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ABSTRACT

An efficient and rigorous drategy is presented for evaluating the first order sendtivity of
the optimal solution to changes in process parameters or process models. An algorithm that
consiructs a reduced Hessan in the null spéce of the equality condraints is used to solve
the sengtivity eguations, the resulting effort to solve these equations depends only on the
space of the decision (independent) variables. Consequently, large computational savings can
be realized because the solution procedure eliminates the need for obtaining second partial
derivatives with respect to tear (dependent) variables explicitly. The method is applied to
several flowsheeting examples in order to determine efficiently the sendtivity of the optimal

solution to parametric and physical property mode changes.
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INTRODUCTION

Process simulation has become a widely accepted technique for carrying out design and
cost estimation studies for chemical process flowsheets. Large scale process simulators are
characterized by the presence of numerous complex mathematical models that constitute their
functiona] core. Various process related properties such as vapor-liquid equilibrium constants,
kinetic rates etc. are computed based on the parameters residing within these models. In
reality, several model parameters such as product prices, or kinetic parameters may be
uncertain or may vary over a known range. Also, competing models may exist for physical
properties or unit operations with no single model being accurate over the eatire range of
interest. The predicted results from a simulation may therefore be subjgct to uncertainty,
due to imprecise modeling of the process. Also, trends in changing the optimal solution are

often of interest with variations in fixed parameters.

Recent developments in the area of process optimization have provided us with the ability
to implement simultaneous simulation and optimization techniques using large—scale process
simulators (Berna et a/., 1980; Jirapongphan et a/., 1980; Biegler & Hughes, 1982). However,
because of the uncertainties and possible variations involved in process parameters or models,
an optimal solution gained from a deterministic optimization problem may not, by itself, be
catirely useful, Therefore, as a first step, poswpﬁmaliq analysis becomes necessary (0
ascertain quantitatively how parametric variations and mc;del selection affect the opumal

results obtained under nominal conditions.

In the past, the parametric sensitivity problem has been addressed for simulauon by
several researchers. Atherton (Atherton et a/., 1975) proposed a statistical approach to
determine sensitivity coefficients to measure the influence of uncertainties in model
parameters on the solutions obtained from incorporating a particular model. In the context

of flowsheet simulation, Volin and Ostrovskiy developed an approach based on setuing up




and solving an adjoint flowsheet system to the nominal problem

(Volin and Ostrovskiy, 1981). A more direct approach to determine the sensitivities of

flowsheet variables to parametric variations utilizing the block Jacobians of unit modules was

presented recently (Gallagher and Kramer, 1984). Ther approach involves constructing the
parametric derivative matrix by forward difference perturbations in a manner that resembles
the chainruling procedure employed in other sSmulation and optimization studies

(Stadtherr and Chen, 1983; Shivaram and Biegler, 1983).

'y/ln this paper we present an efficient and rigorous strategy for evaluating the first order
sengtivity of the optimal solution to changes in process parameters or models. As a first
step we partition the process _variables into two sets, the independent (decision) variables, x
and the dependent (tear) var-iabla y.  When the optimum of the nominal problem satisfies
the second order sufficiency conditions (local optimality), the sendtivity results for a
parametric nonlinear programming problem are wel known if the gradients of the active
congraints are linearly independent and strict complementary  slackness  holds
(Fiacco and McCormick, 1968; Fiacco, 1976). In Fiacco's formulation, the application of
sengtivity analysis to determine the first order senstivity of the optimal solution requires
the Hessan of the Lagrange function in the combined space of the independent and
dependent vari:ahbles The computational effort involved in building the Hessan can become
prohibitively large even for a moderately sized flowsheet with a combined <x + <>
dimensionality in the range 20-50. In this paper, we initially develop a reduced Hessan
decomposition algorithm to solve the sensitivity equations for parametric variations. In this
approach, flowsheet perturbations, most frequently employed in generating second derivative
information for constructing the Hessan, need be performed only in the space of decision
variables. Consequently, significant computational savings are realized in the evaluation of the

sensitivity of the optimum to parametric variations. The procedure yields sensitivity
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infonnation on all optimal variables but the equality constraint multipliers.

We then develop the theory for analyzing the sendtivity of the optimum to model
variations, The problem -is formulated as computation of a Newton step in the space of the
new modd and the reaulting set of linear equations is solved to determine the changes in
the variables. In parald with the parameric sendtivity problem, the reduced Hessan
drategy can be applied for solving the linear sysem for modd senstivity. However, IUnIike
the parameric case where the active set is retained under first order variations in the |
parameters, the modél sengtivity problem mus take into account changes in the active set
due to modd changes. To this end, we develop a novel procedure that may rigoroudy
require solving a Mixed Integer Nonlinear Programming (MINLP) problem, although smpler

approaches can be used and are demonstrated.

We illugsrate the reduced Hesdan procedure and the modd sensitivity approach with
smple analytical examples. In addition, several flowsheet optimization problems are

consdered in order to demonsrate the effectiveness of these approaches.

PARAMETRIC SENSITIVITY ANALYSIS

Condder the parameter based flowsheet optimization problem:

-

P(p): Min d(z,0°)
2
s.t gizp°) * O
h(zp?) = 0 @)
where
p = input parameter for base case solution

N
I

process variable, z = {;}

<fr - objective function
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g - design inequality constraint

h - eguality (tear) congraint

Decision variables, x, are usually adjusted by the desgner and can include equipment sizes
or temperatures and pressures in the flowsheet Dependent variables, yo can be computed
from equality congraints once the decison variables are specified. These include the
flowrates, pressure and enthalpy of the recycle streams in the flowsheet as wdl as any other
variable that is specified explicitly by an equation. For convenience these are also referred

to as tear variables.

At the optimal solution, when the KKT conditions are satisfied we have the following

relations:
VA (z°,p°) » a°V~(z°p°) « v°VIKZ°.p°®) =0
ugizzp’) = 0, a * 0, <2(r’.p° £ 0
Mre.p°) = 0 @
where

Z - base case optimal solution( (x‘j,(/")l

a°®,v°® - KKT multipliers at base case optimum

This result may be interpreted to mean that for the supplied input parameters_ p°. the
variable vector, z°, is a local minimum of P(p°) with the corresponding KKT multipliers
u°,v®. - In the context of flowsheet optimization the input parameter vector. p°. can
include a subset of internal process parameters (eg. Kinetic rate constant terms) and
externally supplied parameters (eg. feed flowrates) that are utilized for ‘simulating the

constituent process modules.




The parametric sensitivity problem addressed in this paper is to obtain first order changes in
the optimal process variables and the KKT multipliers with respect to the parameters, p.
The development of the mathematical formulation for sensitivity analysis is based on the
classical Implicit Function Theorem (Fiacco,1976; Luenberger,1973). We start with the

\

assumption that at the local minimum, z°, the following conditions are satisfied:
1. the functions defining P(p°®) are continuously differentiable in (2, p) in a
neighborhood of (z°,p°)

2. the constraint gradients are linearly independent at z° and, consequently, Strict
Complementary Slackness holds for P(p°) at z° with unique KKT multipliers, u®
and v° and

3. the Second Order Sufficiency conditions are met (cf. Appendix I)

From the KKT conditions at the optimum, z°, we have:

V (z°,p°) = 0
9,(z°p%) =0
mz°,p°) =0 (3)

where

L - Lagrange function

9, - active inequality constraint

In order to satisfy these conditions for a perturbation, Ap, in the parameter p, about p°,

we can find the first order corrections by noting that:

d (V,L(z°,p°) =V _L° dz + Vsz" dp=0
Vzg: dz + Vpg: dp =0 4)

dh = Vo dz+ YV, p° dp =0

dgA




Rearranging these expressions results in the linear System of equations.

V. LTe

VI*
\/

In terms of the decison and

VvV LTo

Xp
VJ/PLTo
VI°
VTO

If Strict Complementary Sackness holds the active set identified for

V&t Vel VA

Vg* o 0
v o 0

Vixl’ ny'-"lV:
wxt Vg \/:

T7’\«T0

° 0
(()) VIT

Vi on
Vyh'
0
0

tear variables Eg. 5 can be reformulated in the form:

V_Ffo

To
Vpu

T
Vol «

()

(6)

the base optimal

solution is retained within an € - neighborhood of the nominal parameters (Fiacco, 1976).

The derivative vector on the right side of Eq, 6 carries the information

regarding the

directional derivatives of the decisions and tears and the KKT multipliers at the optimum.

This information can be used to calculate first order deviations in the optima variable

am

vector corresponding to a change, Ap, in the parameters, p. Therefore, in the neighborhood

of the base case optimum we have (for CO = x</

For flowsheeting applications, the gradients of the Lagrange function, L and constraints in

where

= co® + V'™ Ap

& - modified optimal solution vector

V)

()




Eg. 6 are usualy generated by a numerical approximation so that  (for \J/
= V)(L, AV Ja, h)

Vi + ap) - V(o?)

e =
v Px\b ap, <>

Alternatively, a response to a specified change in a linear combination of the parameters
Ap, can be made by computing the directional derivatives for x, ¢ aand v. From

Eg. 6 and Eg. 7, we have

V2L |ACY] = VALAT,00T Aph= -V pVL )T Ap = -A(VL) : ()]
e \ [ .
where

VL=[VxL VL g, ]

The lagz tem on the right hand dSde can be calculated by the finite difference

approximation:

VUp ® + €Ap)- VUD)

A(VL®) = . (10)

4

Of course, we note that the first order sensitivities are necessarily accurate only for a small
€Ap. In addition, in calculating derivatives using finite difference formulae, there are a
number of factors that contribute to errors in these directional derivatives and these must

be carefully controlled.

In order to solve Eg. 9 we need to construct the coefficient matrix consigting of first and
second partial terms. The optimization of the parametric base case flowsheet readily supplies

the gradient information VAL, VAL (for ~ -=. g* h). In addition we require the




Hessan matrix, B, given by:

B Vul..’ nyL"
T v e voae (1P

yx yy*
Unless the second derivatives are inexpensive to calculate and an actual congrained Newton
method is used, the B matrix requires some effort to calculate. Many gandard nonlinear
programming algorithms approximate such matrices of second partials with quasi-Newton
formulae. While these enhance the efficiency of the optimization, quasi-Newton formulae

for B are inappropriate for sengtivity analysis. A justification for requiring the exact B

matrix is given in Appendix 1.

REDUCED HESSIAN EVALUATION

The motivation for congructing a Hessan in the reduced space of decision variables comes
from recognizing that the dimensionality of the decison variables, x is often much smaller
than that of the tear variables, y. Consequently, large savings in computations can be
achieved by decomposing the linear sysem in Egq. 9 so that the decision and tear variables
are decoupled. The smaller set of decison variable deviations can be solved independently
and can then be used to solve for the larger set of tear variable deviations. By working in
the reduced g&ce a smaller matrix is congtructed by pérturbing X and y smultaneoudy so

that the linearizations of the equality constraints are always specified

The details of this decomposition are presented in Appendix Il1. Using block Gaussan

elimination on the first two rows of Eq. 9. the reﬂjlting linear system is given by

[ 2] 1 0 E 0] [aw ]
) o I L M AV
= - ’ -1 (12)
‘ 0 0 ‘H q AX°
e 0 0 g O Atte




where

I = ldentity Matrix

E = - A = CWh*)* V,AT®

L= (V) (V,,L° -V, L° b

M = (Vyh")“ Vyoz

Q=*xX ~V v v*

H = vyxk® = Vgl (VA7) Vo870 = Vone (Vh°) (V,, L0V, LoA)

a= (VA" an

e = 49° -V g,° (V A)" an®

b = (Vyh")" A(Vy].") - (Vyh")" Vny" (Vyhr")-i Ah®

f = A(VxL®) - nyL" (vyh“)" AR® - V h° (vyn")" A(Vy!-') +
Vet (G pot v, Le (vyn“)-' N

The effective reduced space linear system of equations can then be written as

= - (13
e QT 0 Att°

-

The reduced matrix, H can be constructed by simultaneoudly perturbing the decision and tear

variables accordingly as ( AX. -(7yh")\V;h AX ) (cf. Appendix 111 for details).

The number of flowsheet evaluations, NFE. required for the reduced form in Eq. 13 is

given by the sum:

NFE, =(n, (0, + 1) /2)+ 3, +2 (14)

where
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Ny - number of independent (decision) variables

In the combined space' of the decison and tear variables the corresponding number  of

flowsheet evaluations required, NFE,, for Eqg. 9 is:

NFE2= ((na +n )(n +n,+1)/2) +1 (15
where ' * * )

Hy - number of dependent (tear) variables

The savings in the numbe of flowsheet evaluations compared with that required for

complete Hessan evaluation is thus
NFE, - NFE, =V* (n2+2/2(n-1)en,)-2n,-1 (16)

It can be seen immediatey that the savings in the number of flowsheet evaluations is
directly proportional to the square of the dimension of the dependent variables n® By
diminating the need for developing explicit second partial information in the tear variable
space, the reduced Hessian procedure significantly decreases the computational overhead for
sengitivity analysis. The decision space second partials can be obtained directly by introducing

corresponding ?Iowsheet perturbations. Sensitivities for x and a are readily obtained; those

for y are backed out from E Ax. The only information not obtained from Eg. 12 are

sengitivities for v. ‘Normally sensitivities for equality congrained multipliers are not as

important as those for state variables.

To illustrate the reduced Hessan sendtivity approach* we first condder a small analytical

example.
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Example 1: Parametric Sensitivity Problem

Consider the following minimization problem:
Min @: x?+y?ey?
xl'yl'yz
s.t hl=6x|*3y‘+2y2-a‘=0

hy=0,x +y -y,-1=0

The problem includes one independent variable, L and two dependent variables, y, and y, .
The terms ¢, and a, correspond to the parameters. We wish to analyze the sensitivity of
the optimum to perturbations in these parameters about their nominal values, which in this

case may betakenas.al" = 6.0 and az" =10

The Lagrange function for this problem can be written as:
L= x"+y 12""'22 + v, (6x,+3y,+2y,6) + v, &*y,7y,-1
The base case optimum can be found to be at (x,°.y °.y,°) = (0.7449, 0.4082. 0.1531) with

the associated KKT multipliers (v,°, v,°) = (-0.2245, -0.1429). Also we can evaluate the

following terms

vaes[6 a°]=[6 1]
V’lh°§[3 1]

V’2h° s[ 2 -1]

To solve for the perturbed optimum due to a perturbation, A & Ax,, un the
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parameters, & and «, about their nominal values we use the reduced Hessian strategy.
Using this approach (cf. Appendix III for details) the linear system to detemine the

deviations in the decision space becomes:

Hax =-f
where
H=[ 784 ]

f= [ Aa, v,° - 0.88 Acr, + 0.56 Ae, X ° ]

if we assume Ax = 0.1 and Ax, = 0.05, the corresponding deviations in the variable, X,
can be found to be Ax = 9.4752 x 10°. The parametric sensitivity analysis predicts the

independent variable value at the perturbed optimum to be:

x:‘ =x,° + Ax, = 0.7544

Using the information regarding the sensitivity of the independent variable, we can solve for

corresponding sensitivities of the dependent variables, Ay, and Ay., so that

=y, °+Ay, = 0.4082 - 0.0101 = 0.3981

0.1531 + 0.0367 = 0.1898

¥,°*ay,

Therefore perturbed optimum with o™ =61and a* = 105 is found to be at

X, yM. v)) = (0.7544, 0.3981, 0.1898)

The true optimum for the same set of parameter values lies at

&' y,% ¥, = (0.7540, 0.3985, 0.1902)
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SENSITIVITY ANALYSIS FOR MODEL VARIATIONS

Usually, the process optimum is sensitive not just to uncertain or variable process
parameters but to the choice of the process modes as well. Often the process models, such
as those describing unit operations (Stewart, 1983, Klein 1983) or physical properties
(O'Conndl, 1983, Grens, 1983) can be difficult and expensive to solve. For optimization as
well as for smulation, more complicated models are frequently needed because of the

accuracy they provide.

A frequently asked' question, that is often problem dependent, regards which models are
accurate yet simple enough for process optimization. For process smulation this question is
often resolved by running competing models side by side. In fact, for more efficient
operation, smple models are 'often embedded within smulators to speed up the solution of
‘more rigorous models. This is especially helpful for physical prbperty calculations (Chimowitz
e al., 1983 Bryan and Grens, 1983). For process optimization the use of competing models
may lead to very different results even though solutions of smulation problems may be
similar. On the other hand, the nature of the optimization problem may lead two competing _
and functionally different models to identify the same active constraint set and perhaps even

the same values for the decision variables as the optimal ones.

In this paper"we develop a drategy for evaluating the senstivity of the optimal solution
to the choice of the process mode (eg. thermodynamic and/or unit 6perations moded). We
note that this problem is conceptually different from parametric sendtivity because process
relationships and not parameters are being changed. Consequently, the methods discussed in
the first part cannot be applied directly to this problem. Ingead we c;onsider the firs order
sengitivity (or direction) if one garts from the optimum of Model | and takes a Newton
step for the optimality conditions in the space of Modd Il. Using this concept we develop

a dightly different drategy that allows application of some features of Part I, in particular..
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the reduced Hessian procedure.

Consder the model based optimization problem:

min @'(x.y.k)
XyM

st gx.yM) £ 0
tf(x.yM) = 0 17)
r(x.ygk) = fe- K(xy) =0

where
fr - objective function
¢ - inequality constraint
tt - equality (tear) constraint
fe - physical (model based) property

K - model for property evaluation

The property, fe, in Eq. 17 is estimated by usng Model | given by, fe = K(xy). At the

optimum with respect to Model I, (X j/i. U V. Kg). from the KKT conditions we have:

V,L'kx .y .k) =0
-~ . VyL'(x,.yl.fe,):o
Vhl..'(xl.yl.fe,) =0
g, (x4 fe)=0
Flxymy) = 0 | (18)
where
V - Lagrange function

g - active inequality constraint
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Once again, the first order corrections to satisfy these conditions corresponding to a small

perturbation, Ak, in the property, k, about k., can be found from:

d (VXL.(xl'yl'kl» = VXXLI. dx + vxny' dy + vlkLl' de =0

d (VL0900 = VL dx + VL0 dy + Vol db = 0

U
d (VkL'(xl.yl.kl)) = kal.l' dx + Vhyl.l' dy + kaLl' de = 0

4o, = Vg, 0+ Vyg, 8y + Vg dk = 0 a9

dn = Vh, dx + Vi dy + Vit dk = 0

df =-V,Kdx -V Kdy+Ide=0

If the competing model (Model II) is given by, & = K'(x,y), then we are interested in
finding out how the decision variables and the activé inequalities are modified with respect
to the new model. The sensitivity relationships in Eq. 19 have been expressed explicitly in
terms of the model equations. Since, the property evaluated by the model, k, is essentially a
function of the decision and tear variables, this system can be first transformed to a form
that implicitly accounts for the presence of the model This proves advantageous when the
dimension of the model variable, k, is large, as is almost always the case with stage-wise
unit operations such as distillation involving multicomponent systems. The equivalent problem

can be formulated as:

min ¢ (x, y. K(x.y))
x4

s.t. g (x y, Kxy) <0
h(x, y Kix.g)) = 0 (20)

For Model I. K(x.y), the optimum has been assumed to be at ¥ = (x, y,). However the
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KKT conditions at the same point may not be satisfied with resgpect to Modd Il

fe = K*(xy), Le.

[V, L )
Vgl. (X,. Yy Kix™)
Oal%x- Vi K'(XA)}
ttx,. Y. K'OtAr))

where

"0 (21)

L g. h - Lagrange function, inequality éonstrajnt and equality constraint

defined wor.L Modd 11,

Let us assume that the optimum with respect to Modd Il is at %= (x2. ¥,). |If we choose

a consstent active set (we will discuss this point later) we can write a first order correction

for the optimality conditions with respect to Model IL Defining a Newton step in the space

of Modd |l leads to:

VL]l [ ] [Ved Vb Vada
\/* ~ Vl - vnyl vnyl vyg Al
gu gAI vxgar vy‘grln 0
h, A v\ o

which gives a first order correction for the optimal solution

equation we have:

] [Tk Yuh Vit Vb
V. |. Yokt Vgt Vg Vi,
~A, o Vi VygAf 0 0

b, (VAT VAT O 0

Ay
=0 22)
AU

Av

for Modd II. Rearranging this

P
Ay

(23)
AU

AU
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The gradients required to solve Eq. 23 are now evaluated with respect to Modd Il, at the

optimal solution for Modd 1.

In developing the above reationships we first consder the case where the same active set
with respect to Model | has been assumed to be retained at the optimum for Modél IL
The KKT muliplier” GJ. , corresponding to an active inequality, g, » therefore equals u”
provided 9, is active fof Mode Il. If this is true, the Aa obtained from solving Eq. 23 is
such that itj + Aa remains positive. Once again the reduced Hessan srategy, discussed
previoudy, can be applied to. the linear sysem in Eq. 23 so that the corrections for
X and a are obtained first; the senstivity for y can be computed using the Ax information.

We now consider an analytical example to demonstrate this approach.

Example 2: Model Sensitivity Problem Under Active Set Retention

Condgder the following mode based optimization problem:

Min <f>: 4 (x - 47 + 9 (k - S
X,k
sL Ow. K *5x-232£0
| g k-8£0
k £0;x£0

The variable, k, represents the model based property in this problem. To illustrate the model
senéitivity approach, we consider two simple defining equations for the property, k, defined
in terms of the variable, X :

Modd I: k-02x=0

Modd Il: k - e = 0
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We first compute the optimum for this problem with respect to Model I. The optimal

solution lies at

(x,. k. ul, v) = (4, 3.2, 7.8545, 24.5455 )

The KKT multiplier, uj, corresponds to the active inequality constraint, g,. at the optimum
with respect to Model I; it can be directly seen that the inequality constraint, g, is inactive
at this point so that the corresponding KKT multiplier, ul = 0. Our objective is to
compute the sensitivity of the optimal solution when the defining model for k is changed

from Model I to Model II.

If we assume that the active set determined for the optimum with respect to Model I is
retained at the optimum for Model II, we can write the Lagrange function with respect to

Model II at z as

L=4(x-42+9(k-=-5+u(k+5x-232+v (k- e3¢

By taking a Newton step in order to determine the f_irst order correction to the problem

variables, the resulting linear system becomes:

[ -7.8567 0 5 -1.7106 J[ ax ] [ —2.7148 ]
0 18 1 1 Ak 0
5 1 0 0 ad | | oo
-1.7106 1 0 0 Il av | | -13295 |

The solution to this system predicts the following corrections for the variables and the KKT
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multipliers:

Ax = —0.19813 ; Ak = 0.9906

Au' = -43727 ; Av = -13.4584

The predicted optimal solution with respect to Model II therefore becomes:

x, k, u;. v,) = (3.8019, 4.1906, 3.4818, 11.0871)

If we carry out the optimization directly with respect to Model II we find that the true

optimum lies at

x, k, u;. v,) = (3.8, 4.2, 3.7109, 10.6891)

The assumed active set remains consistent under the model change as evidenced by the value
of the KKT multiplier, u'. Fig. 1 gives a physical picture of the change in the optimal
solution from Model I to Model II; both the solutions, A and B, lie on the same active

constraint, 9,

MODEL SENSITIVITY ANALYSIS UNDER ACTIVE SET VARIATIONS

In general, the active set detcrmixied for Model I need not be retained at the modified
optimum for Model II. When this occurs the correct active set is not known a prrori o
construct the sensitivity relationships. If the Newton step from the Model I optimum. 7. is
small we can assume that the active set can be determined by first oifder correcuons of x,

y and w. Thus we have,

V,LTdv) ax + nyL(I'.ﬁ.vl) Ay + V L(ZTuv) =0
Vny(Z‘.&.v,) Ax + Vny(r.&.vl) Ay + Vyl.(!' uwv) =0




V,9'@) AX « VAT(r) Ay » ¢(T) 2 0 (24)
V,/?T(r) AX  VA/?T(r) Ay + /HD = 0
U=U+AUE£0; v=v;+Av

(U + Au) ( V,5r'(D Ax VAF) Ay * &(F) ) =0

which can be found from the following quadratic program, usng z = {;}

Min V<t>\T) AZ « \AZ' VL (TSLy,) AZ
st gt + Vg'<r>AZ<L 0
HZ) + VIZ'F) Az = 0 ()

u=ae*Au; Vv>3v *Av

We assume that $<F) has linearly independent columns because this guarantees drict

complementary dackness for the QP solution. Le.

a (g« VIr'(F) Az) = 0
implies
for  ¢iT) + Vg’ (T) Az=0. a>0 (26)
for g(T) + VAT(F) Az< 0. a=0

However the term. & in VAL is unknown. This gives rise to two different cases.

Case A Assume & = & and solve the QP to determine u. |If a f o for dl a * 0
then we have chosen a consistent active set This is the same stuation referred to in the

previous section. If this fails, we need to set some of the éj to zero and try again.

Case B. In this case, we assume all the a = 0. In doing so, we merely change the garting
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point for the Newton step and let the QP select a that determine the active set This QP is

solvable if and only if

o(T) « Vg'(Y) Ar £ 0 s fessble
and

AZ" VZ.0-0wv,) Az = - Ar" V<t>(T)
where

ArT Vpa(D=0; Az VMD =0 - (27)

Very often. Case A provides a simple enough way to estimate the correct active set. A
more rigorous way of choosing the active set is given by a Mixed Integer Nonlinear
Programming (MINLP) formulation in Appendix 1V. To see how the active set changes as

a result of model variations consider a small modification of the last example.

Example 3: Model Sensitivity under Active Set Variation

Let us once again consider the model based minimization problem:
Min $ 4 (x - 4%« 9 (k - 57
x*k
SL O kKe5x-232£0
- g k-35£0.
k*0;x*0

This problem is similar to the one previoudy considered for model sensitivity; however, the
upper bound for the model based property, k, has been reduced r@lting in a change for
the inequality cbhstraint, g Once again we wish to study the first order correction to the
optimal solution in going from the optimum with respect to Model I, k - 02 x* = 0. to

the optimum with respect to Mode I, k - e*¥**~ g
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We firs assume the case when the active set is retained The solution to this case, as
obtained in Example 1, clearly makes g, infeasble (Fig. 2). By setting @' = 0 and
introducing g, into the senstivity equation, with 4°> = Oy (Case B) we develop the modified

sysem for the senstivity reationship:

[ -78567 0 0 17106 I Ax ] [ 410873 ]
0 18 1 1 Ak 7.8545
0 1 0 0 AU? o -0.3

| -17106 1 0 0 Av L3295

The perturbed optimum based on the first order correction is found to be:

(2. ko U Vo) = (33982, 35, 242357, 17643)

The true optimum with respect to Model 11 is at

(X2 k2. U Vv5) = (33172, 35. 311325 -4.1324)

It may be noted that the constraint g remains feasible; however the mode change

introduces a chapge in the active set

For illustration, the above examples use a full Hessan approach for the Newton steps. We
note that the reduced Hessan strategy can be applied in a graightforward manner for model
sengitivity analysis. In the following pro’cess'®<ampla a reduced; Hessan approach is

employed for both parametric and modd sensitivity analyss.
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A Simple Flash Recycle Flowsheet

A smple flash recycle problem flowsheet serves to demondrate the application of the
reduced Hessian drategy for parametric sensitivity and the mode sensitivity approach. The
.flowsheet is presented in Fig. 3. A light hydrocarbon feed is mixed with recycled bottoms
and flashed adiabatically. The vapor is removed as a product and the liquid is split into a
bottoms product and the recycle, which is pumped back to the feed. The problem
specifications are presented in Table. L The process was optimized using the smulator SPAD

from the Univerdity of Wisconsin-Madison on a DEC-20 computer.

Thé flowsheet includes two decision \;ariabla the splitter ratio and the presure in the
flash. The six component flowrates and specific enthalpy of the recycle sream together
congtitute the seven tear variables for t‘he problem. Since the outlet pressure of the pump is
pr efixed in this case the recycle sream pressure does not figure in the set of tear variables.
The abjective function for the monotonic optimization problem corresponds to the flowrate
of the lightet component in the overheads from the flash; for the nonlinear case a

predetermined combination of the component flows in the flash overheads was maximized.

For the parametric sengtivity study, the flowrates of the components in the hydrocarbon
feed dream were perturbed about their nominal values. The results of the parametric
sengitivity analyss for both monotonic and nonlinear optimization problems are shown in

Table. II.

In the modd sendtivity case, two competing models were employed to compute the
physical properties for vapor-liquid equilibrium in fhe flash: the Ideal Raoulfs law model
and the Ghéo—Seader model. The senditivity of the Ideal Optimum on applying a first order
correction procedure with respect to the Cbao-Seader modd Wés first studied for both
monotonic as well as nonlinear abjectives. Going from the Chao-Seader optimum to the

ideal Raoulfs Law modd was considered next
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The moded sendtivity results are given in Table IIl. For the monotonic objective function,
the gplitter ratio and the flash pressure day at their respective lower bounds regardless of
the model It may be noted that the active set is retained and the KKT multipliers
corresponding to the active bounds, u = Uj+Au, remain positive. However, in going from the
Raoult's Law Model to the Chao-Seader modd, the nonlinear objective function gives rise to
the case in which the active set is no longer retained; in this case the problem is solved by
setting all @ =0 and the solution to the senstivity equation gives a feasible move for the
decison variables. The requirement for satisfying strict complementarity makes the modified
KKT multipliers for the inequality constraints, a' = a® = 0 since both decisons are no
longer at their bounds. Note- however, that since the congraint corresponding to the
decison variable bound happens to be linear, the reduced Hessan is not affected in the
above case. Furthermore the true optimum for the Chao-Seader model makes the congraint,

X, £ 0.8, active. We will comment on this after consdering the following flowsheet example.

Monochlorobenzene Separation Flowsheet

This problem is adapted from an example in the -F_L_C)WTRAN manual (Fig. 1.1. Seader et
al.y, 1977). The flowsheet for this problem is shown in Fi(_“:l_. 4 A mixture of HC1, Benzene
and Monochlo[‘obenzene is fed to the separation process, benzene and monochlo-robenzene
are separated in a digtillation colurﬁh and a part of the bottoms from this column is- split as
recycle and fed to the absorber. The process was optimized using the FLOWTRAN smulator
on a VA)_(-11/780. The base case feed flows (parameters) and the process modes used for

computing vapor-ligiud equilibrium properties are given in Table. IV.

Once again for the parametric case a variation in the feed was introduced at the base case
optimum. The problem involves 6 decision variables and 5 tear variables The problem was
solved using the reduced Hessan procedure; the results of the parametric sendtivity analyss

are presented in Table. V. The number of flowsheet evaluations in the reduced Hessan case
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with 6 decision variables is 41 and the corresponding CPU time required is 250.1 seconds. A
full Hessian computation for the same problem requires 67 flowsheet evaluations
corresponding to an equivalent time consumption of 408.7, both times computed on a VAX-
11/780. The reduction in time consumption for sensitivity analysis from the reduced Hessian

strategy is of the order of 39% compared with full Hessian evaluation.

Sensitivity of the optimal solution to a variation in process model was studied by changing '
the thermodynamic model that evaluates the liquid phase activity coefficients for the
components. The Ideal Solution option in FLOWTRAN was used as the base case model
(Model I) to compute this property; the Regular Solution Model was chosen as the
alternative model (Model II) to evaluate the activity coeff_icients. The results of the model
sensitivity analysis are shown in Table. VI. In solving the sensitivity equations using the
reduced Hessian strategy, the active set determined for the base case optimum has been
assumed to be retained. The results indicate that this active set /s retained at the optimal
solution determined from a first order correction. However, at the true flowsheet optimum
corresponding to Model II (Regular Solution) we have a different active set with the
Absorber Input Temperature, X, reaching its lower bound. The total number of flowsheet
evaluations required in this case is 52 corresponding to a CPU time requirement of 317.2
seconds whera;a full Hessian computation for model sensitivity analysis would require 78
flowsheet evaluations with an equivalent time requirement of 475.8 seconds; the savings in

this case is of the order of 33%.

It may be noted that the number of tear variables in this flowsheet is in fact less than
the number of recycle variables and hence thé savings in computation time is limited. In
geaneral the number of tear variables exceeds the number of decision variables by a factor
of 3 or 4 which makes the reduced Hessian procedure computationally very attractive for

sensitivity analysis.
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The treatment of model sensitivity as a Newton step in the space:of the new model uses
first order linearization in the decisions and tears, about the base case optimum to satisfy
the KKT conditions at the modified optimal solution. Tﬁe accuracy of this linearization
dictates the prediction of the correct active set for the modified optimum. The above
examples indicate that, in general, the model sensitivity algorithm performs well in
determining the changes in the optimal solution to model variations. - If the objective
fum_:tion or the constraint happens to be highly nonlinear thean the linearization may not be
sufficient to predict the change in the actiire set accurately. This can be seen from the
nonlinear objective function problem (Raoult's Law to Chao-Seader), for the simple flash
flowsheet. The linearization also controls the trend in the predicted change for a process
variable; note that in the monochlorobenzene separation problem the actual change in the
absorber input temperature, X, is in a direction opposite to the one obtained from model
sensitivity analysis. Even in this case, the approach gives the right predictions for sensitivity

directions for all other decision variables.

CONCLUSIONS

Significant computational savings are realized by applying the reduced Hessian algorithm
to determine the sensitivity of an optimal solution of a process flowsheet o parametric
variations. T;e reduced Hessian strategy, which yields sensitivity information on all but the
equality constraint multipliers, performs the finite difference perturbations required for
constructing the Hessian only in the space of the independent (decision) vanables. The
reduction in the number of flowsheet evaluations is seen to be proportional to the square of
the number of the dependent (tear) variables.. The procedure is very efficient especially for

sensitivity analysis of medium to large sized flowsheets that involve multiple components and

recycle loops.

The sensitivity of the optimal solution to changes in process models has been trcated as a
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Newton step in the space of the new model This results in a linear sysem of equations
smilar to the one obtained for parametric sengtivity and allows the reduced Hessan
procedure to be directl.y extended for modd sensitivity analyss. The problem of determining
the correct active set can be dealt with rigoroudy by formulating and solving a Mixed
Integer Nonlinear Program (MINLP). From limited calculations with a smple flash recycle
flowsheet and a monochlorobenzene separation flowsheet, the mode sendtivity approach

seems to perform well in predicting the changes in the flowsheet optimum to mode

variations.

ol
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APPENDIX |

The following congtraint conditions are assumed to be satisfied at a local minimum in
developing the bads for sendtivity analyss of the optimum to parametric and mode
variations (Edahl, 1982).

Linear Independence of Constraint Gradients

At z°, a feasble solution to P(p°), the gradients of the binding congraints form a

Iinea_rly independent set, Le

Zuj ng(z".p') + |2, Va@ed7°) =0

andgl.:O = ui:vl.:Oforallij

Strict Complementary Slackness [ SCS ]

For z°. an isolated minimizes of P(p°). SCS holds if the KKT multipliers u®. v° are

auch that

VIf>° e tt° VA° +v° VA° =0
u®’ gi2.p°) =0
uc*0
and  gZp) =0 =>uS >0
Note <fr° => ~(z°.p°); dmilarly g°. h*
Second Order Sufficient Condition [ SOC |
OC is said to hald for P(p°) at z° if:
1) z° is a fdasble point of P(p°)
There exigs a°, v° such that

2) VA * aOVAC 4 yeV /e =0




u°g@@p*) = 0

u° * 0
and
3) for al non-zero q € 1IR" satisfying VAA'<7 = 0 and V/?'qr = 0 we have
< Vz,Ure°,a’.v°.p°)q>0

where L = <j> + ug + vh (Lagrange function).
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Let B be the Hessian of the Lagrange function (Eq. 11) and let Q" be its approximation
from a quasi-Newton update formula applied at each SQP iteration. For example, the BFGS

update formula is given by :

Qk d dT Qk n nT
Qkol = Ql - + . II-1
d" Q* d n' d

d=2"-2

n=szhl_szk

If B is positive definite, the following relation applies (Boggs et a/., 1982) :

Jim " ZZB-QYd "
S N P2

= 0 I1-2

where z is the null space of [ Vng Vzh ]T.

Otherwise, it has been conjectured (Powell, 1978) that the following property applies :

lim " ZZB-Q9z S dJl
L3 o ol

> 0 I1-3

In either case, one can show that at the limit point Q* and B differ by A D AT, where
A= [ Vzg . Vzh ] and D is an unknown symmetric matrix. Edahl (1982) has shown that
ihis difference does not affect the sensitivity of the optimal variables, but substitution of
the limit point Q* causes the sensitivity of the mu/tipliers to differ by

D[ Vi VA" ]T.

Aside from this, Q is usually initialized arbitrarily (e.g. Q° = I) and from Eq. II-1 one




can see that Q% can be slow to converge to its limit point even as both ¢ and M vanish;
and the above properties hold only for Q" at its limit point. For example, an optimization
that satisfies the Kuhn-Tucker tolerance after a few iterations may have a Q" far away

from B and close to Q°. The effect of using Q" for sensitivity is therefore inaccurate.

The only reliable way to substitute Q“ for B in the sensitivity analysis is to ensure that
Q* has converged to its limit This could require more iterations than solving the
optimization problem and therefore prove inefficient in terms of algorithmic performance.
Moreover, numerical errors may preveant solution of the optimization problem to a tolerance
tight enough for convergence of Q". Consequently, we have focused instead on an efficient

scheme for calculating a reduced form of B directly.
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Reduced Hessian Decomposition Strategy

Condder the linear system of equations.

" A(ViL) ] st vyt ova VO] [ax ]
S VoVv- v v . 1-1-
. VI V] o 0 AU
Ah ] _ VT VT 0 0 | AV
Rearranging the system of equations in Eq. I11-I, we gee
[ Ah ] [ V © VX/»T o ] [a-
A lwy VARV AV o
A(VxL) ven W>vt va AX
w o lvi e e | e

We note that the term, Vj}>T. is square and non-singular. Hence on applying a Gaussian

elimination to Eq. 1l—2 we get the resulting system (Berna et a/., 1980):

ey

- - - -

[ A I 0 E O Ay ]
b 0 I L M AV
= - : 111-3
f 0 0 H Q AX
‘AT
« L& |0 0 Q" 0] jAu]

where the terms have been defined previoudy in the section on
Reduced Hessian Evaluation (refer Eq. 12)

It is apparent that we have a decomposed (reduced) system only in the space of the decision




variable, x. in order to solve the sendtivity equation given by:
f H Q AX
= = -4
e Q" 0 Au

In Eq. 111-4 the terms Q and Q' are readily obtained from the information regarding the
congtraint gradients at the local minimum from the nominal model based optimization

problem. However the teems H and f need'to be derived.

Let us firs consider the derivation for f. The term, V,/i (Vyh)" VWL (VAT)*" Ah.

for f can be expanded at the base case optimum, (x, (/,)* as follows:

Vh (Vy,h - VwL (Vyh"" Ah =

Ve O " VL g I a0 a0 x) = V0 (T 07 VL {y x) 1S

Once again the second term on the right sde of Eq. 5 is directly obtained from the
base case optimization results. However, the first term on the right hand dSde of this
equation involves perturbations in the tear variable, y. We now proceed to show how the
tear variableperturbations may be reformulated in terms of corresponding perturbations in

the decision variable, x.

The equality congraints, h = 0, are retained under a first order perturbation in the

decisions and tears Le

Vi/>T AX + Vyh' Ay = 0

> AY' = - AX" V, /> (VQJ:)" 11-6

Next we expand the Lagrangc function, L, about (s, Vx * (7yh"Y'Ah « A</) to first order




X

0 that:

L (X, y5 » (VA AR+ Ay) =

Lx,y * (V!,hT Tam + AyT VAL <x {* ¢+ (7yh'PLh) IH-7

We now subgitute for Ay' in Eq. ll—7 from Eq. I11-6 which transforms Eq. 111-7

accordingly as.

AXT { Vih (Whrt WL <y ST AB. X)) ) =

L (X Yoo o (VA)TAI7) - L (xg ch + (7yh'YAh - (Wh')Y7,h AX)  I1I-8

Eq. -8 implies that the first term on the right hand side of Eg. Il—5 can be constructed
by introducing perturbations in the decisions alone; it is worth noting that the term. V, JL.
need no longer be determined explicitly. Smilarly, it can be shown that the term,

va( (VAYH" 1 A/7, can be consgtructed from the relations:

nyL V, A" Ah = VL (X, Yy + (Vg‘h'r Ah - VxL (x.y)
and
AXT VL (X, yx *+ (VyhT)"Ah) =

L (XAAX. yx + (VAAVAZI) - L (X yx » (VAAVAA) 111-9

Once again the term, ng(, need not be determined explicitly; we require only an

additional n, perturbations in the decison variables.

Next we consider the procedure for constructing the matrix term, H. It can be seen that

H can derived from:




[y tv a1

j i with the  relation,
by introducing the AY perturbations  in accordance
above

w = - (V *V Vv~ AX. from Eq. I11-6. Substituting this result and expanding the

product term gives

r AX rr Vil V,fI ( ax 1=MTHAX
IMAXIIV,L VA T ax

where
inw 10

M = - Wyhr)-l 'Vxh

The term Ay (for » - VL.VAgA.h)isoomputedbypemnbinsthcparmewrs

erentials between (. P— } ), Case function

and evaluating the respective diff

values (cf. Eq. 10).




APPENDIX IV
Mixed Integer Nonlinear Program Formulation for Active Set Selection
A change in the optimal solution resulting from a mode Ichange may be accompanied by
a change in the active set The analytical example (Example 3) serves to illustrate this point
While consdering the problem of choosng a consstent active set in order to define a
Newton step from the base optimal point to the modified optimum previoudy, we identified

two cases one in which all & = u; arid the other in which all a=o.

The choice of all & =0 implies that we have a starting point for the Newton step that is
farther away from choosing some ?aj = a, to determine a consgtent active set However,
we can rigoroudy formulate the problem of finding the closest darting point in the

following manner

o

Max \

V,Z.(r,0v) + VIICTAV,) Az=0
ofT) * Vg'(T) A2* 0
hiT) + V/I7'(D Az =0 )
tiza+Aa”"0;v=V]+Av
- Of£UGEu Yy
and for a large U
u, *Uy

ofi) - V".Tj(r) AZ zU (y - 1)

The formulation leads to a Mixed Integer Nonlinear Programming (MINLP) problem. It
can be seen that the constraints are linear in y and Az. A sufficient condition for a
solution is that the QP is solvable with & = 0. This is also a feasible lower bound. The

upper bound occurs if G = u, but this may not be feasble. This problem can be solved by




applying the Outer Approximation Approach (Duran & Grossmann, 1983). It is obvious that
such as formulation gives rise to a combinatorial problem, although if the constraints are
linear as with active bouﬁds then this problem becomes nonexistent. However when nonlinear
inequality constraints exist then the size of the inequalities plays an important role in the
solution of the MINLP formulation. If the number of non/inear inequality constraints
happens to be equal to n, then the problem of determining the closest starting point to

obtain a consistent active set may requiré up to 2* discrete decisions.
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Tabl e |

Fl ash Recycle Flowsheet Optim zation : ProblemDefinition

FEED DATA
COVPONENT FEED FLOARATE
(ol s/ hr)
Pr opane 10.0 _
1- But ene 15.0 Feed Pressure : 150 psia
N- But ane 20.0 .
Tr ans- 2- But ene 20.0 Feed Tenperature : 100 F
G s- 2- But ene 15.0
N- Pent ane 10.0

Deci sion Variables : Splitter Ratio, x ( 0.2 <x < 0.8)

1 1
Fl ash Pressure, x ( 10 < x <50 ) psia
2 2
Tear Variables : Conmponent flows in Recycle, vy , 1 = 1....

( 0y < 100 ) nol s/ hr
[
Specific Enthal py of Recycle, H

( -10000 £ H < 10000 ) Bt u/ nol

-
-

OBJECTI VE FUNCTI ON

Monot oni ¢ : max e
1 .
: _ 2 2 3 0.5
. Nonl i near : nmx e e - e -e e e - e
12 1 3 4 5

( e - conponent flow in Flash Overhead) (Fig. 3)
[




Table 11

Recycl e Fl owsheet
Fl ash y

PARAMETR C VAR ATI ON

BASE CASE FEED
Pr opane }_g 8
1- But ene 20' 0
N- But ane 20' 0
T- 2- But ene 15'0
C- 2- But ene 10 0
N- Pent ane '

MONOTONI C CBJECTI VE  FUNCTI ON

BASE CORRECTI ON
DECI SI ON KKT oPT
VARI ABLE MULTPR '
_ 0.2 0.0
x
1 _ 10.0 0.0
x + .
2 ! 1. 005 - 0.45
ul 0. 146 0. 51
2

NONLI NEAR OBJECTI VE  EUNCTI ON

DECI Sl O\l ° KKT BASE CTI O\I
VARI ABLE MULTPR oPT
. ' _ 0.8 0.0
xl - 23.785 - - 0.475
2 1. 654 1. 877
- u

Sensitivity Analysis

PERTURBED FEED
(nol s/ hr)

PRED. TRUE
OPT. OPT.

0.2 0.2
10.0 10..0
0.55 1.652
0. 656 0.21

PRED. TRUE
OPT. OPT.
0.8 0.8

23.31 23.09
3.53 2.56




Flash Recycle Flowsheet : Sensitivity Analysis

Table III

MODEL VARIATION

Monotonic Objective Function

Base Model
Alt. Model

DECISION
VARIABLE

Base Model
Alt. Model

DECISION
VARIABLE

: Raoult’s Law (Model 1I)
: Chao-Seader (Model II)
KKT BASE CORRECTION
MULTPR OPT
- : 0.2 0.0
- 10.0 0.0
u 1.005 1.065
1
u 0.146 0.014
2
Chao-Seader (Model 1I)
: Raoult’s Law (Model 1I)
KKT BASE CORRECTION
MULTPR OPT
- © 0.2 0.0
- 10.0 0.0
u 1.35 - 0.23
1
u 0.17 - 0.024
2

PRED. TRUE
OPT. OPT.
0.2 0.2
10.0 10.0
2.07 1.35
0.16 0.17

PRED. TRUE
OPT. OPT.
0.2 0.2

10.0 10.0
1.12 1.00S5
0.144 0.146

contd. .




Table 111
Fl ash Recycl e Fl owsheet Sensitivity Anal ysis

MODEL VAR ATI ON

Nonl i near Qbjective Function

Raoult'a Law (Model 1)
Elats? %ggg: Chao- Seader (Model I1)
DECI SI ON KKT . BASE CORRECTI ON P(F;EQ TISPLE
VARI ABLE MULTPR OPT . .
- 0.8 - 7.55E-03 0. 793 0.8
x .
xl - 23.78 - 0.3107 23. 47 23.03
2 - 0.0 1.43
- u 1. 65
1
Chao- Seader (Model 1)
'Iilatsfe %gg: Raoult's Law (Mdel I1)
DECI SI ON KKT BASE CORRECTI ON PSE'I? TSLDJE
VARI ABLE MULTPR OPT . O 8_
0.0 0.8 :
) - . 23.79
: 1.28- 24.31 :
x - 23.03
2 1.43 - 0.95 0. 48 1.65




Table 1IV.

MONOCHLOROBENZENE SEPARATION FLOWSHEET

FEED DATA
COMPONENT FLOW RATES
(mols/hr)
HC1 10 Feed Pressure : 37 psia
Benzene 40
MCB 50 Feed Temperature : 80 ¥

PHYSICAL PROPERTY MODELS

Vapor Pressure Model :
Vapor Fugacity Model :
Liquid Fugacity Model :

Liquid Activity
Coefficient Model:

DECISION VARIABLES

Cavett Equation
Redlich-Kwong Equation
Redlich-Kwong and Poynting Equations

Ideal Solution

Abscrber Pressure (Bottom) : 25 ¢ X, s 35 psia
Absorber Pressure (Top) : 25 ¢ Xy < 35 psia
Split Fraction to Recycle : 0 g ) < 1

Split Fraction to Outside : 0 ¢ x, S 1

Flash Input Stream Temp. : 200 ¢ x5 ¢ 290 3
Absorber Input Stream Temp. : 100 ¢ xg € 300 %

(Recycle)

TEAR VARIABLES

Recycle HC1l Flow
Recycle Benzene Flow
Recycle MCB Flow
Recycle Pressure

Recycle Temperature




