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Abstract

This paper presents a new formulation for the optimal design of multipurpose batch

plants in which not all products require the same processing equipment. In order to

circumvent the combinatorial problem of selecting the product grouping for the

optimal schedule, a superstructure representation is proposed that can be modeled as

a multiperiod optimization problem. For most cases this problem can be condensed

into a merged formulation that is similar to the problem of optimal design of

multiproduct batch plants. The proposed method is very efficient as it requires the

solution of a single MINLP problem. Two numerical examples are presented.
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Introduction

This paper presents a novel method for the optimal design of multi-purpose batch

facilities in which the types of equipment used for each product are specified.

Products made in this type of manufacturing facility do not use the same equipment

in the plant, and thus, can be separated into partitions for parallel processing with

the restriction that all items of each batch stage are devoted only to one product at

a time. A schedule or manufacturing order of the products is known as a "product

configuration" (see Suhami and Mah, 1982). Because the scheduling of the products is

a central feature of the design of this type of plant, this design problem is not a

straightforward extension of the optimal design problem of multi-product batch plants

(see Sparrow et al. 1975; Grossmann and Sargent, 1979). The number of possible

product configurations for a given set of products can be rather large, leading to a

difficult combinatorial problem for the optimal design.

Suhami and Mah (1982) have proposed a method where a lower bound is determined

first for the minimum investment cost of multipurpose plants. Their strategy then

applies rules to screen several random product configurations (typically ten

candidates). Next for each of these alternatives a mixed-integer nonlinear program is

solved by incorporating horizon constraints of the corresponding alternatives. The

lowest total capital cost solution is retained, provided its value is within 10% of the

lower bound estimate. Klossner and Rippin (1984) have also addressed this design

problem. Their solution procedure is to examine all combinations of product

groupings (i.e. all product configurations), by solving a mixed-integer nonlinear

program to obtain the lowest total cost plant design for each configuration, and

retain the best solution. The main disadvantage of these two procedures is that

many different alternatives may have to be examined, each of which requires the

solution of a mixed-integer nonlinear program.

The algorithm proposed in the present work overcomes this drawback by using a

super-structure that embeds all of the groupings of products that are candidates for



the optimal schedule, thereby requiring a single mixed-integer nonlinear program to be

solved to obtain the plant design with the minimum total cost. With the super-

structure, a multi-period model is formulated and then condensed into a merged

formulation with equivalent horizon constraints. Interestingly, this merged

formulation is similar in size to the problem of optimal design of multi-product batch

plants. When equivalent horizon constraints cannot be found, which is an unusual

case, a formulation that partially reduces the multi-period model can be derived. The

time involved in identifying the super-structure and in writing the merged or partially

merged formulation is minimal. Thus, the time savings in solving just one mixed-

integer nonlinear program makes the proposed procedure computationally very

efficient. Also, the global optimum solution is guaranteed for. the relaxed merged

formulation since the corresponding nonlinear programming formulation can be

transformed to a geometric programming problem which has a unique optimizer.

Example of Grouping of Products

In this section a small example is considered to demonstrate how a super-structure

can be developed that contains all of the potential alternatives for grouping of

products. Figure 1 shows a plant consisting of four stages that is used to

manufacture products A, B, C, and D. Product A uses stages 1 and 2; B, stages 2 and

3; C, stage 3; and D, stages 1 and 4. Products that do not share equipment stages

may be processed in parallel. In Figure 2, the eight ways to schedule these products

are presented. In product configuration 1 each product is manufactured individually.

This option utilizes the equipment inefficiently when compared to the case of parallel

processing because stage 3 is idle while product A is being processed (product C can

be made at the same time), and stage 4 is empty while product B is being

manufactured. Therefore, the sequential production of all four products can be

excluded because (1) a longer production time would result for a fixed equipment or

(2) larger equipment is required for a fixed total production time. However, product

configurations 2, through 8, that employ the simultaneous manufacture of two



products, are candidate schedules for this example. Product configuration 2 has

product C processed at the same time as product D; configuration 3 has product B

with product D; configuration 4 has product D first with product B and then with

product C, etc. Since configuration 8 has embedded configurations 2 through 7, it

represents a "super-structure" for these scheduling alternatives. Although

configuration 3 is suboptimal since products A and C can be made at the same time,

and although configuration 5 is also suboptimal because the manufacture of products

B and D can be performed simultaneously, these configurations are also contained in

the super-structure of Figure 2.

The superstructure representation of Figure 2 can be viewed as a multi-period

model, with each period being devoted to a different group of products as shown in

Figure 3. In particular, products A and C may be made at the same time as shown

by the two arrows in period 1; the potential simultaneous manufacture of products B

and D is portrayed by the two arrows contained in period 2; the manufacture of

products C and D simultaneously is depicted by the two arrows of period 3. The

length of each period, T^ T2 , T3 , is a variable and represents the maximum time for

the simultaneous manufacture of the products in the group. If the time for a period

is zero, then the group of products specified by that period should not be

manufactured in parallel. For example, the results of permitting T , the length of

period 3 to be zero, would correspond to configuration 7 in Figure 2.

Also, the length of the arrow for a product in the super-structure of Figure 3

represents the time needed for the manufacture of that product in the particular time

period. In the example of Figure 3, T ! , TI. T?f T* T^, and T^ are the variables

relating the times needed for manufacture of the products in the three periods, in

this example, if product configuration 2 in Figure 2 were the optimal schedule, then

T^ and T* would be zero; T^, T*, TJ? and T^ would have non-zero values.



Super-structure Determination

In order to generalize the derivation of super-structures for candidate product

groups, it will be assumed that the multi-purpose batch plant consists of M pre-

specified types of batch equipment R. used for the processing of N different

products. The manufacture of each product P. utilizes k^ M types of batch

equipment with each type corresponding to a stage R = 1, 2, ..., M. For each product,

C. is defined as the set of equipment types R used in the processing of product P.
K. j i

C. = { R |R. required for the manufacture of product P } (1)

| * k. i * 1. 2 N

The goal of the super-structure is to embed all the product groups that can be

produced simultaneously. Each of these groups will be represented by a time period,

as discussed in the example of the previous section. The following steps outline the

basis of the method:

1. All binary combinations of products P. and P. are compared. If the binary
combination does not share the same equipment types, the products P
and P. can be placed in the same group.

Lt = {P.,P.} (2)

where L = a set of binary compatible products with product i, t=1,2,...

2. For each product P. its corresponding groups L are checked for compatible
production with a third product. If this condition is satisfied, a three
product group is generated.

3. Each group of the three members is examined to see if a fourth member
can be added, etc. This process stops when no more members can be
added to any of the groups.

4. Groups that are subsets of another group are deleted. The remaining
groups L. are numbered and become the basis of the super-structure for
the multi-period model.

It should be noted that the groups L., t s 1,2,...,T, where T is the number of

periods, are identical to the subset of maximal sets I. used by Imai and Nishida

(1984) in their set partitioning formulation (Garfinkel and Nemhauser, 1972) for



generating a near optimal configuration based on the heuristic of Suhami and Mah

(1982).

Example of Determining the Product Group for the Super-Structure

The procedure described in the previous section for deriving superstructures will be

illustrated with the example problem of Suhami and Mah (1982). The product-

equipment incidence matrix, denoted by A, is given in Table I.

Step 1. Check all binary combinations of products for compatible production. The

result is shown below:

(3)
L1 •

L2~-

L3 =

L4 =

L5 =

L 6 S

L7°

LB-

{ PA'PB }

(PA .PD>

<PA'PE }

{PA.PF}

^ P B' P G }

^PC'PD>

{PE.PF>

{PF .PG1

Step 2. Test the above sets for additions of another compatible product. From L ,

L4, and L?, the only three-product set obtained is,

Lg = {PA,PE.PFJ (4)

Step 3. Examine the remaining products for parallel processing with the resulting

set of step 2. Since no more products can be added, the enumeration phase is

completed.

Step 4. Delete the sets that are subsets of other listed sets. In this example,

* P A ' P E * ' *PA f FV' a n d
 * P E ' P F*

 a r e d e l e t e d because they are subsets of {PA'PE-P
FK



The sets used for the super-structure are listed below, and shown in Figure 4 in the

multiperiod representation:

(5)
L1 - <PA'PB>

L2

L4 "

<PA,PE,PF>

L6 - { FVPG>

MINLP Formulation of Multi-period Model

Having addressed the problem of finding a suitable representation for the

alternative schedules or product configurations, the problem of determining the

optimal number of units and their capacities that minimize the total capital cost of

the batch equipment will be considered. This plant must be able to accommodate

the desired production goals of all the products within a specified time. The cost of

the semi-continuous equipment, i.e., pumps, heat exchangers, etc., is assumed to be

negligible compared to the cost of the batch vessels or to be relatively constant,

and therefore, is excluded from this analysis. For scheduling the products for

parallel processing, the super-structure from the previous section is used.

The following mixed-integer nonlinear program can be formulated for the

superstructure. The mufti-purpose batch plant is used to process N different products

using M pre-specified types of batch equipment R. The objective for the optimal

design is then to minimize the total capital cost of the batch equipment:

M

min



where N = the number of units of equipment type R

V = the total volume of the unit of equipment type R

a., J3 = cost coefficients for equipment type R..

The quantity of product P. that is made in each time period t, symbolized by q|, is

the product of the number of batches of product P. in period t and its batch size B(:

q| = nj B. i = 1, 2 N; t E I . (7)

l i = {t | P. 6 Lt) (8>

The total amount of product P. that is manufactured must meet or exceed its

production goal, Q:

n
l B > Q. i = 1, 2 N (9)
| | |

tel. tel.
A. 4.

The required size of the equipment in the plant is assumed to be a function of the

batch size of each product. In particular, the capacity needed for one batch of

product P in a vessel of type R represented by v is equal to the product of its

size factor S.. and its nominal batch size B:

v.. = S.. B. i = 1, 2 N; R. € C. (10)

B. ^ 0 i = 1, 2 N (11)

The volume for any stage R. must accommodate the maximum processing volume v

for all the products using stage j , denoted by the set U ..

V. = max{v..} j = 1, 2 M; i 6 li. (12)

U ; = { P . | R . € C . } (13)



This constraint can be written as follows:

Vj * v.. j = 1, 2 M; i G LI . (14)

where the volume must be selected within the specified range.

V1" <> Vj <; V^ j = 1, 2 M (15)

where VL = lower limit for equipment of type R.

Vu = upper limit for equipment of type R

Since the same batch size B. is used throughout the manufacture of product P, all

the items of a stage j have the same capacity V . Each stage j consists of N units

operating independently in parallel and out of phase, thus affecting the cycle time of

the stage. N. is restricted to integer values and limited by,

N^ £ Nj £ N^ j = 1, 2...., M (16)

where NL = lower limit on equipment items for stage j

Nu = upper limit on equipment items for stage j

T,., the time required for the manufacture of a batch of product P., is the maximum

stage cycle time of the stages used for making product P. (see Grossmann and

Sargent, 1979):

T u = max { (t..J I (N.) } i • 1, 2 N; R. G C. (17)

This constraint can be replaced by the following inequalities:

T u £ [ (t..) / (N.) ] i - 1, 2 N; R. G C^ (18)

Since Ty depends only on the number of units in each stage used by product P., and



10

since the equipment in the plant is fixed during the horizon or the total time

available for processing being considered, T u does not vary with the time periods t.

The time required to manufacture a product P. in period t is given by the number

of batches in period t, n\ multiplied by the time needed per batch, TLJ. Therefore,

T , the time of a period t, must be greater than or equal to the time needed in

manufacturing the products in period t:

Tt " ni TLi t = 1, 2 T; P. G Lt (19)

Finally, the sum of the lengths of the periods must be less than or equal to the total

available production time H.

T

T t * H ( 2 0 >

t=1

The problem described by Equations (6M11), (14M16), and (18M20) corresponds to a

MINLP formulation for the proposed multi-period model. The relationship between

the super-structure to the mixed-integer nonlinear program presented above is

apparent. However, because of its large size, this model cannot be solved easily, in

addition to the fact that the number of variables and the number or constraints m the

problem can be large, the existence of a unique optimizer is not necessarily

guaranteed.

The presence of multiple minimizers can be seen easily. From the super-structure

of Figure 3, product C can be processed with products A or D or with both products.

As shown in Figure 5, assume that the optimal production time of product D is

greater than that of A or of B, which in turn are greater than that of C. Because the

manufacture of A, B, and D dominates the plant, the processing of product C can

occur in period 1 or in period 3 or can be split between the two periods. These
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options are shown in Figure 5. In the first case T has a non-zero value and T is

zero. For the second alternative, T^ is zero and T^ is non-zero. In the third

alternative, both Tr and T!? are non-zero and can have an infinite number of values.

However, note that the design of the plant is unaffected by changes -in these

variables, and therefore, many different solutions yield the same total cost.

Although this problem has non-unique solutions, a merged formulation can be found

that circumvents this difficulty as described in the following section.

Merged Formulation for a Multi-Purpose Batch Plant

By analyzing the different cases in Figure 5, it is apparent that the total time

required to manufacture each product has a unique value. Therefore, this fact

suggests that a "merged" formulation can be developed in which the total processing

times and total number of batches for each product will be used as variables, instead

of defining variables for each time period as was done in the previous formulation.

This new merged formulation can be attained by reformulating constraints in the

mixed-integer nonlinear program of the prior section.

The sum of the number of batches of each product in each period, n l, can be

replaced with the total number of batches of each product, n..

n. = ^ T nj i = 1, 2 N (21)

By substituting n. in the production demand constraints. Equation (9) then becomes

n. B. £ Q. i = 1, 2 N (22)

For the merged formulation it is convenient to define T., the total processing time of

product P., which is greater or equal to the total number of batches of P. multiplied

by the time per batch of P.. The following constraint relates T. with the limiting
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cycle time TLJ:

T > n. T, i * 1. 2 N (23)
i - i Li

This constraint wil l be used in place of constraint (19) since the variables T will be

excluded in the merged formulation. Finally, for this formulation the horizon

constraint in Equation (20) must be replaced by equivalent horizon constraints that are

expressed in terms of the new variables T.. To gain insight into how these

constraints can be derived, consider the following example.

Example of Equivalent Horizon Constraints

For Example 1, whose super-structure is shown in Figure 3, the constraints from the

multi-period model that define the lengths of the periods are:

(24)

(25)

(26)

(27)

(28)

(29)

The total time devoted to making each product is:

(30>

T 1

T 2

T 1

T 3

T 2

T 3

* RA

^ nB

* "C

* "0

TLA

TLB

T LC

T LC

T LD

T LD

T 2

T ,

T 2

* "A

+ T 3

T L A

T LB -

( r

T A

CD

^c * r

^ »

T L C

T L D • T o

(32)

(33)

Since the horizon constraint in the multi-period model is:

T, + T 2 • T 3 <, H (34)
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it is apparent that the following horizon constraints are equivalent to those of the

multi-period formulation (see Figure 3):

TA + TB * H Periods: 1, 2 (35)

TA * TD * H Periods: 1, 2, 3 (36)

TB + TC * H Periods: 1, 2, 3 (37)

Inequality (35) is necessary for the case in which the production times for products

A and B are are much longer than those for C or D at the optimum. Here, T

determines the length of period 1 and T , period 2. Because products C and D can

be manufactured at the same time as A and B, respectively, period 3 vanishes. Thus,

constraint (35) is active and constraints (36) and (37) are inactive in this situation. On

the other hand (36) and (37) are active constraints if A and D, or B and C, are

dominant products, respectively.

The Appendix presents the general steps involved in the derivation of the horizon

constraints for the merged formulation. As will be discussed later, it is not always

possible to derive these constraints, in which case a partially merged formulation is

needed.

Merged Formulation

Provided equivalent horizon constraints can be derived as those shown in the

previous section, the multi-period model can be condensed into a merged formulation

that is given by:

M

min 2 1 *\ N j ( V j ^ j (38>

j • 1
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where N. = the number of units of equipment type fl

V. = the total volume of the unit of equipment type R

a., fi. = cost coefficients for equipment type R..

subject

n.
i

V.
J

to:

B.
i

S B

i =

j =

1.

1,

2

2

N

M; i € U.
J

where VL = lower limit for equipment of type R.

Vu = upper limit for equipment of type R.

(39)

(40)

VL < V. £ VU j = 1, 2 M (41)

TLi - [ ( V ' ( N j } ] i = 1. 2 N; R. G C^ (42)

T. £ n. Tu i = 1, 2 N (43)

N^ £ N. < N^ j = 1, 2 M (44)

where NL = lower limit on equipment items for stage j

Nu = upper limit on equipment items for stage j

Finally, equivalent horizon constraints that can be expressed as linear inequalities m

terms of T. must be included.

f(Tr...T. TN) * H

The continuous relaxation of this formulation can be reformulated as a geometric

program and thus, it has a unique optimal solution (see Grossmann and Sargent,

1979). Furthermore, the importance of the above formulation is that it is essentially

identical to the multi-product design problem, except for the horizon constraints.

Therefore, the significance of this model is that it reduces the multi-purpose design
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problem to a single MINLP which avoids the combinatorial problem of testing

alternative product configurations as in the methods of Suhami and Mah (1982) and

Klossner and Rippin (1984).

It should be noted, however, that total merging of the multi-period problem cannot

always be achieved because equivalent horizon constraints may not be found, as will

be shown in the next section. In this case, which is an unusual occurence, it is

possible to develop a partially merged formulation which is still substantially smaller

than the multi-period model.

Partially Merged Formulation for "Cycle" Type Problems

The following example illustrates the case in which only a partial merging of the

multiperiod model can be achieved. In particular, consider the super-structure shown

in the form of a matrix in Figure 6 that contains a loop indicated by the dashed

lines. A loop is a path that starts at a cell or non-zero entry in the matrix and by

using a set of alternating horizontal and vertical moves through other non-zero cells,

returns to the initial cell. If all the periods of this super-structure are non-zero as

shown in Figure 7, then the schedule could be implemented as displayed in Figure 8.

Note that there is no possible arrangement of the periods to prevent an interruption

in the manufacture of the five products. In fact, in previous work, such as the

algorithm of Suhami and Mah (1982), this possible schedule is not considered. For

the lack of a more descriptive term, the problem of interrupted productions in a

schedule is called a "cycle" problem. As shown in Figure 8 processing begins with

product A in the first period and "cycles" back to product A again in the last period.

The following time constraints can be derived for the super-structure given in Figure

7.

TA S T , • T 2 (45)

TB * T 1 + T 3 ( 4 6 )

T c * T 3 • T 4 (47)
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(48)

(49)

If the procedure of the Appendix is used, the horizon constraints for the merged

formulation for the super-structure would be as fol lows:

TA + T_ £ H periods: 1. 2. 3, 4 (50)

TA • TQ £ H periods: 1, 2. 4. 5 (51)

T
Q

 + Tn * H periods: 1, 3, 4. 5 . (52)

T_ • T_ <. H periods: 1, 3, 2. 5 (53)
D t

Tc + TE < H periods: 3, 4, 2, 5 (54)

However, it can be noted that none of the constraints given by Equations (50) to

(54) implicit ly contains all f ive periods. To illustrate further this situation, assume all

periods are active at the solution. Also, assume the production of each product will

fill its al lotted periods as shown in Figure 7, and that the length of each period <T )

is 100 and the horizon (H) is 400. From constraints (45) through (49), the variables

for processing t imes (T.) equal 200 and satisfy the horizon constraints, (50) to (54).

However, although all of the constraints are satisf ied, the physical situation is not

accurate. From Figure 8, it can be seen that for H=400, the length of each period (T )

should be 80 and not 100, if all periods are to be equal in length, and that the

processing t imes for each product T. should be 160 and not 200. Because of these

contradictions, this model must be revised using a partial merging of constraints m

the multiperiod model as described in the next section.
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Partial Merging of Product A

In order to avoid the inconsistency in the horizon constraints, consider that the

batches of product A in its two time periods, which are responsible for the cycle in

the schedule of Figure 8, are not merged. This situation is equivalent to treating

product A as two products A' and A" in its corresponding periods, yielding the

super-structure shown in Figure 9. With this splitting of product A, constraint (45)

can be replaced with the following two constraints:

TA * T1 <55>

T* £ T2 (56)

The production goals for product A are then expressed by the following constraint:

l + nA ) BA * Q
A <57>

A A / A A -

The batch sizes of product A' and of product A" will be assumed to be equal since

they are the same product. Since the cycle times of A' and A" are equal also, it

follows that:

\ A * T A < 5 8 )

TLA * T A <5 9 )

The other constraints for product B, C, D, and E are the same as in the merged

formulation with the exception of the horizon constraints. Equations (50) to (54) are

replaced with the following:

(60)

<6D

TQ + Tc <, H periods: 1, 3. 2, 5 (62)

which now include all five time periods, and therefore are valid horizon constraints.

+ Tc

+ TB

* T E :

+ T D

£ H

£ H

periods:

periods:

1.

2.

3.

1,

4,

3,

2,

4.

5

5
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It can then be seen that by merging the batches for all of the initial products B, C,

Dr and E, and splitting product A, a partially merged formulation can be obtained

with equivalent horizon constraints similar to the original multi-period problem.

Clearly, the question that then arises is how to identify systematically products that

require splitting in these cycle problems.

Partially Merged Formulation

This section presents an algorithm to determine product splitting for problems in

which the merged horizon constraints are not equivalent or complete. In this case,

the variables for at least one product must remain unmerged; the values for the

individual periods in which that product appears are used instead of the combined

variables. For instance, if product A appears in periods one and two, its production

in the two periods must be treated as distinct variables. Another view of this

procedure is to split product A into two new products, A' and A", whose total

productions are related. Additional constraints are written for these newly defined

products and their horizon constraints are inspected. Since at least one constraint

implicitly contains all the time periods, then the constraints are a true representation

of the physical situation and the resulting mixed-integer nonlinear program can be

solved. On the other hand, if the horizon constraints are not complete, another

product must be split into its multi-period form. The procedure is repeated until the

horizon constraints are complete. The steps of this procedure are then as follows:

1. Derive the totally merged formulation, including the horizon constraints as
indicated in the Appendix.

2. Check the horizon constraints to see that at least one constraint implicitly
contains all the time periods. If this condition is met, solve the merged
formulation. If not, go to step 3.

3. Select a product that breaks the loop(s) present in the matrix of the super-
structure. Choose the fewest number of products for this step. A
product that appears in the fewest number of time periods will add the
fewest number of additional variables and constraints to the formulation.
A product with a large Q. will probably have good numerical stability
when split into its values for the time periods.
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4. Obtain a new super-structure using the artificial products for the product(s)
selected in step 3. Derive the new horizon constraints to verify implicit
presence of all the time periods in at least one constraint. If this state
does not exist, return to step 3 and alter the selection of the product(s).
Otherwise, derive the necessary multi-period constraints for the "split"
products and solve the resulting partially merged formulation.

Discussion

It should be noted that constraints of the type shown in Equation (57) cannot be

transformed into those for a geometric programming problem by using the

exponential transformation of variables. Therefore, since the partially merged

formulation involves non-convex constraints, the existence of a unique optimizer

cannot be proven for the relaxed problem. However, the existence of a unique

minimum value for the objective function can be proved as shown in Vaselenak

(1985).

It should be pointed out that the existence of a loop in the matrix of the

superstructure does not always imply that the merged formulation using the original

products will not be valid. For example, it can be shown that the matrix of the

super-structure for the six product example in Figure 10 contains a loop. However,

the horizon constraints listed below, which do not require splitting of products,

implicitly cover all six time periods:

TA • T- • Tc £ H periods: 1, 6, 2, 3, 4, 5 (63)

T_ + T_ • T_ * H periods: 1, 2, 3. 4. 5. 6 (64)
D U r

Therefore, the existence of a loop in the superstructure matrix is a necessary but not

a sufficient condition for the use of artificial products in a partially merged

formulation. It is also important to emphasize that the occurrence of "cycle"

problems that require splitting of products is quite rare. In actual practice most of

the problems will not exhibit this behavior and, therefore, can be solved with the

merged formulation.
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Summary of the Basic Steps

The basic steps in the suggested procedure for the optimal design of multi-purpose

batch plants can be summarized as follows:

1. List the candidate product groups.

2. Obtain the super-structure that contains the candidate groups.

3. Derive the horizon constraints.

.4. Examine the horizon constraints. If at least one horizon constraint
implicitly contains all the time periods, complete the merged formulation
and solve the MINLP given in Equations (38) to (44) with the corresponding
horizon constraints. Otherwise, go to step 5.

5. Select a product(s) that breaks the loop(s) in the super-structure. Treat the
chosen product(s) as two or more artificial products.

6. Revise the super-structure to include the additional products. Verify that
the loop is broken. If this condition is met, go to step 7. Otherwise,
return to step 5 and modify the products chosen for splitting.

7. Derive the multi-period form of the constraints for the product(s) that are
split into its (their) values for the time periods in which it (they) appear.
Formulate the merged representation of the model for the rest of the
products, including the horizon constraints. At least one horizon
constraint will contain implicitly all the time periods.

Example 2

The seven product, ten stage example problem of Suhami and Mah (1982) has been

solved to illustrate the design of a large multi-purpose batch plant. From the super-

structure of this problem (Figure 4), the horizon constraints shown in Table II are

derived.

Using these constraints, the example has been solved with the merged formulation.

Data for this problem appears in Table III. In addition, the following specifications

have been used: H = 6200 hr, a = 250 SFr, fi = 0.6, 1 < N <, 3, and 250 < V

£ 10,000. As seen in Table IV, the MINLP formulation involves 48 variables and 67

constraints. MINOS/Augmented (Murtagh and Saunders, 1980) required 16.09 seconds

of CPU-time on a DEC-20 computer to solve the relaxed nonlinear program.
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The following constraints were used to force the N to be integers:

[(N* )u - N. ] [ N J - <N* )L ] =0 for non-integer N (65)

where (N* )u = the smallest integer greater than N*

(N* )L = the largest integer less than N*

N* = the non-integer solution for N.

This type of constraint, although multi-modal, provides an efficient way to locate a

feasible integer solution that is close to the relaxed solution, which represents a

lower bound for the optimal integer solution. (In these examples the integer

solutions are within approximately 1% or less of the continuous solutions.) A branch

and bound procedure to search all combinations of the integer N , that involves the

solution of a sequence of nonlinear programs, is an expensive alternative to the use

of this constraint. If the constraints of the type shown above fail to find a feasible

solution, then the branch and bound method may be necessary to find an integer

solution. However, because the integer solutions obtained with constraint (65) are

often close to their lower bounds, the expense of using a branch and bound method

is usually not justified.

The solution for this problem is given in Table IV. The total computer time that

was required is 35 sec (DEC-20). Note that the optimal objective function value

differs only slightly with the one obtained by Suhami and Mah (1982). From the

integer solution obtained, the plant can be scheduled as shown in Figure 11. This

schedule has been determined by examination of the active horizon constraints.

Since products A, E, and F have the same processing times and since these three

products appear in period 3, T3 is set equal to their value of 2159.2 hr. Similarly,

products B and G determine the length of period 4, and products C and D, period 5.

Comparing the schedule given in Figure 11 with the super-structure in Figure 4,

periods 1, 2, and 6 of the super-structure have been deleted.
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This example shows that with the merged MINLP formulation significant time

savings are possible due to the fact that the combinatorial problem of analyzing

alternative product groupings has been avoided totally with this new formulation.

Example 3

To illustrate an application of the partially merged formulation, the five product,

five stage example of Figure 7 has been solved. Data for this problem are listed in

Table V, and the superstructure after the splitting of A is shown in Figure 9.

In this example, H = 6200, a = 250 SFr, J3 = 0.6, 1 £ N. £ 3, and 250 < V. <>

10,000. The horizon constraints are given by Equations (63M65). As presented in

Table VI, the relaxed form of the partially merged formulation contains 34 variables

and 35 constraints. The solution required a total of 59 CPU-sec on a DEC-20

computer using MINOS/Augmented to solve both the relaxed nonlinear program and

the one with integrality constraints. The solution is displayed in Table VI. The

optimal schedule for the integer solution is given in Figure 12 where period 2 has

been placed at the end. The processing time for the first part of product A (i.e. A')

in period 1 has been used to determine the length of this period. Next, product B

has been considered. Its remaining processing time that does not fit into period 1

has fixed the length of period 3. Similarly, the processing time of product C has

been split between periods 3 and 4. The lengths of periods 5 and 2 are set with the

part of D that could not be accomodated in period 4, and with product E and the

rest of product A (i.e. A").

In this schedule, each product is produced simultaneously with one product first

and then with a second product. For example, product A is processed with product B

first in period 1, and then B with product C in period 3 (see Figure 12). Also, note

that the production of A is interrupted because it takes place in periods 1 and 2. As

was indicated previously, the methods of Suhami and Mah (1982) and Klossner and

Rippin (1984) cannot identify this optimal schedule.
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Conclusions

This paper has presented a new approach for the optimal design of multipurpose

batch plants. It has been shown that by embedding the possible product groupings

for the schedule, the combinatorial problem of analyzing each alternative can be

eliminated. For most cases the problem can be merged into a single MINLP problem

that is very similar in structure to the design problem for multiproduct plants. When

this merging is not possible, the formulation still leads to an MINLP problem of

reasonable size. The numerical results show that this new approach is

computationally efficient.
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APPENDIX

Determination of Horizon Constraints for Merged Model

The purpose here is to find all the combinations of products that may limit the

total production time. Another way of viewing these horizon constraints is to

consider them as replacements for the horizon constraints in the multiperiod model

that involves the sum of lengths of the time periods. All possible combinations of

the new variables, the total processing times for each product, TA, TB, etc., must be

taken into account when eliminating the time length variables, Ty T"2, etc., from the

problem. This procedure is a recursive tree search with nodes only attached to

nodes of a higher index, as illustrated in Figure A1. The steps in the procedure are

as follows:

1. Determine the super-structure for the multi-purpose plant design problem.

2. Delete any products that appear in the same periods as the first product
from consideration for constraints involving this first product.

3. From the subset of remaining products consider all combinations of this
subset that do not share a common period. Use these particular
combinations with the first product to list its horizon constraints. If this
subset of products is the empty set, consider the processing time of the
first product to be less than the total available time as the only possible
constraint in this step.

4. Omit the first product from analysis. Repeat steps 2 through 4 with each
subsequent product until all products have been considered.

5. Delete redundant constraints.

6. Check the final set of horizon constraints to see that at least one
constraint contains all the time periods. If this condition is met, the
merged formulation can be used. If none of the new horizon constraints
has all of the periods, a non-typical case, then a partial merging of the
constraints can be used, as explained in section 2.7.

From the example in Figure 3 the resulting tree search is shown in Figure A2, with

"x" representing the exclusion of the rest of the branch. In the branch ABC, products

A and B do not have any time periods in common, but C is contained in period i

with product A. Thus, the branch AB is a viable constraint.
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TA • TB <J H

The other two horizon constraints are shown in branches AD and BC.

TA • ' TD * H (A2)

TB • T c £ H (A3)

The constraint from branch C, T"c £ H, is deleted since it is redundant due to

constraint (A3). Also, the constraint from branch D, TD £ H, is redundant because of

constraint (A2).



Table I: Matrix A for the Example
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Table II: Horizon Constraints for Example 2, Suhami and Mah (1982)

TA
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Table III: Data for Example 2

a) Processing times, t.. (hr/batch)

R
1

Product
P
pA

p

P

PE 6<

p
.534

.855

R
2

7.326

7

4

1

R
3

.143

.36

.269

2

2

R
4

.595

.404 9

5

5

Unit

R
5

.987

.516

.062

type

R
6

2.005

3

6

5

R
7

.974

.758

.469

7

2

6

R
8

.456

.554

.65

5

7

1

R
9

.719

.318

.932

R
10

2.297

7.725

b) Size factors, S1 (L/kg/batch)

R
1

Product
p
A

P
P

PE 9<

P

PG 3'

.422

.757

R
2

5.64

9

8

3

R
3

.768

.065

.174

1

1

R
4

.125

.922 9

2

9

Unit

R
5

.415

.653

.381

type

R
6

2.895

3

4

5

R
7

.205

.833

.731

5

4

6

R
8

.404

.62

.418

3

4

5

R
9

.304

.529

.982

8

3

R
10

.163

.587

c) Production Goals (leg)

Yearly

production

Product Q

PA 300,000

PB 150,000

Pc 200,000

PD 190,000

P£ 140,000

Pp 172,000

Pr 106,000
G



Table IV: Solution of Example 2

Stage

1
2
3
4
5
6
7
8
9
10

Continuous

V (liters)

3789.0

2976.2

7112.0

1331.1

6521.3

1691.0

3347.6

5313.9

2405.6

4335.9

1.000

1.000

1.000

1.000

1.116

1.000

1.000

1.000

1.123

1.000

Integer

V.(liters)

3991.6

3040.8

7266.4

1402.5

6870.1

1781.5

3526.6

5598.1

2549.0

4594.4

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

Integer Solution

Product i

A
B
C

D
E
F
G

n

289.6

201.6

355.3

260.4

330.5

279.5

196.6

B. (kg)

1036.

743.9

562.8

729.7

423.7

615.4

539.2

T u (hr)

7.456

7.143

7.318

9.987

6.534

7.725

7.326

Ti (hr)

2159.2

1440.3

2600.4

2600.4

2159.2

2159.2

1440.3

Objective function value

(this study)

Objective function value

(Suhami and Mah, 1982)

Number of variables

Number of constraints

CPU-time (DEC-20 computer)

% deviation from continuous solution

Continuous

354,778

354,770

48
67

16.09

ion

Integer

355,

355,

516

505

48
69

18.79

0.2083 %



Table V: Data for Example 3

a) Processing times, t.. (hr/batch)

Stage

Product A 9.0 6.0

B 3.9 6.2

C 5.5 3.5

D 7.5 4.5
E 7.1 4.0

b) Size Factors, S (L/fcg/batch)

Stage

Product A 3.0 2.5

B 1.0 1.5

C 2.7 2.3

D 3.1 1.1

E 1.7 2.8

c) Production Goals (Kg/yr)

Product

A B C D E

Production

goal (Jcg/yr) 300,000 195,000 220,000 190,000 170,000



Table VI: Solution of Example 3

age

1

2

3

4

5

Continuous

V. (Liters) . N

1817.7

1514.8

645.0

783.4

1290.4

1.1183

1.0000

1.0000

1.2075

1.0000

Integer

V (Liters)

2029.0

1690.8

720.0

928.2

1440.3

1.0000

1.0000

1.0000

1.0000

1.0000

Integer Solution

Product i

A1

A"

B

C

D

E

i

213.5

230.1

314.9

351.3

290.3

330.5

B, (kg) (hr) (hr)

Objective function value

Number of variables

Number of constraints

CPU-time (DEC-20 computer)

% deviation from continuous solution

676.
676.

618.

626.

654.

514.

olut

3
3

8

2

5

4

io

9.
9.

000
000

6.200

5.

7.

7.

Continuous

92,455

34

35

500

500

100

28.30

n

Integer

93,413

34

37

30.

1.

1921
2070

1952

1932

2177

2346

77

036

.5

.5

.3

.1

.1

.3
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Figure 1« Plant for Example 1
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Figure A-2. Search Tree
for Horlron Constraints of Example 1


