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ABSTRACT

The problem of selecting processes and capacity expansion policies for a chemical
complex consisting of continuous chemical processes can be formulated as a multiperiod mixed
integer linear programming problem. Based on a variable disaggregation technique that
exploits lot sizing substructures, we propose two reformulations of the conventional MILP
model. The first one is an NLP reformulation that yields very quickly good suboptimal
solutions. The second is an MILP reformulation for exact solutions that leads to up to an order
of magnitude faster computational results for large perlcrns due to its tighter linear

programming telaxation.
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Chemical companies are increasingly concerned with the development of planning
techniquesfor ther process operations. Theincentive for doing so is a result of the interaction
of several factors. Recognizing the potential benefits of new resources when these are used in
conjunction with existing processes is thefirg factor. Another major factor is the dynamic
nature of the economic environment. Companies mus assess the potential impact of important
changes in the external environment on their business. Due to technology obsolescence,
increasing competition, and fluctuating prices and demands of chemicals, thereisan increasng
need of quantitative techniquesfor planning the selection of*new processes, the expansion and

shut-down of existing processes, and the production of chemicals.

This paper addresses the following long range planning problem for chemical
processes. It isassumed that a network of continuous processes and chemicalsis given. This
network includes an existing system as well as potential new processes and chemicals. Also
given are forecasts for prices and demands of chemicals, as well as invessment and operating
costs over a finite number of time periods within a long range horizon. The problem then
consists of determining the following items that will maximize the net present value over the
given time horizon: (@) capacity expansion and shut-down policy for existing processes; (b)
selection of new processes and therr capacity expansion policy; (c) production profiles;, (d)
sales and purchases of chemicals at each time period. As sated, thisis a multi-product, multi-

facility, dynamic, location-allocation problem.

A rather large number of papers and books has been published in the operations
research literature on capacity expansion in applications which are closely related to the
problem discussed in this paper. The synthesis and capacity expansion models in
communications networ ks (and other dynamic networks) have along higory and have recently
been surveyed by Minoux (1987). Planning the expansion of dlectric power generation

networks is discussed by Noonan and Giglio (1977), who used Benders decomposition
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coupled with-a successive linearization procedure to solve a nonlinear multiperiod mixed
integer modd. In manufacturing, Merges and Mutlu (1988) developed a multiperiod mixed
integer linear programming mode for the acquisition and allocation of computing systems. In
the public sector, Bergendahl (1969) developed a combined linear and dynamic programming
model for the expansion of road networks, and Armstrong and Willis (1977) used the
Generalized Bender s decomposition to solve a mixed integer nonlinear (quadratic) program for

the planning of water resour ces.

In the chemical process industries, perhaps the best known applications are those
described by Manne for several heavy processesin India (Manne, 1967) and Mexico (Goreux
and Manne, 1973). More recently, Himmeblau and Bickel (1980) presented a nonlinear
programming formulation for a hydrodesulfurization process, and Grossmann and Santibanez
(1980) developed a multiperiod mixed integer linear programming formulation applicable to the
chemical process industries. Fong and Srinivasan (1981a, 1981b) developed a heuristic
solution srategy for the multifacility dynamic expansion problem. Shimizu and Takamatsu
(1985) discussed a goal programming approach where in addition to cost minimization,
minimizing the number of expansionsis also suggested. Jimenez and Rudd (1987) presented a
recursive mixed integer linear programming technique and applied it to the Mexican
petrochemical industry. Recently, Sahinidis et al. (1989) presented a multiperiod MILP
formulation for long range planning in the chemical process industries and extensive

computational results to evaluate the performance of several solution procedures for this modd.

With respect to the computational complexity of the problem, it has been shown that
even though some important special cases can be solved in polynomial time, the more general
planning problems are NP-hard (Florian, Lengtra and Rinnooy Kan, 1980; Akileswaran,

Hazen and Morin, 1983). It istherefore not surprisng that most previous approaches address




simplified versions of the problem, or else they involve integer programs which are limited in

the size of problems that they can handle.

However, it is well known that f_gr integer programs some formulations are more
efficient than others, even though they may contain more constraints and/or variables. For
instance, Rardin and Choe (1979) described how variable disaggregation can be used to
reformulate fixed charge network problems and yield tighter formulations. Jeroslow and L owe
(1984 and 1985) have shown how certain (" sharp") mixed irlteger formulations can giveriseto
stronger linear programming relaxations by introducing more variables than the common
formulation. .Closely related is the work of Balas (1985), who used disjunctive programming
to develop a framework for the description of a hierarchy of relaxations for discrete
optimization programs. Martin (1987a) developed a theory of variable redefinition and once
again showed that the new formulations provide a more accurate linear programming
relaxation, which is an important property at least within the context of linear programming

based branch and bound.

The purpose of this paper is to show that formulations based on variable disaggregation
are possible for the long range planning problem of chemical processes. These formulations
are different from a conventional mixed integer programming model in that they utilize more
constraints and variables. The development is based on the observation that, for fixed
production levels, the remaining capacity expansion problem can be recast as a lot sizing
problem. For the lot sizing part of the problem, the formulations of Krarup and Bilde (1977)
and Martin (1987b), which can be solved as linear programs, are utilized. The former is used
within an NLP reformulation of the conventional MILP model and yields very quickly good
subopti'mal solutions. The latter is used within an MILP reformulation for exact solutions that
leads to up to one order of magnitude faster computational results for large problems due to its

tighter linear programming relaxation.




The paper is organized as follows. In Section 1, a straightforward multiperiod MILP
formulation of the problem is presented. Section ‘2 is a description of different formulations for
the lot sizing problem which constitute the basis of our reformulation for the planning problem.
Section 3 presents our main observation: the link between the long range planning problem and
the lot sizing problem. Sections 4 and 5 present the main results: an NLP and an MILP
reformulation of the model presented in Section 1. Theoretical properties of the reformulations
are also given in these sections while, at the same time, computational procedures are derived
for their solution. Computational results with the new models are presented in Section 6 where
the practical significance of the MILP reformulation becomes apparent. The conclusions of this

work and some recommendations for future research are presented in Section 7.
1. Multiperiod MILP Model for Long Range Planning

A network consisting of a set of NP chemical processes that can be interconnected in a
finite number of ways is assumed to be given. The network also involves a set of NC
chemicals which include raw materials, intermediates and products. The processes will be
interconnected by a total of NS streams to represent the different alternatives that are possible
for the processing and the purchases and sales from NM different markets. It will be assumed
that the material balances in each process can be expressed linearly in terms of the production

rate of a main product, which in turn defines the capacity of the plant.

The objective function to be maximized is the net present value of the project over a
long range horizon consisting of a finite number of NT time periods during which prices and
demands of chemicals, and investment and operating costs of the processes can vary. The
operating cost of a plant will be assumed to be proportional to the flow of its main product. As
for the investment costs of the processes and their expansions, it will be considered that they
can be expressed linearly in terms of the capacities with a fixed charge cost to account for the

economies of scale.




In the description of the model, the following notation will be used:

Indices:

Parameters:

NP
NT
NM
NC
NS
1(j)
oG)

QEL
QEY
Hik

Bi

Om;t

process (i = 1, NP)

time period (¢ = 1, NT) ~
chemical (j =1, NC)

stream in the network (k = 1, NS)

market (/ = 1, NM)

number of processes in the network

ﬁumber of time periods considered

number of markets

number of chemicals in the network

number of streams in the network

the index set of streams of chemical j which are produced in the complex

the index set of streams of chemical j which are consumed in the complex

the index set of the subset of the NS streams corresponding to inputs and
NP

~outputs of process i,and U; _,L; = {1,2,..,NS}

stream corresponding to the main product of process i (m ;€ L ;)
existing capacity of process i at time =0
lower bounds for the capacity expansions

upper bounds for the capacity expansions

material balance coefficients characteristic of each process i and stream
variable term of investment cost [$ / unit of capacity installed]

fixed term for the investment cost [$]

unit operating cost[$ / unit of production amount of the main product]




1j;

n,
NEXP(Z)
cI(r)

Variables:

Yir

Q;
QE,Y
Pl
d.

prices of sales of the chemical /in market / during time period t

[$/ unit sold]

prices of purchases of the_ chemical j in market / during time period t
[$/ unit purchased]
the maximum allowable number of expansions for processi

the capital investment limitation corresponding to period t

decision variable which is 1 whenever there is an expansion for process/ at
the beginning of time period r, and 0 otherwise

total capacity of the plant of processii that is available in period t

capacity expansion of the plant of processi which isinstalled in period t
amount of product j purchased from market / at the beginning of period t

amount of product; sold to market / at the beginning of period t

amount of flow of stream k during time period r.

A multiperiod MILP model for the long range planning problem is as follows:

Model P|:

NP NT NP NT

maX NV = - X | ("/<E;,+M*)) - | | 54i,Wy, (11)

i=1 r=| =l r=t
NM NC NT |/

T
+ | | (Yj Sji-TyPj)
I=1jrsl x=1




st.

yit QEf, <QE,; <-Q|T:,?y,-,

NT

X yl, <NEXP(/)
t=1

NP
(o QE;;+B;, yu) <

QEjr, Wiy ,P/,,Sj =0

Ci(r)

j=I,NP

- j=I,NP
j=I,NP

kEL‘- \{mi]

;=1,NC

I'e I'C {1,2,... NP}

reT c{1,2,...NT}

J=I,NP

f=I,NT (1.2)
r=I,NT 1.4

& =1NP t=1NT (1.5)

y=I,NC f-I,NT (L)
t=INT /= 1NM (L7)
(1.8)
(1.9)
r=I,NT (1.10)

(1.11)




In equation (1.1), the net present value is defined as the sum of the investment cost, the
operating cost, the sales revenue and the cost for purchasing the raw materials. All the
coefficients are discounted at a specified interest rate and include the effect of taxes in the net

present value. Constraint (1.2) is a variable lower and upper bounding constraint for the

capacity expansions. A zero-value of the binary variables y;, forces the capacity expansion of
process i at period ? to zero, i.e. QE;, = 0. If the binary variable is equal to one, a capacity
expansion between the specified bounds is performed. Equation (1.3) simply defines the total
capacity, Q;,, that is available for process i at each time. period ¢, while Q;q is the initial
capacity (zero for nonexisting processes). Constraint (1.4) expresses the condition that the
operating level of a process — expressed in terms of the flow of its main product — cannot
exceed the installed capacity. The material balances in each plant are given by the linear
relations (1.5): the flow of each product is proportional to the flow of the main product of the
process, where | are positive constants characteristic of each process. The material balances
for each chemical in the entire network are given in (1.6) according to which the total amount
of a chemical's purchases from the various markets plus the amounts produced within the
network must be equal to the sum of sales and the total consumption within the network.
Constraints (1.7) express the lower and upper bounds for the availability of raw materials and
the demand of the products. Finally, constraints (1.8) and (1.9), which are optional, express
limits on the number of expansions of some processes and on the capital available for

investment during some time periods, respectively.

The MILP model given above can typically be solved directly with branch and bound
enumeration procedures (see Nemhauser and Wolsey, 1988) such as the ones that are
implemented in standard computer packages (e.g. MPSX, SCICONIC, ZOOM). Consider, as
an example, a chemical complex involving 10 processes and 6 chemicals. None of these
processes is assumed to have an existing capacity. The network shdwing all the alternatives

for this complex is shown in Fig. 1. Chemical 6 is to be produced in 4 periods, each having a
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length of 2 years and various congtraints on-the chemical demands and prices. The
corresponding MILP mode involves 40 binary variables, 174 continuous variables and 198
rows. The optimum configuration for an ingtance of this problem considered by Sahinidis et
alL (1989) is shown in Fig. 2 and was obtained by solving model (Pl) usng MPSX-MIP/370

(IBM, 1979). The computational requirements were only 2 seconds on an | BM-3090.

For large process networks, however, the computational expense can be high. For
example, a network with 40 processes, 50 chemicals, 2 rrlarkets and 5 time periods would
involve 200 binary variables, and approximately 1000 continuous variables and 1200
congtraints. éince mogst of the alternatives embedded in such a model are feasible, a large
number of nodes must usually be examined in a branch and bound search. Therefore, thereis
a clear incentive to develop efficient computational strategies since this allows the examination
of a greater variety of scenarios with the planning model. Sahinidis et aL (1989) have
compared the performance of several computational strategies including branch and bound,
grong cutting planes followed by branch and bound, Benders decomposition' and strong
cutting planes followed by Benders decomposition. For the test problems that were
considered, the combination of integer cuts, srong cutting plane generation and branch and
bound was found to be the most efficient strategy for solving large-scale problems to

optimality.

In order to obtain further significant reductions in the computational effort, we take a
different approach in this paper by developing alternative formulations for the problem. In
particular, we propose to disaggregate the capacity expansion variables and describe two
alternative reformulations. The following section provides the necessary background by
dacritfing thelot sizing problem. Thisnot only serves as an example to illugtrate the variable
disaggregation ideas, but it also plays an essential rolein the development of the reformulations

of the long range planning mode.
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2. Reformulation and Lot Sizing

Consider the production planning problem where the objective is to minimize the sum
of the costs of production, storage, and set-up, given that demand must be satisfied in each of
NT time periods and backlogging is not i’;\llowed. For t = 1, NT, let dj be the demand in
period r, and let Gj, pj, and h; be the set-up, unit production, and unit storage cost, respectively,

in period t.

A common formulation for this problem is obtained (see Nemhauser and Wolsey,
1988) by defining % and s as the production and storage amounts in period t and by defining a
binary variable y", indicating whether x, > 0 or not. This leads to the model:

Model LS:
NT
min T ( peXcthes, +crye ) (2.1)
r=1
St
Xy < COYy, r=I,NT (2.3)

so=0 (2.4)

S, X =20, vy.€{0,]) r=I,NT (2.5)
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NT | :
where ® = 2 4=1 9y 1s an upper bound on x, for all 7.

Theorem 1. (Wagner and Whitin, 1958). For the lot sizing problem, there always exists a

minimal cost policy with the property that x; has one of the following values:

NT
0, d dp+dpy1,  dp +dpyp + g2, T=¢ 9T

Based on this result, Wagner and Whitin (1958)*developed an efficient dynamic
programming algorithm to search over the above discrete set of solutions to find the optimum
solution of the lot sizing problem. Another altemativé is to directly solve the integer program
(LS). In order to efficiently solve this problem, Krarup and Bilde (1977) presented the

formulation that we describe next.

By defining q; as the quantity produced in period ¢ to satisfy the demand in period

721, and y; as above, we have:

NT
X; = 2 qp t=1NT (2.6)
T=1

Problem (LS) can then be reformulated as follows:

Model RLS1:
NT NT NT .
min z z (p,+ ht+ ht+l+"‘+h‘t-l ) q;r + 2 C;Y; 2.7)

t=l1-=t t=1
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St

£ Jr,= d, < r=l,NT (29

T=I

grr=dry, r=I,NT r=r,NT (29
NT(NT+I)/2

ge R, ( )', ye {01307 (2.10)

As mentioned, the extra variables g,r introduced in this reformulation of model (LS)
can be seen as amounts produced in period t in order to satisfy demandfor period r >r. Thisis
depicted in Fig. 3, where we show the problem representation before (a) and after the
reformulation (b). It is clear that in (a) we have a fixed charge network. Therefore, the
reformulation in (b) can be derived from the suggestions of Rardin and Choe (1979) for
obtaining tighter relaxations of network flow problems with fixed charges: each variable x; of

the original formulation is now disaggregated into NT-t-1 new variables g* (r = t, AT). The

variable disaggregation in this case gives not just a tighter formulation but the absolute tightest

one:

Theorem 2 (see Nemhauser and Wolsey, 1988). The solution to the linear programming
relaxation of (RLS1) yields 0-1 values for the y-variables. In addition, the image in the (x, s,
y)-space under the transformation (2.6) of all the points (q, y) feasible in the linear

programming relaxation of model (RLS1) produces the convex hull of model (LS).
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It follows from the theorem that, one only needs to solve (RL Sl) as a linear program
wherethey-variables arereaxed to takevaluesiﬁ theinterval [0,1] and obtain the solution to
the integer program (LS). It isinteresting to note that modd (RL Sl) is not the only possible
formulation exhibiting this property. Based on the work of Barany, Van Roy and Wolsey
(1984), Martin (1987b) used separation algorithms and derived for the lot sizing problem

another alternative formulation for which Theorem 2 holds. Hisreformulation is the following:

Model RLS2: ,
NT
mn 1€ ( Prirese o) 2.1)
=1
St.
;.11 X = dr"'Sr r=|,NT (22)
X, < CrantVi r=I,NT (2.12)
X, 2 Xy r=I,NT  T=r,NT (2.12)
Ay S Cip Y, r=I,NT  r=r,NT (2.13)
£ I+ Cy f-1.NT (2.14)
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sp= 0 (2.4)

s; Xp 20, y, e {0,1)} t=1,NT (2.5)

T
where C,;; = 2T=th are upper bounds for the disaggregated production variables A;¢

which can now be interpreted as amounts produced in period ¢ in order to satisfy demand up to

period 72 1.

In addition to models (RLS1) and (RLS2), based on the work of Barany, Van Roy and
Wolsey (1984), Pochet and Wolsey (1988) used the theory of strong cutting planes to derive
yet another formulation for which Theorem 2 is valid. These three, slightly different
representations, differ in the number of constraints and variables they include, and therefore in
their computational efficiency. Of course, efficient dynamic programming techniques are
available to solve the lot sizing problem (Wagner and Whitin, 1958; Zangwill, 1969).
However, the above reformulations are very important when the lot sizing problem is part of a
more complex planning model. For example, based on the variable redefinition theory of
Martin (1987a), Eppen and Martin (1987) developed a formulation that gave very encouraging
computational results to the solution of some multiproduct capacitated lot sizing problems. The
importance of reformulations (RLS1) and (RLS2) will also be shown in the development of
Models (R1) and (R2) of this paper. This development is based on the observation described

in the next section.

3. The Main Observation

Let us assume that, for the long range planning problem, there are zero lower bounds
and infinite upper bounds for the capacity expansions (1.2), no limits for the expansions (1.8)

and no constraints on the investment (1.9) — this assumption will be removed later in the paper.
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Refer now to Fig. 1 and imagine for a moment that all flows of chemicals (W&, Pj;> SJ,) in the
network have been fixed in such a way that material balances (congtraints (1.5) to (1.7)) are
satisfied for all time periods. Then every process can beisolated from the rest of the network
and the design problem for each process /becomes. "Find the cheapest capacity expansion
sequence (QE;;, t = LNT) that will allow production of the prespecified flows of chemicals
(Wi, Pl Sh)". Mathematically the problem reduces to:

Model P2-i: .
;NT
min ri(l (<*:;,Q5z7+Pzy:/) (3.1)
s.t.
QEz < U i r=I,NT (3.2
Q;r-1 + QE;; ~Qir r=I,NT (3.3
Qrrz Wiy | r=I,NT (3.4)
QE;+ Qr 20, yr=00 1 r=1NT (3.5

where U is alarge positive quantity.

*The objective in (3.1) is to minimize the investment cost of processi for the given
flows of the main product in the right hand sde of (3.4). Assume, for a moment only, that

these flows are such that:
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QO*Wm, *¥m,2* eee * ¥m NT | (3.6)
By letting:

SQ,, = Qir - Wiyt = [=1,NT (37)

dig = Wmg - WinzM r= LNT (3.8)

and using the convention that W,,;-0 = Qo» then SQ+ * 0 implies (3.4) and (P2-i) can be

[¢]

transformed into the following equivalent lot sizing problem:

Modd P3-i:
NT
min X (<*«<& «+V>«yit) (3.1)
*:1
s.t.
QEi <Uy;( r=I,NT (3.2
SQus; + QE; = dy + SQp /= LNT (3.9)
SQip=0 (3.10
QE7,SQ, =20, Vyi=00or1 r= 1LNT (3.5)

In the lot sizing terminology, we can view SQ;; as the "inventory" of capacity, i.e.

excess of capacity installed at early times in order to serve demand during subsequent time
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periods. At the same time, the QE;;'s can be regarded as "production” of capacity in order to

satisfy some "demand" for capacity as determined by the flows of the main products ( Wm;t)
in (3.8). For example, if there is no capacity initially installed and if Wm;e = (10, 15, 18, 20),
then the demand for capacity is: d;; = (10,.5, 3, 2). In the general case — when (3.6) may not

hold - this demand for capacity can be obtained as follows:

1)  Subtract any existing capacity (Q;g) from Wpy;z. If positive, let this difference be called

additional required capacity, m;, , then:

m;, = max (0, Wmr - Qo) r=1NT (3.11)

2) For each time period ¢, find the maximum additional required capacity during all previous

time periods; this maximum is:

M, = LEX, myT = max (M1, M) r=1NT (3.12)

where mio = MiO =(.

3) The demand, d;; , for capacity during time period ¢ is the difference between the current
additional capacity requirements (m;,) and the maximum additional capacity requirements

up to the previous time period (M;,), provided this difference is positive:
dit = méx(O, m; - M) t=1NT (3.13)

As an example, consider the case where the installed capacity is 3 units and Wy =
(10, 8, 9, 12). Then it follows from the above equations that the demand for capacity is d;; =
(7, 0, 0, 2). The equivalence of problems (P2-i) and (P3-i) — with the demands d;, obtained
througg (3.11) to (3.13) — for values of the flows not necessarily satisfying (3.6) is established

by the following theorem:
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Theorem 3. Problems (P2-i) and (P3-i) have the same optimal solution.

Proof: We shall show that (P2-i) and (P3-i) have the same set of feasible solutions. Note
first of all, that by summing the equality cqnstrai ntsin (3.3), one can solve for Q. Then the
result can be substituted into (3.4) therefore eliminating the variables Q- and the equality

constraints (3.3) from model (P2-i). In this case, (3.4) becomes:

!

Qp + z (3.14)
T=|

Similarly, in model (P3-i), one can solve (3.9) for SQ and substitute the result into the
nonnegativity constraint SQ (3.5). Then (3.9) and SQ*; can be eliminated by rewriting the

nonnegativity constraint as follows:

4 {
ZQE:T2 Zd* r=I,NT (3.15)
T=l T=l -

We need to prove that feasibility in (3.14) implies feasibility in (3.15) and vice versa.

In the following, we drop the indices/ and m™ for simplicity; so consider any process /. The
case where none of the flows W, (r=I, NT) exceeds the installed capacity is trivial since no

expansions are required for both problems. Consider the case of arbitrary flows where
expansions arerequired and let P, be the earliest time period for which Wp 1> QQ. Also l&t P

> P be the earliest time period for which Wp2> Wpl. Continue in this way to define the st

of time periods Np = {pp " Vy => Py) fe"which pj <pj <p*<.<p, ad

QO <Pl <P, < - <W¥Pni <Vp, (316a)




- 20 -

Because of the way Np is congtructed, we also have:

W, < Wp, if e <p <pre1, With py, Pues € Npy pe Ny

From the definitions (3.11) to (3.13):

dPI = Wp, - Qo. dp, = Wp,-Wp,. dps =Wp3 - Wp,,
oo P VPR YPN-r whiled, = 0 for peN,

For any timeperiod p (1 <p < NT), we have:

idf = doy + dag+ ... + dyy

(3.16b)

(3.17)

(3.18)

where k is the largest element of N, not exceeding p. Substituting (3.17) into (3.18) yields:

Then for any point feasible in (P2-i) we have

iQEr 2 Wy -Q= g““jt
: =1

(3.19)

(320)
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where the inequality follows from (3.14) and the equality from (3.19). Since constraint (3.20)
implies (3.15), it follows that for any capacity expansion sequence which is feasible in problem

(P2-i), the demand of problem (P3-i) will be satisfied for any period p (p=I, NT).

Inversely, for any capacity expansion sequence satisfying the demand of problem (P3-

1) and for any time period p (p=Il, NT), we have:

iQE,z id, = Wp- Qo= Wy - Q (3.21)
=1 r=I

where the first inequality follows from the feasibility of problem (P3-i) (constraint (3-15)), the

equality from (3.19) and the second inequalify from (3.16) and the definition of k in (3.18).

Since (3.21) implies (3.14), it follows that any feasible point in (P3-i) corresponds to a feasible

point in (P2-i).

Since the problems (P2-i) and (P3-i) have the same set of feasible solutions and they

have the same objective function, they also have the same optimal solution. .
4. NLP Reformulation (Model RI)

Theorem 3 indicates that if an algorithm is devised that decomposes the problem by first
fixing the values of the flows (Wfo, P/, S, ) in such a way that all material balances
(constraints (1.5) to (1.7)) are satisfied, then the rest of the problem can be solved as a
sequence of independent lot sizing problems (P3-i), one for each process. In this case, the
Krarup_—BiIde reformulation (RLS1) can be used for each problem (P3-i) in order to solve it as

alinear program. Asindicated in the previous section in the description of problem (P3-i), the

variables QE;, denote "capacity production” and therefore correspond to the production
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variables x; of modd (LS). Then, in order to apply the reformulation, let us proceed as in
(2.6) and disaggregate the capacity expansions by defining the variable O/, as capacity

expansion of process/ in time period t in order to serve " capacity demand” during period X

(T~ t). These variables correspond to the variables g™ of model (RLS1); thus, similarly to

(2.6) we have:

QEF = X ®in /=1,NP  r=I,NT (4.1)
X2t

Moreover, smilarly to (2.8) and (2.9), we now have the following congraints.

Z D, = i z=I,NP  r=I,NT (4.2)
T<¢?
®in ~ Yx yit J=1,NP  r=I,NT %zt (4.3)

Rather than using the above condraintsin order to solve the lot sizing subproblems and
then try to adjus the values of the flows within an iterative procedure, one can try to " build"
this algorithm into the M RP mode (PI) by including congraints (4.1) to (4.3) into this modd.
In this case, sincethe capacity demands d;, are defined in termsof mg and M3, these must also
be included as variables in the mode while the definitions (3.11), (3.12) and (3.13) mug be
included as constraints. However, the max operators in these equations involve
nondifferentiabilities. Therefore, we prefer to trandate the equations (3.11), (3.12) and (3.13)
into condtraints that involve continuous and differ entiate functions so as to be able to use the
effective commercially available codes for smooth optimization. For this, we subgtitute the

nondifferentiable congraint:




.23 -

u= max f, ‘ <*-9

where f,, = f,(x) are continuous and differentiable functions and xe SR, by the following set

of differentiable congraints

uSfy(x) n=1N (4.5)
N
u< X °n 'nw (46)
n=1 '
N
X 6, =1 withal 6, = 0 4.7

According to (4.5), u mug be at least equal to the max of f, (n = 1,N). According to
(4.6), u can be at most equal to the max of f, (n = 1,N), if the corresponding multiplier (6) is
st to 1. Therefore, the only feasible solution of (4.5) - (4.7) is (4.4).

By incorporating the lot sizing congdraints (4.1) to (4.3) into problem (PI) (where (1.8)
and (1.9) areignored) and by applying the trandformation (4.5) to (4.7) to the equations (3.11)
to (3.13), the firs reformulation of the long range planning mode corresponds to the following
MINLP problem:
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Reformulated Model RI
NP NT NP NT
mx NV =- £ £ (aQP,* pirYir) - Ef | 8, tW;, ()
i=1i=1 i=1f=1

NM NC NT /

ST VA

» i

-
1

=
1
1

s.t.

Wi = Rig Wyt ikeL,-Mm/} i =1NP r = INT (15)
NM . NNL .

£EPM+ X ™kt = £SJ,+ X "/ ;=INC r=INT (L6
=1 ke l(j) =1 ke O(j)

Gt <Aeal |

I'Lg E;.'/ S apu

g )=1L,NC  t =1,NT /= 1NM (L7)

e L
QEp = X "rx i=INP  r=I,NT (4.2)
21
= d; = r=I,NT 42
Yy 0, =dg i=1,NP 4.2)
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it < dit Yir i=INP 1=1NT 12 4.3)

mj; 2 wm,-t - Ql,O .
i=INP 1=1NT (4.8)
mj s vit ( wm,-t - Qz,O)
M; 2 M; , M; 2 m;,
= el = el } i=1LNP t=1NT (4.9)
Mit < nit Mi,l-l + (1- nit)mi’,_l
d;;, 2 m; - M;
e } i=1NP t=I1NT (4.10)
djp < pj (my - M)
y; =0 or 1 i=INP 1=1NT (1.10)
l l
QEi, Wiges Py, S5, 20 (1.11)
mj;, My, djp, @22 0, m;)=M;p=0, 0 <vj, mjp, pir <1 4.11)

In the above formulation, constraints (4.8), (4.9) and (4.10) are nonlinear and they
serve to explicitly evaluate the demands for the capacity expansions as a function of the flows
(Wg;); they are exprcssing relations (3.11), (3.12) and (3.13), respectively. Notice that
constraints (4.8), (4.9) and (4.10) are nonconvex since their second corresponding inequalities
involve bilinear terms. Therefore, model (R1) corresponds to a nonconvex MINLP problem.

However, this nonconvex problem has the following interesting properties:
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Theorem 4. For any fixed value of flows (Wfo, I-J’jt, ét), the solution of the rest of model
(RI) yields integer values for the variables y;; when these are relaxed in the interval [0,1].

Proofe. When the flows are fixed, constraints (4.8) - (4.10) become linear and they uniquely

determine the demands dj.. Then, the problem decomposes into as many subproblems as

processes. By relaxing the integrality conditions, each subproblem is as follows:

max - § (a,';QEi:"'B;‘;Y:’t) :
t=1
S.t.
QE; = 2, Din t=1,NT
T2t
Yy @ = r= 1NT (Model P4-1)
Tt
®in A dit it r=I,NT >t
O:;1 2 0, O<sye <1

Each subproblem (P4-i), corresponds to the Krarup-Bilde formulation (RLSI) of the

lot sizing problem (P2-i). Hence, from Theorem 2, (P4-i) will give natural 0-1 solutions.  »
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Theorem 5: Solving model (RI) with the variables y;; being relaxed in the interval [0, 1],

yieldsintegral values for the y-variables.

Proof: From Theorem 4, for any fixed value of the flows (Wfo, P;l 3‘/' ) and with the
integrality requirements of the variables y* being relaxed, the rest of model (RI) yieldsOor 1

values for the y-variables. Therefore, thisis also true for the optimal value of (Wfo, Pf/ S] r).

It follows from Theorem 5 that the integrality requirements (1.10) of model (RI) can be
relaxed to 0sy;<l (/= LNP t = LNT). Therefore, model (RI) can be solved as an

NLP. The next corollary is an immediate consequence of Theorem 4 and the role of the

complicating variables in generalized Benders decomposition (Geoffrion, 1972).

Corollary 5.1: If the generalized Benders deéomposition method is applied to model (RI),
with the flows (Wfo, Pf/ Sg/,) being the complicating variables, the subproblems (P4-i) have

natural 0-1 solutions when solved as linear programs.
An algorithm using Generalized Benders Decomposition

In order to take advantage of the specia properties discussed in the previous paragraph,

the variables of the multiperiod MINLP model (RI) are partitioned as follows:

a) Complicating variables for the master problem:
VvV = [W4|, S;!, PyJ]

b) Remaining variables for the MINLP subproblem:
u = [ Yie QEi, On, My My, di, Vi, Piv Nin ]

The basic steps in Benders decomposition method are then the following:
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Algorithm:

Sep 1 Sdlect a value (v*) for the complicating variables so that mass balances of mode
(RI) are satisfied (this can be done by finding a feasible solution to the set of
eguations (1.5),(1.6) and (1.7)); set NPV~ =+~ NPVA = -«,/? = 1.

Sep 2. a) By fixing the variables v*, problem (RI) becomes a nonlinear program
(NLP-u) in terms of the variables u. However, since equations (4.8) to (4.10)
can be a priori solved for mf, M/f, dff, v/f,rclj, and p/j, the solution to the

: multiperiod MINLP problem (RI) can be obtained through the L P subproblems
(P4-i) that determine the remaining variables u™ and NPV”. In addition, once
these LP's are solved, the primal solution to (NL P-u) is known and can be used
to produce the dual solution either by using an NLP code or by analytically
solving the Kuhn-Tucker optimality conditions for problem (RI).

b) Update the lower bound by setting NPV = max {NPV”, NPV/}

Sep 3. To determine new valuesv*+1 for the complicating variables and an upper
bound to NPV, solvethelinear programming master problem:

NPVU = max p, - (4.12)
s.t.
ws L) r = 1R | (4.13)

Wi = Wig Wiy : ke L; Mm/} i = INP t =1INT (L5)
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NM NM '
Y Pi+ T Wy = XSp+ X Wi j=INC r=INT (16)

I=1 ke l(j) I=1 ke O(j)
I, L 1 LU
aj;” < P,I'c < i } j=1,NC ¢ =ILNT I=1NM (1.7)
I, L I,
1 :
LeR 4.14)

where the |. zrangian
Lv) = NPV(v, u") (4.15)

NP NT 1r r r 2r r .
+ 2 2 [ oy (mip- vy (Wi 1=Qi0) ) + 6 (Wpyp-Qig - mip) ]
i=lt=1

1r 2r
and NPV( v, ul' ) is the NPV function with all variables uf fixedand 6;, , O,

are the Lagrange multipliers of the first and second constraints of (4.8) in the

solution of (NLP-u) in Step 2.
Step 4. If NPVL = NPVU,| stop. Otherwise set R =R + 1, and return to Step 2.

As mentioned, in Step 2, the equations (4.8), (4.9) and (4.10) can be solved a priori by
simply"using expressions (3.11) to (3.13). This leads to an LP which can be decomposed into
a sequence of independent LP's (one lot sizing problem (P4-i) for each process i). Therefore,

the global optimum will always be attained for the Benders subproblems. However, the
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nonconvexities in the NLP modd (RI) (constraints (4.3) and (4.8) to (4.10)) do not guarantee
rigorous lower bounds in the master problem which may therefore lead to local optima. We are
interested in finding the exact solution of the problem and, for that reason, we will present a
different reformulation which can be solved to global optimality. Furthermore, in this
reformulation it will also be possible to specify limits on the number of expansions and the
capital investment (constraints (1.8) and (1.9)), as well as finite bounds for the capacity
expansions in constraints (1.2) which were ignored in model (RI). This is described in the

-
-

next section.
5. Second Reformulation of the Long Range Planning model

In the reformulation of the planning model presented in the previous section, we
expressed the demands for the capacity expansions as functions of the flows in the network
(equations (3.11), (3.12) and (3.13)). Since this has led to nonconvexities (constraints (4.3)
and (4.8) to (4.10)), the aternative suggested hereisto apriori (over)estimate bounds for the
capacity expansions and to use a linear model. It is easy to find upper bounds for the
expansions themselves as it will be shown later. However, we cannot simply use these -
bounds to overestimate the demands for the capacity expansions (dff in (4.3)) in the Krarup-
Bilde reformulation of the lot sizing problem (model (RLSL1)), as this would force the
expansions to be equal to the overestimated upper bounds (because of (4.3)). For that reason,
we will make use of Martin's reformulation (model (RLS2)) although it contains more

variables and constraints. First, we will introduce extravariables, (p” in the origina planning

model to denote capacity expansion of plant i made in period t in order to serve production
requirements up to period x (x> i). These variables correspond to the variables \, of model

(RLSZj and therefore they have to satisfy the following constraints:
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QB 2 P /=1,NP  r=I,NT  zZt (5.1)

Qg < Cin Vi »=1NP r=I,NT X;>r (5.2)
which are completely analogous to (2.12) and (2.13), respectively. Furthermore, from the

t
definition: Cj, = X T - 1 AT *** *" conjunction to (3.21), it follows that a valid relaxation of

(2.14) is the following constraint:

t

X <Pm * “m,r - QO

i= I>NP t= 1NT (5.3)
T=|

By including constraints (5.1), (5.2) and (5.3) in model (Pl), the second reformulation

of the long range planning model is then the following multiperiod MILP model:

Reformul M R2
NP NT NP NT
mx NPV = - £ | (0"QEMPYWIY) - £ | 8wilWn,, (11
i=1t1=1 i=1t=1
NM NC NT ! I
+ Z (Tjgsj:'rjlpji)

l=1/=1 t:=1

S.t.

L U ,
vie By < Gy < By yu f= 1NP.  #=1NT (1.2)




“itr = N*W/»|*

NM
A
/=1

X w*,
kel (j)

NP
> (a-, QE+P,y-) < CI()

i=1

QB = <ph

Gire N Qri y«

t=I

Vi =0or 1

X q>:1r = Wm!-f - QJO
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teL/Mm)} / =1INP t=1INT (15
NM !
XS *. zZ W/ :=iNC r=iNT (L6
1=1 keO{j)
=INC  r,=INT /=1NM (17
16 I'C {12, ... NP} (1.8)
te TQ {1,2, .. NT} (19)
i=I, NP r=I,NT z=t (5.1)
I=L,NP  r=I,NT %>t (5.2)
i=INP  r=1INT (5.3)
i=1NP t= INT - (1.10)
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1o

QE;» Wy, Py, S5, 20 (1.11)

(Pl'rr 20 i= I,NP t= I,NT 121 (5.4)

The model contains the definition of the net present value (equation (1.1)), the variable
lower and upper bounds on the capacity expansions (constraints (1.2)) and the material
balances (constraints (1.5) to (1.7)). In contrast to model (R1), the constraints on the number

of expansions (1.8) and the budget constraints (1.9) can now be included. Constraint (5.1)

expresses the obvious fact that the capacity expansion @;z¢ In period ¢ to satisfy demand up to
period T cannot exceed the capacity expansion QE;; during period ¢. Constraint (5.3) is now
used instead of constraint (1.4) and it implies that capacity cannot be devoted to production

during time period ¢ unless it was previously acquired for this purpose.

The upper bounds Cjrr for the capacity expansions in (5.2) must be postulated a priori
and they are not known. However, valid upper bounds for the capacity expansions can be
evaluated by maximizing the individual production rate of each process i (i = 1, NP) for each

time period (¢ = 1, NT) by solving the following linear program:

w;; = max Wmi’ (5.5)
St.
. LL ! LU
a,sz < P,{': s a{xU } j=1NC I1=1NM (1.6)
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NM NM
| p+ X w, = Xs,+ x "< =I,NC a?
1=1 kel (j) /=1 keO{j)
1ol .
Weer Py Sjp 20 (1.11)

In this LP model the flow of the main product of a process is maximized subject to
mass balances around the entire network. If finite bounds are specified for the inequalities
(1.6), the solution will always be bounded. In addition, this LP has special dructure. Itisa
" processing network" for which special solution algorithms are available (Koene, 1983,

McBride, 1985; Chen and Enguist, 1988).

Then the upper bounds for the capacity expansonsare

Cn = max { 0, min { QE,Q,T_rrEKT o'} - Qo } (56)

The algorithm to solve the reformulated planning modd (R2) is then as follows:
Step 1. Solve (NP)(NT) processing network problems of the form (5.5).
Step 2 Calculate capacity expansion upper bounds through (5.6).
Sep 3. Solvethereformulated MILP mode (R2).

The following theorem can be established for the tightness of the LP relaxation in
Step 3:
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Theorem 6. The optimal cost of the linear programming relaxation of model (R2) is not
greater than the optimal cost of the linear programming relaxation of model (PI), and it may be

strictly less.

Proof: First we observe that constrai nts""(l.3) can be used to solve for the variables Q;, of

model (PI) and then both these variables and constraints can be eliminated with the provision

that (1.4) is changed to:

4
QIO+ | CPit * Wpys <14)
t=| .

Now with the exception of (1.4") the rest of the constraints of model (Pl) also appear in model
(R2). But from (5.1):
t

QO+ | OPx * QO*
1=1 T

|| - —+

This means that (1.4") is implied by (5.3). It follows that every solution to the linear
programming relaxation of model (R2) gives rise to a feasible solution of the linear
programming relaxation of model (Pl). This shows that the optimal net present value of the
linear programming relaxation of (R2) cannot be greater than that of the linear programming
relaxation of (Pl). The examples of Section 6 show that the linear programming relaxation of

(R2) can yield a strictly smaller upper bound, thus completing the proof. .

The theorem indicates that the new formulation of model (R2) is at least as accurate as
that of model (P1), but nothing is said about the degree of its accuracy. Note, however, that, if

the overestimated capacity expansion upper bounds (the ones from (5.6)) are equal to the
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optimal valués of the capacity expansions, the rdaxation will yield an integral solution since the
formulation of the lot Szing subgructures that has been used satisfies Theorem 2. We can then
expect that the closer the overestimated values to the optimal solutions, the more accurate the
relaxation will be. Moreover, we anticipate that, for those processes that are profitable, the
optimum will be to run them at the highest possible operating level, and therefore the upper
bounds from (5.6) will be equal to the optimal values for the capacity expansonsin which case

the rdlaxation of modd (R2) will be close to an integer solution.
*

It should be mentioned here that, while the relaxation becomes more accurate, the
number of coﬁtinuous variables and condraints of the modéd is at the same time increased, but
at least this increase is polynomial in the number of time periods (NT) and the number of
processes (NP). In fact, we are adding (NP)(NT)2(NT+I)/2 new variables and
(NP)(NT)’(NT+1)-(NP)(NT) new constraintsin the original modd (PI).

Relation to Strong Cutting Plane Methods and to the

Disaggregation of Fixed Charge Network Problems

The idea of the strong cutting plane approach to integer programming is to try to
generate from the relaxed LP tighter formulations of 0-1 polyhedra by adding cutting planes
that describe facets or faces of high dimension of the convex hull of these polyhedra (Crowder,
Johnson and Padberg, 1983; Van Roy and Wolsey, 1987). At each iteration the procedure
darts by finding (x*, y*), the optimum values for the continuous and 0-1 variables of the LP
relaxation of the current MILP formulation. Then a separation problem is solved by usng only
part of the model (corresponding to a combinatorial problem which has been studied
extengively in the literature, e.g. some nework flow type congtraints), to generate additional
valid inequalities which attempt to chop off the point (x*, y*) from the solution space of the
LP relaxation polyhedron. The procedure is then repeated until an integer solution to the new
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LP relaxation is found, or else until there is a small improvement in strengthening the LP

-relaxation bound.

Martin (1987b) suggested that for some problems the separation problem can be
incorporated into the original problem by adding more constraints and variables. In this way,
the separation problem is dynamically being solved and no iteration is needed. What we have
done, by using Martin's reformulation for the lot sizing problem, is essentially equivalent to
including in the model an approximate — due to the overcstin?ation of the demands - solution to
the separation problem for the lot sizing substructures. Then, the reformulation can be
regarded as ar'1 application of strong cutting plane techniques based on Martin's results for the

solution of the separation problem of the lot sizing.

Also related to our approach is the work of Rardin and Choe (1979) who described
alternative formulations for fixed charge network flow problems and showed that a
multicommodity formula::on of a single commodity flow problem can yield tighter linear
programming relaxations. In this formulation, a flow (f) along an arc associated with a fixed
charge is disaggregated into new variables which are as many as the different destinations in .
the network which are satisfied by the flow (f). Fig. 4 is a representation of constraints (1.3)
of model (P1). Since the capacity expansions are associated with fixed charges in the objective
function, we have a fixed charge network substructure in the model. Therefore the
disaggregation of variables in models (R1) and (R2) is in the spirit of the recommendations of
Rardin and Choe although the complication that arises here is that the demands for the nodes of

the fixed charge network are not explicitly given.

6. Cemputational Results

Three planning examples will be considered as shown in Table I. These three examples

will be considered in four, three and three different scenarios, respectively; a total of 10 test
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problems. The different scénarios differ in the numerical values of the parameters, and in the
presence or not of constraints on the number of expansions (1.8) and budget limitations (1.9).
The examples are from Sahinidis et al. (1989) with the only exception of examples 1/1 (a) and
2/1(a) which have been derived from 1/1 and 2/1, respectively, by excluding constraints (1.8)
and (1.9). All the test problems were solved through the modelling system GAMS (Brooke,
Kendrick and Meeraus, 1988).

Computational results with the NLP reformulation (RI)

Theorem 5 sugges:> that the reformulated model can be solved as an NLP. However,
constraints (4.3) and tht - cond constraints of (4.8), (4.9), and (4.10) are nonconvex and in
the examples solved, the NLP code used (MINOS, see Murtagh and Saunders, 1986) was
trapped in suboptimal (still integer, of course) solutions. This is shown in Table Il for all of
our test problems that do not involve constraints on the number of expansions (1.8) and budget
limitations (1.9) and can be therefore solved using model (RI). Moreover, notice that these
solutions were usually far from the optimum. Clearly, the performance of this procedure

depends on the starting point used.

When Benders decomposition was applied, convergence was achieved in arelatively
small number of iterations as shown in the summary of theresultsin Tablell. Itisinteresting
to note that the solution obtained was usually quite close to the globa optimum independently
of the starting point used. Since only few iterations are required - each iteration consisting of
éolvingsmall LP's - the proposed procedure using Benders decomposition seems to be a very
effective approach to obtain feasible (sub)optimal solutions to the long range planning problem.
The reason for which Benders decomposition does not converge to the global optimum - even
though the subproblems and the master problems are linear problems - is because, due to the

nonconvexities of model (RI), the lagrangian constraints (4.13) of the master problem cut off
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part of the feasible space of the original problem. The performance of Benders decomposition

in the case of nonconvexities is analyzed by Sahinidis and Grossmann (1989).
Computational Results with the MILP Reformulation (R2)

Computational results using branch and bound to solve the MILP reformulation (R2) of

our 10 test problems are shown in Tables in through V1.

Table in shows the effect of the reformulation on th6 linear programming relaxation of
the problem. Therelaxation is tighter in the sense that the gap between the integer solution and

the relaxation is considerably reduced.

Table IV shows the effect of the reformulation on the computationa requirements of the
solution. Branch and bound has now to examine a much smaller number of nodes. Although
this has no effect to the CPU requirements for the small problems, note that the CPU times for
the larger examples are up to ont order of magnitude lower than those with the conventional
model (Pl). We can aso see that the reformulation makes possible the solution of one problem

which could not be solved before.

The CPU times in Table IV include the time needed to solve the linear programs to
evaluate the upper bounds for the reformulation variables. However, this time is smal when
compared to the total. For example, for the largest problem (Example 3) thisis less than 10
seconds for all the 156 LP's (using MINOS and not any specialized algorithm). For the rest of

the problems, thistime is admost zero. Some statistics for these LP's are shown in Table V.

'*The effect of the reformulation on the problem size is shown in Table VI. The number
of continuous variables and constraints is increased, but as pointed out in Section 5 this

increase is polynomia in size.
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Finally, it is interesting to compare the proposed reformulation (R2) with the case
where improved upper bounds (the ones obtained by solving (5.5)) are used for the expansions
in the original modd (PI). McKeown and Ragsdale (1988) have actually shown that usng
improved upper bounds can have dramatic effects on the solution of some integer programs.
What will happen if ingead of using the reformulated mode (R2), we smply use the originally
proposed (Modd (PI)) but with improved upper bounds:

Q" = max { 0, min { QF: , max*cor} - Qo } (6.1)

in the variable upper bound congraints (1.2) ? The answer is shown in Table VI, from which
it is clear that this approach may or may not lead to improvements in the solution time of our
problem. In fact, it led to an even worse (!) performance for some of our larger examples.
This should not lead to the false conclusion that it is not worth to improve the bounds for the
long range planning problem. It only means that the bounds used for solving the e- ginal

mode (P1) were already tight enough and that small changesin them may affect the solution

requirements of branch and bound dlightly positively or negatively - depending on the effect on

the branching procedure and on the iterations of the Simplex method. In fact, when
computational experiments were performed with Modd (Pl) using very large numbers for
these bounds, the solution requirements were one and two orders of magnitude more than

thosereported in Table VII.

1. Conclusions

_The results of this paper have been based on the observation that the long range
planning problem for capacity expansion of a chemical complex can be solved as a series of
independent lot sizing problems-when the flows in the network (production, purchases and

sales) arefixed. To take advantage of this property, a variable disaggregation technique has
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been proposed that led to two different ways of reformulating the conventional MILP model.
The first reformulation led to an MINLP that can be solved as an NLP and an efficient way to
take advantage of its special properties was proposed in order to quickly find a good
suboptimal solution. However, due to the presence of nonconvexities in this model, there is
no guarantee that its global optimum will aiways be found. Furthermore, limits on expansions
and capital investment cannot be considered with this formulation. To overcome all these
difficulties, a second reformulation was proposed which led to an MILP with tighter linear
programming relaxation which for large problems led to solution time reductions of up to one
order of magnitude, when compared to the solution requirements of the conventional
formulation of the planning problem. Regarding the implications of this work on future
research, we should point out that the planning problems mentioned in the introduction of this
paper have much in common with the problem we have been looking at. We therefore
anticipate that similar reformulations will be beneficial for solving these problems more

efficiently.
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Tablel. The example problems.

Example/ Soenario Processs Time Periods Chemicals
11, 1/i(a), /2,13 3 3 3
2/1,2/1(a),2/2 10 ) 4 6
3/1(a),3/1(b),3/2 3 4 25




Tablell. Reaults with the Nonlinear refor mulation.

Minos 5.2 Generalized Benders Decomposition
Example/  |{Global optimum~ |  Solution Time (sec)® Solution |terations Time(sec)<’>'<%
Scenario found found
1Ka) 1,775 1,118 0.3 1,775 1 0.2
2/1(a) 51,450 0 36 51,450 3 0.9
3/l(a) 529.8 113 29.8 442 8 8.7

@) Found by solvingmodd (P!).

(®) | BM-3000.

(®) Minos5.2 was used for solvi ng the LP magter problems and the subproblems.



Table III. Effect of the MILP reformulation on the Linear Programming Relaxation.

Initial Model Reformulation
Ekample/ Integer optimum Relaxation optimum Gap Relaxation optimum Gap Gap reduction
Scenario Zp Zp ZR 100 Zﬁ £‘|§_ x 100 M x 100
Zp Zip Zp-Zpp
/1 1,697 1,898 111.8 1,744 102.8 77
1/1(a) 1,775 1,932 108.8 1,775 100.0 100
172 1,063 1,246 117.3 1,099 103.4 80
1/3 2,235 2,540 113.7 2,305 103.1 77
21 51,031 51,207 100.3 51,117 « 100.2 51
2/1(a) 51,450 51,837 100.8 51,481 100.1 92
22 45,248 46,540 102.9 46,370 102.5 13
n 529.8 648.6 122.5 621 117.2 23
3R 529.8 631 119.1 598 112.9 33




Table V. Effect of the MILP reformulation on the solution of the MILP(?).

Initial Model Reformulation
Example/ ' | #nodes iterations  time (sec) #nodes iterations  timeO®)(sec)
Scenario
n 10 93 0.6 3 113 0.6
1Ka) 14 93 0.6 1 9% 0.6
12 1 85 0.6 3 104 0.6
13 1 86 0.6 5 120 0.6
211 37 439 17 14 590 19
2/1(a) 1,064 2,862 10.7 17 544 2
212 1,272 6,305 21.8 23 916 2.7
3/l(a) NA<S  >356,609<%>  >5,520<°) 1,516 14,323 222
3/1(b) 28,696 134,440 2,100 1,037 12,329 192
32 4,530 32,713 540 1,164 20,503 324

(@ MPSX-MIP/370 computer code used on IBM-3090.
(b) Includes L P computations for upper bounds of capacities using MINOS 5.1.
() Procedure terminated with alower bound of 529.8 and an upper bound of 561.



Table V. Size and number of linear programs solved to obtain upper bounds.

Variables

Example Rows Nonzeroes # problems solved
1 7 9 17 9
2 17 40 48 40
3 83 127 236 152




TableVI. Effect of the MILP reformulation on the problem size.

Initial Modd Reformulation

Example/ Condraints Variables Nonzer oes Condraints Variables Nonzer oes

Scenario Total I nteger Total I nteger

1/1,1/2,1/3 49 55 9 160 76 64 9 217
1/1(a) 46 55 9 142 73 64 9 199
211 195 225 40 639 355 285 40 989
2/1(a) 185 225 40 599 345 285 40 949
2/2 199 225 40 719 359 285 40 1,069
3/(a) 785 %1 152 2,551 1,431 1,189 152 4,033
3/Kb) 823 %61 152 2,703 1,469 1,189 152 4,185
32 827 %61 152 3,007 1,473 1,189 152 4,489




Table VII. Effect of improved bounds on MILP solution(2) (no reformulation).

Example / Relaxation optimum # nodes # iterations time (sec)

Scenario
1/1 1,786. 7 72 0.6
1/1(a) 1,786 5 66 0.6
1/2 1,134 8 74 0.6
1/3 2,373 9 80 0.6
2/1 51,206 37 471 1.6
2/2(a) 51,837 1,064 2,789 10.5
2/2 46,537 1,273 6,035 24.5
3/1(a) 629.5 44,005 318,479 3,780
3/1(b) 629.5 28,443 246,210 3,120
3/2 608.03 4,094 39,830 450

(a) MPSX-MIP/370 computer code, used on IBM-3090.
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