
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

DRCIPC 2.10 User's Manual

by

L. Leao

EDRC-05-02-86 ^

September 1986

CARNEGIE-MELLON UNIVERSITY

DRCIPC 2.10 User's Manual

by

Luiz Alberto Villaga Leao

Engineering Design Research Center

Pittsburgh, Pennsylvania

August, 1986

Table of Contents

Acknowledgements 1
Summary 2
1. Introduction 3

1.1 Overview 3
2. DRCIPC reference text 5

2.1 DRCIPC entry points . 5
2.1.1 drc.checkin(name) ' 5
2.1.2 drc_checkout(name) 6
2.1.3 drc.connect(name) 6
2.1.4 drc_close(socket) . 7
2.1.5 drc_send(socket,string_message) 8
2.1.6 drcjecv(string.message, string.messageJength) 9

2.2 Error codes 10
3. Features and limitations of the present version 11

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

u

List of Figures

Figure 1-1: Example of use of drcipc. 4
Figure 2-1: Example ofuseofdrc.chcckin (from COPS). 5
Figure 2-2: Example of use of drc.checkout (from COPS). 6
Figure 2-3: Example of use of drc.connect (from COPS). 7
Figure 2-4: Example of use of drc.close (from COPS). 7
Figure 2-5: Example of use of drc.send (from COPS). 8
Figure 2-6: Example of use of drc jecv (from COPS). 9

Acknowledgements

I am glad to have the chance of working with professor Sarosh Talukdar as my advisor. I am very thankful

for his advice and friendship.

I would like to thank Mr. Jose Carlos Pereira Lima, of Banco Itau S. A., for his constant support and

attention since I joined Itaudata Ltda.

I would specially like to thank the directors of Banco Itau S. A. for the opportunity and support that

allowed my presence in the Carnegie-Mellon University and gave me the chance to conduct this work. I am

particularly grateful to Dr. Sergio Augusto Sawaya, for his trust, consideration and care.

Summary

DRCIPC is a package of routines that provide Inter-Process Communications in a network of computers

executing the Unix 4.2 BSD Operating System. It provides global naming, using a centralized name-server

process, guaranteed delivery of arbitrarily sized string messages and synchronous handling of multiple open

sockets. It uses connected stream sockets to implement basic communications, hiding most of the details of

the handling of sockets. The global naming facilities can be used independently from the message handling

routines.

This manual describes the use of the DRCIPC package.

1. Introduction

DRCIPC was developed to allow COPS1'2'3 to be operational in the Unix 4.2 BSD4 environment.

Although it was built with this specific objective in mind, it was also made general enough to be of potential

interest to other applications.

DRCIPC tries to hide most of the details of the handling of Unix 4.2 BSD sockets5, potentially allowing for

the fast implementation of distributed systems using messages for interprocess communications, running in

networks of computers.

1.1 Overview

The DRCIPC package has two reasonably distinct parts: the connection related routines and the message

handling routines. The two parts are somewhat interdependent but can be used separately.

The connection related routines allow a process to assign itself one or more global names of its choice, to

initiate connections, to accept connections, to close connections and to unassign names previously assigned to

it

The message routines send and receive messages, in order and with guaranteed delivery. Those messages

are strings of ascii characters, terminated by a null (\0). All 8 bits codes are transmitted (including the

terminating null in a message). The drcjecv routine also handles the accepting of new connections, working

with drejeonnect to keep a list of the local connected sockets. This routine allows a process to perform a

receive without specifying the particular connection, in non-blocked, blocked or blocked with timeout modes.

An illustrative example of use can be found in figure 1-1. Parts of two programs are shown: a server that

sends back whatever it receives and a program that reads lines, sends them to the echo-server and prints them

back.

In this case, different clones of the printing program can be simultaneously connected to the echo-server. If

the echo-server receives no message for more then 120 seconds, drcjecv will timeout with retcode 0.

This figure exemplifies the bidirectionality of the connections, the use of drcjvaitjime, the use of drcjecv

socket and the use of most of the DRCIPC calls. The tests on retcode where not shown to simplify the

example.

Echo-server program:

#includc<drcipc.h>
#dcfine L1NESIZE 512

int retcode;
char linc[LINESIZE];

rctcode = drc.chcckinCecho-server");

while (true) {
drc.wait.time = 120; (seconds)
retcode = drc_recv(line,LINESIZE);

retcode = drc_send(drcjecv_socket,line);

Program that requests echoes from the echo-server:

•••
include<drcipc.h>
#define LINESIZE 512

int retcode;
int cchosockct;
char line[LINESIZEl;

retcode = drc.connectCecho-seryer");

echosocket = retcode;

drc wait time = DRC BLOCK;
while (true) {

printfCLine:");
scanf(ft%s\nff,line);
retcode = drc.send(echosocket9line);

•••
retcode = drc.recv(line,LINESIZE);

printl("Echo: %s.\n",line);
}

Figure 1-1: Example of use of drcipc.

2. DRCIPC reference text

2.1 DRCIPC entry points

It follows a description of the DRCIPC calls.

2.1.1 drc.checkin(name)

Drc.checkin assigns a name to a process (figure 2-1). This name will be globally known and can be used by

other processes to connect to a process that has checked-in with that name.

char namc[64]

strcpy(name,argv[l]);
drc.checkin(name);

Figure 2-1: Example of use of drccheckin (from COPS).

Its only argument is:

• name: name to be assigned to the process.

Its execution will result in the creation of a passive listening stream socket, in the generation of an entry in

the DRCNAMESERVER corresponding to the named process (containing its name, host name, network

address and PID) and in the reception of an acknowledgement from the DRCNAMESERVER with its error

code, if any.

It returns:

• -1, when error;

• the created passive socket, otherwise.

The returning passive socket can be ignored by most applications.

A process can checkin more than once with different names; only one passive socket will be created,

though.

A checkin with a name already in use will cause an error, if a process with the PID present in the entry with

that name is alive in the correspondent host. If this is not the case, the name will be redefined and a new

entry will be generated in the drenameserver (Note: this is not true in the present version; vide chapter 3).

There is a maximum number of sockets permitted within a process by the present Unix 4.2 implementation:

this number is site dependent, less than 32 and guaranteed to be at least 20.

2.1.2 drc.checkout(name)

Drc.checkout unassigns a name to a process (figure 2-2).

char name[64]
•••

drc.chcckout(name);
•••

Figure 2-2: Example of use of drc.checkout (from COPS).

Its only argument is:

• name: name to be unassigned to the process.

Its execution will result in the deletion of the entry corresponding to the given name present in the

DRCNAMESERVER, in the reception of an acknowledgement from the DRCNAMESERVER with its error

code, if any and in the closing of the listening socket, if the process has no checked-in global name left

It returns:

• -1, when error;

• 0, otherwise.

There is a maximum number of sockets permitted within a process by the present Unix 4.2 implementation:

this number is site dependent, less than 32 and guaranteed to be at least 20.

2.1.3 drc.connect(name)

Drcconnect connects to a named, checked-in remote process (figure 2-3).

Its only argument is:

• name: name of the process to be connected to.

char copsrclaynamc[128j;
int copsrclaysockct;

strcpy(copsrclayname/fcopsrelay-w);
strcat(copsrclayname,host);
copsrclaysockct = drc.conncct(copsrelayname);

Figure 2-3: Example of use of drc.connec t (from COPS).

Its execution will result in the fetching of the host and address of the remote process from the

DRCNAMESERVER, in the creation of a new stream socket, in the connection of this new socket to the

remote process and in the inclusion of this new socket in the active socket list

It returns:

• -1, when error;

• the new, connected socket, otherwise.

The returning connected socket should be stored to be used in subsequent drcjends (but it is not necessary

on drcjecvs). It can also be used in any other Unix 4.2 call that manipulates connected stream sockets (like

send, recv, etc).

There is a maximum number of sockets permitted within a process by the present Unix 4.2 implementation:

this number is site dependent, less than 32 and guaranteed to be at least 20.

2 .1 .4 drc.close(socket)

Drc.close closes connections (figure 2-4).

int copsrelaysocket;

drc_close(copsrelaysockeO;

Figure 2-4: Example of use of drcclose (from COPS).

8

Its only argument is:

• socket: connected socket corresponding to the connection to be terminated.

Its execution will result in the closing of the connected socket and in its removal from the active socket list

It returns:

• 0, always.

A drcslose in a non-active socket will result in no action (therefore a 0 to 31 drc_dose loop will result in the

closing of all connections established via drcjconnecU either locally or remotelly, with no harm done to any

other socket).

It can be executed from both ends of a connection. If executed only from one end, it will eventually

generate a condition on the remote side of the connection that will be synchronously treated by drcjrecv,

which will automatically close the socket associated with the remote side of the connection. If drcjecv is not

used, the user must provide the closing in both sides of the connection.

There is a maximum number of sockets permitted within a process by the present Unix 4.2 implementation:

this number is site dependent, less than 32 and guaranteed to be at least 20.

2.1.5 drc_send(socket,string.message)

Drc_send sends string_messages (null terminated arrays of characters) of arbitrary length to connected

stream sockets (figure 2-5).

char * command;
int copsrelaysocket;

if(drcsend(copsrelaysocket,command) = = -1)
return(errno);

Figure 2-5: Example of use of drcsend (from COPS).

Its arguments are:

• socket: connected socket corresponding to the receiving remote process; stringjnessage: a pointer
to a null terminated array of characters (string) that will be sent to the remote process.

Its execution will result in sending the string, from its beginning to the first null encountered, including the

null, to the remote process connected to socket

It returns:

• -1, when error;

• number of characters sent, otherwise.

It can be executed from both ends of a connection.

2.1.6 drc.recv(string_message, string message.length)

Drc.recv receives stringjnessages (null terminated arrays of characters) of arbitrary length from connected

stream sockets (figure 2-6).

char messagefMESSAGESIZE]
•••

drc wait time = DRC.BLOCK;
if (drc_recv(message,MESSAGESIZE) = = -1)

retura(errno);

Figure 2-6: Example of use of drcjecv (from COPS).

Its arguments are:

• stringjnessage: a pointer to an area that will be filled by drcjecv with the complete contents of the
received message, including terminating null.

• string_message_length: an integer that should contain the size of the area pointed by string
message.

Its related global variables are:

• drc.waitjime: a long integer containing DRC.BLOCK, DRC.DONTBLOCK or the timeout for
waiting for a message, in seconds;

• drcjecv.socket: an integer returning the socket from where the message arrived

Its execution will result in the blocking until there is a message to receive or a connection to accept, in the

accepting of pending connects, if any, with correspondent update of the active socket list, until all pending

10

connects are accepted, and in the receiving of pending messages, if any, beginning with the one associated

with the lowest numbered active socket, if stringjnessagejength is greater or equal to the message size,

including terminating null.

It returns:

• -1, when error;

• 0, when timed out;

• message length, otherwise.

2.2 Error codes

A call returning -1 has an associated error code, present in the global variable errno. An error code smaller

than 1023 is a Unix 4.2 BSD error code4 generated by an internal call to Unix routines and transferred back

from DRCIPC, to be handled outside the package.

Error codes greater than 1023 are DRCIPC error codes:

• 1024: DRC.NONSHOST - nameserver host not found;

• 1025: DRCNOTFOUND - entry for name not found in by the nameserver;

• 1026: DRQNAMEINUSE - name already in use;

• 1028: DRQMSGISLARGER - message is larger than the string-message area provided in the call.

The global variable errno is shared with other Unix 4.2 system calls and is defined extern in the drcipc.h file.

11

3. Features and limitations of the present version

The present version of DRCIPC is the 2.10 version.

Its components are:

• DRCIPC object code package, to be linked to the programs accessing the message system
(drcipc.o);

• DRCIPC include file, to be included by code utilizing the package (drcipc.h);

• DRCIPC name server, a stand alone program, residing in a particular machine
(gould.drc.cmu.edu), that provides the naming and identification of processes (drcnameserv). A
log file of all transactions is generated during its execution (drcnameserv.log).

The DRCIPC routines execute under Unix 4.2 BSD and UNIX 4.2/4.1 on VAXen and SUNs, and under

the UTX/32 operating system on GOULD 9080 machines. This package has been tested on those systems

and is expected to be transportable to other Unix 4.2 BSD systems or computers running compatible versions

of this operating system.

The present implementation has the following known limitations:

• there is a maximum number of sockets, guaranteed to be at least 20, that a process is allowed to
have open simultaneously (this is a socket mechanism limitation and a Unix generation
parameter);

• the timeout mechanism in the drcjecv is reset when a connection is accepted; therefore, it is not
guaranteed that the timeout will always timeout in the expected amount of time: it may take
longer if a connection is accepted during the no message period.

• the present implementation of DRCIPC has a temporary (and potentially dangerous)
modification to allow for some peculiarities of the CS Unix 4.2 environment: a drc-checkin with a
name already in use will cause the redefinition of the entry for that name and the generation of a
warning message in the drcnameserver log file.

12

References

1. Leao, Luiz V., "COPS: A Distributed Production System", Master's thesis, Carnegie-Mellon
University, April 1986.

2. Talukdar, S. R, E. Cardozo and L. V. Leao, "TOAST: The Power System Operators' Assistant", IEEE
Computer, Vol. 19, No. 7, July 1986, pp. 53-60.

3. Leao, Luiz V., "The COPS User's Manual", Tech. report EDRC-??-??-86, Engineering Design
Research Center, Carnegie-Mellon University, August 1986.

4. Computer Science Division, Dept. of Electrical Engineering and Computer Science, University of
California, UNIX Programmer's Manual 4.2 Berkeley Software Distribution, Berkeley, California,
1983.

5. Leffler, Samuel J., Robert S. Fabry and William N. Joy, "A 4.2bsd Interprocess Communications
Primer", Tech. report, Department of Electrical Engineering and Computer Science, University of
California, Berkeley, July 1983.

