory may consist of design material from the current design
session, such as partial alternatives generated, from previous experience or from
design histories available to the designer. This failure is due to a limitation in the
transfer of information between short term memory and long term
memory [Ullman, et al. 88, Goel and Pirolli 89]. External memory aids are used
to some extent to ova-come this limitation.

2. Human designers tend to make the first generated initial solution work or attempt
to take a depth first approach to solving a design problem. How the generative
process of human designers works is not discernible in the protocol studies of
single designers. [Ullman, et al. 88]

Current external memory aids are inadequate in overcoming problems of bookkeeping required
in a complex design task. The impact of this failure is acute in that it restricts the extent of the
design problem space that is explored, and, even in problems with known structure, it restricts
the extent of the solution space searched.

3We agree that human designers employ a least-commitment strategy for decisions but only within the scope of a
particular solution scheme. Within that scope they seem able to practice least-commitment in component, constraint
and value selection. However in the generation of solution schemes for development, human designers appear not to
employ least-commitment but what might be called "greatest-commitment". Other findings in cognitive studies of
design concur with this [Ullman, et al. 88], as we cite below. It is not entirely clear from Goel and Pirolli*s article
what scope they intend , but they seem to imply that least-commitment is used broadly by human designers in the
design problem space. We disagree and illustrate in this paper how computational design systems can be
complementary to human design abilities in this regard.



Apparently, human designers overcome these limitations to deal with the complexity of
design tasks through a variety of cognitive devices such as abstraction mechanisms for
generalization and task decomposition, heuristics, analogies and metaphors to provide alternate
formulations, and learning and knowledge compilation to evolve and improve the quality and
efficiency of the design process. The skilled use of these types of cognitive devices has come
to be associated with what is typically identified as expertise and "creativity" in human design
practice. Thus, in a definitional sense, human designers employ creative processes to achieve
better results because of their cognitive limitations, not despite them. But the use of a
"creative" process, corresponding to one of the above cognitive devices, may not be a
necessary or sufficient condition for producing a creative result (in the sense of a distinctly
different or superior result). When we assess the potential that computers have for aiding the
design process a more important concern is the achievement of "creative" results, not whether
the means employed are creative in the same sense as human design processes. In spite of the
cognitive mechanisms that human designers employ, the complexity of design tasks and the
time constraints involved often restrict exploration and synthesis of "creative" (the best)
solutions. Historically, creative solutions appear to have been proposed either by systematic
study or by "stumbling upon a solution". As was pointed out, the solution generation process
of human designers is still poorly understood in the context of their limitations.

12 Computational Models
The arrival of modern computers led to the widespread belief that they constitute a

revolutionary tool that ultimately will enhance and transform the design process. However,
our understanding of the strengths and limitations of computers and the relationship of these to
creating an effective computational design environment has been progressing relatively slowly.
As symbol processors, speed of processing information and an enormous capacity for memory
were the obvious strengths of computers that were immediately recognized. Perhaps not
obvious at first, it has been slowly recognized that a very significant limitation of computers
performing design is their lack of capacity for evaluative judgment and selection, and their
lack of what has been called "commonsense" knowledge. Without this broader and incisive
knowledge it appears to be very hard for computers to employ strategies akin to the
mechanisms for abstraction, analogy, etc. that appear to be key abilities of human performing
design. On the other hand, since the proper goal of computer-aided design is to produce
superior designs regardless of the process employed, then the expectation that computers
imitate or duplicate human processes may be mistaken; entirely new processes for producing
better designs may emerge that depend on utilizing the strengths of computers in ways that
complement (or surpass) human designers abilities but bear little resemblance to human design
processes. No doubt, for the above reasons, and because investigation of computers as design
agents is in its infancy, few explicit computational models of design exist4.

4We are excepting here the deliberate attempts at computational realization and validation of human cognitive
models of design; these models are not concerned with producing designs per se, but with the validation of cognitive
theory.



The early CAD systems that were used for detailing designs from a geometric point of
view were based only on implicit and primitive computational models of design. Following
these there have been numerous experiments in combining algorithmic and heuristic methods
in design systems yielding more explicit and/or slightly less primitive computational models.
For instance, automated design systems have approached design from a top-down model of
refinement [Steinberg 87]. In this approach, the design problem is structured as a fixed
top-down decomposition (a well-understood problem) in which the computational system
manages complexity by synthesizing solutions from a set of alternatives available for each of
the subproblems in the decomposition. This approach, and that of using constraint
representations and processing, have primarily yielded a series of design systems with much
more explicit models, but ones largely limited to capturing routine design, as acknowledged by
the developers of these design systems

More recently design research has been directed toward using AI technologies,
particularly in the form of knowledge-based systems. These systems succeed, after a period of
knowledge engineering, in giving the computer some (impressive) narrow design expertise and
evaluative power. However, they still suffer from limitations of rigidity and brittleness
articulated as general criticisms of the "expert system" approach to problem solving [Doyle
84, Rich 84]. To counter this, another round of knowledge acquisition and refinement can
always take place in principle; this is not usually planned as a continual and well-integrated
part of mature systems but would be required for design tasks of even minimal complexity. To
give these systems some range, flexibility and greater efficiency, various strategies for
employing layered knowledge bases of meta-knowledge and meta-level reasoning and control
have been incorporated with some success [Orelup 87, Takewaki 85, Genesereth 83, Stefik
81].

Under such arrangements the computational system performs in a less primitive and
more sophisticated way, but the underlying model tends to be less clear especially when
dependent on domain specific meta-level concerns. Implicitly these systems are based on the
as yet unfulfilled hope that a limited number of domain independent meta-levels with
corresponding inferencing strategies and knowledge will be discovered. But meta-level
inferencing often seems to require guidance from yet another successive meta-meta-level and
so on. Effective computational models of a complex task will have to cope with the problem
of organizing and effectively applying large amounts of knowledge without requiring more
knowledge at ever higher levels to be applied [Levesque 86]. Therefore, problems of
knowledge acquisition, representation and retrieval in knowledge-based systems still pose
major challenges if computational systems are to obtain an autonomous capability for design
and creativity as we know it in humans.

Some recent design research is concerned with modeling computational techniques that
focus on flexibility and innovation as more central issues. In attempting to overcome the
limitations of predefined solution spaces and knowledge bases however elaborate, some
researchers propose mechanisms that produce alternative formulations and sets of solutions.



These include techniques proposed and implemented for "creative" design such as generation
of analogies [Zhao and Maher 87], prototype modification [Gero et al. 88] and modification
operators [Addanki and Murty 87]. These proposals approach the problem of design and
creativity by defining and modeling computational techniques for cognitive design devices
such as analogy with the hope of understanding and generalizing them over a collection of
tasks. Through these generalizations computational theories of design are expected to emerge
(eventually) from the "bottom up".

Computational models of analogy, metaphor and other learning techniques can aid the
designer with alternative problem formulation. However, postulating generative models alone
of cognitive devices such as analogy is insufficient as their use may result in a combinatorial
explosion (of analogies produced for instance). Any mechanism that generates a set of
solutions has to be governed by means for selecting the useful instances out of the set; this
selection mechanism depends on the performance criteria derived by trading-off problem
objectives. This behavior has been observed in an empirical study [Kalagnanarn and
Subrahmanian 89], and has also been articulated in a critique of domain independent learning
techniques by Doyle [Doyle 88]. He argues that the domain independent learning methods are
devoid of rational objectives thereby generating generalizations that are not useful. This point
is well described for analogies by Simon in his essay on the architecture of complexity:

Metaphor and analogy can be helpful, or they can be misleading. All depends on whether the
similarities the metaphor captures are significant or superficial.

The discrimination of the significant from the superficial depends on evaluative criteria
corresponding to the objectives of the problem being solved. Precisely for this reason, purely
generative approaches to design innovation implicitly still require the human to participate in
the process. While requiring the integration of human evaluative and behavioral design
knowledge, these approaches have not (yet) delimited appropriate roles for the human designer
and for the the machine; further, they lack a comprehensive perspective for integrating these
techniques into a complete design process.

From our review of computational models, we identify two crucial points that we believe
are necessary in developing computer-based models for design. The first point is to explicitly
acknowledge and provide for a partial dependence on human design expertise and the careful
integration of it with currently understood computer capabilities. Therefore, for the creation of
design environments we adopt a design research strategy similar to what Rich [Rich 84]
proposes as the gradual expansion of artificial intelligence. In describing the role Al-based
systems play currently, she points out that even though part of the responsibility has been
assumed by machines in solving problems they do not eliminate the need for the human in the
system. Along these lines there are other significant approaches to understanding and aiding
design based on the premise that design is an exploratory process and that the role of the
computer is to aid the designer [Hemming 88, Smithers, et al. 89]. Flemming, in identifying
the role of rule-based computer systems states:

..for tasks that are not well understood a rule-based system can serve as an effective vehicle to
deepen our understanding and can thus lead to regularities, to generalizations and to the
formation of theories that do not exist at the outset.



The model of Smithers, et al. goes beyond rule based systems and argues for designing
systems based on a prototheory (design as exploration) to understand and formulate theories of
design. This is a well thought-out, ambitious undertaking with the potential disadvantage, as
the developers point out, that it requires large amounts of resources and time, because
achieving a useful degree of intelligent support involves a greater range and capability than is
typically required of approaches adopting automated design. We will have more to say
concerning the relationship of such models to our conjecture in the next section.

The second point, as articulated by Doyle [Doyle 84], emphasizes the need for
understanding the nature of apprenticeship versus that of constructing journeymen. He refers
to expert and knowledge-based systems as instant journeymen who do not have a model of the
apprenticeship process and hence do not have the capability to become masters; that is, they
sometimes display impressive expertise but have no inherent structure or agenda for evolving
and learning, for bootstrapping their knowledge and experience into more knowledge and
better skills, or for ever acting in flexible and innovative ways. Even though his proposal is to
study the apprenticeship process without computers, we believe (as the editors of his essay also
note) that computers can play a role in understanding the apprenticeship process. In order to
achieve this objective, we believe we have to endow computers with the facility to generalize,
observe and experiment with problem solving theories in a domain. We view this process of
transferring the nature of apprenticeship to computers as requiring a symbiotic human-machine
system where there is a continual update of the division of labor.

23 An evolving design environment for enhancing creativity
Design of any system that is based on the premise that it display evolutionary behavior

does not have an explicit final design goal. In articulating this point in the context of social
planning(a not so well structured task), as an example of the design of evolving systems,
Simon claims: [Simon 81]

A paradoxical, but perhaps a realistic view of design goals is that their function is to motivate
activity which in turn will generate new goals.

We view the task of building a human-machine environment for creative design from a similar
perspective. This view is motivated by the limited understanding we have of the activity of
design in information processing terms(both cognitive and computational) and the difficulty of
identifying objective evaluative criteria for creative acts. This leads us to set minimal goals for
the task of designing a computer supported design environment(CSDE) to experiment with
creativity in design. In this approach we encompass the issues that we believe are currently the
most important to support design and creativity, while not prescribing or restricting what
concepts, mechanisms, structures, knowledge, etc. may have a place in such environments.
We believe that this can be accomplished by building evolving human-computer systems that
support the conditions in our conjecture and provide means for continually attenuating the
limitations and expanding on the strengths of the participants in the design environment.

A design environment is constrained by the limitations of the participants in the
environment. A computer supported design environment, with a single human and



computers) as participants, consists of two types of symbol processing systems: human and
computer5. We have looked at the conclusions of cognitive studies for the case of the single
human designer, and the so far persistent limitations of computers, which may be partially due
to the limitations in our computational models for utilizing and instructing computers in
design.

With these points in mind, we wish to focus on the potential for CSDEs, still
characterized by the strengths and weakness of the two participants, but with a new twist on
the role of the computer (and the human designer). In particular, their cooperative integration
opens new possibilities for expanding the strengths of the computer when balanced by context
sensitive human design knowledge that can be elicited, stored, refined and structured for
dynamic application. Earlier, we mentioned that the generative processes of human designers
are not easily discernible from protocols, and hence present a rich area for research in for
proposing formal generative languages [Ullman, et al. 88]. Within a cooperative evolving
environment with the proper division of labor and the right set of representations these can
take the form of purely syntactic languages. Such languages can be postulated, developed and
tested for completeness, and systematically applied using the main strengths of computers. Of
course, the definition of designs through such languages must be completed and balanced by
the exploration and application of task specific performance or behavioral requirements by the
human designer in order to make a large space of solution possibilities converge and express
the desired properties.

Similarly, with the right representations and structure computers can provide multiple
abstractions and decompositions for managing and exploring partial design descriptions, and
compiled design histories for bringing to bear on the present task, at the right time and level of
abstraction, relevant design knowledge from previous design experience. These
representations, languages, evolving structure and the design knowledge that they capture will
ultimately become interwoven with computers speed and memory capacity as a more unified
fabric or computational model expressing computers acquired strengths as design agents. With
this perspective, the space of possibilities for the design of such evolving design environments
is indeed large. It quickly becomes speculative and unproductive to discuss these issues
further in general terms.

In the second half of this paper we choose to illustrate some possibilities concretely in
terms of a specific class of design - layout design- and a unique computational model and
system for exploring layout design tasks - LOOS. We will show that the LOOS approach
takes advantage of existing technologies and human and computer strengths and integrates
them in such a way that its architecture reflects an exploration-based model of design akin to

5In this paper we restrict the scope of our investigation into environments for creative design to two agents: a single
human designer and a computer system (possibly consisting of more than a single machine.) Increasing the number of
human designers in the design process adds additional complexities involving communication and social processes to
investigating the environment of design.



that proposed with careful detail in [Smithers, et al. 89]. Insights from both of these groups
confirm that determining the architectural features of a CSDE must be approached as a design
problem itself with evolving goals. We believe that the major themes that must be addressed
can be identified however and are as follows:

1. modeling design as an exploration process with human/computer cooperation

2. immediate enhancement of the creative potential of human designers coupled
with the evolutionary enhancement of the role of the computer toward a more
autonomous, creative partner

3. design theory in domains and insights into creativity should be accumulated
experimentally and empirically through the normal use of design systems; this
will be enabled if there exist sophisticated knowledge structures, representations
and languages to elicit, accumulate and refine design knowledge and design
process knowledge during single design tasks and across a set of tasks.

Besides being evolutionary in its behavior, the environment proposed is also evolutionary
in terms of the history of development of computational design tools; a step that integrates
formal problem solving and knowledge-based methods in a manner that allows it to display a
continual improvement in its behavior.The CSDE framework that we propose for conducting
design research accommodates both "creativity in the large" and "creativity in the small."
What we mean by creativity in the large is the overall potential for producing superior results
(innovative, creative and custom design) that emerges through the integration of multiple
human/machine processes and representation capacities, both long and short term. By
creativity in the small we mean the focus on computationally modeling individual processes or
mechanisms that potentially produce creative results such as mutation and modification
operators, analogy, case-based-reasoning, etc.

We see these two levels of exploration and potential for creativity as perfectly
compatible, indeed necessary to one another. A significant and important part of the evolution
of a CSDE will be the introduction, refinement and incorporation of more and more individual
computational mechanisms for creativity comprising the gradual shift of design expertise from
human to machine. At the same time our belief is that the focus on and development of
CSDEs as a whole is necessary as an empirical testbed where such mechanisms can emerge as
ideas, take-shape and be tested.

2.4 Testing conjectures about design creativity
We now reexamine our conjecture specifying conditions for the occurrence of creative

acts in design. Briefly restated, our conjecture again is that the potential for creative design
occurring is increased when designers are provided the capability to explore an expanded
formulation space or more of a given solution space for a task. In motivating and describing a
computational model consisting of evolving CSDEs, we have also proposed the appropriate
experimental environment within which to test our conjecture. The construction and planned
evolution of such environments will provide the exact conditions necessary to promote our
understanding of creativity, and achieve creative results for real design problems. We believe



that any design research proposing conjectures about computational models of creativity must
also specify the experimental environments in which to test them6.

The next section will describe how we can support a minimal CSDE which provides the
conditions by which to evaluate our conjecture in the class of layout design tasks. We don't
claim to verify the conjecture in the strong sense, but we clearly illustrate it in terms of
examples of systematic exploration and task reformulation in layout design. Of course, we
realize that in order to fully test the conjecture, we should validate it across classes and
domains of design tasks; layout design is just a beginning. Our proposal at the experimental
level - constructing evolutionary CSDEs - will allow us to test for each of the conditions of
the conjecture, and follow this approach in a number of design domains. Below we add a few
further comments about each of the conditions in our conjecture by identifying some types of
systematic exploration and task reformulation; these are by no means exhaustive but represent
an interesting collection of possibilities. These examples will be further illustrated in the next
section.

Expanding the number of potential solutions examined
We note again the limitations of human designers in exploring and keeping track of multiple
alternatives and the importance this attaches to constructing computational design systems that
enable a designer to explore different options in parallel [Mittal et al. 86, Mostow 85]. As the
following quote suggests, there is a connection between the ability of designers to explore a
given design space more thoroughly and the potential to discover innovative solutions to a
typical problem within a given problem space: [Rychener 88]

Past design work (which is largely done by people, with few ideas as to how to automate even
its more routine aspects) has often been hampered by a failure to consider more than one or two
main alternatives. This certainly excluded most truly innovative approaches. It has also meant
that the search for alternatives has not been systematic and thorough.

In essence we advocate systematic examination through generation of all solutions, at
appropriate levels of problem abstraction, as a means to expand the scope of exploration7.
Systematic generative capability effectively filtered through performance knowledge, and
intelligent design history management will provide means to explore larger portions of a
potential solution space than humanly(!) possible.

*This is in contrast to approaches that propose models for creativity and use computational implementation as a
sufficient condition for verification without any(or very limited) verification of their purported behavior [Ohlsson
83,Bundy83,Sharkey85]

7Of course, such a design strategy is potentially cornbinatoric. However, there exists at least one model for
implementing exhaustive enumeration of solutions that is tractable if certain conditions are met. Hierarchical
gentraU-und-test permits pruning of candidate solutions that are only partially specified, and when a partial solution is
pruned, an entire class of solutions corresponding to the description is eliminated from the generation process [Stefik
et al. 83]. The LOOS system, presented in this paper, is an example of the implementation of this model in the domain
of layout. This approach is potentially so important as a computational means to produce superior (creative) designs
that we recommend that other domains of design attempt to meet the conditions allowing its use; this requires a
representation enabling the specification of partial designs and an architecture that supports their evaluation with
certainty.



Expanding the exploration of task formulations
If purely syntactic generative mechanisms arc proposed, the number of potential solutions can
be large because they are missing an important part of the design task specification:
performance constraints. Two sets of performance constraints with the same structural design
descriptions correspond to two different formulations of the task. Performance constraints are
an important means by which humans designers manage the complexity of exploring the
solution space. By allowing a designer to incrementally define and manage sets of
performance constraints, support for expanding the set of possible formulations of design tasks
can be achieved. As the shortcomings in partial designs are detected, as a result of incomplete
or faulty specification of the current set of constraints, the system could effectively aid the user
in correcting the problem formulation. In this regard, design histories can also play a vital role
in connecting the knowledge from previous attempts and solutions to the problem at hand.
Modification of performance requirements is only one method of expanding the scope of
exploration of the problem formulation.

Another important means by which the designer manages complexity is through problem
decomposition using abstraction hierarchies. Design and performance constraints can be
expressed at different levels of abstraction of the task. Any representational language for
design, including generative ones, will have to provide mechanisms to allow for specification
of task decompositions. The designer using these languages should be able to express
decompositions and allow the computer to generate solutions at these levels. Alternative
decompositions would also provide the opportunity for experimenting with differing
formulations of a design task. Aid in managing possible sets of design task decomposition at
various levels of detail can potentially allow for overcoming the tunnel vision behavior
imposed by cognitive and temporal limitations.

In the above discussion of our conjecture we initially assign the roles for blind generative
capability and algorithmic solving methods to the computer due to its computational strengths
while assigning the role of evaluator and specifier of rational objectives to the human.
Continual evolution of this integrated design environment is based on the ability of powerful
computational variants of context sensitive human cognitive devices (abstraction, analogy and
learning), or purely computational techniques with no cognitive equivalence finding a stable
use in the design environment. Techniques that impose additional limitations on the ability to
perform design or are not used will fall out of the environment while others that enhance the
power of the designer will find a niche in the environment sometimes proving useful beyond
their originally intended use. We believe that we can use design environments constructed
around these principles to enhance and understand the design process. As our understanding of
the design process progresses the role of the computer may evolve from that of an apprentice
to a creative partner while in the initial stages they serve as amplifiers of human creative
powers.



3 Layout design: a testbed for computer supported creative design

Layout design deals with many of the complex issues that typically arise in the design of
artifacts that have to satisfy specified constraints and are composed of parts that have shape
and take up space. Because layout involves the two-dimensional composition of objects into
floor plans, site plans, etc. it is in some respects relatively less complex than some other design
tasks. But layout design is interesting and important because it is a generic phase or process of
many design disciplines. A design method for layout should capable of dealing with many or
all of these domains if its representation and overall architecture are general enough.

Layout design is also inherently difficult because of the large (potentially infinite)
number of location and orientation combinations available for placing any single object.
Furthermore, there are multiple interdependencies among the design objects imposed by their
shapes, sizes and the spatial relationships required to meet multiple performance requirements.
For these reasons there is no known direct method which is guaranteed to produce feasible
solutions without trial and error. Depending on the difficulty of the problem some amount of
exploration of problem structure and search for candidate solutions is required whether in
human or computer based approaches.

Recurring in the literature on layout design is the observation that due to cognitive
limitations human designers do not have the capability of making systematic explorations of
alternative arrangements [Liggett and Mitchell 81, Galle 86]. A distinctive feature of layout
problems is that decisions must simultaneously satisfy global requirements (e.g., usage of
space) and local requirements (e.g., adjacency); an acceptable spatial arrangement results from
a complex pattern of tradeoffs. Ideally, what is desired is a structured method for producing
multiple alternative layout solutions where each proposed layout embodies tradeoffs that can
be understood and justified, location decisions are made explicitly, and possible directions for
variation are indicated8.

Because of its cross-disciplinary importance, its inherent complexity, the fact that only
restricted 2-D representations are required, and the need to augment human methods, layout
design is a remarkably suitable design task for the initial implementation and study of a CSDE.
In this section we describe LOOS, an approach to supporting layout design, and its properties
in relation to our conjecture and the requirements for an evolving CSDE.

8It is for these reasons that there have been severe drawbacks to the representation of spatial allocation problems in
mathematical formulations such as quadratic-assignment or mixed-integer-programming. Typically, not enough is
known up front about the constraints to formulate layout problems for this type of solver. These approaches may be
suitable where the set of requirements is strictly limited (such as where distance or material flow is the overriding
concern) but performance requirements impacted by considerations of adjacency, shape, size, alignment, relative
location, etc. and their tradeoffs are very difficult or impossible to model aphorL Once the correct formulation for the
problem is known these solving methods are probably the most efficient to employ. They can no doubt be used to
optimize for certain requirements after a rough or aggregate layout is known.



3.1 The LOOS system: human and machine cooperation

The following description of the LOOS system does not emphasize technical details or
the current realization of all of its components (which are evolving). Rather, the intention is to
provide the minimal explanation of the approach that will allow us to examine its basic
organization of the design process. For further technical detail and substantiation, a recent full
description of its implemented status (at that time) and the important theoretical basis for its
representation and generator can be found in [Flemming, et al 89]. The primary design goal
for LOOS was to build a partially-automated system combining human expertise with the
systematic generative capability of computers. An initial system realizing that goal is
implemented and running on real problems from several domains.

The core of LOOS is a process that composes a set of 2D objects into one or more
layouts of rectangles. This process is designed around a graph-based relational representation
that facilitates the systematic generation of all candidate solution layouts and a separate tester
which supports evaluation of candidate solutions over a wide range of criteria. Application of
the system to a layout design task requires acquisition of a designers' knowledge and provides
them with a set of alternatives that capture tradeoffs. The systems' components are a
generator, a tester or evaluator, and a controller. Each was designed to be an independent
module so that various evaluators and controllers are easily experimented with and replaced
irrespective of and without disturbing the other components.

3.1.1 Representation and generation
The representation on which the approach is based uses the basic spatial relations above,

below, to the right and to the left to define the structure of a layout and represents this
structure formally through a directed graph whose nodes represent the rectangles in a layout
and whose arcs represent spatial relations between pairs of rectangles; Figure la shows an
example.

A set of generation rules has been developed to insert "rectangles" into a graph, one at a
time, and to construct in this fashion every set of realizable relations (for a given number of
rectangles) as an alternative layout structure; a sample sequence of rule applications to
generate partial layouts is shown in Figure lb. The rules constitute a generator that is a formal
grammar for the generation of 2-dimensional syntactically correct layouts of rectangles, where
the rectangles themselves are unattributed.

Spatial relations, as defined here, formulate a type of intermediate abstraction for
describing layouts that reflects a separation of structural from dimensional concerns. Each
representation suppresses the continuous dimensional properties of potential layouts and
expresses the discrete spatial relations between objects. Each candidate layout thus represents
a class of feasibly dimensionable layouts and the possibly infinite set of solutions is divided
into a finite set of subsets that can, at least in principle, be enumerated. This representation
captures a suitable notion of structure that can be used to define critical differences between
alternative layouts and to generate alternative structures; this allows the generation of a well-



a)

• I

i
l

• • •

2

U
b)

LJ
PI 4

Figure 1: Formal representation and generation of arrangements of rectangles

defined space of potential solutions. Higher-level concepts regarding the quality of layouts can
be formulated based on this representation so it also serves as an explicit structure for queries,
analysis and evaluation.

The representation also supports the incremental monotonic specification of designs in
terms of their structure. The formal properties of the generator insure that each partial layout
generated is formally complete and distinct and that the spatial relations between objects
already allocated will not change with the addition of further objects; alternative relationships
between a given pair of objects will be found on other branches in the space of possible
structures.

A restriction of the representation is its limitation to a rectilinear world. However, the
representation achieves significant formalization and simplification given the present state of
the art, and it permits numerous interesting applications at various levels of complexity across
many design disciplines. Another potentially more serious restriction is that the
representation, by itself, does not guarantee that the exploration of the potentially vast space of
possible solutions will be efficient and computationally feasible. However, here again the
representation is extensible to support hierarchic recursive processing of tasks in order to offset
the possible combinatorics of generation. This extension, described in the next section,
supports the representation and modification of the decompositional structure of layout tasks.

3.1.2 Layout task decompositions and their representation
In this section we briefly describe the extended representation framework that will

support an expanded design process. A prime motivation for the proposed framework is to deal
with the problem of scalability and the combinatorics of the generation algorithm; the intent is
to manage the complexity of problems both in the numbers of objects handled and in the
amount of interactions and detail involved with those objects. To handle complexity, the



experience of both human and automated methods suggests that a very important abstraction
mechanism in layout design is a hierarchical decomposition of the objects it handles and of the
tasks (or goals) it pursues. An approach, described below, is currently being
implemented [Coyne 89] to achieve the decompositional structuring desired within the LOOS
approach; this research is also converging with many of the other goals for creating a CSDE.

The system, as first developed, treats the underlying representation as flat: each node
represents a single, physical object at the same level of abstraction. But this need not be the
case. Loosely-packed arrangements of rectangles can represent layouts not only in different
domains, but also at various scales and decompositions. A rectangle might represent a single
unit or a cluster of rectangles each of which might again represent a cluster. The formal
representation used in LOOS supports this recursive structure. Graphs are particularly
amenable to this kind of treatment because their nodes can easily be expanded (or contracted)
through appropriate operators. Furthermore, the generation rules employed by LOOS can be
used recursively not only to insert nodes, but also to expand nodes formerly inserted.

In extending the representation to structured objects, each node, or layout component,
also defines a layout goal or task, namely that of allocating the parts it contains.
Decompositions in the domains of layout design can be understood in this dual function: they
partition both the object and process of design. The merging of goals and design structure in
terms of both function and hierarchy leads to the concept of a powerful integrated abstraction,
a goal-object (GOB). Each GOB is self-contained and represents a complete design task, and
the knowledge and representation structures and set of mechanisms with which to accomplish
it These include (but are not limited to) startup and terminating conditions, design method
and control selection, evaluation criteria, and the definition of the further unfolding of its own
abstraction subtree (subGOBs). A layout task can now be planned as a decompositional
hierarchy of subtasks corresponding to a nested tree of GOBs. The overall task is specified as
a single top-level GOB. The decompositional structure for the layout task will partition this
goal into subgoals at various abstraction levels. The design process will unfold as the
recursive, hierarchical satisfaction of the layout goals through the placement of GOBs. We
will elaborate on how this structure can be utilized in dynamically controlling the problem
decomposition and the solution process in the next section.

3.13 Evaluation and control
Controlling the syntactic generator

Given that a well-defined space of potential solutions can be produced, LOOS employs a
domain-dependent knowledge-based approach for evaluation. It discriminates among the
generated candidates based on multiple criteria that capture the semantics for the quality of
layouts in the particular domain and problem. This tester, which we also call a semantic filter,
is designed to be built up incrementally as designers are stimulated to add, change or withdraw
criteria when confronted with partial layouts graphically displayed and rated.

The semantic filter in LOOS serves two critical purposes. First it completes the



definition of partial design descriptions by adding behavioral interpretations to the structural
alternatives proposed by the generator. Second, the filter must provide adequate knowledge
for discriminating among alternatives so that the space of possible solutions is sufficiently
reduced to make its exploration feasible and efficient. As is the case in most design tasks, the
challenge is to fashion a set of criteria, neither overconstrained or underconstrained, that
balances the set the requirements or behavioral qualities that the designer is seeking; tradeoffs
may be necessary.

Figure 2 shows the expansion of a selected node (partial design) by the generator
producing a set of alternatives, structurally defined, which represent the placement of another
object in the layout in all possible ways. The figure also shows that with the same structural
expansion the substitution of a different semantic filter changes the descriptions of the partial
alternatives produced. Changing the evaluative criteria may also change the resultant partial
designs that may be chosen for expansion at the next level of development

generation (expansion)

filters (evaluation)^

1 2 3 4 5
partial solution set A;
each member's score

(structural only)

partial design
descriptions

i
(structural and*"

behavioral )

S* 1 2
partial solution set B;
each member's score =

Figure 2: Generation and interpretation of partial solutions

The results of evaluation are stored in an evaluation record. In the current system this an
ordered three tuple consisting of the number of constraints, strong criteria and weak criteria
violated. It also captures the relative ratings for partial designs in terms of individual
requirements. Constraints indicate a requirement that a solution must satisfy in order to
become acceptable; strong and weak criteria indicate desired properties of decreasing
importance. Evaluation scores for partial designs are interpreted lexicographically using the
ordering in the tuple or the evaluation record; that is, there is a relative left to right ordering of
importance. The arity of the tuple and assignment of importance of criteria to the elements in
the tuple is up to the judgment of the designer using the system and is a matter for



experimentation and knowledge-acquisition. Tradeoffs among design criteria are
accommodated by their relative weighting as reflected in assignment to a category in the
evolution record.

A controller uses the results of evaluation and a simple branch-and-bound(BNB) strategy
to steer the traversal of the space away from less promising alternatives deferring their
development until it is certain that nothing better can be found. Using this strategy, the
controller expands those and only those intermediate designs which are at least as good as any
other design generated before (independent of its level of development in terms of number of
objects placed), and prunes the space of candidate solutions.

The structure of the evaluation record, and the rating of partial designs in terms of it,
facilitates the ordering of solutions with respect to failing requirements. The idea of a filter
captures the notion of applying the semantics of the domain in question as a negative screen to
the alternatives produced by the syntactic generator. This notion of guiding the expansion of
the space of alternatives based on failure of requirements is an important one in design tasks
involving multiple complex requirements with both global and local interactions. As a result
of this strategy and exhaustive enumeration, LOOS is able to manage decision making and
commitment in a unique and efficient way. As noted, it asserts the structural definition of
candidates monotonically to produce new points in the potential solution space. Since all
performance requirements are evaluated in terms of this structural definition, this guarantees
that once a partial solution fails in terms of some performance test, it can never get better
through further development and its performance is monotonically rated (as an increasingly
negative score.) Taken together,the representation, generator, tester and controller of the
LOOS approach implement a form of hierarchical generate-and-test [Stefik et al. 83 ,p. 72].
The architecture of LOOS and the domains for which it is intended satisfy the conditions that
make this approach workable; in particular, the generator partitions the solution space in ways
that allow early pruning, and partial solutions may be evaluated with certainty.

Therefore, LOOS avoids making uncertain commitments(in the form of predictive
decisions about performance), by maintaining a "currently globally best" set of candidates and
always expanding that set in the minimal way in the next round of generation9. This is in
contrast to design approaches which intertwine performance requirements in a generator and
employ a least-commitment approach in all choices; their problem is that when least-
commitment breaks down they still have to commit to a choice in proposing an alternative (and
later backtrack if it is wrong.) LOOS makes no commitment in choosing which of the current
globally best partial designs should be expanded and their children examined - it examines
them all. In this way the system can again commit with certainty to a new set of current
globally best candidate solutions, with no backtracking. This least-commitment of resources
approach is effective in the face of multiple, complex interactions among the goals of layout,

9This sounds very memory intensive but since each new insertion only changes a parent layout graph locally we
inherit much of the graph structure through the hierarchy.



the global uncertainty of outcome until all objects are placed, and the need to systematically
explore tradeoffs among multiple candidate solutions.

Controlling problem decompositions
The extension of the flat representation to GOBs provides an opportunity both for
decomposing an overall layout into components and for controlling the complexity of the
representation at various levels or scales. All objects in a domain of layout, whether primitive
or structured, will be represented as GOBs. Viewing GOBs (structured objects) alternatively
as primitive or as subdesign tasks to be further developed provides a uniform protocol and
drastically simplifies and decentralizes control. It will also permit the overall task to be
decomposed at non-uniform levels of abstraction, where some GOBs are slated for
development and others are not, even if of the same category; in this regard a decomposition
scheme suited to a layout task may be arbitrarily complex. For instance, in building layout
placing "rooms" within a building may be the final level desired, while in another design task
the detail of the layout within each room may be needed; or, internals of some rooms may need
to be placed while others are left undetailed. This provides designers great flexibility to
represent (and experiment with) the degree of detail and level of completion desired in layout
tasks. The structure of a given layout task can be represented and is customizable through
selecting the development level of the GOBs that comprise the task. This decomposition
strategy supports both top-down and bottom-up control of the design process, such as moving
from coarser to finer scales or allocating parts that have been built from smaller components.

Many design systems advocate and depend on the strategy of decomposition or
subgoaling to deal with complexity; however, very few deal with problems of recomposition,
or the smooth integration of subgoals to solve an overall goal. To provide a method that allows
dynamic, and flexible resolution of interaction between subtasks the GOB architecture will
allow some limited bottom-up processing to occur with the overall top-down control. For
instance, this could happen opportunistically by pushing down a level of abstraction and
dealing with the articulated subcomponents of a GOB in order to retrieve information or
resolve an interaction at the higher level. The use of GOBs in this manner offers some
opportunity for bounded negotiation and communication between "leaky" subgoals to capture
the advantages of subdividing a task while providing for realistic integration of design
problems that are only "nearly decomposable". Also, related to recomposition, there will be the
possibilities for the specialization of GOBs in context (based on a prestored-stored hierarchy or
parameterized instantiation), and for generalization through the aggregation of components
(freezing a portion of the design) into a single object at a higher level of abstraction.

3.2 The conjecture illustrated

We now discuss the critical capabilities for the support of layout design in LOOS that
begin to give it the character of CSDE. They serve as a foundation upon which to build a
design environment that will evolve and support creativity in an incremental and cumulative
way.



Expanding the examination of a given problem space for potential solutions
We have pointed out the limitations of human designers in exploring a large space of solutions
for a given problem. To overcome this, LOOS enables a designer to thoroughly examine the
potential solutions for a given formulation of a layout problem. It does this by combining
systematic generative capability and the abstract representation of partial designs with an
evaluative knowledge-base. Leaving aside the development of the knowledge base(s) for a
particular domain, once they exist, designers are enabled to easily look at many more potential
solutions, and find distinct alternative solutions faster10 for a typical problem than they could
using only their own resources. Depending on the complexity of the problem this could
substantially reduce their expenditure of resources (conserving these for more creative
application to the design task at hand) while significantly increasing the number of distinct
solutions considered. We believe that the capability for systematic examination, though not
creative in itself, underlies the creative potential at a basic level; that is, it provides the grounds
for its emergence rather than being the creative act itself.

An expansion of the number of problem spaces explored for a given layout task
Within LOOS*s design process designers are also able to explore potential solutions for a
given layout task in a variety of problem spaces. They are able to change the problem space
within which they are working by changing the requirements or behavioral description of
(partial) layouts in three ways:

1. by adding, changing, and withdrawing evaluative criteria.

2. by adding/changing measures of importance for particular evaluative criteria

3. by adding or withdrawing categories of importance in the evaluation record (to
which to assign the individual evaluative criteria)

Each of these can contribute to modifying the semantic filter through which the
structurally defined and generated partial solutions are passed, as described and illustrated in
Figure 2. Examples of evaluation requirements that might be added for a kitchen layout task
are "The back of the refrigerator cannot be placed against a wall" and "The sink has no space
on either side for a work counter"11. The following list suggests additional levels of
importance and corresponding categories of performance requirements that might be added to
achieve finer grained discrimination of alternatives for a typical architectural layout task:

1. well-formedness tests, such as 4. client preference
dimensional fit 5. office style or policy

2. code tests 6. designer preference
3. good practice

10Just as an example, eight distinct solution alternatives are found by the system in less than a minute, real time, for
a real kitchen layout task within a non-rectangular boundary. This performance was on a Sun 3/60 with 24 megabytes
of memory with LOOS running on top of Unix (Mach), Lucid CL 2.1, PCL and XI1. .

"Remember that these are framed as negative tests and scoring reflects failing requirements.



This possible extended hierarchy of requirement levels would be reflected in the extension of
the evaluation record tuple. The significant thing about the elaboration of levels of possible
evaluations is that those that reflect somewhat arbitrary constraints or criteria (designer
preference) could contribute to balanced discrimination on problems that would otherwise be
overconstrained or underconstrained. The LOOS approach will readily accommodate such
customization, and its applicability will depend on the domain in question.

For particular domains of layout, the construction of a hierarchy of evaluative
knowledge-bases, corresponding to levels such as the above, would provide a means for
individuals or firms to create and store their "intellectual design capital." This possibility
reflects the opportunity for designers to conveniently intermix a variety of personal and
institutional evaluation and stopping rules in design. The same iterative generate-evaluate-
modify cycle may be used to develop these knowledge bases or customize an existing one. We
will have more to say about the role that such knowledge bases might play as part of design
histories later.

The interaction of designers with a graphic display of partial designs is an important
example of raising the abstraction level at which computer tools can provide external memory
aids to the designer. The exploration of alternative problem spaces in a developing design
task, with the close interconnection of long term memory aids (from internal and external
sources through a noticing and evoking process), might be considered a creative process in
itself. At the very least it will have significant direct impact on the potential for producing
creative results in the overall human/computer design environment.

Expanding the exploration of problem spaces through decomposition
Each GOB has a set of constituent objects, other (sub)GOBs, whose placement make up its
layout task. A designer may experiment with alternative decompositions by assigning an
object as a constituent of one GOB as opposed to another, or by making an object active in the
layout at a different level of abstraction, for instance at the same level as a former "parent"
GOB. In this way designers are afforded the flexibility to capture and experiment with the
granularities of objects and layout tasks within a domain until they find a suitable
decomposition relative to the constraints of their present task. This is a familiar process in
many design domains where there is frequently the option to choose a standard structured
object from a library or design database, or to custom build in context from a more primitive
set of components. For specific critical GOBs it may be desirable to build up and record
ordered alternative decompositions (sets of constituents) so that successive ones may be tried
dynamically in the event that sufficiently good evaluations are not achieved by the prior one.

Initially within a domain, the human designer will provide the decomposition knowledge
and enter it into the system in the form of GOBs, their development levels and constituents.
This will involve another level of knowledge acquisition and the potential for exploration of
alternative problem spaces in terms of the structure of the task. Over time and problem runs a
knowledge base of GOBs will be accumulated in a domain and constitute accessible long term
memory usable to help structure any given task, and of course customizable to the task.



Supporting Diagnostic or patching activity.
The LOOS architecture, in addition to supporting generative activity, also supports patching
activity by serving as a diagnostic, evaluative system (in domains where an evaluation
knowledge base has been developed.) Designs, produced by either manual or automated
means, are easily converted into LOOS's internal representation, submitted immediately for
evaluation and the results displayed with an explanation of any violations. It would also be
possible to remove a design object or objects deemed most responsible for a failure (by
backward application of generation rules) and to re-submit the reduced configuration, along
with the object(s) to be inserted, to the generator in order to obtain additional alternatives.

Along these lines, it is easy to imagine how an interactive environment for using the
LOOS system in multiple ways could be constructed. The device of removing a (critical) piece
from the layout and re-inserting it in all possible ways could be developed into a form of
prototype adaptation [Gero et al. 88]12, and bears a strong relationship to the heuristic
planning mechanism of debugging an almost correct plan. [Sussman 75]. This capability
could be used in developing, learning and teaching patching expertise.

GOBs: an evolving structure for knowledge, mechanisms, and interaction
From the above description it should be clear that each GOB will be a relatively independent
task with considerable local autonomy and ability to respond flexibly and dynamically to
accomplishing its task. In a sense, each GOB represents the entire core LOOS system -and
more - by providing an appropriate place to acquire, store, retrieve and reason about the
application of knowledge of layout design in many forms. For instance, each GOB will store
its own semantic filter appropriate to its layout task and set of constituent objects; this will
save in a structured way at the right location an evaluative knowledge base that a designer
develops and wants to store at the proper level of abstraction. Similarly, each GOB will have a
slot for methods to achieve its task, of which the core systems9 generative method will be only
one option (albeit the prime one initially)13. Over time the system may learn to use particular
methods in the context of particular layout subtasks. As knowledge and experience
accumulate over design tasks in a domain one would expect a shift to take place from generate-
and-test to more direct methods, such as instantiating pre-stored generalized solutions. One
can envisage that skeleton or prototypical layouts (for instance, generalized context-invariant
layouts satisfying internal relationships only) are stored as a result of previous design sessions
and used as a basis for creating or completing a desired layout in response to a current context.

GOBs will serve as structure to capture layout design knowledge at the right levels of
abstraction (evaluation, decomposition, appropriate method and control invocation, etc.) across

12In layout design GOBs will have characteristics similar to prototypes in regard to storing generalized design
solutions suitable for modification operations and patching.

13PosriMe alternative methods are selecting from a pre-enumerated set, refining a prototypical arrangement,
modifying an almost correct arrangement, constraint-directed generation, or heuristic or interactive constructive
methods.



a number of design tasks within a domain, but remain modifiable and extendible within
individual design sessions. Through GOBs an understanding of a class of design problems
will accumulate in the form of design histories. In this way, the process of abstraction and
generalization of knowledge from particular design tasks will no longer be just implicit in the
practice of human designers alone, but will become explicit in the evolving architecture and
knowledge bases of a CSDE. Because of their knowledge content and key place we believe
that GOBs will also provide the opportunity to introduce and experiment with a variety of
mechanisms for learning, the use of analogy, modification and patching operations, and other
localized methods possibly related to design creativity or innovation in context.

The structure of GOBs, and the overall structure of a CSDE to accomplish the goals
outlined, is itself a design problem, the formulation of which requires experimentation and
testing in context to fully understand. The study of the required structure can be identified
with the aim of understanding how to build design apprentices who accumulate experience and
apply it to new tasks; this includes the compilation of expertise while retaining the flexibility
to be creative.

We have shown that the LOOS system satisfies the basic requirements posed in our
conjecture and begins to address the critical issues involved in the realization of an expanded
computational model and experimental testbed for design and creativity - an evolving CSDE.
It is obvious that the continual improvement of a CSDE will require careful consideration of
all the issues involved with creating a well-structured interactive environment with graphical
display, and high level languages. These will give a designer an understanding of and access
to the developing content of knowledge structures and design representations without concern
for their internal representation and implementation.

33 Computer Supported Design and Creativity in LOOS

In the LOOS approach to layout design the computer supplies the generative expertise
and "horsepower" while the human provides the evaluative judgment to formulate the
interpretation of the syntactically proposed layouts and to structure and guide the overall
process. Through this balance of capabilities the overall architecture of the LOOS system
effectively addresses some of the long-standing fundamental problems of supporting layout
design. In this section we summarize how LOOS is an evolving CSDE that encompasses
capabilities that incrementally and cumulatively enhance creativity in design. In doing so we
answer, in large part, the following questions that should be asked of any computational design
system that purports to enhance or replace in part the creative capacities of human designers.

1. How does the environment extend/improve the process of a human working
alone?

2. How does a human complement and provide essential knowledge and judgment
that an automated system alone would find difficult (impossible) ?

3. How does this integrated environment evolve over time? what does each agent
gain? and how do their roles change, etc.?



To support a computational design model that answers the above questions, LOOS
provides the following design support features:

• The facility to expand the amount of the potential solution space searched for a
given formulation of layout problem, by systematically exploring alternatives and
the tradeoffs among them.

• The facility to expand the number of problem spaces explored for a given layout
problem. It achieves this by supporting incremental reformulation through the
addition and modification of constraints and constraint importance levels, and by
supporting reformulation through alternative decompositions in a dynamic,
flexible way.

• An independent syntactic solution generation capability. The strict separation of
evaluation from formal syntactic generation enables a critical division of labor
between machine and man, and also enables the approach to be applied to "generic
layout tasks" across multiple disciplines.

• The incorporation of semantic concerns in a tester within a well-defined context
for evaluation. Spatial relations provide an explicit structure for evaluation of
partial designs in terms of a current full set of applicable criteria.

• The means for domain experts to make explicit their knowledge when confronted
with a concrete solution in a familiar graphical display, as opposed to formulating
their knowledge in general terms unrelated to a concrete case.

• Support for generative, evaluative and patching activities and assignment of
appropriate roles to the agents, human and computer, for each of these. As
mentioned earlier, it achieves this by dividing the labor of generation and
evaluation between man and machine.

• The use of multiple representations and abstraction techniques and levels to
mediate decisions and the processing of design goals to design specifications.
Evaluations are enabled at different levels of abstraction.

• Combined top-down and bottom-up reasoning with limited dynamic, automatic
transitions between these modes on demand. Control of the design activities is
based on a limited commitment of resources mode of control. Control can also be
managed interactively or automatically at all significant choice points.

• The computer performs constraint management and required bookkeeping as the
design evolves, and can not only signal when constraints are violated, but is
capable of keeping track of tradeoffs.

• Enables the use of subjective evaluation and stopping rules(tradeoffs). This
ultimately results in the compilation of this knowledge into evolving customizable
knowledge bases. The compilation of knowledge bases helps the designer in
experimenting with multiple sets of evaluation rules.

• Provides for a continual update of the division of labor. For example, a change in
the division of labor will occur with the evolution over time from (interactive)
generate-and-test to more direct methods for proposing partial solutions, such as
pre-stored solutions. The system acquires new design abstractions and evaluations
from the interaction with the designer over large classes of problems. This would
allow the system to propose design abstractions based on the specifications of the
problem.



Though we have not mentioned search explicitly, it is clear that LOOS incorporates
search in a careful limited way in its design process. The generative component can be viewed
as producing a well-defined search space of structurally defined alternatives. However, this
space describes neither complete design alternatives nor the complete process. Here search,
combined with a method for acquiring and applying evaluative expertise, underlies and
supports a systematic process for exploring the overall problem space. Iterations of generate-
evaluate-modify converge on the desired formulation of the design task and produce not only
the enumeration of all possible solutions given that formulation, but an implicit theory of
layout design for that domain in the form of the evaluation knowledge-base developed.
Iterations over multiple problems in a domain can refine the knowledge base and theory
produced.

Therefore, to simply classify the LOOS approach as a search-based design system, or as
a knowledge-based system is a mistake. It has elements of both and they are integrated in such
a way that the system more accurately reflects an exploration-based model of design as cited
earlier in section 2.3. The implemented LOOS system and structured agenda for continuing
research offer the singular advantage of an experimental environment in which to continue to
test and refine our conjecture(s) regarding creativity with empirical results. In this approach
we propose using the computational medium as a partially automated assistant to deal with real
design tasks (layout), and intend to study the process of layout design and attempt to develop
domain theories of layout design through the ordinary exercise of the system on design tasks.

4 Conclusion

In this paper we described an approach to the design of computational environments that
can be used to study the conditions under which creativity can occur. We proposed a
conjecture on creativity within an information processing theory of design. This conjecture,
briefly stated, predicates the occurrence of creative design when a designer is provided the
capability to explore an expanded problem formulation space or more of a given solution space
for a task. We then characterized the realization of design environments to enhance creativity
as a design task itself with evolving goals. Through LOOS, an architecture for layout design,
we illustrated how the conditions of the conjecture could be supported in an evolving computer
supported design environment We also described how this architecture allows for the
development of domain theories of design. Finally, we discussed the significance of our
approach as a foundation for design research and its relation to existing areas of research in
creativity and design.

5 Acknowledgements
The authors are grateful to Ulrich Hemming and David Steir for their helpful comments

on earlier drafts of this paper. Support for this work has come from the National Science
Foundation through its funding of the EDRC.



References

[Addanki and Murty 87]
Addanki, S., and Murty, S.
Prompt* an innovative design tool.
In Proceedings of the Sixth National Conference on Artificial Intelligence.

AAAI87, Morgan Kaufmann, Los Altos, CA, 1987.

[Adelson and Soloway 84]
Adelson, B., Soloway, E.
A cognitive model of software design.
Technical Report 342, Department of Computer Science, Yale University,

1984.

[Akin 86] Akin, Omer.
Psychology of Architectural Design.
Pion, England, 1986.

[Baker and Fenves 87]
Baker, N., Fenves, S.
A knowledge acquistion study of structural engineers performing design.
Technical Report EDRC 12-19-87, Engineering Design Research Center,

Carnegie-Mellon University, 1987.

[Bundy 83] Bundy, A.
Nature of AI: reply to Ohlsson.
Artificial Intelligence and Simulation of Behaviour Quarterly

(Summer):24-25,1983.

[Coyne 89] Coyne, Robert F.
Planning in design synthesis: abstraction-based LOOS (ABLOOS).
PhD. Proposal EDRC 48-14-89, Engineering Design Research Center,

Carnegie-Mellon University, 1989.

[Doyle 84] Doyle, Jon.
Expert systems without computers or theory and trust in artificial

intelligence.
AI Magazine 5(2):59 - 63, Summer, 1984.

[Doyle 88] Doyle, Jon.
On rationality and learning.
Technical Report CMU-CS-88-122, Department of Computer Science,

Carnegie-Mellon University, 1988.

[Eastman 69] Eastman, C.
Cognitive processes and ill-defined problems: a case study from design.
In Proceedings International Joint Conference on Artificial Intelligence

1969. UCAI, August, 1969.

[Flemming 88] Hemming, Ulrich.
Rule-based systems in computer-aided architectural design.
In Rychener, Michael D. (editor), Expert Systems for Engineering Design,

chapter 4, pages 93-112. ACADEMIC PRESS, INC., San Diego, CA
92101,1988.



[Hemming, et al 89]
Flemming, U., Coyne, R.F., Glavin, T., Hsi H., and Rychener, M.
A generative expert system for the design of building layouts (final report).
Technical Report EDRC 48-15-89, Engineering Design Research Center,

Carnegie-Mellon University, 1989.

[Galle86] Galle,P.
Abstraction as a tool of automated floor-plan design.
Environment and Planning B: Planning and Design 13:21-46,1986.

[Genesereth 83] Michael R. Genesereth.
An overview of meta-level architecture.
In Proceedings of the National Conference on Artificial Intelligence, pages

119-124. AAAI, 1983.

[Gero et al. 88] Gero, John, Maher, Mary Lou and Zhang, W.
Chunking structural design knowledge as prototypes.
In Gero, John S. (editor), Artificial Intelligence in Engineering Design,

pages 3-21. Computational Mechanics Publications, Southampton -
Boston, 1988.

[God and Pirolli 89]
Goel, Vinod and Pirolli, Peter.
Motivating the notion of generic design within information processing

theory: the design problem space.
Al Magazine 10(1): 18 - 36, Spring, 1989.

[Kalagnanam and Subrahmanian 89]
Kalagnanam, J., Subrahmanian, E.
Learning to diagnose by doing.
In Proceedings of the International Joint Conference on Artificial

Intelligence,IJCAI-89, pages 540-545. Morgan Kaufmann, Los Altos,
CA, 1989.

[Levesque 86] Levesque, Hector.
Making beleivers out of computers.
Journal of Artificial Inteligence 30(2):81 -108,1986.

[Liggett and Mitchell 81]
Liggett, Robin S. and Mitchell, William J.,
Optimal space planning in practice.
Computer Aided Design 13(5):277-288, September, 1981.

[Mittaletal.86]

[Mostow 85]

Mittal, San jay; Dym, Clive L.; and Morjaria, Mahesh.
PRIDE: An expert system for the design of paper handling systems.
Computer: 102-114, July, 1986.

Mostow, Jack.
Toward better models of the design process.
Al Magazine 6(1):44-51,1985.

[Newell and Simon 72]
Newell, A., Simon, H. A.
Human Problem Solving.
Prentice Hall, Englewood Cliffs, NJ, 1972.



[Ohlsson83] Ohlsson,S.
Mathematics, behaviour, and creativity: a reply to bundy.
Artificial Intelligence and Simulation of Behaviour Quarterly (summer):25,

1983.

[Orelup 87] Mark F. Orelup; John R. Dixon; and Melvin K. Simmons.
Dominic II: more progress towards domain independent design by iterative

redesign.
In WAM, pages 1-14. ASME, December, 1987.

[Rich 84] Rich, Elaine.
The gradual expansion of artificial intelligence.
IEEE Computer :4-12, May, 1984.

[Rychener 88] Rychener, Michael D.
Research in expert systems for engineering design.
Expert Systems for Engineering Design.
Academic Press, Inc., 1250 Sixth Avenue, San Diego, CA 92101,1988,

pages 1-33, Chapter 1.

[Sharkey 85] Sharkey, N. and Brown, G.
Why artificial intelligence needs an empirical foundation.
Artificial Intelligence: Principles and Applications.
Chapman Hall, NewYork, 1985, pages 260-291.

[Simon 73] Simon, H. A.
The structure of ill structured problems.
Artificial Intelligence 4:181-201,1973.

[Simon 81] Simon, H. A.
Sciences of the Artificial(2nd edition).
MIT Press, Cambridge, MA, 1981.

[Smithers, et al. 89]
Smithers, T., Conkie A., Doheny J., Logan B., and Milligan K.
Design as intelligent behaviour: anAIin design research programme.
Technical Report DAI 426, Dept. of Artificial Intelligence, Univ. of

Edinburgh, May, 1989.

Stefik, Mark.
Planning and meta-planning (Molgen: part 2).
Artificial Intelligence 16(2): 141-170,1981.

Mark Stefik, Janice Aikins, Robert Balzer, John Benoit, Lawrence
Birnbaum, Frederick Hayes-Roth, and Earl Sacerdoti.
Basic concepts for building expert systems.
In Frederick Hayes-Roth, Donald A. Waterman, and Douglas B. Lenat

(editors), Building Expert Systems, chapter 3, pages 59-86. Addison-
Wesley Publishing Company, Inc., London, 1983.

[Steinberg 87] Steinberg, L.
Design as refinement plus constraint propagation: the VEXED experience.
In Proceedings of the Sixth Annual Conference on Artificial Intelligence,

AAAI-87, pages 830 - 835. Morgan Kaufinann, Los Altos, CA, 1987.

[Sussman 75] Sussman, Gerald J.
A computer model of skill acquistion.
American Elsevier, New York, 1975.

[Stefik 81]

[Stefik etal. 83]



[Takewalri 85] Toshiaki Takewaki; Taizo Miyachi; Susumu Kunifuji; and Koichi
Furukawa.
An algebraic manipulation system using meta-level inference based on

human heuristics.
ICOT Technical Report TO-140, ICOT Research Center, Institute for New

Generation Computer Technology, October, 1985.

[Ullman, et al. 88] UUman, D. G., Dietterich, T. G., Stauffer, L., A.
A model of the mechanical design process based on empirical data.
AIEDAM 2(1):33 - 52, 1988.

[Zhao and Maher 87]
Zhao,F.,Maher,M.
Using analogical reasoning to design buildings.
Technical Report EDRC 12-22-88, Engineering Design Research Center,

Carnegie-Mellon University, 1987.


