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ABSTRACT

Strategies are presented for performing maximum heat integration of process

streams simultaneously with flowsheet optimization in sequential process simulators.

The strategies have been implemented on FLOWTRAN, using infeasible path

optimization methods. Two formulations for performing the heat integration are

compared in terms of reliability and computational efficiency. Results on complex

process flowsheets show that this approach can produce substantial savings in raw

material consumption through more efficient energy integration. Moreover, based on

a simplified model, it is proved that these savings can always be achieved in recycle

processes.
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INTRODUCTION

Over the last five years important advances have been made in flowsheet

optimization with process simulators. Effective computational strategies that are

coupled with the successive quadratic programming algorithm [1,7,14] have been

developed. These strategies include the feasible and infeasible path strategies for

sequential modular simulators (Biegler and Hughes [2]), the simultaneous modular

approach by Chen and Stadtherr [3] , and the inside-out strategy by Jiraphongpan et

al [9] . With these type of strategies the computational requirements for flowsheet

optimization are typically equivalent to only 3 to 10 simulations of a process

flowsheet. Therefore, it has now become computationally feasible to optimize

chemical processes that are described by rigorous models.

Another important development that has taken place over the last decade is the

development of synthesis techniques for the efficient heat integration of process

streams to minimize the utility consumption (Hohmann, [8] , Linnhoff et al. [10]). The

application of these techniques can often produce substantial economic savings.

However, an important limitation in the application of these techniques is that they

assume fixed values of the flowrates and temperatures of the process streams.

Therefore, heat integration techniques are usually applied once the flows and the

process conditions have been established. Through this sequential procedure the

interactions and the trade-offs with the overall optimization of the flowsheet are not

properly accounted for.

Recently, Duran and Grossmann [4] proposed a strategy for the simultaneous

optimization and heat integration of processes. The basic idea in this strategy is to

include special constraints into the optimization problem to predict the minimum

utility cost at any point in the flowsheet optimization path. With this scheme the

flowrates and temperatures are treated as decision variables for both the

optimization, as well as for the heat integration problem. This strategy has then the



effect of anticipating at the optimization stage the economic effect of the utility cost

for the heat integration. A limitation of this procedure is that the capital cost of the

heat exchanger network is not accounted for. It should be noted though, that the

utility cost has a much greater sensitivity in the optimization than the capital cost,

as wil l be shown later in the numerical results.

Duran and Grossmann [4 ] illustrated the application of their strategy on a

simplified process with a recycle which was modelled within an equation oriented

framework. Their results showed that the simultaneous strategy can greatly increase

the profit by reducing not only the energy consumption, but also more importantly,

by increasing the overall conversion of the raw material.

It is the purpose of this paper to consider the problem of performing the

simultaneous optimization and heat integration with sequential modular process

simulators. Firstly, based on a simplified model for recycle processes it wil l be

shown why the simultaneous strategy wil l lead to lower cost solutions that exhibit

higher overall conversion for the raw material. Explicit and implicit modelling

schemes wil l then be discussed for interfacing the heat integration problem with the

flowsheet optimization. This wil l be illustrated with the FLOWTRAN process simulator

in which several optimization strategies have been implemented by Lang and Biegler

[11] . Finally, the application of this technique wil l be presented on two flowsheets

for the production of ammonia and methanol. As will be shown, the results confirm

the superiority of the simultaneous strategy over the sequential optimization and heat

integration.

TRADE-OFFS IN OPTIMIZATION AND HEAT INTEGRATION

Examples in previous work by Duran and Grossmann [4 ] and Grossmann [6]

have shown that simultaneous optimization and heat integration can lead to solutions

that exhibit lower cost and higher overall conversion of the raw material. It is the



purpose of this section to show that this property is in general true for recycle

processes, and also to provide some insight into the nature of the economic trade-

offs between the process optimization and the heat integration.

Consider the processing system shown in Fig. 1. This system consists of the

following steps: (FP) Feed preparation (e.g. compression); (R1) Reaction (e.g. preheat,

reaction, cooling); (S1) Recovery of liquid product and by-products (e.g. flash

separation); (S2) Split for purge stream; (R2) Recycle (e.g. recompression); (PR)

Recovery of final product (e.g. distillation). This processing scheme is representative

of many chemical and petrochemical processes in which the feedstock contains some

inerts, and the conversion per pass in the reactor is not very high.

Appendix A presents a simplified model for this processing scheme. Major

assumptions include a single reaction, fixed pressure and temperature levels, near

perfect separation in the liquid recovery step, and major heating and cooling

requirements for the reaction step and for the recovery of the final product. Also, all

the cost models are assumed to be given as linear functions of the flows in the

process streams. For the sequential strategy it is assumed that nominal unit costs of

utilities are given for heating and cooling requirements. For the simultaneous strategy

it is assumed that unit costs for heating and cooling are lower to reflect the savings

that are achieved by heat integration. Finally, since a fixed production rate is

assumed, the objective function consists of the minimization of the total cost.

Based on the simplified model there are two major terms that can be identified

in the cost function for the process scheme in Fig. 1 (see Appendix A). One is the

net cost of the feedstock which is the cost of the raw material minus the income

from the purge stream. The second term is the operating and capital cost of the

process. The operating costs considered in this model are electricity costs for

compression and recompression in the feed preparation and recycle steps, and

heating and cooling costs for the reaction and final product recovery steps.



A representative plot of the two cost terms as a function of the overall

conversion of the raw material is shown in Fig. 2. The specific functional

relationships are given in Appendix A. As expected the curve for the net cost of the

feedstock is convex and decreases monotonically with the overall conversion. On the

other hand the curve for capital and operating expenses is convex, goes through a

minimum, and tends to infinity for 100% overall conversion. Qualitatively the reason

is that at low overall conversion the cost of feed preparation is high due to the

large flow in the feed, while at high overall conversion the cost of the reaction and

recycle is very high due to the large flow in the recycle loop. By considering

nominal prices for heating and cooling, the optimal overall conversion x" shown in

Fig. 2 is obtained. If heat integration is performed based on the flows corresponding

to the optimal overall conversion in Fig. 2, the total cost can be reduced from C*SEQ

If on the other hand heat integration is considered for determining the optimal

overall conversion the effect is that the curve for capital and operating expenses will

be lower as seen in Fig. 3 due to the savings in the utility costs (see Appendix A).

This in turn has the effect of shifting the location of the optimal overall conversion

towards a higher value, x;, than the one of the sequential approach (see Fig. 3).

Also, it can be clearly seen that the optimal cost C * M lies below the cost C1 . . . that

was obtained in the sequential approach. Therefore, based on the simplified process

flowsheet model that has been assumed, it is clear that due to anticipation of the

efficient use of energy at the optimization stage, the simultaneous strategy will lead

to designs, which, compared to the sequential approach, exhibit:

a) Higher overall conversion of the raw material.

b) Lower total cost.

Qualitatively the reason for this is that the simultaneous strategy is able to



establish the correct trade-off between the raw material, capital and energy costs. A

rigorous proof of this property is shown in Appendix A by making use of the

analytical expressions that were developed for the cost models.

An important assumption in the above analysis is that operating conditions such

as pressures and temperatures have been assumed to be constant. However, very

often some of these variables will be degrees of freedom for the optimization. This

implies that since fixed pressures and temperatures are considered for the heat

integration of the process streams, the final cost C2
SEQ in the sequential approach

will typically lie above C1 . and hence will have an even greater difference with

C* M. Therefore, as will be shown later with the examples, the differences between
SI M

the simultaneous and sequential procedures will often be substantial.

Another point of interest is the fact that it is quite possible that the capital

and operating cost in the simultaneous strategy will be greater than the one in the

sequential approach. For example, in Fig. 3, if the sequential cost is C1 , then its

operating and capital cost given by point A lies below point B which corresponds to

the operating and capital cost for the simultaneous strategy. If on the other hand the

cost C2
S£Q is obtained, its operating and capital cost given by point C lies above

point B. Therefore, depending on the nature of each problem the capital and operating

costs might be higher or lower in the simultaneous approach. Note that in all these

cases however, the net cost of the feedstock and the total cost in the simultaneous

strategy are lower.

In summary, this section has shown that in recycle processes the sequential

procedure will always lead to higher cost solutions because it distorts the trade-off

between the net cost of the feedstock, and the capital and operating costs. In the

simultaneous strategy, since the proper economic trade-off is established, solutions

with lower consumption of the raw material, lower total cost, and either higher or

lower capital and operating expenses are obtained.



PROBLEM FORMULATION

In order to consider the simultaneous optimization and heat integration of a

process it is assumed that this problem will be posed in the following form:

Given a process flowsheet to be optimized, the specified streams for which

heat integration is intended are given by a set of n hot process streams iGH, which

are to be cooled, and a set of nc cold process streams j€C, which are to be heated.

The objective is to determine an optimal process flowsheet that features minimum

utility consumption (cost) for these sets of streams at a specified temperature

approach ATm. The flowrates and inlet and outlet temperatures of the hot streams (F.

, T|n , T** : iGH) and cold process streams ( f. , t in , t001 : jGC ), must be determined

optimally in the feasible space for process optimization and heat integration, given

that a set of n ^ hot utilities iGHU, and a set of ncu cold utilities jGCU are available

for supplying the heating and cooling requirements.

For the sake of simplicity in the presentation, it wil l be assumed that

enthalpies are treated through equivalent heat capacities (C. : iGH) and (c : jGC), of

the hot and cold process streams, and that these streams exhibit a finite difference

between inlet and outlet temperatures. Also fixed inlet temperature levels (T^ : iGHU)

and (tJc : jGCU), are assumed for the hot and cold utilities.

The model for the optimization or synthesis of a chemical process without heat

integration among process streams is assumed to be given in the form



min <f> = <L
i * HU j € CU

5./. h(x,y) = 0

g(x,y) £ 0 (PQ)

Q' . Q*€R' : i^HU . j€CU
H C ^

x G X C R" , y G Y C Rm

The vector of variables x represents process parameters such as pressures,

temperatures, f lowrates or equipment sizes; the vector of variables y = [ F , T!n , "H"1

: all iGH ; f. , t!n , tout : all jGC ] , represents the flowrates and temperatures of the

process streams that are to undergo either cooling or else heating. The variables in

x and y belong to the respective sets X and Y, which are typically given by known

lower and upper bounds (e.g. physical constraints, specifications). The vectors of

constraints h, g, represent material and energy balances, or design specifications. In

a non-integrated process flowsheet, all of the heating and cooling is supplied with

utilities that have been pre-assigned to process streams so as to ensure feasible heat

exchange. The equations in PQ involving the expressions r" (y) : iGHU and rc (y) :

jGCU, represent the specific heat balances for calculating the heating and cooling

utility requirements, Q* : iGHU and QJ • jGCU, for the non-integrated flowsheet.
H C

The objective function <j> is in general economic in nature involving both

investment and operating costs in the term F(x,y) ; the other terms correspond to the

utility costs with c^ : iGHU and c^ : jGCU, representing unit costs for the respective

heating and cooling utilities.
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For the case of an optimal design of a given process flowsheet, problem P

corresponds to a nonlinear program as then only continuous variables are involved in

the vectors x and y. As shown by Duran and Grossmann [4], in the simultaneous

optimization and heat integration the heat balance equations for a non-integrated

flowsheet can be replaced by a set of constraints that will ensure that the process

streams are heat integrated in the optimized flowsheet so as to feature the minimum

utility target.

The basic idea in the heat integration constraints is to postulate each inlet

temperature of the process streams as a candidate for a pinch point. The minimum

heating is determined by the largest heating deficits of these streams through a

system of inequalities. The minimum cooling is determined by heat balance. For the

case of multiple utilities, the inlet temperatures of intermediate temperatures are

postulated as additional candidates for the pinch points through the inequalities. It

should be noted that this model will then treat the flowrates and temperatures of the

streams as decision variables for both the optimization and the heat integration.

Also, by using this representation there is no need to define temperature intervals,

which of course can vary during the optimization.

For the case of single heating and cooling utilities an optimal integrated

process flowsheet featuring minimum heating ( Cl ) and minimum cooling ( Qr )

requirements can then be determined by solving the following nonlinear program (see

Duran and Grossmann [4]:

min ^ = F(x,y) • CHQH • ccQc

s.t. h(x,y) = 0

g(x,y) £ 0 (P,)

z*(y) - QM * 0 } all p€P

O(y) + QH - Qc = 0

Q H £ 0 , Qc * 0



x 6 X . y € Y

where the total excess heat, CXy), and the heating deficits, z*<y). for the pinch

candidates p€P, are given respectively by the explicit expressions

i€H j€ C

- .,. ^ f c lmax{0.tout - (7* - AT )} - max{O.tin - {T*-AT )>]
H 17% j j j m j m

imaxiO.f" - 7*} - /nexfO.r00* - 7*)] (2)
i i i

where the set of pinch point candidates is given by

P = {p | T* = T|n : all p=iGH ; Tp = (t!n • ATJ : all p=j€C }

Problem P1 allows then the simultaneous optimization and heat integration of

chemical processing systems. The solution to this problem will be a process

featuring the optimal minimum utility consumption ( CL , CL ).
H C

Note that incorporation of the minimum utility target into the process flowsheet

optimization framework does not introduce any additional variables for the definition

of problem P . It only introduces the [ I T * n_ • 1 ] constraints for heat integration
I H C

in place of the heat balances in PQ to determine the utility requirements for the non-

integrated process. However, the price one has to pay is that one has to deal with

the structural nondifferentiabiiities inherent to the max{.} functions involved in the

expression (2) that defines the heating deficit functions zp(y) : all p€P. These

nondifferentiabiiities are potentially many and arise for instance when Tin = Tp or

when tout = (Tp - AT ) . As shown in Duran and Grossmann [4] these
j m

nondifferentiabiiities can be treated through a smooth approximation procedure with

which Pi can be solved with standard nonlinear programming algorithms.

The formulation Pi can be extended to the case when several hot and cold
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utilities are available, e.g. fuel, hot gases, steam at various pressures, cooling water,

refrigerants. For the case of multiple utilities, a selection among them has to be

made for their feasible and economic use to satisfy the utility demands. Since in

this case pinch points may also arise due to the presence of utilities whose inlet

temperatures fall within the temperature range of the process streams, additional

deficit constraints must be included in the model to ensure feasible heat exchange

for these "intermediate" utilities whenever they are selected.

The heat loads of the different hot and cold utilities are represented by the

variables u = { Q': iGHU . Q* : jGCU }, where HU and CU are the respective hot and
H C

cold utilities index sets. For given sets of utilities, the hot utility h € HU with

highest inlet temperature, and the cold utility c € CU with lowest inlet temperature,

can be identified such that they bound the entire feasible range of temperatures for

heat integration. The remaining utilities can potentially lead to pinch points. These

sets of "intermediate" hot and cold utilities will be denoted by the sets HUr *

HU\{h} and CU' = CU\{c}, respectively.

Incorporation of the utility target in the presence of multiple utilities yields the

following nonlinear programming problem (see Duran and Grossmann [4]h
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min <j> = f(x.y) + ^ c* O^ +
i ( HU j f CU

s.t. h(x,y) = 0

g(x,y) £ 0 (P2)

* £ 0
H

CXy.u) + Cf - (f = 0

u = [Q\ : /6/ /6/ . Qj. : jGCU) € Rn

H C ••

x 6 Y , y G Y

where CXy.u) and z*(y,u) : all p € P ' are g iven by .

0>c (4)

i f HU ' j f CU '

t H »y.* QSIA(y,u)p - QSOA(y,u)p

QS0>4(y,u)p = >F.C.tmaxiO.fn- W-maxiO.T0" - 7*}] (6)
i€H ' '

- maxiO.f -1-7*}]
M

/.ct/iMxiO.*? ( T A r ) } m a x { 0 ^ n - (7*-Ar ) } ] (7)
r l i t m i m

j€CUf

and where the candidate pinch temperatures are given by

P' = { p | Tp=T in : p=iGH, r«T» : p=iGHU', Tp=(t|n ^AT ) : p^jGC, TP=(TJ. -AT ) :
• M j m C rn

P=j€CU' } (8)
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An optimal solution to problem P wil l then determine an economic process

flowsheet that wil l feature optimal heat integration in the presence of multiple

utilities. Note that, as in the case of problem P^ structural nondifferentiabilities

arise in problem P2 due to the max functions in the expressions that define the

heating deficits. These nondifferentiabilities can also be treated through a smooth

approximation procedure.

INCORPORATION INTO PROCESS SIMULATORS

Problem P , and the more general problem P2 for multiple utilities, correspond

to explicit formulations for equation oriented simulators. For sequential modular

process simulators the only difference is that the set of nonlinear process equations

are given in implicit form. Therefore, any sequential modular process simulator with

optimization capability can handle problems P, and P?.

In this paper the FLOWTRAN process simulator was used for performing the

simultaneous optimization and heat integration. The optimization capability in

FLOWTRAN was installed by writing a type 2 (convergence) block. The structure and

argument list for this block, called SCOPT, is the same as the existing recycle

convergence block, SCVW. Because no code was changed in FLOWTRAN, the direct

loop perturbation strategy was implemented as the most straightforward way for

evaluating gradients. Since FLOWTRAN generates and compiles a FORTRAN main

program at run time, it can easily accommodate in-line FORTRAN and user written

subroutines as part of the input data. This, in turn, allows the optimizer to evaluate

partial flowsheet passes if needed for gradient evaluation. Also, user specification

of the optimization problem can be made simply by adding a few lines of in-line

FORTRAN to the input data for the simulation problem.

Due to the structure of the algorithms and in-line FORTRAN capabilities, the

optimization implementation allows the following solution strategies:

• "black-box" optimization
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• simultaneous convergence of recycle streams and design constraints using
either Broyden or Newton methods.

• infeasible path optimization (IP)

• complete feasible variant optimization (CFV)

• partially converged flowsheet optimization with an embedded Broyden
algorithm (EBOPT)

All of these use Successive Quadratic Programming (SQP) as the "driver" for

optimization and convergence of equality constraints. Depending on the nature of the

flowsheet optimization problem, different strategies could be applied for more

efficient performance.

The formulation for simultaneous optimization and heat integration can be used

directly by the optimization implementation on FLOWTRAN. To take full advantage

of this approach, however, the inequalities that describe the heat flows need to be

consistent with the physical properties used in the process simulation. Consequently,

the equations use enthalpies from FLOWTRAN directly, although pinch points are still

restricted to inlet process stream temperatures. The evaluation of the heat integration

was implemented by writing new heat exchanger cost blocks in FLOWTRAN. At the

end of the flowsheet calculation sequence, these provide calculation of the F.C., f c,

terms in formulations P1 and P2. However, since the optimization problem has more

complex expressions and has a different structure than the one considered in Duran

and Grossmann [ 4 ] , it is instructive to analyze the simultaneous formulation for

sequential modular simulators.

IMPLICIT VS. EXPLICIT FORMULATIONS

Problem P is expressed in terms of process equations and inequality

constraints for all of the pinch candidates (inlet temperatures of streams). With

sequential modular simulators, however, a reduced set of nonlinear tear equations

results in P2. The explicit treatment of heat integration inequalities introduces
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potentially large number of nonlinear constraints in the flowsheet optimization

problem (number of process streams • number of intermediate utilities • 1). Thus,

the quadratic program that is solved at each iteration for this formulation may be

more prone to less efficient performance. An alternate implicit formulation that

eliminates the pinch candidate constraints can be derived by noting the following

points:

- At a given SQP iteration with fixed flows and temperatures, problem ?2

becomes a linear program in terms of the heat loads of the multiple heating and

cooling utilities (see Duran and Grossmann, [4]).

- Assuming unrestricted utility heat loads, the above linear programming model

can be solved through a simple recursive algorithm as wil l be shown below. Hence,

this problem can be solved implicitly within a "black box" in the process simulator.

However, nondifferentiabilities may arise when the pinch point transfers from

inlet temperature to another. In applying this implicit formulation it is assumed that

the temperatures of the inlet streams are sufficiently far away from each other so

that the derivatives exist locally and can be evaluated at each iteration. For many

process problems pinch points are determined by a single stream and therefore this

wil l often not be a poor assumption. We also see that this implicit formulation

extends naturally to include multiple utilities under rather mild assumptions.

IMPLICIT FORMULATION - SINGLE UTILITY CASE

Problem Py deals only with unrestricted matches and is formulated so that

nondifferentiable functions are expressed explicitly through active inequality

constraints. As shown by Duran and Grossmann [ 4 ] , for fixed flows and

temperatures a straightforward formulation can be derived by setting

Q=max { < }

directly, and obtaining Q from the total heat balance. A simple algorithm for this

case can be stated as follows:
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1. At a given SQP iteration with flows and temperatures specified,
calculate the heat capacity flowrates from the process simulator
using:

fc, = x

where H(T) and h(T) are enthalpies of hot and cold streams, respectively,
at temperature T.

2. Define the set P in equation (3) by selecting the following temperatures
as pinch candidates:

- inlet temperatures of hot process streams
- inlet temperatures of cold process streams plus AT

3. Using equations (1) and (2) calculate Cl and Q from
H c

Q - max {2*}
H p«p H

(9)
Q = CXy) + Ou

C H

These two quantities give the minimium utilities for the flows and temperatures

at the current iteration. Equation (9) is equivalent but not identical to the problem

table formulation of Linnhoff et al. [10] . Also, note that in step 1 the flowsheet

need not be converged at a given SQP iteration. In fact, the implementation in

FLOWTRAN treats this step no differently than standard utility calculations within its

cost blocks. Also the above algorithm allows for the existence of multiple pinch

points since the max operation over the pinch candidates p does not necessarily lead

to a unique solution. This point becomes important in the next section when dealing

with multiple utilities.

IMPLICIT FORMULATION - MULTIPLE UTILITIES

The solution of the linear programming problem for multiple utilities that arises

in P2 for fixed flows and temperatures, can be avoided by extending the above
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simple algorithm to the multiple utility case. For this, it is important to note the

following points:

1. For unrestricted matches, it can easily be shown through T-Q curves that the

total minimum utility requirement is the same for the single or multiple utility case.

2. Generally, the cost of hot (cold) utilities is monotonically nondecreasing

(nonincreasing) with increasing temperature.

One can treat the multiple utility case therefore as a staged set of single utility

calculations with the intention of introducing intermediate utilities at intermediate

points on the T-Q curves. To do this consider the T-Q curves in Figure 4. An

intermediate heating utility is available at T^ while an intermediate cooling utility is

available at VQ. Using points 1 and 2 it is advantageous to displace some of the hot

(cold) utility at the highest (lowest) level with an intermediate utility. Substitution

with an intermediate utility can be done graphically by considering only those parts

of the T-Q curves above (below) the heating (cooling) utility temperature T^ (T )̂. For

example, in Figure 5 addition of the intermediate hot utility at T^ amounts to shifting

the hot stream curve above T^ until the hot and cold streams form another pinch

point (at or above T )̂ or the hot utility at the highest level is entirely displaced by

the intermediate utility.

It is easy to see that this procedure is equivalent to the minimum utility

calculation using max(z£) if one only includes those streams above (below) the

intermediate heating (cooling) utility temperature. Because of this equivalence one can

expand the algorithm for the single utility case to multiple utilities as follows.

1. At a given SQP iteration with flows and temperatures specified,
calculate the heat capacity flowrates from the process simulator
using:

f.c. = (h(tp- MtpMtp - t!n)
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F.C. = (H(Tp- HtTp^r1* - T'n)F.C.

2. Select the following temperatures as pinch candidates (p6P°):

- inlet temperatures of hot process streams
- inlet temperatures of cold process streams plus AT

3. Set k = 0. Define HQ and CQ as the set of hot and cold streams
for heat integration.

4. Using equations (1) and (2) for the index set P° = {j 6 CQ

and i € HQ} calculate z* and O(y) to determine

G° = max lz>Jh Ho H

P

Q° = CXy) + 0°
c n

These are the overall minimum utilities at the current iteration.
If no intermediate utilities are available, stop. Else, go to step 5.

5. Set k = k * 1 and let Tp be the lowest current pinch point. Let

T* = max {Pc}
jtcu

y = ar^max {Tl
Q}

j € Cu"

where CU11 = {/ | / G CiJ and T[ £ T* - A7M

If none is available, set k = 0 and go to step 8. Else, define Hfc

and Ck as the set of inlet stream temperatures at or below (Tk

• AT ) and Tk, respectively. Also define pinch point
candidates as:

Pk = fi 6 Hfc, j € Ck, k}

6. Using p 6 Pk calculate:

cf = max izP)
c k

A

Note that if Qj > 0, a new pinch point has been
created at or below (Tk • AT ).
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7. If Q* = 0, set k = 0 and go to step 8. Else return
to step 5.

8. Set k = k + 1. Let Tp be the highest current pinch point and let:

7* = min {f }
// H

if HU

/ = arg min {P }
n H

if HU

where HU" = {/ | i £ Hi/ and fH Z f)

If none is available, stop. Else, define Hk and Ck as the set
of inlet stream temperatures at or above Tk and Tk - AT ,
respectively. Also, define

Pk = {j € Ck, i € Hk, k}

9. Using p 6 Pk calculate:

max

Note that if Q^ > 0 a new pinch point has been
created at or above Tk.

10. If Qk = 0, stop. Else, return to step 8.
h

Note that this algorithm is recursive in nature and fairly straightforward to

implement. In steps 6 and 9, we see the effect of intermediate utilities displacing

more expensive utilities and thus reducing the utility cost. Also, care is taken to

introduce hot (cold) utilities above (below) the highest (lowest) pinch as they are

unnecessary elsewhere. A small example that illustrates the algorithm is given in

Appendix B.

COMPARISON OF IMPLICIT VS. EXPLICIT STRATEGIES

For fixed flows and temperatures both the implicit and explicit strategies

produce identical results, and these are also equivalent to the unrestricted, multiple
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utility formulations described in Linnhoff et al [10] and Papoulias and Grossmann

[13]. The main differences between the implicit and explicit strategies lie in their

treatment of nondifferentiabilities that occur as a result of the max operator. As

shown in Appendix C, the minimum utility costs calculated by the implicit

formulation are nondifferentiable functions if, during the course of the optimization,

different stream inlets define the pinch point. This problem is handled automatically

in the explicit formulation simply because a different active set of the constraints

given in P2 is chosen. On a small problem optimized with an equation-oriented

procedure, Duran and Grossmann [4] demonstrated the effectiveness of the explicit

formulation. Other recent work on MINLP synthesis problems by Kocis and

Grossmann has confirmed this observation. It should be noted though that the

computational requirements are typically 50-100% higher when compared to the case

when no heat integration constraints are included.

The above studies with the explicit treatment of heat integration constraints

were carried out using the MINOS algorithm for nonlinear programming. However, in

the example problems considered in the next section we noted (particularly, for Case

2 of the Ammonia synthesis problem) that the implicit formulation required far fewer

iterations than the explicit formulation. Therefore, with sequential modular simulators

and the SQP algorithm, it is instructive to examine why the implicit and explicit

formulations can perform differently.

Note that the implicit algorithm generally deals with a problem where all

decision variables appear nonlinearly. Here all of the hot and cold utilities are

calculated directly as dependent variables. In the explicit formulation (P2>, on the

other hand, variables for the utilities (QJ
H, Qj

c), become part of the optimization

problem and appear linearly in the objective function and constraints. For this larger

problem, these variables do not contribute to the second derivatives of the Lagrange

function and the Hessian matrix for this function is indefinite. However, the SQP

algorithm approximates this matrix incorrectly by using a positive definite updating
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formula. While this insures that the resulting QP's are solvable at each iteration, it

is possible that the rate of convergence for SQP can deteriorate. Powell [14] shows

that, for SQP methods where the update formulae do not approximate the true

Hessian at the solution, the rates of convergence are less than superlinear. A further

example of this slow convergence is given by Yuan [16].

To improve on the convergence rate for the explicit formulation it would be

worthwhile to update only the part of the Hessian matrix that deals with the

nonlinear variables, w. Thus, the Hessian matrix used in the SQP algorithm would

have the following structure:

lBA\
\AJ 0/

where A = ^ w Q L(x,y) is easily calculated from gradient information and B is a

positive definite approximation to V L(x,y). Because this matrix retains the

structure and is a closer approximation to the actual Hessian matrix, it is likely that

the performance of the SQP algorithm would greatly improve.

However, the main drawback to using the above matrix lies in the ability of the

QP solver to handle an indefinite matrix at each iteration. Consequently, we leave

this concept as a topic for future research. It is also interesting to note that this

problem only occurs with the SQP algorithm. For example, because MINOS works in

the null space of active constraints and uses projected Hessian updates, there is no

deterioration of convergence properties, and consequently this problem was not

encountered in earlier studies [4].

With the implicit formulation, the inequality constraints are satisfied directly by

the minimum utility algorithm given earlier in the paper; in the optimization problem.

the constraints are eliminated and are replaced by the actual utility cost in the

objective function. Here the structure of the problem is no different from flowsheet

optimization without heat integration and, as mentioned above, the only drawback to
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this formulation is the possible existence of nondifferentiable points in the objective

function (see Appendix C).

EXAMPLE PROBLEMS

In order to demonstrate the effectiveness of the simultaneous approach for

process optimization and also to compare the implicit and explicit formulations, we

consider two comprehensive flowsheeting problems. Both problems involve multiple

utilities and have the structure of the recycle process discussed in Appendix A. The

first process, ammonia synthesis, has a high overall conversion and offers

possibilities for heat integration with the reactor. The second process, methanol

synthesis, has a lower conversion per pass and, consequently, requires a high recycle

ratio. Here possibilities exist for heat integration with the distillation columns.

Ammonia Synthesis

The ammonia synthesis process flowsheet is presented in Figure 5. This process

is a single loop design with a three-stage adiabatic flash separation. The reactor is

modelled as a pseudo-homogenous plug flow reactor with rate expressions taken

from the FLOWTRAN manual (Seader et al [15]). The associated cost block for the

reactor also stems from the FLOWTRAN manual. A description of the optimization

problem is also given in Figure 5. Here the objective function is the before tax profit

over a five year life with a 15% rate of return. A number of design constraints are

placed on the process to insure feasible operation and product purity. Note that

instead of fixing the process feed, a constraint is placed on ammonia production and

the feed streams are chosen as decision variables. The minimum temperature

approach was set to 20 °F. The following two cases were considered for this

problem.

Case 1. Eight decision variables specified in Table 1 were allowed to vary; the

outlet pressure of the main compressor was fixed at 2159 psig.



22

Case 2. Nine decision variables including the main compressor outlet pressure

are allowed to vary.

Both of these cases were used to illustrate the difference between the

simultaneous and sequential approaches. The optimizations were run using the implicit

formulation discussed above and the infeasible path optimization option implemented

on FLOWTRAN.

Case 1 Solution

The optimal decision variable vector of the simultaneous and sequential

solutions are given in Table 1. The results of this optimization without accounting for

heat integration show a before tax profit of $24,945 x 106/yr. After applying heat

integration to this solution, a profit of $26,915 x 106/yr is realized as a result of

further utility savings. The simultaneous heat integration and optimization solution has

a before tax profit of $27,134 x 106/yr or a net gain of $219,584/yr. A detailed

comparision of sales and expenditures is given in Table 2. Note that the simultaneous

solution has a 1.57% higher overall conversion of H2 to NH3 than the sequential

solution and this accounts for almost a $600,000/yr reduction in raw material cost

for H2. Also, it is interesting to note that the simultaneous solution has larger capital

and utility costs than the sequential solution but these are more than compensated

by the more efficient use of raw materials. Finally, to compare the effect of heat

integration for these two solutions, the T-Q curves for each solution are presented in

Figure 6.

Case 2 Solution

Here outlet pressure for the main compressor was included as a decision

variable. The simultaneous and sequential solutions for this case are given in Tables

3 and 4. The optimal decision variable vector in Table 3 shows a much lower

compressor pressure for the simultaneous solution. As seen in Table 4 this has a
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benefical effect on both the utility and capital costs. The sequential solution is

largely unchanged from Case 1. This indicates that without accounting for the

possibilities of heat integration, the objective function is not very sensitive to the

main compressor pressure. Consequently the advantages that a lower pressure offers

at the heat integration stage are not exploited. For this case, one again observes a

higher overall conversion of H2 (94.75% vs. 93.3%). In addition, as a result of lower

capital costs ($26,273/yr lower), lower utility costs ($330,708/yr lower) and lower raw

material costs ($519,117/yr lower) the simultaneous solution has a greater before-tax

profit of over $880,000/yr. Also, to show the effect of heat integration for these

two solutions, T-Q curves for presented in Figure 7.

Finally, note that the simultaneous strategy accounts for utility costs but not

capital costs associated with heat integration. As noted above, utility costs are

generally more sensitive to changes in decision variables in the flowsheet. For the

Case 2 solutions, minimum cost heat exchanger networks were generated using the

MAGNETS synthesis program (Floudas et al [5]). For the simultaneous and sequential

results the heat exchanger networks are given in Figures 8 and 9, respectively. The

capital costs for these networks are $222,038/yr (21,001 m2) for the simultaneous

solution and $195,413/yr (17,263 m2) for the sequential solution.

Methanol Synthesis Flowsheet

The methanol synthesis process flowsheet is presented in Figures 10(a) and

10(b). Here, a synthesis gas feed of nitrogen, hydrogen, carbon monoxide, carbon

dioxide and methanol is compressed and mixed with recycle. The mixture enters a

five stage quenched-bed reactor where methanol is produced according to the

following overall reactions:

CO + 2Ha <==> CHaOH
CO2 + 3Ha* <==> CH30H + H^O

The reactor effluent is first flashed and the overhead is then absorbed with
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water to separate the synthesis gases from methanol. To further separate methanol

from water the bottoms streams from both units are fed to a two column separation

sequence. Water is then recycled back to the absorber.

The flowsheet and reactor model were taken from Meyer et al [12]. Here a

system of five intermediate reactions was solved using a differential equation-based

quenched bed reactor model. Using the results of this model, curves relating

methanol conversion to catalyst weight were generated. These were subsequently

used in the FLOWTRAN simulation model of the flowsheet. Outlet temperature of the

five stage quenched bed system was found to be the maximum allowable

temperature, 553 K. Because the process deals with ten chemical components, two

tear streams and nine decision variables, it was decided to optimize this flowsheet

using the "black box" optimization strategy implemented on FLOWTRAN. As discussed

in Lang and Biegler [11], this strategy, although time-consuming, can be

advantageous if the number of tear stream components is greater than the number of

decision variables.

The objective function is the net present value of the total before-tax profit

using a project life of 5 years and a 15% rate of return. As with the ammonia

example, feed flowrate was chosen as a decision variable and a constraint of 1000

metric tons per day was imposed. Additional constraints were purity of the methanol

product (99.8%) and consistency specifications on process streams. The minimum

temperature approach was set to 10 °F.

It should be noted that the actual number of hot and cold streams that was

determined in the sequential and simultaneous strategies are different. As shown in

Fig. 10(a) there are 5 hot and 4 cold streams for the former, while as shown in Fig.

10(b) there are 6 hot and 3 cold streams for the latter.

The simultaneous and sequential solutions for the methanol process optimization
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are given in Tables 5 and 6. As can be seen the simultaneous strategy leads to a

before-tax profit of $32,036,800/yr while the sequential strategy yields $31,005,900/yr.

The optimal decision variable vector in Table 5 shows that although conversion per

pass is about the same for both cases, the simultaneous case has a much higher

overall conversion (71.3% vs. 65.3%y and a higher recycle ratio (7.4 vs. 5.4), because

the lower cost of utilities is correctly represented in the simultaneous optimization.

It is also interesting to see in Table 5 that the reflux ratio of the second column is

somewhat higher in the simultaneous solution (5.06 vs. 4.89). Note in Table 6 that the

profit is over $1,000,000/yr higher for the simultaneous case. This is due to an

almost $6,000,000/yr savings in raw material costs. Other savings come from lower

capital and utility costs for the feed compressor. For the sequential case, on the

other hand, a higher purge gas credit is realized (almost $5,000,000/yr). To show the

effect of heat integration for these two solutions, T-Q curves for presented in Figure

11.

Finally, the MAGNETS network synthesis program was used to generate the heat

exchange networks for the simultaneous and sequantial methanol optimizations. For

the simultaneous and sequential results the heat exchanger networks are given in

Figures • 12 and 13, respectively. Capital costs for these networks are $342,744/yr

(38,200 m2) for the simultaneous solution and $334,845/yr (35,684 m2) for the

sequential solution. These results and the one for the ammonia problem show that

the capital cost of the network is not very sensitive to the optimization formulation.

CONCLUSIONS

Based on the earlier work of Duran and Grossmann [ 4 ] , a simultaneous

formulation for heat integration and optimization has been developed for use with

sequential modular simulators. Using the FLOWTRAN simulator, this implementation is

fairly transparent to the user and simply requires the addition of special purpose

cost blocks to account for the potential of the heat integration. The optimization
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strategy developed by Lang and Biegler [11] has been used for solving the resulting

nonlinear program.

To carry out the simultaneous strategy, two formulations, the explicit and

implicit, were developed and compared. As pinch points change the function

describing minimum utilities can be nondifferentiable. The explicit formulation of

Duran and Grossmann [4] treats these nondifferentiabilities by including additional

inequality constraints and describing the minimum utilities in terms of active sets

corresponding to the pinch points. However, due to the presence of linear variables in

this formulation, difficulties arise in the approximation of the Hessian matrix for the

quadratic programming subproblems. The implicit formulation, on the other hand,

does not encounter this difficulty since it performs the minimum utility calculation

directly at each SQP iteration. Inclusion of multiple utilities is also straightforward.

Moreover, the implicit formulation, despite the disadvantage of possible

nondifferentiable functions, appears to be more efficient for sequential modular

simulators because the problem has fewer constraints.

For a generic flowsheet satisfying certain assumptions it was proved that the

simultaneous formulation leads to higher profit and conversion of raw materials.

These properties were further demonstrated on two complex process optimization

problems, the ammonia synthesis and methanol synthesis processes. Comparing the

sequential and simultaneous solutions for these processes one observes greater

conversion of raw material to product, higher recycles and increases in before tax

profit of up to $1,000,000/yr for the simultaneous case. Moreover, heat exchanger

networks for both the simultaneous and sequential solutions require roughly the same

capital cost. Therefore, the simultaneous approach presented here offers definite

advantages as part of a strategy for heat integration and flowsheet optimization.
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Appendix A. On the optimal trade-off between raw material capital and energy in

recycle processes.

This Appendix will show that in recycle processes the simultaneous strategy

will lead to solutions that exhibit higher overall conversion and lower cost than the

sequential strategy.

For the sake of simplicity, the processing scheme shown in Fig. 1 will be

considered. In order to develop a simplified model for this process the following

assumptions will be made:

• Single reaction A -» B with fixed conversion per pass r.

• Feedstock contains inert C with composition yc.

• The production rate of B, PB, is fixed.

• Fixed pressure and temperature levels throughout the flowsheet.

• Feed preparation (FP) and recycle (R1) involve only electricity demands.

• Reaction step (R1) and product recovery (PR) involve heating and cooling
demands.

• Perfect split between AC/B in splitter S1.

• Fixed recovery fraction of B (ft) in PR.

• Cost models are assumed to be linear functions of the flows f.. The cost
of the heat recovery network is neglected.

Based on the above, the cost models for the different items are as follows:

Net cost feedstock: C = C - I , where
Mr r P

Feedstock: Cp = cp(f*

Purge income: lp = cp(f* • f£)

Capital and operating expenses = C • C_ • C • C
FP Ri R2 PR



where

Feed preparation: Cpp = cFp(f£ *

Reaction step: C = c (f* • f?)
R1 n i l 1

Recycle step: CR2 = cR2(f* + f£)

Product recovery: CM = cBJPJfi
PR PR D

The unit costs cp, cp, cpp, cR1, cR2, cpR are for the case of no heat integration.
t

For the case of heat integration cR1 < cR1,

with no heat integration is then given by.

< cpR. The total cost of the flowsheet

C " CNF * CFP * CR1 * CR2 * CPR

Each of the terms in this function can be expressed as a function of x, the

overall conversion of A in the feedstock to B in the product PB. By performing the

appropriate mass balances in Fig. 1 it can be shown that.

fir

P c

PR fi

From the above, it can easily be shown that in the range, r £ x < 1, each of

the cost terms, except the last one, is monotone in x; that is



dC dC dC dC dC
NF fP R1 R2 PR

< o, < o, — > o, > o, = o
dx dx dx dx dx

Furthermore, since co<c
H • R1

C

Clx) = aC (x). where a = — < 1
c

R1

and therefore < . U1)
dx dx

The following property can then be established.

Property The optimal overall conversion of the simultaneous strategy is greater

than the optimal overall conversion of the sequential strategy. Furthermore, the

former exhibits a lower total cost.

Proof For the sequential strategy the optimal conversion is obtained by

minimizing the total cost with no heat integration:

min C = CJx) + Cpp(x) + CJx) + CJx) + CpR U2>

Assuming that the optimum conversion occurs at an interior in r < x < 1, the

necessary condition for the minimum cost is dC/dx * 0. Let x be the optimum

overall conversion. Then, from (A2)

) ( ) (% (% ( )
dx * dx * dx * dx x dx *

f f

Consider now the replacement of C with COi and C with CPB (with the unit
R l n l PR rf%

f I I

costs cB1, cB_) to redefine the cost function C (x) with heat integration. Then from
R1 PR

(A1) it follows that (A3) reduces to



dx
< 0

f

This then implies that there is a descent direction for C at x for x > x.

Hence, if x is the optimal conversion for the cost C of the simultaneous

strategy, x > x.

Finally, since x < x , and x is the optimal solution to C (x), it follows that

C (x) > C (x ). Hence, this proves that the simultaneous strategy leads to higher

overall conversion and to lower total cost.

As a corollary to this property, the following can also be established:

The optimal solution for the simQltaneous strategy will exhibit:

(a) Lower net feed cost and feed preparation cost.

(b) Higher recycle costs.

This simply follows from the fact that

( dC \ tdC \ idC \

— - / T < 0, \—)z < 0. V—-JT >0.andx > x.
dx dx dx



Appendix B - Example for Implicit Formulation

Consider the following multiple utility example:

FC (kW/K)
P1

2
2

Tin(°K)
450
400
320

Tout(

350
280
480

H1
H2
C1

with the following utilities

HU1 : HP steam @ 500K
HU2 : LP steam 9 430K
CU1 : Cooling @ 300K
CU2 : Refrigerant @ 270K
AT = 10 K

The algorithm for the implicit formulation requires the following relations.

,t^ - (f-AT )} - max {0.tin - (f-AT )}]

{0,r!n - f) - max {0 ,7^ -

Ct(y)

and follows the steps below:

1) From enthalpies of streams, develop the FC 's as given above.
p

2) Select pinch candidates and stream sets.

Co = {Cl} T* = {450,400,330}

Ho = {H1,H2}

3) Set k - 0 and calculate heat deficits for pinch candidates.



z'(kW)

1 450 80
2 400 130
3 330 80

4) Calculate min. utilities.

20 kW

Q° = max z" = 130 kW 1\ - 400 K

Q° = (Xy) + Q" = 150 kW
C h

5) Set k = 1 and consider utilities below pinch.

Tk » Tc
1 = 300K. Consider the following streams in H1 and

FCp T in

H1 1 310 280

6) Calculate z* and intermediate utility.

£ H zE

1 310 60

Ql - z9. = 60 kW 7! = 310 K

Q1 = Q° - O' = 90 kW
c c C

7) Go to 8), all cold utilities considered.



8) Set k = 2, Tk = T* = 430 K. Consider the following streams for H and C .
H 2 2

FC T i n Tout

P

H1 1 450 430
C1 2 420 480

9) Calculate z* and intermediate utility.
ri

1 450 80
2 430 100

Q1 = max {2?} - 100 kW
h H

P
.1

Q1 = Q° - Q^ = 30
H h n

10) Stop, all utilities considered.

This problem was also solved with identical results by Duran and Grossmann

[4] using an LP formulation. With the above algorithm, however, exact utility costs

are not required.



Appendix C - Example of Nondifferentiality in Implicit Formulation

Consider the very simple system of one hot and one cold stream. Assume that

t , T and t are fixed, T. is variable and t. > T
in out out in in out

The following cases can be considered for Tjn

/) T > t + AT
in out mm

Q = maxifj = 0 . 1* = t. + AT .
H H in mm

//) t + AT £ T £ t + AT
in min in out min

Ou = max[2?J = fc it - (T. -AT . )] . T9 = T.
H H out in mm in

///) T < t + AT
in in min

Q^ = m a x { 2 ? } • f e l t - t ] . n o p i n c h p o i n t
H H out in

Q (T ) can be plotted as shown in Fig. C.1. Note that this function is
M in

nondifferentiable at points where the pinch point changes. Also, since

where CXy) « FC(T -T ) - fdt -t ) .
in out out in

QJT. ) is also nondifferentiable at the same points.
c in



Table JL Ammonia Process z Case 1, Optimal Solution Vector

Design
Variables

1. Inlet Temp. (F)
of Reactor Tl

2. Inlet Temp. (F)
of 1st Flash

3. Inlet Temp. (F)
of 2nd Flash

4. Temp. (F) of
Recycle

Bounds
Lower Upper

400

65

35

60

5. Purge Fraction (%) 0.1

6. Outlet Press, (psia)
of Main Comp. 1500

7. Outlet Press, (psia)
of Recyc. Comp. 1500

8. Feed Flowrate
of Rich H2

9. Feed Flowrate
of Rich N2

2461.4

643

400

100

60

400

10

4000

4000

3000

1000

Starting
Point

400

65

35

60

1.38

2173.73

2173.74

2631.97

691.42

Solution
Sequential Simultaneous

400

65

35

60

0.87

2173.74

2173.74

2631.13

691.73

400

65

35

101.5

0.496

2173.74

2173.74

2588.79

699.25

10. Ratio of
H2/N2 to reactor 0.5

11. Conversion •
per Pass(H2) %

12. Overall (H2) %
Conversion

13. Recycle Ratio

14. Outlet Temp. (F)
of Reactor

15. Inlet Temp. (F)
of Preheater

3.5 2.75 2.683 0.86

40.0 53.7

93.50 95.07

2.31 3.32

822.99 712.01

159.14 145.49



Table 2. Balance Sheet for Ammonia Process - Case 1

Cost/Sales

I.Capital Costs ($)

1.

2.

3.

4.

5.

6.

II.

1.

2.

3.

Ill

1.

2.

IV.

1.

2.

3.

V.

Main Comp.

Recycle Comp.

Reactor

1st Flash Drum

2nd Flash Drum

3rd Flash Drum

Subtotal

Sequential

270,940

26,837

56,430

34,415

26,488

6,248

421,358

Utility cost ($/yr)

Main Comp.

Recycle Comp.

Cool. Utility

Subtotal

2,412,984

80,472

276,444

2,769,900

. Raw Material ($/yr)

H2-rich Feed

N2-rich Feed

Subtotal

Sales ($/yr)

Purge

Byproduct

Product

Subtotal

Before-Tax
Profit ($/yr)

36,479,016

488,796

36,967,812

470,288

109,126

66,198,720

66,778,134

26,915,216

Simultaneous

269,180

38,745

62,345

52,953

45,937

7,357

476,519

2,389,968

138,180

476,448

3,004,596

35,880,684

494,088

36,374,772

382,823

95,580

66,200,389

66,678,792

27,134,800

Difference

1,760

- 11,908

- 5,915

- 18,538

- 19,449

- 1,109

- 55,161

23,016

- 57,708

-200,004

-234,696

598,332

5,292

593,040

87,465

13,546

1,669

- 99,342

- 219,584



Table 3. Ammonia Process - Case 2, Optimal Solution Vector

Design
Variables

1. Inlet Temp. (F)
of Reactor Tl

2. Inlet Temp. (F)
of 1st Flash

3. Inlet Temp. (F)
of 2nd Flash

4. Temp. (F) of
Recycle

5. Purge Fraction 0

Bounds
Lower Upper

400

65

35

60

k) 0.1

400

100

60

400

10

Starting
Point

400

65

35

60

1.38

Solution
Sequential Simultaneous

400

65

35

78.7

0.92

400

65

35

131.575

0.541

6. Outlet Press, (psia)
of Main Comp. 1500 4000

7. Feed Flowrate
of H2-rich Feed 2461.4 3000

8. Feed Flowrate
of N2-rich Feed 643 1000

2173.73 2183.84 1583.20

2631.97 2638.79 2588.43

691.42 688.32 687.456

9. Ratio of H2/N2
in Reactor Feed

10. Conversion
per Pass(H2) %

11. Overall (H2) %
Conversion

12. Recycle Ratio

13. Outlet Temp. (F)
of Reactor

14. Inlet Temp. (F)
of Preheater

0.5 3.5 2.75 3.5

2.28

1.616

37.30 43.37

93.31 94.75

3.03

829.40 733.13

176.82 179.61



Table 4. Balance Sheet for Ammonia Process ^ Case 2

Cost/Sales Sequential Simultaneous Difference

I.Capital Costs ($)

1.

2.

3.

4.

5.

6.

Main Corap.

Recycle Comp.

Reactor

271,884

33,599

56,452

1st Flash Drum 32,940

2nd Flash Drum 24,726

3rd Flash Drum 6,227

Subtotal

II.

1.

2.

3.

Ill

1.

2.

IV.

1.

2.

3.

Utility cost i

Main Comp.

Recycle Comp.

Cool. Utility

Subtotal

• Raw Material

H2-rich Feed

N2-rich Feed

Subtotal

Sales ($/yr)

Purge

Byproduct

Product

Subtotal

V. Before-Tax
Profit ($/yr)

425,830

($/yr)

2,425,332

112,056

244,272

2,781,660

($/yr)

36,573,629

486,375

37,060,004

492,068

109,756

66,227,616

66,829,440

26,860,000

220,142

52,535

52,194

35,590

30,595

8,498

399,556

1,778,028

216,216

456,708

2,450,952

36,055,127

485,760

36,540,887

377,042

87,376

66,295,515

66,759,933

27,743,600

51,742

-18,936

4,258

- 2,650

- 5,869

- 2,271

26,274

647,304

-104,160

-212,436

330,708

518,502

615

519,117

115,027

22,380

- 67,899

69,507

-883,600



Table 5. Methanol Process, Optimal Solution Vector

Design
Variables

Bounds
Lower Upper

Solution
Sequential Simultaneous

1.Conversion
per Pass %

2.Purge
Fraction %

3.Inlet Temp. (F)
of Flash F

4.Inlet Temp. (F)
of 1st Column F

1.0 100.0

0.1 20.0

30.0 200.0

100.0 250.0

5.Bottom Press, (psia)
of 1st Col. Psia 100.0 300.0

6.Reflux Ratio
of 1st Col. 8.0

8.Reflux Ratio
of 2nd Col.

9.Feed Flowrate
lb-mol/Hr

2.5

15.0

7.Bottom Press
of 2nd Col. Psia 200.0 500.0

15.0

16.62

5.85

88.58

100.0

300.0

8.0

306.0

4.89

16.12

3.45

135.15

134.40

300.0

8.0

319.1

5.06

10000.0 50000.0 15817 14350

OBJ. FUNC.(PROFIT PER YEAR) 10* $

OVERALL CONVERSION %
(Based on CO and C02)

31.0049 32.0368

65.27 71.26

RECYCLE RATIO 5.40 7.38



Table 6. Balance Sheet for Methanol Process

Costs/Sales

I. Capital Costs

l.Feed Comp.

2.Recycle Comp.

3.Reactor
Reactor
Catalyst

4.Flash Drum

5.Absorber

6.1st Column

7.2nd Column

8 .Pump

II. Utility Cost

l.Feed Comp.

2.Recycle Comp.

3.Pump

4.H&C Utility

III. Raw Material

1.Synthesis Gas

IV. Sales ($/yr)

1.Product

2.Purge Gas

3.Waste MeOH

Before-Tax
Profit ($/yr)

Sequential

($)

522,346

343,462

65,418
540,032

230,635

1,478,270

268,390

224,760

9,910 -

($/yr)

6,335,616

3,419,985

157,332

3,250,296

Cost ($/yr)

63,552,888

87,589,068

16,222,273

4,069,145

31,004,900.00

Simultaneous

463,368

397,956

65,190
533,134

301,575

2,007,930

274,750

237,270

12,036

5,312,160

4,246,956

187,572

2,768,472

57,657,936

87,958,248

11,473,940

4,090,740

32,036,800.00

Difference

58,978

- 54,494

228
6,898

- 60,940

- 528,660

- 6,360

- 12,510

- 2,126

1,023,456

- 826,971

- 30,240

481,824

5,894,952

- 369,180

4,748,333

- 21,595

- 1,031,900



CAPTIONS OF FIGURES

Fig. 1. Processing Scheme with Recycle

Fig. 2. Optimal Overall Conversion for Sequential Strategy

Fig. 3. Optimal Overall Conversion for Simultaneous Strategy

Fig. 4. Behavior of T-Q curves with Intermediate Utilities

Fig. 5. Ammonia Process Flowsheet

Fig. 6. T-Q Curves for Ammonia Process - Case 1.

Fig. 7. T-Q Curves for Ammonia Process - Case 2.

Fig. 8. Heat Exchanger Network for Ammonia Process - Sequential Solution

Fig. 9. Heat Exchanger Network for Ammonia Process - Simultaneous Solution

Fig. 1O.(a) Methanol Process Flowsheet - Sequential

Fig. 10.{b) Methanol Process Flowsheet - Simultaneous

Fig. 11. T-Q Curves for Methanol Process

Fig. 12. Heat Exchanger Network for Methanol Process - Sequential Solution

Fig. 13. Heat Exchanger Network for Methanol Process - Simultaneous Solution

Fig. C.1. Nondifferentiable Objective Function for Implicit Formulation
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