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ABSTRACT

The problem of selecting processes and capacity expansion policies for a chemical

complex consisting of continuous chemical processes can be formulated as a multiperiod mixed

integer linear programming problem. Based on a variable disaggregation technique that

exploits lot sizing substructures, we propose two reformulations of the conventional MILP

model. The first one is an NLP reformulation that yields very quickly good suboptimal

solutions. The second is an MILP reformulation for exact solutions that leads to up to an order

of magnitude faster computational results for large problems due to its tighter linear

programming relaxation.
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Chemical companies are increasingly concerned with the development of planning

techniques for their process operations. The incentive for doing so is a result of the interaction

of several factors. Recognizing the potential benefits of new resources when these are used in

conjunction with existing processes is the first factor. Another major factor is the dynamic

nature of the economic environment. Companies must assess the potential impact of important

changes in the external environment on their business. Due to technology obsolescence,

increasing competition, and fluctuating prices and demands of chemicals, there is an increasing

need of quantitative techniques for planning the selection of*new processes, the expansion and

shut-down of existing processes, and the production of chemicals.

This paper addresses the following long range planning problem for chemical

processes. It is assumed that a network of continuous processes and chemicals is given. This

network includes an existing system as well as potential new processes and chemicals. Also

given are forecasts for prices and demands of chemicals, as well as investment and operating

costs over a finite number of time periods within a long range horizon. The problem then

consists of determining the following items that will maximize the net present value over the

given time horizon: (a) capacity expansion and shut-down policy for existing processes; (b)

selection of new processes and their capacity expansion policy; (c) production profiles; (d)

sales and purchases of chemicals at each time period. As stated, this is a multi-product, multi-

facility, dynamic, location-allocation problem.

A rather large number of papers and books has been published in the operations

research literature on capacity expansion in applications which are closely related to the

problem discussed in this paper. The synthesis and capacity expansion models in

communications networks (and other dynamic networks) have a long history and have recently

been surveyed by Minoux (1987). Planning the expansion of electric power generation

networks is discussed by Noonan and Giglio (1977), who used Benders decomposition
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coupled with a successive linearization procedure to solve a nonlinear multiperiod mixed

integer model. In manufacturing, Merges and Mutlu (1988) developed a multiperiod mixed

integer linear programming model for the acquisition and allocation of computing systems. In

the public sector, Bergendahl (1969) developed a combined linear and dynamic programming

model for the expansion of road networks, and Armstrong and Willis (1977) used the

Generalized Benders decomposition to solve a mixed integer nonlinear (quadratic) program for

the planning of water resources.

In the chemical process industries, perhaps the best known applications are those

described by Manne for several heavy processes in India (Manne, 1967) and Mexico (Goreux

and Manne, 1973). More recently, Himmelblau and Bickel (1980) presented a nonlinear

programming formulation for a hydrodesulfurization process, and Grossmann and Santibanez

(1980) developed a multiperiod mixed integer linear programming formulation applicable to the

chemical process industries. Fong and Srinivasan (1981a, 1981b) developed a heuristic

solution strategy for the multifacility dynamic expansion problem. Shimizu and Takamatsu

(1985) discussed a goal programming approach where in addition to cost minimization,

minimizing the number of expansions is also suggested. Jimenez and Rudd (1987) presented a

recursive mixed integer linear programming technique and applied it to the Mexican

petrochemical industry. Recently, Sahinidis et al. (1989) presented a multiperiod MILP

formulation for long range planning in the chemical process industries and extensive

computational results to evaluate the performance of several solution procedures for this model.

With respect to the computational complexity of the problem, it has been shown that

even though some important special cases can be solved in polynomial time, the more general

planning problems are NP-hard (Florian, Lenstra and Rinnooy Kan, 1980; Akileswaran,

Hazen and Morin, 1983). It is therefore not surprising that most previous approaches address
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simplified versions of the problem, or else they involve integer programs which are limited in

the size of problems that they can handle.

However, it is well known that for integer programs some formulations are more

efficient than others, even though they may contain more constraints and/or variables. For

instance, Rardin and Choe (1979) described how variable disaggregation can be used to

reformulate fixed charge network problems and yield tighter formulations. Jeroslow and Lowe

(1984 and 1985) have shown how certain ("sharp") mixed integer formulations can give rise to

stronger linear programming relaxations by introducing more variables than the common

formulation. Closely related is the work of Balas (1985), who used disjunctive programming

to develop a framework for the description of a hierarchy of relaxations for discrete

optimization programs. Martin (1987a) developed a theory of variable redefinition and once

again showed that the new formulations provide a more accurate linear programming

relaxation, which is an important property at least within the context of linear programming

based branch and bound.

The purpose of this paper is to show that formulations based on variable disaggregation

are possible for the long range planning problem of chemical processes. These formulations

are different from a conventional mixed integer programming model in that they utilize more

constraints and variables. The development is based on the observation that, for fixed

production levels, the remaining capacity expansion problem can be recast as a lot sizing

problem. For the lot sizing part of the problem, the formulations of Krarup and Bilde (1977)

and Martin (1987b), which can be solved as linear programs, are utilized. The former is used

within an NLP reformulation of the conventional MILP model and yields very quickly good

suboptimal solutions. The latter is used within an MILP reformulation for exact solutions that

leads to up to one order of magnitude faster computational results for large problems due to its

tighter linear programming relaxation.
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The paper is organized as follows. In Section 1, a straightforward multiperiod MILP

formulation of the problem is presented. Section 2 is a description of different formulations for

the lot sizing problem which constitute the basis of our reformulation for the planning problem.

Section 3 presents our main observation: the link between the long range planning problem and

the lot sizing problem. Sections 4 and 5 present the main results: an NLP and an MILP

reformulation of the model presented in Section 1. Theoretical properties of the reformulations

are also given in these sections while, at the same time, computational procedures are derived

for their solution. Computational results with the new models are presented in Section 6 where

the practical significance of the MILP reformulation becomes apparent. The conclusions of this

work and some recommendations for future research are presented in Section 7.

1. Multiperiod MILP Model for Long Range Planning

A network consisting of a set of NP chemical processes that can be interconnected in a

finite number of ways is assumed to be given. The network also involves a set of NC

chemicals which include raw materials, intermediates and products. The processes will be

interconnected by a total of NS streams to represent the different alternatives that are possible

for the processing and the purchases and sales from NM different markets. It will be assumed

that the material balances in each process can be expressed linearly in terms of the production

rate of a main product, which in turn defines the capacity of the plant.

The objective function to be maximized is the net present value of the project over a

long range horizon consisting of a finite number of NT time periods during which prices and

demands of chemicals, and investment and operating costs of the processes can vary. The

operating cost of a plant will be assumed to be proportional to the flow of its main product. As

for the investment costs of the processes and their expansions, it will be considered that they

can be expressed linearly in terms of the capacities with a fixed charge cost to account for the

economies of scale.
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In the description of the model, the following notation will be used:

Indices:

i

t

j

k

I

Parameters:

NP

NT

NM

NC

NS

Kj)

m
i

"it

process (i = 1, NP)

time period (t = 1, NT)

chemical 0 = l.NC)

stream in the network (it = 1, NS)

market (/= 1,NM)

number of processes in the network

number of time periods considered

number of markets

number of chemicals in the network

number of streams in the network

the index set of streams of chemical j which are produced in the complex

the index set of streams of chemical j which are consumed in the complex

the index set of the subset of the NS streams corresponding to inputs and

NP

outputs of process /, and u , = l L^ = {1,2,...,NS}

stream corresponding to the main product of process i (m ^ e L ; )

existing capacity of process i at time t = 0
lower bounds for the capacity expansions

upper bounds for the capacity expansions

material balance coefficients characteristic of each process i and stream k

variable term of investment cost [$ / unit of capacity installed]

fixed term for the investment cost [$]

unit operating cost[$ / unit of production amount of the main product]
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1jt prices of sales of the chemical / in market / during time period t

[$ / unit sold]

I\ prices of purchases of the chemical j in market / during time period t

[$ / unit purchased]

NEXP(z') the maximum allowable number of expansions for process i

CI(r) the capital investment limitation corresponding to period t

Variables:

yzr decision variable which is 1 whenever there is an expansion for process / at

the beginning of time period r, and 0 otherwise

total capacity of the plant of process i that is available in period t

ZY capacity expansion of the plant of process i which is installed in period t

Pjt amount of product j purchased from market / at the beginning of period t

Sjt amount of product; sold to market / at the beginning of period t

W^r amount of flow of stream k during time period r.

A multiperiod MILP model for the long range planning problem is as follows:

Model PI:

NP NT NP NT
max

NP NT NP NT

NPV = - X I ("/,<£;,+M*,) - I I 5Wi,Wm., (1.1)
i = l r = l i = l r = l

NM NC NT /

I I I (Y
/ = 1 jr s 1 x = 1
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yit QEf, < QE,, <, QE,? y,-, j=l,NP f=l,NT

j=l,NP r=l,NT

(1.2)

(1.3)

^ W O T . f j=l,NP r=l,NT (1.4)

a* = 1,NP t = 1.NT (1.5)

NM NM
/i+ X W4| = I s j , + X W*, y=l,NC f-l,NT (1.6)

/ = ! kel(j) / = 1 keO(j)

;=1,NC t = l.NT / = 1,NM (1.7)

NT
X y/, <NEXP(/) I'e I'C {1,2,... NP} (1.8)

NP
CI(r) re T c {1,2, ... NT} (1.9)

= 0 or 1 j = l , N P r=l ,NT (1.10)

, P/,, sjf > 0 (1.11)
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In equation (1.1), the net present value is defined as the sum of the investment cost, the

operating cost, the sales revenue and the cost for purchasing the raw materials. All the

coefficients are discounted at a specified interest rate and include the effect of taxes in the net

present value. Constraint (1.2) is a variable lower and upper bounding constraint for the

capacity expansions. A zero-value of the binary variables yjr forces the capacity expansion of

process i at period t to zero, i.e. QEzr = 0. If the binary variable is equal to one, a capacity

expansion between the specified bounds is performed. Equation (1.3) simply defines the total

capacity, Q^ , that is available for process i at each time* period t, while Q/Q is the initial

capacity (zero for nonexisting processes). Constraint (1.4) expresses the condition that the

operating level of a process - expressed in terms of the flow of its main product - cannot

exceed the installed capacity. The material balances in each plant are given by the linear

relations (1.5): the flow of each product is proportional to the flow of the main product of the

process, where (i^ are positive constants characteristic of each process. The material balances

for each chemical in the entire network are given in (1.6) according to which the total amount

of a chemical's purchases from the various markets plus the amounts produced within the

network must be equal to the sum of sales and the total consumption within the network.

Constraints (1.7) express the lower and upper bounds for the availability of raw materials and

the demand of the products. Finally, constraints (1.8) and (1.9), which are optional, express

limits on the number of expansions of some processes and on the capital available for

investment during some time periods, respectively.

The MILP model given above can typically be solved directly with branch and bound

enumeration procedures (see Nemhauser and Wolsey, 1988) such as the ones that are

implemented in standard computer packages (e.g. MPSX, SCICONIC, ZOOM). Consider, as

an example, a chemical complex involving 10 processes and 6 chemicals. None of these

processes is assumed to have an existing capacity. The network showing all the alternatives

for this complex is shown in Fig. 1. Chemical 6 is to be produced in 4 periods, each having a
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length of 2 years and various constraints on the chemical demands and prices. The

corresponding MILP model involves 40 binary variables, 174 continuous variables and 198

rows. The optimum configuration for an instance of this problem considered by Sahinidis et

aL (1989) is shown in Fig. 2 and was obtained by solving model (PI) using MPSX-MIP/370

(IBM, 1979). The computational requirements were only 2 seconds on an IBM-3090.

For large process networks, however, the computational expense can be high. For

example, a network with 40 processes, 50 chemicals, 2 markets and 5 time periods would

involve 200 binary variables, and approximately 1000 continuous variables and 1200

constraints. Since most of the alternatives embedded in such a model are feasible, a large

number of nodes must usually be examined in a branch and bound search. Therefore, there is

a clear incentive to develop efficient computational strategies since this allows the examination

of a greater variety of scenarios with the planning model. Sahinidis et aL (1989) have

compared the performance of several computational strategies including branch and bound,

strong cutting planes followed by branch and bound, Benders decomposition and strong

cutting planes followed by Benders decomposition. For the test problems that were

considered, the combination of integer cuts, strong cutting plane generation and branch and

bound was found to be the most efficient strategy for solving large-scale problems to

optimality.

In order to obtain further significant reductions in the computational effort, we take a

different approach in this paper by developing alternative formulations for the problem. In

particular, we propose to disaggregate the capacity expansion variables and describe two

alternative reformulations. The following section provides the necessary background by

describing the lot sizing problem. This not only serves as an example to illustrate the variable

disaggregation ideas, but it also plays an essential role in the development of the reformulations

of the long range planning model.
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2. Reformulation and Lot Sizing

Consider the production planning problem where the objective is to minimize the sum

of the costs of production, storage, and set-up, given that demand must be satisfied in each of

NT time periods and backlogging is not allowed. For t = 1, NT, let dj be the demand in

period r, and let Cj, pj, and ht be the set-up, unit production, and unit storage cost, respectively,

in period t.

A common formulation for this problem is obtained (see Nemhauser and Wolsey,

1988) by defining xt and st as the production and storage amounts in period t and by defining a

binary variable ŷ , indicating whether xt > 0 or not. This leads to the model:

Model LS:

NT
min ]T ( p r x r + h r s r +c ry r ) (2.1)

r= 1

St.

r = l , N T (2.2)

xr < co y, r = l , N T (2.3)

s O = O (2.4)

s r , x t > 0 , y r € { 0 , l ) r = l , N T (2.5)
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NT
where co = ]T, - dr is an upper bound on xt for all r.

Theorem 1. (Wagner and Whitin, 1958). For the lot sizing problem, there always exists a

minimal cost policy with the property that xTf has one of the following values:

0, dr, dt + d r+j, dr + dr+i + d r+2, ..., ^

Based on this result, Wagner and Whitin (1958)*developed an efficient dynamic

programming algorithm to search over the above discrete set of solutions to find the optimum

solution of the lot sizing problem. Another alternative is to directly solve the integer program

(LS). In order to efficiently solve this problem, Krarup and Bilde (1977) presented the

formulation that we describe next.

By defining qrT as the quantity produced in period t to satisfy the demand in period

r > r, and yt as above, we have:

NT
it = X qrr r=l,NT (2.6)

T = t .

Problem (LS) can then be reformulated as follows:

Model RLS1:

NT NT NT
1X1111 I I ( P r+h r+h,+ 1 + ... + hT.1 ) Qrr + X ctyt ( 2 7 )

r = l T = r r = l
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St.

£ qT,= d, r=l,NT (2.8)
T = l

q r T < d T y r r= l ,NT r=r,NT (2.9)

NT(NT+l)/2

+ , y e {0,1 }

As mentioned, the extra variables qrT introduced in this reformulation of model (LS)

can be seen as amounts produced in period t in order to satisfy demand for period r > r. This is

depicted in Fig. 3, where we show the problem representation before (a) and after the

reformulation (b). It is clear that in (a) we have a fixed charge network. Therefore, the

reformulation in (b) can be derived from the suggestions of Rardin and Choe (1979) for

obtaining tighter relaxations of network flow problems with fixed charges: each variable xr of

the original formulation is now disaggregated into NT-t-1 new variables q^ (r = t, AT). The

variable disaggregation in this case gives not just a tighter formulation but the absolute tightest

one:

Theorem 2 (see Nemhauser and Wolsey, 1988). The solution to the linear programming

relaxation of (RLS1) yields 0-1 values for the y-variables. In addition, the image in the (x, s,

y)-space under the transformation (2.6) of all the points (q, y) feasible in the linear

programming relaxation of model (RLS1) produces the convex hull of model (LS).
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It follows from the theorem that, one only needs to solve (RLSl) as a linear program

where the y-variables are relaxed to take values in the interval [0,1] and obtain the solution to

the integer program (LS). It is interesting to note that model (RLSl) is not the only possible

formulation exhibiting this property. Based on the work of Barany, Van Roy and Wolsey

(1984), Martin (1987b) used separation algorithms and derived for the lot sizing problem

another alternative formulation for which Theorem 2 holds. His reformulation is the following:

Model RLS2:

NT
min ]£ ( Prxr+ hr sr +crvr

St.

= dr+sr r=l ,NT (2.2)

x, < Cr>NTy f r=l ,NT (2.11)

x, > Xn r=l,NT T=r,NT (2.12)

y, r=l,NT r=r,NT (2.13)

£ lTt* C l r f - l . N T (2.14)
T = l
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s o = O (2.4)

s,, x, 2sOf y r € {0,1} f - l . N T (2.5)

where C r r = X T - d T a r e uPP e r bounds for the disaggregated production variables Xn

which can now be interpreted as amounts produced in period t in order to satisfy demand up to

period r^r. t

In addition to models (RLS1) and (RLS2), based on the work of Barany, Van Roy and

Wolsey (1984), Pochet and Wolsey (1988) used the theory of strong cutting planes to derive

yet another formulation for which Theorem 2 is valid. These three, slightly different

representations, differ in the number of constraints and variables they include, and therefore in

their computational efficiency. Of course, efficient dynamic programming techniques are

available to solve the lot sizing problem (Wagner and Whitin, 1958; Zangwill, 1969).

However, the above reformulations are very important when the lot sizing problem is part of a

more complex planning model. For example, based on the variable redefinition theory of

Martin (1987a), Eppen and Martin (1987) developed a formulation that gave very encouraging

computational results to the solution of some multiproduct capacitated lot sizing problems. The

importance of reformulations (RLS1) and (RLS2) will also be shown in the development of

Models (Rl) and (R2) of this paper. This development is based on the observation described

in the next section.

3. The Main Observation

Let us assume that, for the long range planning problem, there are zero lower bounds

and infinite upper bounds for the capacity expansions (1.2), no limits for the expansions (1.8)

and no constraints on the investment (1.9) - this assumption will be removed later in the paper.
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Refer now to Fig. 1 and imagine for a moment that all flows of chemicals (W&, Pjr> SJ,) in the

network have been fixed in such a way that material balances (constraints (1.5) to (1.7)) are

satisfied for all time periods. Then every process can be isolated from the rest of the network

and the design problem for each process /becomes: "Find the cheapest capacity expansion

sequence (QE;r, t = 1,NT) that will allow production of the prespecified flows of chemicals

, Pjh Sjt)". Mathematically the problem reduces to:

Model P2-i:

NT

min X (<*;,QEz7+Pz,y;/) (3.1)

s.t.

Z, < U yit r=l ,NT (3.2)

= Qir r=l ,NT (3.3)

Q / r > Wm.r r=l,NT (3.4)

QE/r f Q/r > 0 , yit = 0 or 1 r = 1,NT (3.5)

where U is a large positive quantity.

The objective in (3.1) is to minimize the investment cost of process i for the given

flows of the main product in the right hand side of (3.4). Assume, for a moment only, that

these flows are such that:
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Q/0 * W m , l * w m , 2 * •• • * wm,,NT (3.6)

By letting:

SQ,, = Q/r - Wm/f - /=1,NT (3.7)

- Wm-M r= 1.NT (3.8)

and using the convention that Wmj-0 = Q,o» then SQ,-f ^ 0 implies (3.4) and (P2-i) can be
0

transformed into the following equivalent lot sizing problem:

Model P3-i:

NT

min X (<*«<&«+V>«yit)
* = 1

s.t.

Q E i , < U y j ( r=l,NT (3.2)

SQ J > ; + QE/r = d|7 + SQ/r /= 1.NT (3.9)

0 (3.10)

QEj7 , SQ,r > 0, yit = 0 or 1 r= 1,NT (3.5)

In the lot sizing terminology, we can view SQ,f as the "inventory" of capacity, i.e.

excess of capacity installed at early times in order to serve demand during subsequent time
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periods. At the same time, the QE/jfs can be regarded as "production" of capacity in order to

satisfy some "demand" for capacity as determined by the flows of the main products ( W m ^ )

in (3.8). For example, if there is no capacity initially installed and if W m ^ = (10,15, 18, 20),

then the demand for capacity is: dir = (10^5, 3, 2). In the general case - when (3.6) may not

hold - this demand for capacity can be obtained as follows:

1) Subtract any existing capacity (Q/Q) fr°m Wm^. If positive, let this difference be called

additional required capacity, m^, then:

mit = max (0 , Wm.r - Q/ 0 ) r = 1 ,NT (3.11)

2) For each time period r, find the maximum additional required capacity during all previous

time periods; this maximum is:

T J ^ 1
 M / , r - l ' m ' > l ) ' = 1.NT (3.12)

where mzQ = MZQ =0.

3) The demand, dzr, for capacity during time period t is the difference between the current

additional capacity requirements (mzr) and the maximum additional capacity requirements

up to the previous time period (Mzr), provided this difference is positive:

dit = max (0 , mit - Mit) t = 1,NT (3.13)

As an example, consider the case where the installed capacity is 3 units and Wm/f =

(10, 8, 9, 12). Then it follows from the above equations that the demand for capacity is dit =

(7, 0, 0, 2). The equivalence of problems (P2-i) and (P3-i) - with the demands dzr obtained

through (3.11) to (3.13) - for values of the flows not necessarily satisfying (3.6) is established

by the following theorem:
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Theorem 3. Problems (P2-i) and (P3-i) have the same optimal solution.

Proof: We shall show that (P2-i) and (P3-i) have the same set of feasible solutions. Note

first of all, that by summing the equality constraints in (3.3), one can solve for Qzr. Then the

result can be substituted into (3.4) therefore eliminating the variables Qz-r and the equality

constraints (3.3) from model (P2-i). In this case, (3.4) becomes:

T=l

Similarly, in model (P3-i), one can solve (3.9) for SQzr and substitute the result into the

nonnegativity constraint SQzr (3.5). Then (3.9) and SQz*r can be eliminated by rewriting the

nonnegativity constraint as follows:

d* r= l ,NT (3.15)

T=l T=l

We need to prove that feasibility in (3.14) implies feasibility in (3.15) and vice versa.

In the following, we drop the indices / and m^ for simplicity; so consider any process /. The

case where none of the flows Wr (r=l, NT) exceeds the installed capacity is trivial since no

expansions are required for both problems. Consider the case of arbitrary flows where

expansions are required and let p, be the earliest time period for which Wp > QQ. Also let p~

> Pj be the earliest time period for which Wp > Wp . Continue in this way to define the set

of time periods Np = {pp ^ Vy •••> Pn) f° r which pj < pj < p^ < ...< pn and

QO < W P ! < W P 2 < - < WPn-i < W P n
 ( 3 1 6 a )
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Because of the way Np is constructed, we also have:

Wp <; Wpx if px < p < pT + 1 , with px, p x + 1 e Np) p e Np (3.16b)

From the definitions (3.11) to (3.13):

d
P l = Wp, - Qo. dp2 = Wp2 - WP l . dp3 = Wp3 - WP2,

• • ' d P n
= W P n " W P n - r while dp = 0 for pe Np (3.17)

For any time period p (1 < p < NT), we have:

d* = do + dn + ... + dn (3.18)

where k is the largest element of Np not exceeding p. Substituting (3.17) into (3.18) yields:

. = W - Qo (3.19)

r=l

Then for any point feasible in (P2-i) we have

^ t ( 3 2 0 )
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where the inequality follows from (3.14) and the equality from (3.19). Since constraint (3.20)

implies (3.15), it follows that for any capacity expansion sequence which is feasible in problem

(P2-i), the demand of problem (P3-i) will be satisfied for any period p (p=l, NT).

Inversely, for any capacity expansion sequence satisfying the demand of problem (P3-

i) and for any time period p (p=l, NT), we have:

, = W p k - Q0 > Wp - Q0 (3.21)
r=l

where the first inequality follows from the feasibility of problem (P3-i) (constraint (3-15)), the

equality from (3.19) and the second inequality from (3.16) and the definition of k in (3.18).

Since (3.21) implies (3.14), it follows that any feasible point in (P3-i) corresponds to a feasible

point in (P2-i).

Since the problems (P2-i) and (P3-i) have the same set of feasible solutions and they

have the same objective function, they also have the same optimal solution. •

4. NLP Reformulation (Model Rl)

Theorem 3 indicates that if an algorithm is devised that decomposes the problem by first

fixing the values of the flows (Wfo, P/,, Sy, ) in such a way that all material balances

(constraints (1.5) to (1.7)) are satisfied, then the rest of the problem can be solved as a

sequence of independent lot sizing problems (P3-i), one for each process. In this case, the

Krarup-Bilde reformulation (RLS1) can be used for each problem (P3-i) in order to solve it as

a linear program. As indicated in the previous section in the description of problem (P3-i), the

variables QE / r denote "capacity production" and therefore correspond to the production
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variables xt of model (LS). Then, in order to apply the reformulation, let us proceed as in

(2.6) and disaggregate the capacity expansions by defining the variable O/rT as capacity

expansion of process / in time period t in order to serve "capacity demand" during period x

(T ^ t). These variables correspond to the variables q^of model (RLS1); thus, similarly to

(2.6) we have:

QE/r = X ®in /=1,NP r=l ,NT (4.1)
x>t

Moreover, similarly to (2.8) and (2.9), we now have the following constraints:

= dit z=l ,NP r=l ,NT (4.2)

®in ^ d/x yit J ' = 1 , N P r=l ,NT %>t (4.3)

Rather than using the above constraints in order to solve the lot sizing subproblems and

then try to adjust the values of the flows within an iterative procedure, one can try to "build"

this algorithm into the MRP model (PI) by including constraints (4.1) to (4.3) into this model.

In this case, since the capacity demands dzr are defined in terms of mz«r and Mzr these must also

be included as variables in the model while the definitions (3.11), (3.12) and (3.13) must be

included as constraints. However, the max operators in these equations involve

nondifferentiabilities. Therefore, we prefer to translate the equations (3.11), (3.12) and (3.13)

into constraints that involve continuous and differentiate functions so as to be able to use the

effective commercially available codes for smooth optimization. For this, we substitute the

nondifferentiable constraint:
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u = max fn <4-4)
n = l , N

where fn = fn(x) are continuous and differentiable functions and xe SRK, by the following set

of differentiable constraints:

u S> fn(x) n = 1, N (4.5)

N

u < X en fnW ( 4 6 )

N
X 6n = 1 with all 6n > 0 (4.7)

n = l

According to (4.5), u must be at least equal to the max of fn (n = 1,N). According to

(4.6), u can be at most equal to the max of fn (n = 1,N), if the corresponding multiplier (6) is

set to 1. Therefore, the only feasible solution of (4.5) - (4.7) is (4.4).

By incorporating the lot sizing constraints (4.1) to (4.3) into problem (PI) (where (1.8)

and (1.9) are ignored) and by applying the transformation (4.5) to (4.7) to the equations (3.11)

to (3.13), the first reformulation of the long range planning model corresponds to the following

MINLP problem:
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Reformulated Model Rl

NP NT NP NT
max NPV = - £ £ (ailQPi,+ piryif) - £ I 8m.fWm., (1.1)

i = 1 i = 1 i = 1 f = 1

NM NC NT / , / ,

• I I I (V,!-^,!)
/ = i j• = i » = i

s.t.

ike L,-Mm/} i = 1.NP r = 1,NT (1.5)

NM NN1
£ P;!+ X ™kt = £SJ, + X w*/ ; = 1,NC r=l,NT (1.6)

>ljt < a j f "I< P < a l
s r ; / s ajr I )=1,NC t =1,NT / = 1,NM (1.7)

= X ^rx i = l,NP r=l ,NT (4.1)

r=l ,NT (4.2)
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<DJft < dix y i t i = l , N P r = l , N T x > r (4.3)

m t f ^ W m . r - Q / , 0 1
1 > i » l , N P /=1,NT (4.8)

m,> ^ v,v ( W m . r - Qi n ) J

tf 1>r"1 ' " ~ l'r"1 }• J = 1 , N P r = l , N T (4.9)

dit > mit - Mit
> i = l,NP r=l ,NT (4.10)

1̂  < pjr ( mit - Mit ) J

yit = 0 or 1 / = 1,NP t= 1.NT (1.10)

. w-kr. P;!. s j , > 0 (LID

In the above formulation, constraints (4.8), (4.9) and (4.10) are nonlinear and they

serve to explicitly evaluate the demands for the capacity expansions as a function of the flows

(Wfo); they are expressing relations (3.11), (3.12) and (3.13), respectively. Notice that

constraints (4.8), (4.9) and (4.10) are nonconvex since their second corresponding inequalities

involve bilinear terms. Therefore, model (Rl) corresponds to a nonconvex MINLP problem.

However, this nonconvex problem has the following interesting properties:
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Theorem 4: For any fixed value of flows (Wfo, Pjt, Sjt), the solution of the rest of model

(Rl) yields integer values for the variables yit when these are relaxed in the interval [0,1].

Proof: When the flows are fixed, constraints (4.8) - (4.10) become linear and they uniquely

determine the demands dir. Then, the problem decomposes into as many subproblems as

processes. By relaxing the integrality conditions, each subproblem is as follows:

NT
max -

s.t.

-Tr = dit r= 1,NT (Model P4-I)

®in ^ d/t yit r = l , N T i>t

OzrT > 0, 0 < yit < 1

Each subproblem (P4-i), corresponds to the Krarup-Bilde formulation (RLSl) of the

lot sizing problem (P2-i). Hence, from Theorem 2, (P4-i) will give natural 0-1 solutions. •
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Theorem 5: Solving model (Rl) with the variables yit being relaxed in the interval [0, 1],

yields integral values for the y-variables.

Proof: From Theorem 4, for any fixed value of the flows (Wfo, Py,, Sy, ) and with the

integrality requirements of the variables y^ being relaxed, the rest of model (Rl) yields 0 or 1

values for the y-variables. Therefore, this is also true for the optimal value of (Wfo, Py,, Sj r).

•

It follows from Theorem 5 that the integrality requirements (1.10) of model (Rl) can be

relaxed to 0 < yit <1 (/ = 1,NP t = 1,NT). Therefore, model (Rl) can be solved as an

NLP. The next corollary is an immediate consequence of Theorem 4 and the role of the

complicating variables in generalized Benders decomposition (Geoffrion, 1972).

Corollary 5.1: If the generalized Benders decomposition method is applied to model (Rl),

with the flows (Wfo, Py,, Sy,) being the complicating variables, the subproblems (P4-i) have

natural 0-1 solutions when solved as linear programs.

An algorithm using Generalized Benders Decomposition

In order to take advantage of the special properties discussed in the previous paragraph,

the variables of the multiperiod MINLP model (Rl) are partitioned as follows:

a) Complicating variables for the master problem:

v = [W4 | , S,!, PyJ]

b) Remaining variables for the MINLP subproblem:

u = [ yit, QE /r, Oin , mit, Mit, dit, vit, pit, nin ]

The basic steps in Benders decomposition method are then the following:
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Algorithm:

Step 1. Select a value (v*) for the complicating variables so that mass balances of model

(Rl) are satisfied (this can be done by finding a feasible solution to the set of

equations (1.5),(1.6) and (1.7)); set NPV^ = +~, NPV^ = -«,/? = 1.

s.t.

Step 2. a) By fixing the variables v^, problem (Rl) becomes a nonlinear program

(NLP-u) in terms of the variables u. However, since equations (4.8) to (4.10)

can be a priori solved for m/f, M/f, d/f, v/f, rc/j, and p/j, the solution to the

multiperiod MINLP problem (Rl) can be obtained through the LP subproblems

(P4-i) that determine the remaining variables u^ and NPV^. In addition, once

these LP's are solved, the primal solution to (NLP-u) is known and can be used

to produce the dual solution either by using an NLP code or by analytically

solving the Kuhn-Tucker optimality conditions for problem (Rl).

b) Update the lower bound by setting NPV^ = max {NPV^, NPV^}

Step 3. To determine new values v^+1 for the complicating variables and an upper

bound to NPV, solve the linear programming master problem:

= max p, - (4.12)

< Lr(v) r = 1,R (4.13)

Mm/} i = 1,NP t = 1,NT (1.5)
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NM _ _
L w** ; = 1,NC r=l,NT
<Kj)

ay/ S F;I < a;, I >=1,NC r = l.NT / = 1,NM (1.7)

where the i. jrangian

Lr(v) = NPV(v, ur) (4.15)

I I [ ^ (™U * vir (Wrnfr Qi,0
i = 1 t = 1

1 / 2,r
and NPV( v, u r ) is the NPV function with all variables ur fixed and cit , oit

are the Lagrange multipliers of the first and second constraints of (4.8) in the

solution of (NLP-u) in Step 2.

Step 4. If NPV L = NPV U , stop. Otherwise set /?=/? + 1, and return to Step 2.

As mentioned, in Step 2, the equations (4.8), (4.9) and (4.10) can be solved a priori by

simplyusing expressions (3.11) to (3.13). This leads to an LP which can be decomposed into

a sequence of independent LP's (one lot sizing problem (P4-i) for each process 0- Therefore,

the global optimum will always be attained for the Benders subproblems. However, the
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nonconvexities in the NLP model (Rl) (constraints (4.3) and (4.8) to (4.10)) do not guarantee

rigorous lower bounds in the master problem which may therefore lead to local optima. We are

interested in finding the exact solution of the problem and, for that reason, we will present a

different reformulation which can be solved to global optimality. Furthermore, in this

reformulation it will also be possible to specify limits on the number of expansions and the

capital investment (constraints (1.8) and (1.9)), as well as finite bounds for the capacity

expansions in constraints (1.2) which were ignored in model (Rl). This is described in the

next section.

5. Second Reformulation of the Long Range Planning model

In the reformulation of the planning model presented in the previous section, we

expressed the demands for the capacity expansions as functions of the flows in the network

(equations (3.11), (3.12) and (3.13)). Since this has led to nonconvexities (constraints (4.3)

and (4.8) to (4.10)), the alternative suggested here is to a priori (over)estimate bounds for the

capacity expansions and to use a linear model. It is easy to find upper bounds for the

expansions themselves as it will be shown later. However, we cannot simply use these

bounds to overestimate the demands for the capacity expansions (d/f in (4.3)) in the Krarup-

Bilde reformulation of the lot sizing problem (model (RLS1)), as this would force the

expansions to be equal to the overestimated upper bounds (because of (4.3)). For that reason,

we will make use of Martin's reformulation (model (RLS2)) although it contains more

variables and constraints. First, we will introduce extra variables, (p^ in the original planning

model to denote capacity expansion of plant i made in period t in order to serve production

requirements up to period x (x > i). These variables correspond to the variables \n of model

(RLS2) and therefore they have to satisfy the following constraints:



- 31 -

> <p/rT /=1,NP r=l ,NT zZt (5.1)

< Cin yit » = 1.NP r = l , N T x;>r (5.2)

which are completely analogous to (2.12) and (2.13), respectively. Furthermore, from the

definition: C j r = X T - 1 ^T anc* *n conjunction to (3.21), it follows that a valid relaxation of

(2.14) is the following constraint:

t

X <Pm * W m z r - QiO i = 1>NP t = 1,NT (5.3)
T = l

By including constraints (5.1), (5.2) and (5.3) in model (PI), the second reformulation

of the long range planning model is then the following multiperiod MILP model:

Reformulated Model R2

NP NT NP NT

max NPV = - £ I (o^QE^+P^yft) - £ I 8WilWm., (1.1)

NM NC NT

I = 1 / = 1 t :

S.t.

i = 1,NP,
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w/tr = N*w/»|* teL/Mm,} / = 1,NP t = 1,NT (1.5)

NM . NM

Z p
77+ X w*, = X s ; / + Z w*/ ; = i,NC r=i,NT (1.6)

/ = 1 k€l(j) 1=1 keO{j)

[jt - P > ' - a > ' \ ;=1,NC r, = 1,NT / = 1,NM (1.7)

NT
X yif <NEXP(O 16 I'C {1,2, ... NP} (1.8)

NP
(a,-, QE,,+ P;, y,-,) < CI(r) te TQ {1,2, ... NT} (1.9)

QE/r > <p/n i=l ,NP r=l,NT z>t (5.1)

^ Qri y« /=1,NP r=l,NT %>t (5.2)

r
X q>Jtr > Wm . f - Qj0 i = 1,NP r = 1,NT (5.3)
t=l

yit = 0 or 1 i = 1.NP t= 1,NT (1.10)
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<pin 2> 0 i = 1,NP t = 1,NT x > r (5.4)

The model contains the definition of the net present value (equation (1.1)), the variable

lower and upper bounds on the capacity expansions (constraints (1.2)) and the material

balances (constraints (1.5) to (1.7)). In contrast to model (Rl), the constraints on the number

of expansions (1.8) and the budget constraints (1.9) can now be included. Constraint (5.1)

expresses the obvious fact that the capacity expansion cp/^ in period t to satisfy demand up to

period x cannot exceed the capacity expansion QE/r during period r. Constraint (5.3) is now

used instead of constraint (1.4) and it implies that capacity cannot be devoted to production

during time period t unless it was previously acquired for this purpose.

The upper bounds Q/x for the capacity expansions in (5.2) must be postulated a priori

and they are not known. However, valid upper bounds for the capacity expansions can be

evaluated by maximizing the individual production rate of each process i (i = 1, NP) for each

time period t (t = 1, NT) by solving the following linear program:

co2v = max Wm-r (5.5)

St.

(1.5)

a/'L<P/. < a''" 1
' J J ^ / — \ .NCJ / — I N l ^ I I O)
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NM . NM .

I p;+ X w*, = Xs;,+ x w*< ;=I,NC a.?)
1=1 kel(j) /=1 keO{j)

0

In this LP model the flow of the main product of a process is maximized subject to

mass balances around the entire network. If finite bounds are specified for the inequalities

(1.6), the solution will always be bounded. In addition, this LP has special structure. It is a

"processing network" for which special solution algorithms are available (Koene, 1983;

McBride, 1985; Chen and Enguist, 1988).

Then the upper bounds for the capacity expansions are:

Cin = max { 0, min { QE-, , max co^} - Q / o } (5.6)
1 = f,...T

The algorithm to solve the reformulated planning model (R2) is then as follows:

Step 1: Solve (NP)(NT) processing network problems of the form (5.5).

Step 2: Calculate capacity expansion upper bounds through (5.6).

Step 3: Solve the reformulated MILP model (R2).

The following theorem can be established for the tightness of the LP relaxation in

Step 3:
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Theorem 6. The optimal cost of the linear programming relaxation of model (R2) is not

greater than the optimal cost of the linear programming relaxation of model (PI), and it may be

strictly less.

Proof: First we observe that constraints (1.3) can be used to solve for the variables Q / r of

model (PI) and then both these variables and constraints can be eliminated with the provision

that (1.4) is changed to:

Q/0+ I CPft * Wm.f <1.4')
t=l

Now with the exception of (1.4') the rest of the constraints of model (PI) also appear in model

(R2). But from (5.1):

t t

QiO + I OPix * QiO + I <Pftr
1 = 1 T = l

This means that (1.4') is implied by (5.3). It follows that every solution to the linear

programming relaxation of model (R2) gives rise to a feasible solution of the linear

programming relaxation of model (PI). This shows that the optimal net present value of the

linear programming relaxation of (R2) cannot be greater than that of the linear programming

relaxation of (PI). The examples of Section 6 show that the linear programming relaxation of

(R2) can yield a strictly smaller upper bound, thus completing the proof. •

The theorem indicates that the new formulation of model (R2) is at least as accurate as

that of model (PI), but nothing is said about the degree of its accuracy. Note, however, that, if

the overestimated capacity expansion upper bounds (the ones from (5.6)) are equal to the
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optimal values of the capacity expansions, the relaxation will yield an integral solution since the

formulation of the lot sizing substructures that has been used satisfies Theorem 2. We can then

expect that the closer the overestimated values to the optimal solutions, the more accurate the

relaxation will be. Moreover, we anticipate that, for those processes that are profitable, the

optimum will be to run them at the highest possible operating level, and therefore the upper

bounds from (5.6) will be equal to the optimal values for the capacity expansions in which case

the relaxation of model (R2) will be close to an integer solution.

It should be mentioned here that, while the relaxation becomes more accurate, the

number of continuous variables and constraints of the model is at the same time increased, but

at least this increase is polynomial in the number of time periods (NT) and the number of

processes (NP). In fact, we are adding (NP)(NT)2(NT+l)/2 new variables and

(NP)(NT)2(NT+1)-(NP)(NT) new constraints in the original model (PI).

Relation to Strong Cutting Plane Methods and to the

Disaggregation of Fixed Charge Network Problems

The idea of the strong cutting plane approach to integer programming is to try to

generate from the relaxed LP tighter formulations of 0-1 polyhedra by adding cutting planes

that describe facets or faces of high dimension of the convex hull of these polyhedra (Crowder,

Johnson and Padberg, 1983; Van Roy and Wolsey, 1987). At each iteration the procedure

starts by finding (x*, y*), the optimum values for the continuous and 0-1 variables of the LP

relaxation of the current MILP formulation. Then a separation problem is solved by using only

part of the model (corresponding to a combinatorial problem which has been studied

extensively in the literature, e.g. some network flow type constraints), to generate additional

valid inequalities which attempt to chop off the point (x*, y*) from the solution space of the

LP relaxation polyhedron. The procedure is then repeated until an integer solution to the new
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LP relaxation is found, or else until there is a small improvement in strengthening the LP

relaxation bound.

Martin (1987b) suggested that for some problems the separation problem can be

incorporated into the original problem by adding more constraints and variables. In this way,

the separation problem is dynamically being solved and no iteration is needed. What we have

done, by using Martin's reformulation for the lot sizing problem, is essentially equivalent to

including in the model an approximate - due to the overestimation of the demands - solution to

the separation problem for the lot sizing substructures. Then, the reformulation can be

regarded as an application of strong cutting plane techniques based on Martin's results for the

solution of the separation problem of the lot sizing.

Also related to our approach is the work of Rardin and Choe (1979) who described

alternative formulations for fixed charge network flow problems and showed that a

multicommodity formula::on of a single commodity flow problem can yield tighter linear

programming relaxations. In this formulation, a flow (f) along an arc associated with a fixed

charge is disaggregated into new variables which are as many as the different destinations in

the network which are satisfied by the flow (f). Fig. 4 is a representation of constraints (1.3)

of model (PI). Since the capacity expansions are associated with fixed charges in the objective

function, we have a fixed charge network substructure in the model. Therefore the

disaggregation of variables in models (Rl) and (R2) is in the spirit of the recommendations of

Rardin and Choe although the complication that arises here is that the demands for the nodes of

the fixed charge network are not explicitly given.

6. Computational Results

Three planning examples will be considered as shown in Table I. These three examples

will be considered in four, three and three different scenarios, respectively; a total of 10 test
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problems. The different scenarios differ in the numerical values of the parameters, and in the

presence or not of constraints on the number of expansions (1.8) and budget limitations (1.9).

The examples are from Sahinidis et al. (1989) with the only exception of examples 1/1 (a) and

2/l(a) which have been derived from 1/1 and 2/1, respectively, by excluding constraints (1.8)

and (1.9). All the test problems were solved through the modelling system GAMS (Brooke,

Kendrick and Meeraus, 1988).

Computational results with the NLP reformulation (Rl)

Theorem 5 sugges > that the reformulated model can be solved as an NLP. However,

constraints (4.3) and tht cond constraints of (4.8), (4.9), and (4.10) are nonconvex and in

the examples solved, the NLP code used (MINOS, see Murtagh and Saunders, 1986) was

trapped in suboptimal (still integer, of course) solutions. This is shown in Table II for all of

our test problems that do not involve constraints on the number of expansions (1.8) and budget

limitations (1.9) and can be therefore solved using model (Rl). Moreover, notice that these

solutions were usually far from the optimum. Clearly, the performance of this procedure

depends on the starting point used.

When Benders decomposition was applied, convergence was achieved in a relatively

small number of iterations as shown in the summary of the results in Table II. It is interesting

to note that the solution obtained was usually quite close to the global optimum independently

of the starting point used. Since only few iterations are required - each iteration consisting of

solving small LP's - the proposed procedure using Benders decomposition seems to be a very

effective approach to obtain feasible (sub)optimal solutions to the long range planning problem.

The reason for which Benders decomposition does not converge to the global optimum - even

though the subproblems and the master problems are linear problems - is because, due to the

nonconvexities of model (Rl), the lagrangian constraints (4.13) of the master problem cut off
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part of the feasible space of the original problem. The performance of Benders decomposition

in the case of nonconvexities is analyzed by Sahinidis and Grossmann (1989).

Computational Results with the MILP Reformulation (R2)

Computational results using branch and bound to solve the MILP reformulation (R2) of

our 10 test problems are shown in Tables in through VII.

Table in shows the effect of the reformulation on th6 linear programming relaxation of

the problem. The relaxation is tighter in the sense that the gap between the integer solution and

the relaxation is considerably reduced.

Table IV shows the effect of the reformulation on the computational requirements of the

solution. Branch and bound has now to examine a much smaller number of nodes. Although

this has no effect to the CPU requirements for the small problems, note that the CPU times for

the larger examples are up to ont order of magnitude lower than those with the conventional

model (PI). We can also see that the reformulation makes possible the solution of one problem

which could not be solved before.

The CPU times in Table IV include the time needed to solve the linear programs to

evaluate the upper bounds for the reformulation variables. However, this time is small when

compared to the total. For example, for the largest problem (Example 3) this is less than 1.0

seconds for all the 156 LP's (using MINOS and not any specialized algorithm). For the rest of

the problems, this time is almost zero. Some statistics for these LP's are shown in Table V.

'•The effect of the reformulation on the problem size is shown in Table VI. The number

of continuous variables and constraints is increased, but as pointed out in Section 5 this

increase is polynomial in size.
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Finally, it is interesting to compare the proposed reformulation (R2) with the case

where improved upper bounds (the ones obtained by solving (5.5)) are used for the expansions

in the original model (PI). McKeown and Ragsdale (1988) have actually shown that using

improved upper bounds can have dramatic effects on the solution of some integer programs.

What will happen if instead of using the reformulated model (R2), we simply use the originally

proposed (Model (PI)) but with improved upper bounds:

^ = max { 0, min { QE-r , max^cojT} - Qi0 } (6.1)

in the variable upper bound constraints (1.2) ? The answer is shown in Table VII, from which

it is clear that this approach may or may not lead to improvements in the solution time of our

problem. In fact, it led to an even worse (!) performance for some of our larger examples.

This should not lead to the false conclusion that it is not worth to improve the bounds for the

long range planning problem. It only means that the bounds used for solving the e ginal

model (PI) were already tight enough and that small changes in them may affect the solution

requirements of branch and bound slightly positively or negatively - depending on the effect on

the branching procedure and on the iterations of the Simplex method. In fact, when

computational experiments were performed with Model (PI) using very large numbers for

these bounds, the solution requirements were one and two orders of magnitude more than

those reported in Table VII.

1. Conclusions

The results of this paper have been based on the observation that the long range

planning problem for capacity expansion of a chemical complex can be solved as a series of

independent lot sizing problems when the flows in the network (production, purchases and

sales) are fixed. To take advantage of this property, a variable disaggregation technique has
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been proposed that led to two different ways of reformulating the conventional MILP model.

The first reformulation led to an MINLP that can be solved as an NLP and an efficient way to

take advantage of its special properties was proposed in order to quickly find a good

suboptimal solution. However, due to the presence of nonconvexities in this model, there is

no guarantee that its global optimum will always be found. Furthermore, limits on expansions

and capital investment cannot be considered with this formulation. To overcome all these

difficulties, a second reformulation was proposed which led to an MILP with tighter linear

programming relaxation which for large problems led to solution time reductions of up to one

order of magnitude, when compared to the solution requirements of the conventional

formulation of the planning problem. Regarding the implications of this work on future

research, we should point out that the planning problems mentioned in the introduction of this

paper have much in common with the problem we have been looking at. We therefore

anticipate that similar reformulations will be beneficial for solving these problems more

efficiently.
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Table I. The example problems.

Example / Scenario

1/1, l/l(a), 1/2,1/3

2/l,2/l(a),2/2

3/l(a),3/l(b),3/2

Processes

3

10

38

Time Periods

3

*
4

4

Chemicals

3

6

25



Table II. Results with the Nonlinear reformulation.

Example /

Scenario

1/Ka)

2/l(a)

3/l(a)

Global optimum^

1,775

51,450

529.8

Minos

Solution

found

1,118

0

113

5.2

Time (sec)(b)

0.3

3.6

29.8

Generalized Benders Decomposition

Solution

found

1,775

51,450

442

Iterations

1

3

8

Time(sec)<b>'<c>

0.2

0.9

8.7

Found by solving model (PI).

IBM-3090.

Minos 5.2 was used for solving the LP master problems and the subproblems.



Table in . Effect of the MILP reformulation on the Linear Programming Relaxation.

Example/

Scenario

1/1

l/l(a)

1/2

1/3

2/1

2/l(a)

2/2

3/1
3/2

Integer optimum

Zjp

1,697

1,775

1,063

2,235

51,031

51,450

45,248

529.8

529.8

Initial

Relaxation optimum

ZR

1,898

1,932

1,246

2,540

51,207

51,837

46,540

648.6

631

Model

Gap

ZR X i n f t

Zn,Xl°°
111.8

108.8

117.3

113.7

100.3

100.8

102.9

122.5

119.1

Relaxation optimum

z£
1,744

1,775

1,099

2,305

51,117-.

51,481

46,370

621
598

Reformulation

Gap

yR
R x MO

ZIP

102.8

100.0

103.4

103.1

100.2

100.1

102.5

117.2

112.9

Gap reduction

ZR - ZR 1 0 Q

Z D -Zn> X 1 U U

77

100

80

77

51

92

13

23
33



Table IV. Effect of the MILP reformulation on the solution of the MILP(a).

Example /
Scenario

1/1

1/Ka)

1/2

1/3

2/1

2/l(a)

2/2

3/l(a)

3/l(b)

3/2

#nodes

10

14

11

11

37

1,064

1,272

NA<C>

28,696

4,530

Initial Model
iterations

93

93

85

86

439

2,862

6,305

time (sec)

0.6

0.6

0.6

0.6

1.7

10.7

21.8

>356,609<c> >5,520<c)

134,440

32,713

2,100

540

#nodes

3

1

3

5

14

17

23

1,516

1,037

1,164

Reformulation
iterations

113

96

104

120

590

544

916

14,323

12,329

20,503

timeO5) (sec)

0.6

0.6

0.6

0.6

1.9

2

2.7

222

192

324
(a) MPSX-MIP/370 computer code used on IBM-3090.

(b) Includes LP computations for upper bounds of capacities using MINOS 5.1.

(c) Procedure terminated with a lower bound of 529.8 and an upper bound of 561.



Table V. Size and number of linear programs solved to obtain upper bounds.

Example

1

2

3

Rows

7

17

83

Variables

9

40

127

Nonzeroes

17

48

236

# problems solved

9

40

152



Table VI. Effect of the MILP reformulation on the problem size.

Example /

Scenario

1/1,1/2,1/3

l/l(a)

2/1

2/l(a)

2/2

3/l(a)

3/Kb)

3/2

Constraints

49

46

195

185

199

785

823

827

Initial Model

Variables

Total

55

55

225

225

225

961

961

961

Integer

9

9

40

40

40

152

152

152

Nonzeroes

160

142

639

599

719

2,551

2,703

3,007

Constraints

76

73

355

345

359

1,431

1,469

1,473

Reformulation

Variables

Total

64

64

285

285

285

1,189

1,189

1,189

Integer

9

9

40

40

40

152

152

152

Nonzeroes

217

199

989

949

1,069

4,033

4,185

4,489



Table VDL Effect of improved bounds on MILP solution(a) (no reformulation).

Example/
Scenario

1/1

l/l(a)

1/2

1/3

2/1

2/2(a)

2/2

3/l(a)

3/1 (b)

3/2

Relaxation optimum

1,786.

1,786

1,134

2,373

51,206

51,837

46,537

629.5

629.5

608.03

#nodes

7

5

8 *

9

37

1,064

1,273

44,005

28,443

4,094

# iterations

72

66

74

80

471

2,789

6,035

318,479

246,210

39,830

time (sec)

0.6

0.6

0.6

0.6

1.6

10.5

24.5

3,780

3,120

450

(a) MPSX-MIP/370 computer code, used on IBM-3090.
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