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ABSTRACT

This paper presents an Equality Relaxation variant to the Outer-Approximation

algorithm for solving mixed-integer nonlinear programming (MINLP) problems that

arise in structural optimization of process flowsheets. The proposed algorithm has

the important capability of being able to explicitly handle nonlinear equations within

MINLP formulations that have linear integer variables and linear/nonlinear continuous

variables. It is shown that through the explicit treatment of nonlinear equations, the

proposed algorithm avoids computational difficulties (e.g. singularities, destruction of

sparsity) that are experienced with algebraic or numerical elimination schemes. Also,

theoretical properties of the Equality-Relaxation algorithm are discussed, and its

performance is demonstrated with a planning problem and a flowsheet synthesis

problem. Finally, a simple procedure for structural sensitivity analysis is presented.
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Introduction

Process synthesis can be defined as the selection, arrangement, and operation of

processing units so as to create an optimal scheme. This task is combinatorial and

open-ended in nature and has received a great deal of attention over the past twenty

years. An excellent review of research activities in this area can be found in

Nishida, Stephanopoulos, and Westerberg (1981).

Because the synthesis problem is open-ended, it has motivated the development of

quite different approaches. Synthesis methods currently include thermodynamic targets

(Linnhoff,1981), heuristic (Douglas, 1985) and evolutionary methods (Stephanopoulos

and Westerberg, 1976), and optimization techniques (Grossmann, 1985). This paper will

address the structural flowsheet optimization problem that arises in the latter

approach.

In order to formulate the synthesis problem as a mathematical programming

problem, a superstructure must be postulated which includes many alternative designs

from which the optimal process will be selected. Superstructures can be developed

systematically for homogeneous processes (e.g. heat exchanger networks, separation

sequences) while for heterogeneous processes the superstructure is specified by the

user based on a preliminary screening of alternatives, possibly through the

application of heuristic rules and/or thermodynamic targets. In order to determine the

optimal process flowsheet, simultaneous structural and parameter optimization of the

superstructure is required. In general, this leads to a mixed-integer optimization

problem (see Grossmann, 1985).

Most of the previous work on process synthesis that is based on the mixed-integer

optimization approach has relied on the use of mixed-integer linear programming

(MILP) formulations (e.g. see Papoulias and Grossmann, 1983; Andrecovich and

Westerberg, 1985; Hillenbrand, 1984; Floudas et al, 1986; Shelton and Grossmann.

1986). Although these formulations have proved to be quite powerful, they have the

limitation that nonlinearities cannot be treated explicitly, and hence they must be

approximated through the discretization of operating conditions (see Papoulias and

Grossmann, 1983). The need for the explicit handling of the nonlinearities in the

synthesis problem motivates the use of mixed-integer nonlinear programming (MINLP).



MINLP problems, however, are much more difficult to solve than MILP problems for

which Branch and Bound methods perform reasonably well.

It should be noted that for process synthesis applications, the MINLP problems have

a special structure in which the 0-1 variables appear linearly and the continuous

variables appear linearly and nonlinearly (see Duran and Grossmann, 1986a). Current

alternatives for solving these MINLP problems include Branch and Bound (Beale, 1977;

Garfinkel and Nemhauser, 1972; Little, 1963) , Generalized Benders Decomposition

(GBD) (Benders, 1962; Geoffrion, 1972), and Outer-Approximation (OA) method (Duran

and Grossmann 1986a; 1986b). Since in structural flowsheet optimization problems the

majority of the computational effort is consumed by the solution of a sequence of

nonlinear programming problems (NLP), a reasonable measure of the efficiency of the

above cited algorithms is the number of NLP subproblems that they must solve.

Duran and Grossmann proposed the Outer-Approximation (OA) algorithm with the

objective of reducing the number of NLP subproblems that must be solved. Although

this algorithm is an efficient method for solving MINLP problems, its main limitation

is that it can handle only linear equality and nonlinear / linear inequality constraints.

However, the formulation of the process synthesis problem will typically contain

many nonlinear equations which describe the performance of process units. In the OA

algorithm, nonlinear equations must be eliminated algebraically or numerically. This

is usually a nontrivial task which can lead to theoretical and numerical difficulties as

will be discussed later in the paper.

The main objective of this paper is to present a new variant to the OA algorithm

that can explicitly handle nonlinear equality constraints. The proposed algorithm relies

on an equality relaxation strategy which has the advantage of not requiring the

selection of decision variables, nor the algebraic or numerical elimination of the

equations. As will be shown, this algorithm is well suited to solve MINLP problems

that arise in structural flowsheet optimization. Basic properties of this algorithm are

discussed and its application is illustrated with three example problems. Also, it will

be shown how to perform structural sensitivity analysis with the proposed method.



Problem Formulation

The structural flowsheet optimization problem for process synthesis can be

formulated as a MINLP of the following form:

z = min cT y + fix)

s.f. h(x) = 0

g(x) < 0

Ax=a (P)

By + Cx < d

y€{0 ,1} m ,Ey<e}

where x is the vector of continuous variables specified in the compact set X, and y

is the vector of 0-1 variables which must satisfy pure integer constraints Ey<e. f(x),

h(x), and g(x) represent nonlinear functions involved in the objective function,

equations, and inequalities of a process, respectively. Finally, Ax-a represents the

subset of linear equations, while By+Cx<d represents linear inequalities that involve

the continuous and integer variables.

In the context of the synthesis problem the continuous variables x include flows,

pressures, temperatures and sizes, while the binary variables y represent the potential

existence of units which are embedded in the superstructure. The equations h(x)=0 and

Ax=a correspond to material and energy balances and design equations. Process

specifications are represented by g(x)^0 and by lower and upper bounds on the

variables in x. Logical constraints that must hold for a flowsheet configuration to be

selected from within the superstructure are represented by By+Cx£d and Ey<e. The

cost function involves fixed cost charges in the term cTy for the investment , while

revenues, operating costs, and size dependent costs for the investment are included

in the function f(x).

In order to solve problem (P) Duran and Grossmann proposed the Outer-

Approximation (OA) algorithm. The method is similar to Generalized Benders



Decomposition (GBD) in that an alternating sequence of NLP subproblems and MILP

master problems are solved. The main difference however, is the formulation of the

master problem. In contrast to the master of GBD which is based on a dual

representation, the master of OA is based on a primal representation. The master

includes the linear constraints from the original MINLP, as well as linear

approximations to the nonlinear functions derived at each NLP subproblem solution.

This master problem provides an increasingly good approximation to the MINLP, and

therefore can predict strong lower bounds on the optimal MINLP objective function

value. In this way, convergence is usually achieved in few iterations, but at the

expense of solving a larger master problem than in the GBD method. Since nonlinear

programming problems are often more difficult to solve than mixed-integer

programming problems, the overall result is expected to be a decrease in

computational expense. Duran and Grossmann (1986b) proved that when the nonlinear

functions in the MINLP are convex, the lower bound predicted from OA is always

greater or equal to that of GBD. They also demonstrated computational savings in

solving several test problems.

The basic idea behind both GBD and OA, as applied to the flowsheet synthesis

problem, is illustrated in the iterative procedure shown in Figure 1. The NLP

subproblem step is nothing other than the optimization of the continuous variables

for a particular flowsheet. The MILP master problem selects, from among the

remaining alternatives embedded in the superstructure, a flowsheet configuration

whose lower bound lies below the current best flowsheet objective function value.

When such a configuration cannot be found, the MILP master problem provides the

termination criterion for the search.

When the nonlinear equations in problem (P) are absent or eliminated, the Outer-

Approximation algorithm as suggested by Duran and Grossmann (1986b) can be

applied directly to solve this problem. However, flowsheet synthesis problems

typically involve a large number of nonlinear equations. Since these constraints

cannot be explicitly treated in the OA algorithm, they must be eliminated from

problem (P). One option is to algebraically eliminate the nonlinear equations so as to

leave only nonlinear inequalities and linear constraints. This task, however, is only

possible for certain specific problems; for instance, the design of batch processes



(Vaselenak, 1985) and the synthesis of gas pipelines (Duran and Grossmann, 1986a).

Clearly algebraic elimination is not practical for typical flowsheet synthesis problems

which involve a large number of nonlinear equations.

The other option is to perform a numerical elimination through linearizations of the

nonlinear equations at each iteration of the OA algorithm. However, depending on the

choice of decision variables, computational difficulties are often encountered due to

singularities. Furthermore, there is loss of sparsity in the master problem (see

Appendix C). Although there is a reduction in the number of continuous variables in

this elimination scheme, the matrix of coefficients of the original inequalities and of

the lower and upper bounds on the continuous variables x becomes very dense. In

fact, Duran (1984) reported numerical difficulties when attempting to solve a large-

scale MINLP with numerical elimination.

The above cited limitations in the OA algorithm have motivated the development of

a new Equality-Relaxation algorithm (OA/ER) which attempts to preserve the

computational efficiency of the former method, while having the capability to handle

explicitly nonlinear equality constraints.

Master Problem

The proposed Equality-Relaxation algorithm is similar to the Outer-Approximation

algorithm in that the procedure involves the solution of a sequence of NLP and MILP

problems (see Figure 1). The NLP problems correspond to the original MINLP, problem

(P), with the vector of binary variables temporarily fixed. Physically this step is

simply the parameter optimization of a particular flowsheet in the space of the

continuous variables. The master problem is a primal approximation to the original

MINLP problem formulation. The MILP master problem is intended to be a relaxation

of problem (P), meaning that the linear objective function approximation will

underestimate the nonlinear function and the linear constraints will overestimate the

nonlinear feasible region so as to provide a lower bound to the MINLP global

optimum. In the OA/ER algorithm a new master problem will be defined in a way that

nonlinear equations in the MINLP formulation can be handled explicitly.

At iteration k, the vector y in problem (P) is fixed at yk (which satisfies the



restriction y G Y) yielding the following problem:

z(y ) = min c y + fix)
X

s.t. h(x).= 0

g(x) < o (NLPD

Ax-a

C x < d - B yk

xGX

Assume that the solution of (NLP1) has xk as the optimal vector of continuous

variables. The associated optimal lagrange multipliers for the nonlinear equations

h.(x) = 0, i=1,2...r, will be denoted by Xk It is convenient to define the diagonal matrix

1*, (rXr) where r is the number of nonlinear equations, having diagonal elements

tk given by:

- 1 if Xk < 0

+ 1 if Xk > 0 /=1,2,...r (1)

0 if Xk = 0

The matrix 1* will be denoted as the direction matrix because as shown below, it

defines a valid direction for the relaxation of the nonlinear equalities into

inequalities. Relaxing the nonlinear equations h(x)=0 in (NLP1), through the

premultipiication by this matrix, yields the relaxed problem:

z(yk) = min cTyk + fix)
X

s.t. T"h(x) <, 0

g(x) ^ 0 (NLP2)

Ax=a

C x < d - B y"

xGX



Problems (NLP1) and (NLP2) can be shown to be equivalent if certain conditions are

imposed upon the nonlinear functions f(x), g(x), and T^Mx).

From the Kuhn-Tucker conditions for problem (NLP1), the stationary conditions of

the lagrangian and the sign restrictions on the multipliers yield (Bazaraa and Shetty,

1979)

Vf(xk) + < / ) T Vg(xk) + (Xk)T Vh(xk) + (ak)J A + ( / ) T C=0

/ £ 0 , / > 0 (2)

where X, a, y, and J3 are vectors of lagrange multipliers for constraints h(x)=O, Ax=a,

g(x)<0, and By+Cx^O, respectively. If in addition the following conditions on the

nonlinear functions are satisfied at any feasible point xk:

• f(x) is pseudoconvex,

• g.(x) is quasiconvex for i G I , I ={i: g.(xk) = 0} , I, ={i: g.(xk) < 0}

• h.(x) is quasiconvex for i € J+ , J+={i: Xk > 0}

• h.(x) is quasiconcave for i G J , J ={i: Xk < 0}

then the Kuhn-Tucker conditions at xk are sufficient for the global solution of (NLP1).

Note that at x\ the nonlinear inequalities have been partitioned into active (EQ) and

inactive (IN) inequalities, and the nonlinear equations into those with positive (J) and

negative (J ) multipliers.

Similarly, the Kuhn-Tucker conditions for the formulation (NLP2) yield

V/ (x ) + (y )T Vg(x) + (X )T 1* Vh(x) + U )T A + (B )TC=0
' r r r rr

7 ^ 0 , ^ ^ 0 , X ^ 0 (3)
7 r rr r

where Xf is the vector of multipliers for the constraint set T*h(x) ^ 0 and x is the

optimal solution to (NLP2). Sufficient conditions for a feasible point x to be the

global optimum to (NLP2) are
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• f(x) is pseudoconvex,

• g.(x) is quasiconvex for i G Î Q , lEQ={i: gt.(x) = 0} , l^N={i: g.(x") < 0}

• T* h(x) is quasiconvex.

Under the assumed class of functions stated above, both (NLP1) and (NLP2) have a

unique local solution. Furthermore, h. quasiconvex for i G J+ and h. quasiconcave for i

G J j implies that T^hM^O is quasiconvex. Since (2) arid (3) are uniquely defined,

Xk = 1*1^, xk = x, lEQ=lgQ > ' IN
=^N ' a n d thus the conditions for optimality in (2) and (3)

are equivalent. This then implies that the (NLP1) formulation is equivalent to the

(NLP2) formulation.

Based on the equivalence of (NLP1) and (NLP2), an approximation to problem (P) can

be derived from (NLP2) by freeing y, and by replacing the nonlinear functions f(x),

g(x), and Tkh(x) with linear approximations. Following a similar reasoning as in the OA

algorithm (Duran and Grossmann, 1986b) one can then define a master problem that

will yield a valid lower bound to the optimum solution of problem (P). This can be

achieved if the linear approximations of the nonlinear functions are given either by

function linearizations or by linear underestimators that will overestimate the feasible

region and underestimate the objective function (see Appendix B). These outer-

approximations at the point xk must satisfy the following conditions for all x G X:

(w k ) T x- iv k
o < / r (x )

1* h(x) < 0 => T* [Rk x - rk] < 0 (4)

where g.Jx) and ge jx) correspond to the inactive and active nonlinear inequalities,
IN EQ

respectively. If the matrices Sk
Q and Sk

N and the vectors sk
Q and sk

N are combined to

yield the matrix Sk and vector sk, then from (4) the MILP approximation to problem

(P) at xk that yields a lower bound zk is given by:



zk = min cTy +(wk)T x - wk
o

x,y

s.t. TkRkx < TV

Skx < sk

A x=a (5)

By + Cx < d

Ey < e

xGX

yG{O,i}m

This problem can be generalized by considering K points for the approximations in

(4). The MILP master problem with equality relaxation for problem (P) is then given in

final form as:

zK = min cTy + p

sA. (w k ) T x- a <> wk
o

TkRk;

Skx :

A x=a

By + Cx < d

Ey < e

k- 1 ,2 . . . K

<MK

cTy + ^ 2

x € X

y€ {0,1}m fl {integer cuts}*"1

/ /6R1

where z[̂  is the predicted lower bound at iteration K, ft is the largest linear

approximation to the nonlinear objective function, and the integer cuts correspond to
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constraints which eliminate the assignments of binary variables analyzed at the

previous K-1 iterations (see Duran and Grossmann, 1986b). Also, zy is the current

best estimate to the optimal solution to MINLP (P) which is given by the minimum of

all NLP subproblems that have been solved. The lower bound zK1 of the constraint on

cTy+// is introduced to expedite the solution of the MILP; the upper bound z to

produce infeasibility as the termination criterion (z*>z ).

Equality-Relaxation Algorithm

Based on the master problem (MK) presented in the previous section, the following

algorithm can be stated to explicitly handle nonlinear equations. For simplicity in the

presentation, it is assumed that the NLP subproblems in Step 2 have a feasible

solution.

Step J[ Select initial binary assignment y1, set K=1.
o

Initialize lower and upper bounds, zL =-oo ^=00.

Step 2 Solve (NLP1) for fixed yK yielding z(yK), xK, and X\

If z(yK)<zu, then set y*=yK, x'=xK, and zy=z(yK).

Define the matrix T* as in (1).

Step 3 Derive at xK the linear approximations in (4) for f(x), h(x), and g(x),

and set up the master program given by problem (MK).

Step 4 Solve the master program (MK):

[a] If a feasible solution yK+1 exists with objective value z*;

set K=K+1, go to Step 2.

[b ] If no feasible solution exists, stop.

Optimal solution is zy at y \x \

It should be noted that the main advantage of this algorithm is that no elimination

of equations is required to set up the master problem. Thus, the original sparsity of

the MINLP is preserved in the MILP master problem, and difficulties associated with

the selection of decision variables are avoided.
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The algorithm as stated above assumes that the subproblems (NLP1) will have a

feasible solution at step 2. When this is not the case, the simplest option is to

resolve the master problem with an additional integer cut for the infeasible binary

assignment. The other option is to add this integer cut and derive linear

approximations at the infeasible point to set up the master problem in step 3. In this

case however, the infeasible point must satisfy the nonlinear equations in the NLP

subproblem in order to obtain the multipliers for the equality relaxation. To determine

this point, the linear constraints and nonlinear inequalities of the NLP can be relaxed

through the introduction of slack variables which would be added to the objective

function so as to minimize the infeasibility.

Theoretical Properties of the OA/ER Algorithm

The relaxation of nonlinear equations to inequalities is based on the sign of the

respective lagrange multipliers (matrix 7*) at the solution to the NLP subproblems. The

master problem (Mk) is intended to provide a relaxed representation of the original

MINLP problem which can be solved efficiently (i.e. a MILP problem). Further, the

MILP is expected to overestimate the feasible region and underestimate the objective

function (for a minimization problem) while providing a close approximation to the

original problem.

The master problem formulation in (MK) however, was stated without specifying the

type of linear approximation to the nonlinear functions. The choice of the linear

replacements must be based on the nature of the functions f(x), g(x), and TKh(x) in

order to rigorously guarantee convergence to the global optimal solution of the

MINLP. The following is a formal classification of problems that provides sufficient

conditions for the type of linear approximations that can be used in the master

problem to insure convergence to the MINLP global optimum (see Appendix B for

details):

• Class 2 fW a n d 9,NM a r e convex, 9EQ(x) and t..kh.(x) are quasiconvex
I * i,A.,..r, K— i,z,..ix«

For this class the NLP subproblems clearly exhibit a unique local solution
(Bazaraa and Shetty, 1979). Moreover, first-order linearizations for f(x), h(x),
and active g(x) at the point xk provide supporting hyperplanes that satisfy
(4), and hence insure rigorous lower bounds in the master problem.
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Therefore, convergence to the global optimum solution can be guaranteed
for this class. It should also be noted that for this class of problems the

multipliers in equation (1) must remain invariant in sign for all k € K due
to the assumed quasiconvexity in the relaxed equalities T^hM^O.

• Class 2 f(x) and g|N(x) are convex or quasiconcave and gEQ and t..kh.(x)
quasiconvex or quasiconcave i=1,2#..r; k=1,2..K.

For this class valid linearizations for the master problem are obtained if
first-order linearizations are used for convex / quasiconvex functions and
linear-underestimators to replace quasiconcave functions. Although rigorous
lower bounds will be provided by the master problem, the global optimum
can only be guaranteed if the NLP subproblems exhibit a unique solution.
This is not necessarily true for the class of functions assumed here.

• Class 3 f(x), g(x), and t..kh.(x) are undetermined.
it i

For this class unique solutions in the NLP subproblems are not guaranteed,
and no linearization scheme can provide rigorous lower bounds. Therefore,
global optimality for this class of functions cannot be insured.

Clearly, Class 1 problems are most favorable since first order linearizations can be

derived easily, especially since gradient information is typically required by the NLP

solution technique. The derivation of linear underestimate's in the Class 2 procedure

is a less trivial task (see Duran, 1984) and a rigorous approach to Class 3 problems

is currently unavailable.

A special subset of Class 1 problems is the case where f(x), g(x), and h(x) are

strictly linear meaning that the original MINLP is actually a MILP problem. For

problems of this type, the OA/ER algorithm would terminate in only two iterations

(one iteration to find the solution and a second one to confirm it). One would

therefore expect that the algorithm should perform well on "mostly linear" MINLP

problems (problems in which many of the constraints and variables are linear). Since

the formulation of structural flowsheet optimization problems often exhibits this

characteristic, the Equality-Relaxation algorithm can be expected to be an efficient

solution method for these problems.

It should also be noted from the above classification that rigorous solutions can

only be guaranteed for Class 1 problems. For Class 2 problems rigorous solutions

can also be guaranteed provided the NLP subproblems have a unique solution.
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Unfortunately, most flowsheet synthesis problems will lie in Class 3. However, as

will be shown later in this paper, numerical evidence indicates that applying the

OA/ER algorithm to these problems as if they were of Class 1 will very often

produce the global optimum solution. This would suggest that it would be worthwhile

to solve Class 3 problems in two phases. The first one being through the procedure

for Class 1 to provide a very good estimate of the MINLP solution. The second

phase would attempt to verify this as the global optimal solution. This scheme will

be explored in a future paper.

Example 1

In order to compare the properties of the proposed Equality-Relaxation algorithm

with the Outer-Approximation algorithm involving algebraic elimination of equations

(Duran and Grossmann, 1986b), consider the following small example:

min z = - y + 2x + x

s.t. x - 2 expk-x ) = 0

- x i
 + x2 + y ^ 0 (Pi)

0.5 < x < 1.4

yeo , 1

The NLPs at the two integer values have the following solutions:

1. y=0 z= 2.558 xT=(0.853, 0.853)

2. y=1 z=2.124 xT=(1.375, 0.375)

Thus, the second solution is the global MINLP optimum.

To examine the performance of OA/ER algorithm assume that the initial point is

given by y=0. The solution to (P1) at y=0 is:

z=2.558 xT=(0.853,0.853) X1 = -1.619 < 0
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The lagrange multiplier for the nonlinear equation is negative, therefore the direction

matrix (1 by 1 matrix since only one nonlinear equation appears in problem) is given

by T1 = - 1 . Relaxing the nonlinear equality to inequality in (P1) yields:

T1 h(x) < 0 =>

-1 { X1 - 2 exp(-x2) } < 0 =>

or 2 exp(-x2) - xi < 0 (6)

Note that the nonlinear constraint in (6) is convex, and thus the linearization at

xT=(0.853 , 0.853) will be a rigorous approximation for the master problem so that* the

global optimal solution will be found. As an additional point, if y=1 is used as the

initial point, the lagrange multiplier is again negative so that the inequality tn h^x)

will be the same as above. Since in this example all the functions are convex, the

problem belongs to Class 1, and therefore the OA/ER algorithm will determine the

global optimum solution of problem (PI).

To illustrate the difficulties which can arise when eliminating nonlinear equations in

the Outer-Approximation algorithm, examine the resulting MINLP formulations upon

elimination of the nonlinear constraint xi - 2 exp(-x2) = 0 in (P1).

If xi is eliminated then the reduced MINLP is:

min z = - y + 4 exptrx ) + x

s.t. - 2 exp(-x2) + x2 + y £ 0 (PA)

0.357 < x < 1.386

/ G O , 1

Note that the first inequality is nonconvex due to the exponential term with a

negative coefficient.
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If instead x2 is eliminated then the problem formulation is given by:

min z = - y + 2 x - 2 /Mx) + /M2)

s.t. - x - /rtx) + /n(2) + y < 0 (>*>£)

0.5 < x i < 1.4

/GO , 1

In this case the objective function and the first inequality are convex.

If problem (PA) (nonconvex formulation) is solved using the Outer-Approximation

algorithm the following difficulty occurs. Assume the y=0 is the starting point.

Linearizing the MINLP problem at the solution to NLP(y=0) yields the following master

problem.

z1 = min p

s.t. 1.853 x2 + / <: 1.580 (7)

- 0.705 x2 - / / - / < -3.159

0.357 < x2 < 1.386

For y=1, the first inequality reduces to x2 ^ 0.313 which is infeasible since x2 has a

lower bound of 0.357. Therefore, since the nonconvexity has cut off part of the

feasible region and the master has no feasible region (for y=1), the global optimal

solution will not be found. But if x2 is eliminated, then the formulation is convex as

seen in (PB), and in this case the OA algorithm will converge to the global optimal

solution regardless of the initial value of y.

It is clear then, from this example, that the choice of decision and state variables

can have a definite effect when implementing the Outer-Approximation algorithm by

Duran and Grossmann (1986b). Clearly, the great advantage in the Equality-Relaxation

variant is that there is no need to select decision variables nor to eliminate

equations which as shown above can destroy the convexity of a problem.
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Example 2

A small planning problem will be presented to compare the computational

performance of the Equality-Relaxation algorithm with that of Generalized Benders

Decomposition and to provide further insight into the former algorithm. A summary

of the main steps in the GBD method is included in Appendix A.

Figure 2.a shows the selected superstructure which contains several alternatives for

producing product C from raw materials A and/or B (e.g. build plant I only, plants I

and III, plants I and II, none, etc.). The objective is to maximize profit given that

there is an upper bound on the production of C. Data for this problem are given in

Table 1. The model for the superstructure can be formulated as a MINLP problem as

shown below:

min z = 3.5 y1 + y" + 1.5 ym + 7.0 b' + b" + 1.2 A111 + 1.8 a - 11.0 c

s.t. b" - /M1 + aM) = 0

bnx - 1.2 //7<1 + am) = 0

c - 0.9 A = 0

-b + bl + b" + /,"' = 0

a -

b -

a"

a1"

c '.

b"

vK.

• a 1

- 5

- !

-

<

y"

1 - a

/ ^

5ym

1

5

V"

'" = o

0

< 0

< 0

G { 0 .

(P2)

a, a " , a m , b. b\ b". b"\ c*0

The above formulation contains 3 binary variables, 8 continuous variables, 2 nonlinear

equations, 3 linear equations, 3 logical constraints, and 2 upper bounds.
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The problem was solved with OA/ER using function linearizations in the master

problem and with the GBD algorithm. Two different starting points were used and in

both cases the optimal solution found corresponds to y={ 1,0,1} with objective

function z=-1.92 (103$/hr). The optimal solution is shown in Figure 2.b. Table 2 shows

the lower bounds predicted by the master problems of GBD and OA/ER; the * denotes

convergence to the optimal solution.

As can be seen, for both starting points, GBD required five iterations whereas

OA/ER required only two. Also note, as shown in Table 2 and Figure 3, that the

OA/ER lower bounds are significantly tighter than the GBD lower bounds. Finally, it is

interesting to see that the performance of the algorithms was unchanged by starting

with the optimal point y=(1,0,1).

Since there are only two nonlinear functions in the superstructure formulation, it is

worthwhile to examine the linearization and relaxation procedure used to derive the

master problem in OA/ER. The two starting points behave similarly so only y1=( 1,1,0)

will be presented in detail.

Referring back to the algorithm description (page 10), the first step is to choose the

initial point, y1=(1,1,0). By solving the NLP in step 2, the optimal objective function,

z(y1), was -1.766 (103$/hr) and the lagrange multipliers for the two nonlinear equations

(X1 and X2) were 5.47 and 5.27.

In step 3 the master (MILP) is formulated, but first the direction matrix T1 must be

lefined. Since both multipliers

yielding T1 h(x) ^ 0 as follows:

defined. Since both multipliers are positive, the diagonal elements are ti = t = 1

bu - /nil + a11) £ 0 (8)

bl" - 1.2 Ind + a111) £ 0

Therefore since the relaxed constraint set is convex, problem (P2) belongs to Class i.

Thus, the use of function linearizations in the master problem will guarantee the

global optimal solution. Figure 4 shows the nonlinear constraint bn-ln(1+aM)=0 from

the MINLP formulation and the resulting linearized inequalities which appeared in the

master problem at iterations 1 and 2.
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Example 3

The proposed Equality-Relaxation algorithm will be applied to the following

structural flowsheet optimization problem. The superstructure is shown in Figure 5

and the problem data is given in Table 3. It should be noted that the superstructure

of this example contains 16 basic alternative process schemes, each involving a

number of continuous decisions variables that must be optimized.

As can be seen in Figure 5, there are several alternatives to produce product C

from chemicals A and B. Two different feedstocks are available, both containing

reactants A and B and inert material D; feedstock F2 is more expensive and contains

less inerts than F1. The feed enters the process at low pressure and must be

compressed to a higher pressure where reaction is feasible; either single-stage or

two-stage compression with intermediate cooling can be selected. Unconverted raw

materials are recycled since the reactor conversion per pass is low. The recycle

stream must also be compressed because of pressure drops and the freedom in

selecting the pressure for the flash separation. Again a choice between single and

two-stage compression is available for the recycle stream. Another important choice

for the recycle is the purge rate which avoids the accumulation of inert D, and has

an impact on the overall conversion.

The exothermic gas phase reaction of A with B to produce C takes place

adiabatically and is favored by high pressure and low temperature. A choice between

a less expensive reactor of low conversion (R1) and an expensive reactor of high

conversion reactor (R2) must be made. The reactor effluent stream is then sent to a

flash separator where the lighter reactant and inert materials can be separated from

the heavier product C. The bottom stream is the product stream and must contain at

least 95% C; the market demand for this product is 86,400 kg-moles/day. The top

stream is recycled with a portion purged to avoid inert build-up in the recycle loop.

The MINLP formulation of the superstructure of Figure 5 can be modelled with 4

binary variables (see Figure 5), 128 continuous variables (81 nonlinear and 47 linear),

111 equations (56 nonlinear and 55 linear), and 12 linear inequalities (8 logical

constraints and 4 design specifications). The reactor was modelled with a simple

correlation for conversion, the compressors assuming adiabatic compression, and the
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flash with the ideal model. The formulation of equations, inequalities, and objective

function has been done according to the modelling techniques developed by Kocis

and Grossmann (1986). These techniques have the effect of tightening the MINLP

formulation and of providing greater consistency with the OA/ER algorithm. The

logical constraints for existence of units were defined in terms of splits fractions

with a lower bound of 6=0.01. This means that 99% of a stream is sent to the

existent unit and 1% to the nonexistent process unit. In this way, it is possible to

find the optimal operating conditions that nonexistent units and streams would take

on if they existed in the flowsheet configuration being optimized.

The MINLP problem was solved with OA/ER assuming that the problem belongs to

class 1; thus, function linearizations were used for the linear approximations in the

master problem. The global optimum is y*={ 1,0,1,0} with objective function (-profit),

z*=-2211.3 (103$/year). The optimal process configuration shown in Figure 6 consists

of the more expensive feedstock, single-stage feed and recycle compression, and

high conversion reactor. Table 4 shows some of the relevant continuous variables of

the optimal flowsheet.

Four starting points were investigated and each resulted in convergence to the

global optimal solution in just two iterations. This means that only 2 of the 16

flowsheets in the superstructure had to be optimized. NLP subproblems were solved

using the computer code MINOS / AUGMENTED (Murtagh and Saunders, 1980) on a

DEC-20. The MILP master problems were solved using the package MPSX on an

IBM-3083. Details of predicted lower bounds, initial points, and CPU times are given

in Table 5. It is interesting to note that in the first three starting points the

predicted lower bound from the master problem did not underestimate the optimal

nonlinear objective function. This is possibly due to the problem being of class 3,

while it is assumed to be of class 1 and where first order linearizations in the MILP

master problem fail to satisfy (4). However, in all the cases the sign of the lagrange

multipliers for the relaxed equalities remained unchanged.

It is important to note that the master problems of the first three initial points

predicted the optimal assignment of binary variables in the first iteration. This means

that each master provided a very good approximation of the original problem. Also,



20

earlier in the paper, the larger OA/ER master problem (as compared to the master of

GBD which contains only one inequality for each NLP subproblem solved) was

justified on the basis that the MILP master problems are easier to solve than NLP

subproblems. Table 5 clearly indicates that, for this example, this is the case since

the NLP solution comprised approximately 93% of the total CPU time. Thus, a

reduction in the number on NLPs which need to be solved will outweigh the

additional CPU time required to solve a larger MILP master problem.

Structural Sensitivity Analysis

From the results presented in the examples 2 and 3 an important question that

arises is the sensitivity of the optimal solution of the MINLP problem. The

sensitivity of the binary variables is particularly relevant because it can provide

some useful information on the sensitivity of the optimal flowsheet structure. As

will be shown below, this information can be easily obtained from the results of the

NLP subproblems.

Through the calculation of partial derivatives of the objective function value (z) with

respect to the binary variables (y), one can estimate the effect that replacing or

deleting a unit from the current flowsheet will have on the objective function. There

are two means of extracting this information from the NLP solution. If a reduced

gradient algorithm (e.g. MINOS/AUGMENTED) is used to solve the NLP subproblem

with yk constrained at a fixed value, then the sensitivity of a nonbasic binary variable

is simply given by its reduced gradient (dzldy.) k k. If the binary variable is basic or
' y '*a different NLP algorithm is used the sensitivity can be obtained through the

lagrangian,

Uxk,y,/>k) = cTy + f(xk) + (P
k)T (C xk - d + B y). (9)

where xk is the optimal solution of the NLP subproblem for fixed y\ and pk is the

optimal Kuhn-Tucker multiplier associated with the mixed-integer inequalities. Note

that (9) is identical to the cut used in the GBD method (see step 3, Appendix A).

From (9) it clearly follows that

Oz/dy) k k = OL/dy.) k k = c. + ( / ) T b (10)
y ,x y ,x
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where b. is the i- column of the matrix B. Thus, the change in the objective

function value which occurs when the binary variable y. is changed from y* to y. (e.g.

from 0 to 1 or vice versa) can be estimated as follows:

Az( = (dz/By)k k lyx - ykl (11)
y , *

where Ozldy.) is either given directly by the reduced gradient or otherwise
1 y ,x

calculated from equation (10). It should be noted that the predicted change Az in

general provides an overestimation of the change in the objective function value

incurred when the binary variable y* is switched to y..

This structural sensitivity analysis procedure was applied to example 3 at the

solution of two different NLP problems: yM0,0,1,1) which is suboptimal with

z(y1)=-1561.2f and y2=(1,0,1,0) which is the optimal value of the binary variables. Table

6 shows the predicted changes Az. when each i- component of the binary variables

in y1 and y2 take on opposite values.

First consider the data for y1=(0,0,1,1) and notice that Az l and Az4 are negative. This

indicates that if yi is set to one or if y4 is set to zero that there is potential for

decrease in the objective function z. Since the partial derivative in (11) implies that

the predicted change in z occurs with a change in only a single y, a switch in either

yi or y4 should be considered. Because Az l is much larger in magnitude, it is logical

to change yi from 0 to 1 yielding y=(1,0,1,1). As seen in Table 5 this actually

decreases the objective function from -1561.2 to -2205.3 which is quite close to the

global optimum solution. Interestingly, changing the values of both y1 and y4 to the

respective opposing values yields y=(1,0,1,0) which is indeed the optimal binary

assignment. It should be noted that the predicted values of Az. overestimate by a

considerable amount the actual improvement in the objective function. Also, as

shown in Table 6, for y2=(1,0,1,0) all terms Az. were positive. Physically this means

that sensitivity analysis at y# predicts an increase in the objective function value for

any change in y.

One has to keep in mind that although the above results for example 3 are
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encouraging, the structural analysis presented here has the limitations common to any

sensitivity analysis procedure. Therefore, caution must be exercised in its

interpretation.

Conclusions

A method for solving MINLP problems in which the binary variables appear linearly

and the continuous variables appear linearly/nonlinearly has been developed with

special attention given to the handling of nonlinear equality constraints. The proposed

Equality-Relaxation algorithm does not require algebraic or numerical elimination of

equations which is necessary with the Outer-Approximation algorithm proposed by

Duran and Grossmann (1986b). Thus, difficulties such as possible destruction of

convexity, loss of sparsity, and singularities are avoided. Theoretical properties for

the Equality-Relaxation algorithm were discussed, as well as sufficient requirements

on the nature of the nonlinear functions in the MINLP formulation for which the

algorithm is guaranteed to find the global optimal solution.

The computational performance of the OA/ER algorithm was demonstrated on a

small planning problem and on a larger flowsheet synthesis problem. Encouraging

results were obtained in that in the former the OA/ER performed much more

efficiently than the Generalized Benders Decomposition algorithm which is also

capable of handling nonlinear equality constraints. In the latter problem, regardless of

the initial point used, only two of the sixteen flowsheets embedded in the

superstructure had to be optimized to find the global solution. Finally, a simple

procedure for structural sensitivity analysis has been presented which can provide

useful insights for the problem of structural flowsheet optimization.
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APPENDIX A. Generalized Benders Decomposition Algorithm

GBD algorithm as applied to problem (P) and assuming feasible NLP subproblems is

presented below:

Step 1 Select initial binary assignment y\ set K=1.

Initialize upper bound zu=oo.

Step 2 Solve the NLP subproblem:

s.t. h(x) = 0

g(x) < 0 U - D

A x=a

C x < d - B yK

x G X

yielding z(yK). xK, and pK (multipliers for constraints Cx^d-ByK).

If z(yk)<zu, then set y*=y\ x*=x\ and zu=z(yk).

Step 3 Formulate the pseudo-integer master problem:

ZB
 = min

 /'B

s.t. //B Ss L(xk,y,/) k=-\,2....K U-2)

y G Y

where L(x\y./>k) = cTy • f(xk) + (/>k)T (C xk - d + B y).

Step 4 Solve the master problem (A-2) yielding z^ and y**1.

If z^=zu stop, solution is y", x*; else set K=K+1, go to Step 2.
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APPENDIX B. Derivation of Linear Approximations

The master problem is intended to provide a linear approximation which

overestimates the original MINLP feasible region and underestimates the objective

function. This wil l guarantee that the master solution wil l be a lower bound on the

MINLP solution. Deriving linear estimators which have the following property will

provide the desired approximation

( w V x - Wk
o <f(x) (ff-1)

T* h(x) < 0 => T* [Rk x - rk] < 0 (£-2)

gEQ(x) < 0 => Sk
Q x - sk

Q < 0 (fi-4)

If the nonlinear objective function term, f(x), is convex and if the nonlinear

constraints Tkh(x)^O and gEQ(x)^O are quasiconvex and g(N(x)£O are convex, then first-

order linearizations at xk wil l satisfy conditions (B-1HB-4) as shown below.

A first order Taylor series approximation of f(x) about the point xk is:

fix) * f{xk) + W(xk)T [x - xk] (5-5)

meaning that wk and wko are replaced by Vf(xk) and Vf(xk)T[xk]-f(xk)r respectively.

Similarly, the set of nonlinear constraints are approximated by:

h(x) « h(xk) + Vh(xk)T [x - xk] (B-6)

g(x) » g(xk) + Vg(xk)T [x - xk]

which with (B-2), (B-3), and (B-4) lead to

Rk = Vh(xk)T rk = Vh(xk)T [xk ] (B-7)

Sk = Vg(xk)T sk = Vg<xk)T [x k ] - g(xk)

A differentiable function f(x) is convex (Bazaraa and Shetty, 1979) if and only if the
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following condition is satisfied for any x:

f(x) £ f(x) + Vf(x)T [x-x]

When the coefficients wk, wk
o, S * , and sk are selected as stated above, this condition

IN IN

is clearly identical to (B-1) and (B-3) for f(x), g|N(x), respectively.

It was claimed that condition (B-2) and (B-4) would be satisfied by functionlinearizations for "rtiM^O and gEQ(x)<0 quasiconvex, a weaker restriction than

convexity. As shown in Mangasarian (1969), a differentiable function, h(x) (or gEQ(x)) is

quasiconvex if and only if one of the following equivalent statements hold:

if h(x) < h(x) then Vh(x)T [x-x] £ 0

if Vh(x)T [x-x] > 0 then h(x) > h(x)

Since the point of linearization (x" = xk) satisfies the nonlinear constraints h(x)=0, then

the first condition can be written as:

if h(x) < 0 then Vh(x)T [x-x] < 0

This is precisely the condition which must be satisfied by the linear approximation in

(B-2) (i.e. that any x which satisfies h(x)<0 also satisfies Vh()T)T [x-x] ^ 0). A similar

reasoning applies for g£Q(x)<0 in (B-4).
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APPENDIX C. Numerical Elimination and Loss of Sparsity

Given fixed values for the binary variables in the MINLP formulation, the objective

of this appendix is to compare the sparsity patterns in the full NLP (NLP problems

with no elimination) and reduced NLP problems (NLP problems with numerical

elimination of equations). Consider the incidence matrices in Figure C-1 for the

continuous variables in the full NLP and in the reduced NLP following numerical

elimination- The original NLP has nv continuous variables, n( inequalities, n£ equalities,

and 2 n simple lower and upper bounds. If r is the average number of variables

which appear in the equations and inequalities, it is easy to show that the number of

nonzero elements in the incidence matrix of the full NLP is given by:

NN2 = r X {nE + n,> • 2 X nv

By assuming that, due to the numerical elimination, the incidence matrix in the

reduced NLP is full except for simple bounds on the nv-ng decision variable, the

number of nonzero elements is given by:

NNZ = { l1V - V X { nE + 2 n , } + 2 C nv • n E ]

To illustrate the difference, assume that nv=1050 (the number of continuous

variables), n =n =1000 (number of inequalities and equalities), and r=5. Then the number

of nonzero elements in the full NLP will be 12,100 versus 150,100 in the reduced

NLP. Thus, in this example the number of nonzero elements is increased by more

than a factor of ten as a result of the numerical elimination of the equality

constraints.



Table 1. Problem Data of Example 2

OBJECTIVE FUNCTION

Investment and Operating Costs

FIXED COST VARIABLE COST

(103$/hr) (103$/ton product)

Process I 3.5 2.0

Process II 1.0 1.0

Process III 1.5 1.2

Raw Material Costs (103$) 1.8/ton A, $7.0/ton B

Revenue $13.0/ton C with maximum market demand = 1 ton/hr

Z = objective function = costs - revenue (103$/hr)

= (3.5y' + 2c) + (y"+b") + (1.5 y1" + 1.2 Z>m) + 1.8 a + 7.0 A1 - 13 c

=3 .5 / + y" + 1.5 y m + 1.8 a + 7.0 A1 + Z>M + 1.2 bm - 11.0 c

MASS BALANCES

Process II: b11 = ln(1 + a")

Process III: bm = 1.2 ln(1 + aMI)

Process I: c = 0.9 b

Split to II and III: a = a11 • am

Mixer before I: b = b1 + b11 + bIM

VARIABLE BOUNDS

Limit on process II: b11 ^ 5

Market demand for c: c ^ 1



Table 2. Lower bounds predicted by GBD and OA/ER in Example 2.

ITERATION

1 2 3 4 5

y1=<1,1,0) GBD -27.33 -23.83 -11.85 -2.72 -1.92 •

OA/ER -3.71 *

y1=(1,O,D GBD -16.86 -13.36 -11.85 -2.72 -1.92 •

OA/ER -3.98 *



Table 3. Flowsheet Synthesis Problem Data

FEEDSTOCK

F1

COMPOSITION

60% A

25% B

15% D (inert)

COSTS

$0.026/kg-mole

F2 65% A

30% B

5% D (inert)

$0.033/kg-mole

PRODUCT/BY-PRODUCT

Product P

Purge P
BY

£95% C

(<86,400 kg-mole/hr)

$0.25/kg-mole

$0.021/kg-mole

UTILITIES

Electricity

Heating (steam)

Cooling (water)

COSTS

$0.03/kw-hr

$8.0/106 kJ

$0.7/106 kJ

DESIGN SPECIFICATIONS

REACTOR Pressure (MPa)

Temperature (inlet, K)

Temperature (outlet, K)

FLASH SEPARATION

Pressure (MPa)

Temperature (K)

2.5 ^ PR ^ 15

423 < T IN <, 873

523 ^ TOUT £ 873

0.15 <. PF £ 15

300 <. TF <• 500



Table 4. Continuous Variables in Optimal Flowsheet

FLOWRATES

F2

P

PBV

307,940 kg-moles/day

86,400 kg-moles/day

53,020 kg-moles/day

REACTOR

PR (MPa)

TOUT ( K )

Conversion of B (per pass)

8.12

557.5

423.0

24.21%

FLASH SEPARATION

PF (MPa)

TF (K)

Overall Conversion of B

Purge Rate

7.614

411.5

91.21%

2.53%

UTILITIES

ELECTRICITY (kW)

Feed Compressor

Recycle Compressor

HEATING (steam, 109 kJ/year)

Product Stream

Purge Stream

COOLING (water, 109 kJ/year)

227.83

27.97

0.608

1.816

23.95



Table 5. OA/ER Results for Flowsheet Synthesis Test Problem.

ITERATION

NLP

z(yK>

MILP

1

2

{0,1,1,0}

{1,0,1,0}

-1541.6

-2211.3

CPU time (seconds): 141.4 (NLP: 134 MILP: 7.4)

-1980.

infeasible

1

2

{0,0,1,1}

{1,0,1,0}

-1561.2

-2211.3

CPU time (seconds): 153.8 (NLP: 147 MILP: 6.8)

-1979.4

infeasible

1

2

{1,0,1,1}

{1,0,1,0}

-2205.3

-2211.3

CPU time (seconds): 119.2 (NLP: 108 MILP: 7.2)

-2175.7

infeasible

1 {1,0.1.0} -2211.3

2 {1.0.1,1} -2205.3

CPU time (seconds): 119.2 (NLP: 108 MILP: 7.2)

-2206.3

infeasible



Table 6. Sensitivity Analysis Data for Example 3 Problem

(a) y1

i y,1 y,-/,1 Oz/3y,) ,

2 0 1

3 1 -1

4 1 -1

-2520.7

25.3

-1284.3

5.9

-2520.7

25.3

1284.3

-5.9

<b) y 2

y.-yf

-1

1

-1

1

i 2 2
y .x

-7079.5

25.2

-792.6

6.0

Az.

7079.5

25.2

792.6

6.0

3

4



Figure 1. MINLP Algorithm Schematic
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Figure 2. Superstructure and Solution for Problem (P2)
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Figure 3. Lower Bounds Predicted by GBD and OA/ER for y1=( 1,1,0)
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Figure 4. Linear Inequality Approximation to Nonlinear Equation
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Figure 5. Flowsheet Superstructure
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Figure 6. Optimal Process Flowsheet
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Figure C-1. Incidence Matrices for Full and Reduced NLP
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