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ABSTRACT

Given a kinetic mechanism and expressions for the reaction rate, one is
frequently concerned with appropriate choices for- mixing patterns and heat
addition/removal for reactor design. This study presents a novel nonlinear
programming (NLP) formulation for optimally generating this reactor network.
Building on earlier ideas for adjoint networks, we also include networks with
ideal and nonideal reactors as well as complex mixing patterns. In addition, by
controlling heat addition/removal in the network, this work also extends to
nonisothermal reactors.

Model and adjoint equations of this formulation form a two-point
boundary value problem that interfaces with an efficient optimization strategy.
Decisions representing network structure, reactor type and the amount of heat
addition are made through continuous parameters in the model. The method -is
therefore fairly general and can be applied to large kinetic mechanisms with
almost any objective function. Literature examples are presented and solved in
order to demonstrate the effectiveness of this approach.
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"~ INTRODUCTION

Over the past twenty years, process synthesis has developed into an
active research area. An extensive review has been given by Nishida, et al
(1981), where powerful methods for synthesizing heat exchanger networks and
separation sequences are discussed. However, relatively few studies deal with
the synthesis of reactor networks.

While this is a classical area of research for chemical reactor design,
reactor network synthesis also represents a difficult problem because, unlike
other synthesis problems, reactors are described by differential equation
models, and heuristics and intuitive methods can only deal with limited cases.

Because of the nature of these problems, variational concepts have been
successful in describing the sensitivity of reactor networks to decision
variables. Horn and Tsai (1967) and Jackson (1968) developed adjoint networks
for reactor systems. To account for local mixing Ravimohan (1971) extended
Jackson's superstructure to include CSTR's. However, in his formulation, .
addition of a continuous stirred tank reactor (CSTR) to the network was a
discrete decision and the CSTR volume could not be considered automatically
by the optimization algorithm. As discussed later, we avoid this difficulty by
representing CSTR's and plug flow reactors (PFR's) as limiting cases of
continuous decision variables.

Waghmare and Lirh (1981) dealt with the optimal configuration of
isothermal reactors by noting that optimal feeding strategies have spatial duals
with PFR and CSTR combinations. Consequently, feeding strategies for batch
and semibatch reactors have analogies with steady-state reactor networks.

While the above studies dealt with general objective functions based on
final product rates, Chitra and Govind (1981, 1985) dealt exclusively with
reactor networks that maximize yield. After classifying different reaction
mechanisms from previous literature studies, and applying heuristic strategies
for simpler cases, they apply a direct search procedure to optimize a serial
network of recycle reactors. Finally Conti and Paterson (1985), point out that
to improve overall "process" vyield, reactor selectivity, not reactor vyield.
should be the criterion for deriving a reactor network. Using heuristics derived
from experience, they derive an overall process that is more profitable than
with reactors based on maximum yield.

In order to avoid discrete decisions on reactor type, as observed in
Ravimohan(1971), Paynter and Haskins (1970) used a dispersion model, in which
_the dimensionless dispersion coefficient D was a continuous function of
position in the reactor. They concluded that at the optimal solution the control
“variable u (derivative of D with respect to position along the reactor) was at a
bound; however, this conclusion ignores constraints on D, a state variable.
Also it can be shown that, at least for a zero order reaction, D need not be at
a bound to satisfy the optimally conditions.

In the constant dispersion model ( COM ) discussed here, D is a piece-
wise constant control variable; this strategy is based on the approach used by
Sargent and Sullivan (1977). It is well known that in the limit as D approaches



infinity the differential equations of CDM reduce to the algebraic CSTR
equations; the iatter iimit can De proved tormally by a perturbation argument.
The PFR limit, on the other hand, can be derived through a singular
perturbation approach (Nayfeh, 1973 and O’Malley, 1974) . Thus there is a
justification for using CDM.

This paper presents a nonlinear programming formulation for generating
complex reactor networks. Following the concepts proposed by Jackson, an
optimization problem is developed with split fractions, source points and sink
points as continuous parameters in order to determine the mixing pattern (i. e.
possible bypasses and recycles). With adiabatic and non-isothermal operation in
mind, the inlet temperature and the temperature of the reactor jacket (assumed
constant) are also included as continuous parameters. In the constant
dispersion model, the reactor type is determined by its corresponding
dispersion coefficient. A PFR (CSTR) corresponds to the lower (upper) bound on
the dispersion coefficient. Any other value of this coefficient characterizes a
reactor with an intermediate degree of mixing.

From this framework a system of adjoint equations is developed using
optimal control theory to calculate gradients for a nonlinear programming
algorithm. In the limit as the dispersion coefficient goes to zero (the PFR limit)
the adjoint system of the isothermal version of the formulation coincides with
Jackson’s formulation. The resuiting NLP problem thus has the ability to
handle arbitrary, nonlinear reaction mechanisms and can generate optimal
reactor networks based on a wide range of quantifiable objective functions
such as yield and selectivity.

Optimal reactor networks are generated efficiently by coupling COLSYS, a
code for solving two-point boundary value problems, with Successive
Quadratic Programming (SQP) to solve the optimization problem. The interface
for the combined algorithm allows for synthesis using multiple reaction paths
that interact with each other via side streams. Interaction of the reactor
network with the rest of the flowsheet is also possible. Moreover, the
nonlinear programming framework is flexible enough to accommodate
additional side conditions and constraints. The current formulation is presented
for non-isothermal homogeneous reactions, which can also be specialized to
treat isothermal and adiabatic systems.

e



1. PROBLEM DEFINITION

The reactor network synthesis problem can be stated as: "Given the
reaction mechanism, the kinetic expressions and an objective function (e.g.
reactor yield, process yield, selectivity, profit, etc.) what is the optimal
reactor network that maximizes this objective?" In this study our objective
functions include those that depend directly on concentrations of all species at
the exit of the reactor network. It should be borne in mind that this form can
be made sufficiently general by introducing new state variables and equations
that account for heat duties, volumes, etc.

In Jackson's approach to solving this problem he postulates a network of
reactors and deals specifically with plug flow reactor models (PFR). An
objective function is then optimized with respect to -the source or sink
positions and the split fractions. In our approach we consider the general non-
isothermal reaction in an axial dispersion reactor, instead of a PFR, allowing
for interstage cooling or heating. We first describe the Jackson superstructure
and the changes that we have made to it. We will point out the assumptions
inherent in the mass and energy balances. The latter will then be coupled with
this superstructure. This will be followed by a summary of the ODE's that
determine the adjoint variables ( Lagrange multipliers corresponding to
differential equations, that change with position along the reactor ). Next an
optimization algorithm which uses these adjoint variables to select the optimal
decision variables in the network will be presented. Finally, some test
examples will be discussed.
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2. GENERAL REACTOR NETWORK —THE JACKSON SUPERSTRUCTURE

s The reactor superstructure given in figure -1 is one in which are
embedded a number of smaller structures. It is the goal of an optimization
algorithm to select the best substructure that optimizes the objective function.
Jackson's superstructure consists of a network of reactors as given below.
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Figure 1. Network of PFR's

For example the section (tx , L. . ) may represent the i-th reactor of the
m-th reaction path. The point, t,, is a source point with separation matrix <ry
which may be assumed diago'nal from physical considerations. Thus an
element <r".,—in of <ry, is the fraction of species k that is diverted from the exit
of reactor (i-1,m) to the entrance of reactor (j,n). Als<? a simple splitting of a
stream corresponds to a * al, where -a is less than one. Other values of <r
can be used to describe separation operations. Point tn is a sink point linked
to the source point t;, by a sidestream. In addition one can think of point
licvs, @S @ 'degenerate" source point with <r = 0; in this respect th (an origin)

and t, (a terminus) are examples of degenerate source points. Without loss
m

of generality the origin is fixed at zero while the terminus is allowed to vary.

This network has one obvious shortcoming in that it does not influence
or control mixing on the micro scale. Moreover, Jackson's approach is limited
to reactors that are either isothermal, adiabatic or those for which the reaction
temperature -ean be expressed solely as a function of concentrations.

To introduce micro mixing we replace the PFR model by an axial
dispersion reactor (ADR), a tubular reactor with mixing in the axial direction.
Mixing in an ADR is characterized by the dimensionless dispersion coefficient,
D, whose lower™ (upper) bound corresponds to a PFR (CSTRK Note that
throughout the rest of this paper D (the inverse of the Peclet number) will
simply be called the "dispersion coefficient". With non-isothermal reactions in
mind interstage cooling or heating will be used. Heat.exchange with a jacket or
heat exchanger is modelled by specifying a position independent reactor jacket
temperature and a dimensionless heat transfer coefficient. In addition to

gaining extra degrees of 'freedom for optimization this approach allows for
heat integration in the network.
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Figure 2: ADR and Heat Exchanger combination

3. MASS AND ENERGY BALANCES

The following quantities will be defined for the development in the
following sections:

u = average axial velocity in the reactor

D =~ turbulent diffusion coefficient

K"r = thermal diffusivity in the axial direction .
y « position aiong reactor

T = temperature

.C

vector of concentrations of reacting species

R

vector of reaction rates

p = average density of reaction mixture

Cp ° heat capacity per mole of reaction mixture
ge ° heat exchanged with surroundings

gr = heat pfoduced by reaction

h = overall heat transfer coefficient based on _

bulk temperature, wall temperature difference



A: * effective area for heat transfer through wall of reactor
Tg © coolant or heat source temperature (assumed constant)

T, ° reference temperature

rate of _reference reactant of p-th independent reaction

AI—L = heat of reaction (based on one reactant) of p-th independent
reaction

Q * volumetric flow rate in reactor

Qo * volumetric flow rate entering reactor network

C, * concentration of one reactant (used as a reference) in initial feed,

(note that C is scalar)

(0]

L = reference length.

Consider a non-isothermal axial dispersion reactor model (AOR) with
constant temberature for the heating or cooling jacket We now restrict the
system to homogeneous reactions only. Then at steady state, assuming radial
concentration and temperature gradients are negligible and that the density of
the reaction mixture takes on a constant average value, the species .continuity
equations and the energy balance are given by Carberry (1976)

<C d*C .. o A N .
U D * R(C.T) vi< y £ yr (la)
dy dy® -
u— - KA— = (q. + qH(pC) _ Mb.
dy rdyZ_ qE '" P .
with boundary conditions (due to Danckwerts, 1953):
C(y:) C(yy) Ddcl 12a)
u : « u * _ ] *

y VA “dy Y,
dC
— 1 - =0 <2b)
dy'' -
uT({ 7} = T} - K&F]| - i2¢)
dTVI N Yl. ydy yi

dy'*2 = 0 <2d)




and the energy terms given by

[ 4
= AH (3a)
Q’P\ ; r(AH) a
q, = hA (T -7. (3b)
’g s s

k is the number of stochiometrically independent reactions. For convenience
we non-dimensionalize equations (1), (2) and (3) by introducing the following
relations:

t =yl 8 =TT, D, = K IuL
D = DiuL X = acKa.c) W=T T,
[ = LhA /lupC) G(X,8) = (LT _pCq, ' (4)

F(X.8) = QLR(X,8MuQ,C,)

Assume also that DT x D, i.e. let D, = ¢D , where ¢ is a positive constant.

To determine the adjoint system it is convenient to rewrite equations (1) as a
system of first order differential equations. Thus

dX . _

— =2 ° t £t < ¢ 5a)
dt 1 2

dz ‘

— = [Z - FX.01D (363
dt

dé

— =V (5¢)
dt

dv

at [V - G(X.8) - I'(W-0)1/(¢D) ’ (5d)



with boundary conditions

X(tp«x(t;) + pzu;) , : (6)
zit) =0 (6b)
gt} = 8lt) + cOVit}) . (6¢)
Vie) = 0. (6d)

4. THE OPTIMIZATION PROBLEM

Consider M reaction paths such that the m-th path has N sources and/or

sinks (excluding the origin). For reactor (i,m) the following boundary conditions
can be written:

-ia"" (E'E,m
by > ¢ . t m
Se DR G -
Gi,m Gul-l,m

ttﬂ,m

Figure 3: A segment of one reaction path in the CDM

X(t:"m } = X(tm) . sztt;m)

ity ) = 8lt; ) + D Vit; )

where
X + P if Is a sink
X3 XK > " XU *,«
X(t. ) = (W. )x(t: ) ~ if t. is a source.
Note that here "V is the identity matrix. Also the tilde "~" will be

used to relate corresponding sink and source points, tyn and tj,, and will be
used to differentiate between a sink and a source when the context does not
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make it clear. For example t,_ = ?;nand ?;_:s t_in figure 1,‘ %,_ is the

separation matrix of the corresponding source.

‘ Since the model must allow for preheating or precooling of the feed to
reactor (i.m), we make the inlet temperature 6(t ) a decision variable by

setting it equal to Yim In this study we follow Jackson and use an objective

function that depends only on the sum of the flows p at the termini of the
reaction paths. More explicitly we define the vector

M
p= Z X(t;‘"w) .

me1

Then, given a superstructure, the optimization problem that needs to be solved
is:

maximize (or minimize ) J = ${p)

subject to the state equations

dXx

— =2 for t* S tsS ¢ (7a)
dt im i*1m

dz '

I = [Z - F(X,8)1/D i=0,....(Nm-1) (7b)
dé

— =V (7c)
dt

dv

d_t = [V - G(X,8) - T"(W-6)1/{D) _ (7d)

and boundary conditions

-

if t . isan --.origin : X(t;m) = X(t;n) + Do,...Z(t;,m) _ (7e)
it e, isasink: X ) =Xt )+F XE )0 267 ) 71)
if t is a source: Xt )= ‘(1 s o X )+ D 2(t] ) (7g)
Zt, =0 | (7n)
6t; ) =y, ot €D Vit ) (7i)
vit,, ) =0 (7j)
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ten ¢ ° (7K)

where X(t") is fixed at a given value. Note that in fig. 3 t;, is a source. To
convert it to a sink simply reverse the arrow. Note that the Introduction of
makes it unnecessary to consider temperature relations at source and sink
points.

The following bounds on the decision variables are appropriate from physical
considerations:

OE£T . (adiabatic)E T £T (isothermal)<oo
i,

, mm m max

(bounds on the heat transfer coefficient)
oswml“swws W . <o

(bounds on the temperature of cooling or heating jacket)

0<D_ (PFRISDg <D__ (CSTR)<00

T

(bounds on the dispersion coefficient)

0£ ymin’ £/i;,rh £¥1ax <00 -
(bounds on inlet temperatures)

OSari s 1
m

0 s tijf)_ s g\lfTif,T) r~< o0

-

Finally, note that source and sink points may cross, thus allowing recycle
structures involving more than one reaction path.
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' 5. A SUMMARY OF THE ADJOINT SYSTEM

To solve the above non-linear program (NLP) an algorithm will be
proposed in which the decision variables, which represent the degrees of
freedom in the system/ will be chosen iteratively using a gradient based
approach. To apply this method we need to develop relations for adjoint
variables (Lagrange multipliers associated with the differential equations) which
measure the sensitivity of the objective function to changes in the decision
variables {t. , t , <« , v , W, , T. and D, }}. The derivation of this

Nn\in § i,tn iin * I,tt\ t,m I,tn
system of equations is carried out using the standard approach of adjoining
the objective function J with the state equations and boundary conditions via
position dependent multipliers Xa, Xg X¢, Xo, and constant multipliers v. A, //
respectively. Employing variational techniques, for example as outlined in
Bryson and Ho (1968), the following system of adjoint equations result (see
appendix for the derivation):

dX T _ . . . .
—dt_ = ; L(vxp)x’ + (Vxelh)) xDJ for 'f,... <t ¢, (Ba)
dXB -

D 8b
ar - - (K VP) o
dlc T a ‘
— - [(V6F) 2 ¢ (V4G - T)2ye] (8c)
dX
it « o (e * XD/UD)) (8d)
A . dd
T lixiyg 'S 2 terminus: Xa(tmm) = — (8e>

. .

T Aejnls @ terminus: X A J=0 l (8f>
if tj.1”" is a sink: Xa(tiem) = Xa(tiim) (89>
if t" is a source:  Xa(fwim) « (1 - ~JIXjtAj « ~xjeh) <8h)
Aty )= -D X A(t;‘m ) (8i)
At )= 0 | | 8)
Aofti } = - €D, Akt > (8K)

The gradient of the objective function. J, with respect to the decision
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variables tnmms  Ttmy e s W,m.. Fm and Dim is related to the adjoint
variables as follows: '
dJ = I HQ e Z0 DN [t ) - W 0] e, e

m..m[" o R (1 )](dc X6, o K* 3T *o<C M m *

‘H t.m

Tt {[ency, Vi, )« ATy 0zt ) . j‘(vnu)dt]dom .
i

A Lm

'h 1m 'h- 1m

[‘S (VwH)dt]dwm . [ ',J (VrH)dt]dr«4 (9} -

where

H=XZ*XJ[2-FX<)] Do XV ¢ Xo [ V- GXA) - TW - d)] <*D) .

VwH = - (r/(<D)_) Xo

VpH = xo(q - W) /(«D)

VDH S n XB [ Z u F/\/\*] Dy . XO [ VuG XI/\> N* . W)] ,(‘Dz)

-

6. PROPOSED ALGORITHM

Let Y be the vector of decision variables [t_ ,t, , « , vy, , W, , r .0 ]
Then in terms of Y the NLP takes the simpler form

MAX (or MIN) * = 4KY) @)

subject to:
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Y. * YE Y (b)
rrstrs mex
rrsrs

S £ AYS S ' ‘ ©)

min max

where A is the coefficient matrix. The linear constraint set (c) may involve
some or all the decision variables. For example we may require the source and
sink points not to cross; for a reaction path source and sink points should be
located before the terminus. Note also that we can replace () by a more
general non-linear constraint

S £ SYVZ S (c)

min max

at the expense of making the algorithm only slightly more complicated.

Based on the above derivation the following algorithm is proposed:
() Choose a superstructure of reactor networks as shown in figure 1.

(i) Provide an initial guess for the decision variables t. , <r , y. , W | r
i,m i,m e im i.m im

and D.

(iii) For reactor (i,m) solve the state equations (7), a set of non-linear two-point

boundary value ODE's. Here we used COLSYS (Ascher et al , 1979), a TPBVP

ODE solver that uses orthogonal collocation on finite elements. Store X, Z, 6.

V and, the objective function J.

(iv) Using state variables from (iii) solve the linear Adjoint equations (8) with
COLSYS.

(v) Use equation (9) to calculate the derivatives of the objective function with
respect to the above decision variables.

(vi) Calculate a search. direction for the decision variables by setting up and
solving the following quadratic program at Y.

T T
MAX (or MIN) Q = V &Y} ¢, , ..q Brde
dk - .

subject to:
Ymin * Yk * <tk * Y -

"k
max

S -AY, + ad £ S "AY

min
max

Here B* is a positive definite hessian matrix constructed by a quasi-Newton
updating formula; it serves as an approximation to V’4KYk). With the search
direction di, update Y by Ywm = Yk ¢ «dw: wWhere « is a stepsize selected so
that a sufficient decrease in ¢ is found at VY. This Successive Quadratic




15

" Programming (SQP) algorithm is given in Han (1977) and Powell (1977). A

complete description ot an updated algorithm s given in Biegler and Cuthrell
(1985).

L}

(vii) If the Kuhn-Tucker conditions for a stationary point of the NLP are
satisfied to a specified tolerance, 3, STOP (see appendix). Else go to (iii).

It should be noted that depending on the general nature of the objective
function J there could be muitiple local optima for the NLP. To gain
confidence that a global optimum is found it might therefore be useful to
restart the algorithm from different initial points. However, unless the
objective function exhibits special features (such as convexity in the decision
variables) there is no guarantee that a global optimum can be found.

7. TEST EXAMPLES

In order to illustrate the properties and performance of the above
algorithm we consider the following test problems. All of them are drawn
from the literature and involve interesting and non-trivial kinetic mechanisms.
It is our aim to show that the above algorithm finds optimal reactor networks
efficiently and, in some cases, yields better solutions than those reported in
the literature. Due to space limitations, presentation of the examples will be
brief. The reaction models for these examples can be found in the
corresponding references. '

(a) The isothermal version of the Constant Dispersion Model has been tested
on the Van de Vusse reaction (1964) (Chitra et al, 1981). We now consider
three different cases for this mechanism in order to demonstrate the algorithm
and properties of the superstructure. For this problem

A ' kl >B kﬂ. S C
ks

D

the objecfive function is the yield of B and the kinetic parameters are:

k, = 10 s', first order
k, = 1s™, first order
k. = 1 L/Igmol s , second order

feed flow rate (pure A) = 100 L/s.
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The reaction rate expressions and kinetic model are given in Chitra and Govind
(1981). The following two cases were considered by Chitra and Govind. The

third case considers a more complex superstructure .consisting of two reaction
paths.

X (i) feed concentration of A = 58 gmol/L

The initially guessed éonfiguration consists of two PFR's in series. The final
optimum structure is a CSTR followed by a PFR (' Chitra and Govind's results

are shown in parentheses). See fig. 4a for a schematic of the initial and final
configurations. The results are:

maximum B-yield = 3.6806 gmol/L (3.6772 gmol/L)

YAck, ® 9562 L (1121 L) VA = 1425 L (16.81 L)

CSTR PER

bcsTR S 20 (Mote that an upper haynd of 50 did not change the results to any
significant extent). '

D«y « 0.001 (lower bound)

v\(ii) feed concentration of A = 0.58 gmol/L

The initially guessed configuration has two CSTR's in series. The final optimum
structure is a single PFR (see fig. 4b) with the following characteristics:

maximum B-yield = 0.4368 gmol/L (0.4362 gmol/L)

Vpor = 29.65 L (25,51 L)

Degr = 50 D,., = 0.001

\3} (iii) feed concentration of A = 0.58 gmol/L

The i'nitiaIIy guessed configuration has two reaction paths with two CSTR's
each. In addition, the two paths have one side stream connecting them. The
final optimum structure has two PFR's in series, with all of B removed from

the reaction path at the exit of the first PFR (see fig. 4c) with the following
characteristics:

maximum B-yield = 0.4969 gmol/L a = diag[0s 1, O]

Voens © Voo = 4412 L

J\(b) The following isothermal reaction is due to Trambouze et al, (1959) (also
see fig 4d):
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@

ko _—
A

ks

Y

)

D

with kinetic constants and other parameters

k, = 0.025 gmol/L min, zero order
k, = 0.2 min™', first order
k, = 0.4 L/gmol min, second order

feed flow rate (pure A) = 100 L/min

A, =1 gmol/L

DPFR = 0.001, Dcsm = 20

The objective function considered is the selectivity of C to A defined by
X M1 = X)), where X (the dimensionless concentration) is defined in equation
(4) of section 3. Paynter et al, (1970) solved this example using a dispersion
model in which D varied continuously with the position along the .reactor. Théy

reported an optimal configuration of a CSTR in series with a PFR. For
comparison their results are shown in parentheses.

The initially guessed reactor configuration is two PFR’'s in series. Two CSTR's
in series are found to be optimum. The results are:

maximum selectivity = 0.4999 (0.495)
Testra = 7.721 min, Testhz = 0.0975 min, (fcsm = 9.1 min, Toen = 09 min) where

7 is the residence time. Note that we.checked the accuracy of our results by
solving the CSTR equations with our values of the residence times.

(c) Here we consider an isothermal autocatalytic reaction due to Levenspiel
(1962). One peculiarity of this reaction is that the rate of the reaction
increases with conversion up to a point. The following scheme characterizes
this reaction (also see fig 4e):

A+ B >2B
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with kinetic constant and other parameters ;

k « 10 L/gmol min; second order .

feed flow rate of ~ 100 Umin

A, = 0.45 gmol/L

B, * 0.55 gmoliL

ppni- 0.001. DcsTtr«20

The objective function considered is the yield of B. Paynter et al, (1970)
reported an optimal D profile that is "close" to a single PFR. For comparison
their results are shown in parentheses. The initially guessed reactor

configuration is a PFR in series with a CSTFL A single PFR is found to be
optimum. The results are:

maximum B yield ® 0.769 (0.739)

r , = 10 min (.o ° 10 min), where r is the residence time. Note that in
PFR PFR

order to make a fair comparison with results from the literature we fixed the
total residence time for the reaction path at 10 minute, the same residence
time used by Paynter and Haskins.

(d) Adiabatic naphthalene oxidation (Chitra et al,1985h

This is a highly exothermic reaction,

A ™ B

" ks

C ke >D
where A = naphthalene, B = naphthaquinone, C = Phthalic Anhydride. and
D « CcO, * H;O. ’

The objective function is the yield of C with rate constants given as:

k, = k, = 2.0 X 10"exp(-38000/RT) h"

ks = 8.15 X 10" exp(-50000/RT) h'

ks = 2.1 X 10°exp(-20000/RT) h'

Ifi,/So./3,/1 = [0.12. 0.43, 0.36 .0.74] where
J3 « (- A |—‘|,)A0/(/>C;Tf#<d) « dimensionless heat of reaction.
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R « 1987 cal/lgmol °K and T [=] °K. All reactions are first order with the
following information:

feed floaw rate (pure A) = 10*L/h
feed concentration of A (Ag) = 10 gmol/L

T. .« 1018°K . Here T _ was assumed to be fixed and no attempt was made
to optimize it.

The initial reactor configuration has four PFR's in series. The final optimum

structure has one PFR with an exit temperature of 1481 °K. The initial and final
configurations are given in fig. 4f with: .

maximum C-yield is 0.9999 gmol/L (0.995 gmol/L)

Vpms 9_5L DCgTRSS?  Dppx - 0.001
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8. DISCUSSION

In example (a) the results compare favorably with those of Chitra and
Govind. In general we noted slight improvements in the objective function.
Moreover, the fact that our results were obtained from starting points far from
the optimum makes our approach even more viable. In case (iii) of example (a)
the use of two reaction paths and one sidestream led to a smaller total
volume of reactor (1092 L compared to 2965 L) and a larger B-yield
(0.4969 gmol/L versus 0.4362 gmol/L). Note that a theoretical bound on the B-
yield is 0.58 gmol/L The results in (iii) are not surprising because one way to
increase B-yield is to prevent it from reacting to form C by removing B from
the mixture as soon as it is formed. This seems to suggest that we include
more sidestreams in the superstructure to make removal of B possible.

We reworked example (b) using an initially guessed configuration of two
reaction paths, each with two PFR's in series. The two paths were connected
by one sidestream (just liké in part (iii) of example (a)). However, the optimal
configuration and the objective did not change. Thus one reaction path is
probably adequate for the chosen objective function, selectivity of C to
A. This example also shows the viability of our approach.

The theoretical optimum yield of species B in the autocatalytic reaction
(example c) is 0.768 (see Paynter et al, 1970) which is very close to our
results (0.769). Here again our algorithm has been able to derive the optimum
reactor type, a single 'PFR, from an initially guessed serial network of a PFR
followed by a CSTR (each with half the total residence time of 1 minute).

In the naphthalene oxidation (example d) k, and k; are much larger than
ks. As a result the C to D reaction is negligible. Since all the other reactions
lead to the production of C it is to be expected that there will be virtually a
complete conversion of A to C.

All of -the examples require from four to ten iterations of the SQP
optimization algorithm to converge. The most time consuming part of these
computations lies in solving the two point boundary value problems with
COLSYS (see step (iii) in" the algorithm). COLSYS applies Newton's method to
collocation equations over finite elements and for certain values of the
decision variables it may be difficult for this method to converge.

One reason for this difficulty is that for small D (the PAR limit) the
solution has a "boundary layer”, a small region near the reactor exit in which
the derivative of concentration with respect to position rapidly goes to zero m
order to satisfy the right end boundary condition. For COLSYS to converge
properly the mesh selection algorithm has to be able to recognize this
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boundary layer and tailor the mesh to that segment. To deal with
nonconvergence we tried a combination of the following:

(i) change the initial mesh sent to COLSYS,

(i) change the minimum step size that is used in the Newton iteration
step in COLSYS,

(iii) rescale the problem (presently done by inspection) by a judicious
choice of reference length, temperature and so on.

Since most of the computation time was spent in solving the non-linear
system differential equations we are looking at better ways to scale the ODE's
and ways to accelerate convergence in COLSYS. Also we will look into the

prospect of modifying the formulation of the algorithm and using other TPBVP
methods.

9. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Of the advantages of the constant dispersion model, the ones that stand
out are

» the adjoint variables that are needed to update the parameters in
the optimization are relatively cheap to compute, since the adjoint
system of ODE's is linear ,

e its ability to handle a wide range of objective functions and kinetic
mechanisms,

e the heat exchanges that it allows and,

» the apparent ease with which it can be modified to handle non-
linear side constraints and other process parameters such as the
reactor volume.

The main drawbacks with the constant dispersion model are

« the authors do not yet know how to interpret reactor networks that
include segments with intermediate dispersion coefficient and.

» the choices of D . ( D ), lower (upper) bound on the dispersion

mm max

coefficient, are somewhat arbitrary (with good estimates being
verified by trial and error, after solving the problem), and can have
a big impact on the performance of COLSYS. _
In the above examples however, we have checked our selected bounds on D
with the actual CSTR and PFR profiles and found excellent agreement.
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As a result of these drawbacks a second model has been developéd
which uses a recycle reactor, instead of a dispersion reactor, as the basic unit
of the reactor network. The goal is to find some comparison between the two
formulations. This will be reported in a companion paper.

The objective function is also being expanded to include the split
fractions and the reactor volumes. Thus it will be possible to incorporate the
cost of separation at source points and the cost of reactor volumes into the
objective. Also since most of the computation time (about 85%) is spent on
solving the non-linear ODE’S of the state variables it is of utmost importance
to find ways of accelerating convergence in COLSYS.

The final question that has not been posed so far is how does one come
up with a superstructure? The present strategy is to use a trial and error
approach based on heuristics. A more systematic procedure will be addressed
in the future. Finally the ultimate goal of this research is to incorporate the
reactor synthesis problem into the total process flowsheet.
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APPENDIX

-COUPLING THE JACKSON SUPERSTRUCTURE WITH THE MASS AND ENERGY
BALANCES: THE DERIVATION OF THE ADJOINT SYSTEM

(a) % 4 ti'mS ts 6,
dt . .

(b) E = [Z - F(X,8)1/D ’ i=0. . (N _-1)
dt
dé

(c) — =V

dt
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av
& — = oy - GIX,8 - IW-811eD)
dt

with boundary conditions

(e) origin : *9"‘ - X({tnN) « DrzZFt~,) - X(tn) . 0

) if tm is asink : V®u>* *yuA>*vC>" *<C>=0
() ift, is asource: ¥ * (1 -a )X(@{. )eD. Z{tr ) - X(C )* 0
(h} Z{t], ) =0

W, =y, cDmV(tl'n b -0t V=0

i) vt ) =0

kl A =2 Xt )-p=20
2 e

() 3 = *(p) , which is the objective function.

To obtain adiabatic operation from this formulation merely set T = 0 in (d).
For isothermal operation disregard (c), (d) and the corresponding boundary
conditions and set F(X,0) » F(X) in (b).

Before proceeding the following reminder is in order
p, X, Z. F€IR" and 4> e, V. t,- Ds G, W, d. V, , G IR'. Also every vector

is a column vector unless it has the transpose (T) superscript.

Adjoin (a) through (k) to the objective function (I) with position dependent
multipliers Xa, Xg, X& Xo, and constant multipliers v. A, //. Hence

3- = m’ + ATA + z:-l ':.llvﬂ,lll + z" z::“ll:& lllli * z:"lz:.;‘::urc« i.m.m N
ZJJT-l A Q
m«l i*0 |
"‘1)‘
™ (S.{XX(Z-X)-\\f[Z-F(X")]/D-ZI-X(V-6)
« Xp F[V - G<X0) - T(W - M)]/(«D) - Vi )dt\ = @

Define the hamiltonian, H as

H = X"Z + XJ[Z - F(X,0)]/D « XV « Xo[V - Q{X.6) - T(W - O)V(tD) .
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Note that T = J since the differentia! equations and the boundary conditions
are satisfied. A small change in the augmented objective function 7 yields

= dWp) « DA+ z' yr dY e 20 ZA v dW e EM SNt LT gy
i,m m

. ! > i m ijn m«l i«tourc«
Z:f:‘ A d{ «ELL 8lﬂ 8FH mjl fs?lﬂl( ' .
I+1,|n
DXl d(j [H XPX - X;Z - XM -xDv] dt) (2)
l.m

Focusing on the last term we have (Bryson and Ho, 1968 h

SR B - Mo d =

IJI'I
t*‘l.ﬂl i+1,¢n Iﬂ,m
(S0 Tt - =2 ( S [ Joona - S (ff Do o
h‘l,nl t. a I
im
Then integrate by parts, use Leibnitz's rule and the relatlon £s(t) « ds(t) - S(t)dL
Collecting terms together and noting that dtj» = dtg", leads to the following
expression from (3h '
;4-1,111
H X "
- X7 - M "*vidt ) =
- _ * - 1T . * - :
H(tlﬂ,ln)dtiﬂ,m HE, Mt = e Xt ) e e XU ) - adte |z )

*

SO O I WO TG I WIS T T I WS Y i I

Civ1m i+1.m Cim im D vl
‘l"",l'l'l ’
Alt? MaViE e S [(Vn + x‘)ax + (V3H + x 1)ez +
tln
(VgH + 2.)80 + (ViH * Xo)iv * (VoH)*D * (vyH)aw+(v,H)ar]dt @

Up until now the relations describing the adjoint variables (multipliers) have
been completely arbitrary. However, to remove the influence of SX. iZ. id

and, < on dJ one can set their coefficients to zero. Thus let
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A, = - VxK * (ViFIDYXs - (VXG/{«D);/XO (5a)
Ay = - VoH -~ (\a + Xe/D) * (5b)
KS . Vs, (VEFID) Ty (V2B 7 1y yecs <)
>.<0 N XO.<«D)) (5d)

where for example.

() =

From now on the goal is to determine the boundary conditions for the adjoint
system. By summing over all reactors and bearing in mind the fact that
Z(t* ..) is fixeg at zero, (4) becomes

lﬂ.m

™ ( | [ ||X;,Q|IXH n Xy 61 X

)) »F

i-'l

3l i [H(t b -t 0] e+ 20 [ He - HE, ddt ]

Nnun Nm.m Q.m 0,m

m-1 ltsinlt [kx )dXUm) XX )dX(t,m)]

e e e axer ) - Al daxi )] +

m=1 " | € source

™ [x:h;n WXt ) - A, X, V] « T

T (t ’dv“f,... )+

et (a0, deztey, )« A e, Mok, ] - B 5 A, dee, )

.1»1,“. i+'l m |+'l,r||

{[S (VoH)atJeo,,, + [S(vwﬂw]aw..m{/ V) @ g} 6

Note that since D, W and T are independent of t, 3W = dW, ST = dr. and 3D
= dD. Note also that dtl;"‘ = 0 since ton is fixed at the origin.

The other terms in equation (2) are as follows:

d¥, = dX(@ )~ Z(t* )dDy * Dn dz(t* ) - dx<C ) (3)
om O™ o,m Oom Oom

o,m

Since X(t" ) ’is the initial feed to reaction path m, dxX. ) = 0.
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Q¥ = dX(C, ) + B, dX{E, )+ (@3, )X, ) + D26, ) « 2~ D, - axi, )

if t, is a sink (7b)

d¥,, = (1 - o JdXtt_ ) - (do, )Xt )+ D_dZt7 )+ 2, )D, - dX(t], )

if tam iSs a source (7c)

o =dy, *+ €D dVit' )+ eVit) )dD., - 68" ) (7d)

M

dA -21<<<«’\_> " _FIP : <7e) .

Finally insert (6) and (7) into (2) and gather terms, then have

dJn (f uT)dp+/\ I|-T Xt - )] dxit, ) +

B ([ 7ha - 0] axe,) . [ 2,0 - vl] oxtg,)) -
.e....,.( [vr00 - o0 = A,V + 310, ] axte;, ) +
[ YO IR I (L ) e [¥1n - via] o, Ixi, 0 ) »
o, ot [ w0 - Heg ] et
o Hi, ddg, e T Bt ([afig, ) e vl D, ezl Vv A dy, )
2uli il (RO IED W 7R WS T Tl I “

[0, AL + A 0] avi, ) +

im im

‘H' 1.m

M Etmet {[m V@EE ) e YR Z(tT ) e f (VoH\dt"|dD,,, +
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. T .0 a0

[ S (V)] aw,, L S (Ve ar,} - @

An appropriate choice of boundary conditions for the adjoint system is

obtained if the direct influence of dX, dZ, df, and dV on dJ are removed. This
implies setting their coefficients to zero. This leads to a system of equations
which can be solved to give the boundary conditions

e ) s d (éa)
dp

vim = ANG ) = x;(t;n) if 't is asink (9b) |
Vim ° XA(t;m) i = 0...Nm-1  (9c)
A == ()4 a'i'mkA(’tvi"m) if t  is a source (9d)
Aty ) = =D X () i =0,..Nm-1 (e
Am = AL i = 0,..Nm-1  (9f)
Al V=0 | i=1.Nm (39
Afti, ) = - €D, A (t) ) i = 0,..Nm-1  (9h)

Equations (9) reduce (8) to

dJ = 3% H(tm)m+z“ o [ He ) - he 0] e .

T B [, ) - AT, e, X, ) ¢ ZU B A My, -

C im

t
itim

{[ek (€ VI )« ATz ) S (VoH)at]eo,,, +
0
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21‘!.32 *1m

[‘5 (VuH)ae] aw,, « [‘; (VrH)at] ar,,.} : (10}

where

H - XJZ + XJEZ - F(XN)]/ID + XV * XotV - G(K6) - HW - 8)1KeD)
VwH - = (THeD)) A,
VH = 2,(8 - W) HeD)

DR B 2 AP Kol Y GA) T HHE - W) HeDR

From (10) it is seen that the derivative of the objective function with respect

v ijnt yum' Wiv "~ and Dap are given by tn€ caefficients of these
parameters.




APPENDIX B

Here in this appendix the optimality conditions for the NLP algorithm in
chapter 2 are presented. To be able to make the case that the volumes and
concentration profiles gotten from the ADR (or RR) model coincide with those
of the CSTR and the PFR at the upper and lower limits of D (or R)
respectively, there is the need to give a formal proof of the two limits. It
should be pointed out that it is well known in the Chemical Engineering
literature that the CSTR and the PFR are limiting cases of both the ADR and
the RR. However, the proofs of the limiting cases have been based on specific
reaction systems, usually those that exhibit simple kinetics and involve few
reaction species. The usual strategy is to determine the limit of the analytic
solution (for the ADR and RR equations) as D (or R) tends to a limit. Here in
this appendix it is shown that it is possible to employ perturbation techniques
to make these proofs without knowing the form of the analytic solution.

B.1. NECESSARY CONDITIONS FOR A STATIONARY POINT

Let 91=Ymin-Y' gz=Y-Ymax' g3=s

section 2.6) and define the Lagrangian

4
L=¢ *z U:gi "

i=1
where UI is the Lagrange multiplier associated with the i-th set of constraints

in the QP (these multipliers are not to be confused with the adjoint variables
discussed in previous sections). The Kuhn-Tucker conditions for stationary

solutions Y and U, (Gill et al, 1981) are given by

- AY, g, = AY - S__ (see

- 4

VLV = V8V + D> OV.gW

i=1

UgM=0 i=1.4

In the proposed algorithm the termination criterion is
VLW <5< 1

where ﬂ . || is a norm (for example the square or distance norm). At a local

constrained minimum (if minimizing objective function) the following holds for
any 2:




i

2{VW<HY)}Z 22 0
for all Z in the null space defined by
(Vvg.(Y))'Z = 0 where | - { i| g,¥) - o}.

One can use perturbation to approximate Vf* thus
. k

[Vy %Yy ¢ AYy) - VAY ,)]
Vo ~ .

Yx

*\

B.2. CSTR AS A LIMITING CASE OF ADR

In the CSTR limit the ODE's governing the axial dispersion model are (note
that the temperature equation is of the same form as the mass continuity
equations):

d2xX  dx _
dt? dt_<F&<) O<t<s 1

with bouhdary' conditions

dXx(0
«X(0) = at * ( )
dt
dXx{1)
-u
dt

1 .
where 0< <f = — = Pe « 1 and a is the feed.

.D -

If F is continuously differentiable (a property of most rate equations) assume
a Taylor expansion of the form X =2 . <mU__J(t).

Then _ S0 ¢y (t) ¢ Soo €™ (1) = (F(E, €U (0]

ad £ ,-iUjO) - a< * Co ' “ Co emflm(1}-o




f""«<

aside:
Q0 o0

F(X) = F[Z. . «"U (1)] = F[Un(t) « Z_. <"U_(0)]
fn*u n\ u oo in

- F[U (©)] ¢ (VTF[Ug(t)])Z°°, «™U (t) » higher order terms in Z°°, «™U (t).

1 tn™t

Let us look at the first three terms of the ODE's.

(i) e° term:

Uo(t) =0
Us(0) = 0
Uo(l) * 0

Solving these equations we obtain Uu: C, a constant.

(if) «' term:

U,(t) - Uo(t) = - F(C)
Uo(0) = a * U,(0)
U(l) = 0

Integrating twice (note that Ug(t) is zero) and applying the boundary conditions
we -obtain the algebraic CSTR equations
C = a * FC) > 1)

and 11,00 = - _{'/itz - DF(C) * A t2)

A, is a constant yet to be determined.

(Hi) t* term:
Ualt) - U,(t) -+ {VF[ us()]} u,)
A2 * U,(O) = L‘JZ(O) 02(1) =0




Using lucwri Turicioms, ~QA+ <™ *4Ai, HOHI duuve we inleyiaie Iwiue aqy
apply bo_rundary conditions to obtain
A, = [V FC) - 1jTL051 - 0.3333V'F(C)] F(O). . 3)

V FC) - Ij- does not exist one may try an expansion of the form

00
X = Z™0 «"Mymi) where n is an appropriate positive integer.

In general for the €° term we have

Ut) - Bu(t) * - {V " F[ us(D)]} upte

up 10 = UJO’ Uk“, =0

Thus U(t) is a polynomial in t. Existence of a solution requires existence of
Uka(t). Thus we have X = Ugt) » cUM) o 0{e?). For uniform expansion we
require

U, (e

< 00 Or

Uf;:nWW U +1 i
less stringently—— < oo V k and i. U is the i-th element of U..
Uai(t)

Since O£t£ 1 and both Ug and Ug are polynomials in t, unless UQ.I =0

(i.e. non existence of a species in the "almost completely mixed" reactor) the
above condition will be met. Thus in the limit as « tends to zeio (D tends to
infinity) CSTR operation is realized.

The expansion above motivates a reasonable choice for D OM. it <s
’ max

proposed that.£€ be chosen such that

«VEi where 0< S « 1

Yy (D) \%
and V « max I—|=-l Trhen D = 1f ~—.
M 'UAt) 3K &
An example:
k Kk

Consider the reaction A ~ B *» D. where k; is second order and k, is first

order. For {kix kxJ = {241}, a = [1, O]T and unit volume of reactor we have




FC) =1 - ZC: Cs-Cs 1. Solving the CSTR equations C = a + FC) we
obtain  C = [0.5, 0.125]". Therefore  Ugft) = [0.5. 0.125]"  and
U<t) « (0.5t - 1)[0.5, -0.125]" » A,. Also

VIF(C) = F - 4C4 ol
L2Ca -1J

Therefore A, * [0.194. 0.052]. Now max[U,/O/U”U)] * 0.388 and
max[U"(1)/Ugo(1)] « 0.916. Hence V = 0.916. Suppose 'S « 0.01 (i.e. first order
correction is'only 1% of the zero order, CSTR, term) then Dpax Should be at
least 91.6. On the other hand if & * 0.05 then Dm_should be at least 18.3 .

B.3. PFR AS A LIMITING CASE OF ADR

The equations governing CDM are
d®X  dX

- e+ —7< F(X) 0< t< 1 (19)
dt dt

with boundary conditions

X0 = a * id;“” (1b}
t
dX(D -
m =0 ' (1c)

where fora PFR D = € « 1

We see that as * approaches zero the second order ODE's become first order
ODE's with -Boundary conditions at both ends of the interval. Thus it is
impossible for the first order ODE's to satisfy the two BC's’ simultaneously
and one of them will have to be dropped. The vanishing,, of the highest
derivative as € tends to zero gives rise to what is called a "singular
perturbation problem". The usual strategy for solving such problems involves
the two solution concept. The "outer" and the "boundary layer" solution each
satisfies only one of the two boundary conditions. The two solutions are then
combined, sometimes using Van Dykes Matching Principles (Nayfeh, 1973), to
form one global solution. The location of the boundary layer: depends on the
signs of the coefficients of the derivatives. The presence of a boundary layer,
typically a small region in which the solution changes rather rapidly, poses
numerical difficulties and as a result, for a PFR, one is forced to use an < not
too close to zero.
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class of problems. It is the purpose of this section to specialise his treatment
to the ODE’'s above. As a first order system the above ODE’s become ‘

dXx
.-y 0SS s< 1 (2a)
ds
dy
e— = -Y + F(X) 0< ex 1 (2b)
ds
X(1) - eY(1) = B (2¢)
Y(0) = 0 (2d)

and where s = 1 -t and B is the feed.

Using O’Malley’s notation f,(x,s,e) =0, fz(x,s,e) =-1 g(Xs,e) = F(X),
g,(X.s,¢) = -1, afe) =0, afe) = e, ale) =0, bfe) =1, bfe) = - ¢ and
Ble) = B.

Let us seek an asymptotic solution of (2) of the form

X(s,e) = X(s,e) + &(r.e),  Yi(s.e) = y(s,e) + plr,ele (3)
where .

00 . 00 .
Xis,e) = X X(sle, yisie) = X -y lsle, - &(s,e) = Z?_z &lste,

00 .
n(s,e) = ZM n(s)e’, and r = sle as ¢ tends to zero. The boundary layer :s
located at s = 0 (t = 1) since the following conditions derived by O'Malley are

satisfied:
g,(X.s,¢) = - +< - K for some K > 0

and b (0) - bz(O)ng[)(o(ﬂ, vl 1 01/g,(X (1), 1, 0) = 1# 0. .
For uniform expansion, i.e. O(e*) < O(e*') correction, we require € and g to
go to zero as r tends to infinity.

Away from s = 0, (X)Y) will be asymptotically represented by the outer
solution [X(s.e), y(s.e)]. The boundary layer correction [&(r,e). nlr.e)ie] s
needed to obtain the non-uniform convergence at s = 0. Therefore the outer
solution and the boundary layer solution must satisfy the B.C. at s = 1 and at
s = 0 respectively. Let ”“+” denote the derivative with respect to s. Then (2)
becomes




22 [AIS) ¢ A(D] = - 1

o [1<8» ¢ q’(r"t]tl

T, Leyfs)« 7 fr)lel = - 2:, [y/s) + nfirMelel « F(z:'; [Xis) + ¢ j(,-n,i)
2o [X(U« &l1e) - ey 0 - .,jm.nd .« B

o0 .
zj-o Cy/0) » oi{0Mele! = O

Now let us look at the outer solution and the boundary layer solution
separately.

(@ OUTER SOLUTION (r-»00, therefore ,(' and ~ Oh

The outer solution satisfies

dX
ey 0OS sf 1(4a)
ds

dy

«— - - Y ¢ F(X (4b)
ds

@) 0(2) term: -

dx,

ds °

° % ¢ rg e FUJ . (5b)
*o (V) * fi (5¢)

From this we obtain

da
0 ,
S " Aon AN xon T fi" These are the PFR equations.

ds




e

00

lim F(Z, [X(8) + ¢lrilel) = FIX S + {V FIX (N} cix (o)

e>0 \ !

since lim 7 = 00 and lim ¢, p, = 0.
€>0 e>0 ) )

(ii) higher order terms: ~

o
"

-y, * Vo FXX + Q. (s)

X(1)=Y_(1)
i i-1

0< ss 1(6a)

(6b)

(6¢c)

The last term is determined from the O(e!™') solution. Qi_,(s) is a function of

(X

.
.
k

BOUNDARY LAYER SOLUTION (s-0) in terms of r:

k =0, ... j-1]. Thus one can solve for O(e!) using the O(ei"') solution.

Note that in the outer region, r = oo0; also ¢ and »-0. The boundary layer *

correction must satisfy the non linear system

d¢

— =-y

dr

dy

— =-q + e[ FlX(er,e) + &(r.€)] - F[X(er,e)]]
dr

7(0,¢) = - €Y(Bye).

d 1d
Note that b = 1
ds edr

aside:
F[/_’((ef,e) + &(r,e)] - F[X(e7,e)] =

F[z:’: [X{er) + £(rN1e)] - F[Z: Xfer)el]

T_00 . .
= FIX(er) + £ (r)] + [VxF[Xo(e )+ éo(r)]] ., [X(er) + £(r)]e -

FEX(e )] - [V FIX ferll] Z X ferdel




Let Qj./r) = [V FUo(O)]I'*,..{*-), j-1. 2 ... then
r T '

fe” a,p)dp = [V FIXOII' gf 9Pe.Jpidp
4

OU'h

—i o« - (T 0s rs 1/
dr r) )

J.-W. g, {r)

"l.(O) « - yl..’\O) (from- the outer solution)

Thus 9‘(r) « - e"I‘:_yi/O) . Pj.t}" where Pj_y is a finite degree polynomial in r.
Hence e'TP.‘_’\ is bounded since e"" goes to zero faster than r goes to infinity

(as € goes to zero). Therefore if y /O) is finite then 9,(r) and £/(r) are also
finite.

00 .
Finally we have X = Xgos) ¢ fo(S) * Zim [X.(’s) + f.gs)]€‘. Taking the limit as €
goes to zero gives us the PFR equations (5).

On the basis of what has been discussed we see that the PFR is a limiting
case of ADR, i.e. the PFR term (the zero order term) is the dominant term in
the expansion of the ADR equations when * = D is small.
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