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Abstract

The problem of retrofit design of multiproduct batch plants is considered in which

the optimal addition of equipment to an existing plant must be determined in view of

changes in the product demands. In order to circumvent the combinatorial problem

of having to analyze many alternatives the problem is formulated as a mixed-integer

nonlinear program (MINLP) and solved with the outer-approximation algorithm of

Duran and Grossmann. By using suitable variable transformations and approximations,

the global optimum solution is guaranteed. The proposed MINLP model is also

extended to the case when time-varying forecasts for product demands are given.

Numerical examples are presented.
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Introduction

This paper will address the problem of optimal retrofit design of multiproduct

batch plants. In this problem the sizes and types of equipment of an existing

multiproduct batch plant are given. Due to the changing market conditions, it is

assumed that new production targets and selling prices are specified for a given set

of products. The problem then consists in finding those design modifications that

involve purchase of new equipment for the existing plant to maximize the profit.

The production targets that are given for the retrofit problem could be fixed or be

given as upper limits. In this work the production levels are treated as upper limits

to account for the following possibility. If the cost of the new equipment to

operate at these new production levels is more than the revenue from the increased

production, then either no new equipment should be purchased or else limited

additions of equipment should be made at lower production levels. Therefore, the

production levels must be optimized as part of the retrofit design problem.

Other assumptions that will be used in the retrofit design problem of this paper

correspond to the ones that are commonly used in the optimal design of

multiproduct batch plants (e.g. see Sparrow et al, 1975, Grossmann and Sargent,

1978). These assumptions include the following: The recipes for all the products are

given, while processing times are specified for each of the products in each type of

equipment. The products are manufactured sequentially using an overlapping

production schedule. Also, it is assumed that material can be held in its processing

unit until the next stage is ready. That is, the processing vessels can act as their

own storage tanks. In addition, a continuous range of equipment sizes is assumed to

be available, and the number of batches is permitted to be non-integer since this is

usually a large number. Finally no semi-continuous equipment is considered for the

plant design, although in principle this aspect could be included in the problem

formulation (see Knopf et al, 1982).



As will be shown in this paper the optimal retrofit design problem for multiproduct

batch plants can be formulated as a mixed-integer nonlinear programming (MINLP)

problem in which two possiblities for adding new equipment in each batch stage are

included. The added equipment can be used to decrease cycle times or to increase

the batch sizes of the different products. By using exponential transformations and

piecewise linear approximations, it is shown that the outer-approximation method of

Duran and Grossmann(1983) will converge to the global optimum solution of the

MINLP problem. The extension to the multiperiod case where production forecasts

are given for several time periods is also considered. Three examples are presented

to show that the combinatorial problem in the retrofit design can be handled

effectively.

Options for New Equipment

The design modifications that are considered in the retrofit design of a

multiproduct batch plant will involve the addition of new equipment to the existing

plant. Any new equipment can be utilized jn two ways: (1) to ease bottleneck

stages by operating in parallel but sequentially (option C), or (2) to increase the size

of the present batches by operating in parallel and in phase with the current

equipment (option B). Option C increases production by decreasing the cycle time of

a product, the time needed to make one batch of a product. The new equipment

used in this way operates out of phase with the existing equipment. The Gantt

charts of Figure 1 demonstrate how production is increased with this design

alternative. As can be seen option C decreases the idle time of a unit, thus allowing

for more efficient utilization of the equipment. Option B on the other hand increases

production by augmenting the batch size of a product. New equipment utilized in this

fashion operates in parallel and in phase with the existing equipment, as shown in

Figure 2. This option takes advantage of excess volume of a unit, allowing for

better utilization of the capacity of the unit.



Since the two options cited above can be applied to each of the batch stages, all

the alternatives for equipment addition in the retrofit of a multi-product batch plant

can be embedded within a super-structure as shown in Figure 3. Although just one

potential new unit per stage is shown in this figure, it is clearly possible to specify

multiple units for each option at each stage. By using this superstructure

representation, the retrofit problem can be formulated as a mixed-integer nonlinear

program to determine the optimal design modification without having to examine all

the possible alternatives.

Formulation

The goal of the retrofit design problem is to maximize the profit of the batch

processing plant given new product demand and prices. Profit is defined here as the

net income from selling the products minus the annualized investment cost. The

expected net profit per unit of product P will be denoted as p.. The cost of the

equipment will be approximated by a fixed-charge cost model, where K is the

annualized fixed charge of equipment type j, which includes the costs of piping,

instrumentation, and some installation expenses, and c. is the annualized

proportionality constant of equipment type j, which accounts for the linear increase

of cost with the size of the vessel.

The objective function for the retrofit problem can then be formulated as:

ISI M Z B N o l d Z C

max Y p n B - Y f 3^ ^T c (VB ) - T c. Vc ) n)

M ZB N o l d ZC

k=1 m=1 k=1



where n. = number of batches of product i

B. = batch size of product i

(y-k )m = binary variable for the kth new unit used to expand batch size of the

mth old unit of stage j

y£ = binary variable for the decrease cycle time option for the kth unit

of stage j

(V k )m = volume of the kth new unit of stage j used for option B

(increase batch size) of existing unit m stage j

V = volume of the kth unit of stage j used for option C (decrease

cycle time)

i * index for products, i = 1, 2, .... N

j = index for stages, j = 1, 2, .... M

k = index for number of possible new units for stage j ;

k = 1, 2, .... ZB for option B; k = 1, 2 ZC for option C

m = index for existing parallel units of stage j , m = 1, 2, .... No l d

Note that new vessels used for option C are denoted by y^ (binary variable for the

existence of a unit) and V̂ * (volume); new items used for option B are symbolized by

y. (binary variable for the existence of a unit) and VB (volume). The binary variables,
JK JK

y^ and y° represent the existence of a particular unit (y = 1) or the absence of a
JK JK JK

particular unit (y = 0) in the superstructure. Also, this definition of variables allows

different equipment items to have unequal sizes; for example stage s can have the

volumes Vold, V c . and Vc
os si s2

Upper bounds on the production of each product, as given by the predicted demand.

are expressed in the following way.

n. B. < Q. i = 1, 2 N (2)

where Q. = the upper limit on production of product P.

The total number of units N. used in determining the cycle time for each stage j is



the sum of the number of old and new units, omitting the "expand batch size"

(option B) type units since they operate in phase with the old, existing units. That

is,

joid' X" wC4j * N | * 2-, y£ i « 1. 2 M (3)

The limiting cycle time of product P. is given by,

TL. > (t.. IN.) i = 1. 2 N; j « 1. 2 M (4)

where t is the processing time of product i in stage j.

Combining constraints (3) and (4) leads then to the inequality

«• X y £ ) * ( \ ' Tu > j s 1-2 N' J s 1-2 M

k=1

The cycle time T and the number of batches n., i = 1,2, ...N, define the total

processing time that is required for each product. These processing times must not

exceed the total time available, H, as stated by the following constraint:

N

i T u * H

The total number of new units for each stage must lie between a lower bound. 0.

and a specified upper bound, Nu:



z° z c
0 * L 2L y;k * z . Vjk J ^ NJ J

 = ^ 2 M (7)
k=1 k=1

Also, to ensure that the equipment can accommodate the required production levels,

constraints are written such that the size of the equipment must be greater than the

batch volume needed by each product using that stage. For the case of expanding

the batch size (option B), the constraint is given by:

B i j " '• 2 N ; J • 1- 2 M (8)

« - 1. 2 N°ld

where S.. is the size factor for product P. in stage j, and V?'d is the size of the

existing piece of equipment.

For the case of the option for reducing the cycle time (option C), the capacity

constraint is:

U [1 - y£] • v£ * S,. B. i - 1. 2 N; j = 1. 2 M; (9)

k = 1. 2 Z^

where U is a large number that makes this constraint redundant when this option is

not selected (i.e. y^ = 0).

Additional bounds and integrality constraints for the above cases are:

0 £ <V^ )m * (V^)u j - 1. 2 M; k - 1. 2 Z*5; ai = 1, 2 N° ld (10)

0 <; V j < (V^)U j - 1. 2 M; k - 1. 2 Z^ (11)

( V f k ) m ^ U ^ ^ M ' " 1' 2 M; k " 1- 2 Z*; » - 1. 2 N° ld (12)

Vfk ^ U vfk j = •"' 2 M; k - 1. 2 Z f (13)



where (VB)U is the maximum size of a new unit for stage j, option B

(Vc)u is the maximum size of a new unit for stage j, option C

Finally, constraints that assign a priority selection for the postulated units in each

stage, are included to eliminate redundant combinations of the binary variables.

• 1 ' 2 < Z i

m = 1, 2 No l d

yf. ^ yf. + 1 j • 1. 2 M; k = 1, 2 (Zf - 1) <15>

) . * ( d > m J • '• 2 M ' k • 1' 2

The problem defined by Equations (1M2), (5H15) corresponds to a mixed-integer

non-linear program (MINLP). In this MINLP formulation the goals for retrofit design

of multiproduct batch facilities are mathematically expressed, and all of the

alternatives that are postulated for the new addition of equipment are embedded in

this formulation.

In order to appreciate the combinatorial nature of this formulation it will be useful

to consider first a simple example problem.

Example

To illustrate the use of the MINLP formulation presented in the previous section,

consider the case of two products, A and B, that are currently manufactured in a

multi-product plant consisting of two stages. Each stage has one unit with volumes

V1 = 4000 liters and V = 3000 liters. The size factors and processing times are

given in Tables 1 and 2.

The existing equipment is used to produce one million kg/yr of product A and

800,000 kg/yr of product B. From market research data, it is established that

production can be increased to 1.2 million kg/yr for product A, and to one million

kg/yr for product B. These goals represent upper limits on production. The net profit



is $1/kg for A and $2/kg for B. Thus, if product A and product B are manufactured at

the upper limits, the maximum revenue is 3200 (103 $/yr.). The cost of installing a

new unit in the plant is given by the correlation 32.54 (V/1000) + 30.56 (103 $/yr).

Based on this information, it is desired to determine what new equipment, if any,

should be purchased to maximize profit for a given horizon of one year (6000

working hours).

Figure 4 shows the super-structure for this problem, where two possible additions

for the two options is considered in each stage. The corresponding MINLP

formulation, which can be found in Vaselenak (1985), involves 8 binary variables, 6

continuous nonlinear variables (number batches, cycle times, batch sizes), 8

continuous linear variables (volumes new vessels), and 31 inequality constraints.

One simple method to solve this MINLP is to enumerate all of the possible

alternative plant configurations by solving the corresponding NLP problems that result

from fixing different combinations for the binary variables. As shown in the

Appendix, these NLP subproblems have a unique optimum solution provided the

production amounts for each product are strictly greater than zero.

Fifteen different alternatives can be considered for the purchase of two or fewer

pieces of equipment, as shown in Table 3. For each alternative, MINOS/Augmented

(Murtagh and Saunders, 1980) was used to solve the resulting NLP, requiring about 2.5

CPU-seconds on a DEC-20 computer for each case. Thus, the total CPU-time required

to analyze the fifteen cases was about 38 CPU-seconds.

In Table 3 the production levels for the existing plant are optimized first to obtain

a lower bound on profit, as seen in case 1. The next four cases show the maximum

profit that is obtained when one new piece of equipment is added in the plant. The

remaining cases show the profits for the addition of two units. The optimal solution

is case 5, the use of one unit to expand the capacity of stage 2 which leads to a
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profit of 3,115 (103$/yr). This represents a 13% increase of the profit with respect

to the case when no new new equipment is added to the existing plant.

The following reasoning allows the search in this example to be terminated at two

units for each stage. The maximum profit that can be attained from using three units

or more is the difference between the maximum revenue and the fixed-charge cost of

three units, 3200 - 3(30.56) = 3108(103$/yr). Since this maximum profit is less than

the profit of case 5, combinations involving three or more units can be eliminated.

This small example problem examined fifteen different plant configurations and

solved fifteen NLP problems. Since larger and more realistic problems would require

analyzing a much larger number of possibilities, an efficient solution procedure for

solving the MINLP is required.

Solution Procedure

The primary methods used to solve general MINLP problems include generalized

Benders decomposition (Geoffrion, 1972), the alternative dual approach (Balas, 1971),

and branch and bound search with solution of a NLP subproblem at each node of the

enumeration tree (see Garfinkel and Nemhauser, 1972, for example). The solution

approach used here is the outer-approximation algorithm (Duran and Grossmann, 1983),

which has been developed for solving the class of mixed-integer nonlinear programs

that are linear in the binary variables and nonlinear in the continuous variables. This

is precisely the structure of the MINLP formulation of this paper.

The outer-approximation method consists of solving an alternating sequence of NLP

and MILP master problems to optimize the continuous and the binary variables.

respectively. Specifically, this method involves first fixing the binary variables and

finding an optimal solution of the resulting NLP subproblem. For the case of

minimization of the objective function, this solution provides an upper bound. The

original MINLP is then approximated with a master problem by linearizing the
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nonlinear functions at the solution of NLP. For nonlinear convex functions these

linearizations will underestimate the objective function and overestimate the feasible

region. By including an integer cut to exclude the binary combination that was

analyzed, the resulting MILP master problem is solved to obtain a new set of binary

variables and a lower bound on the objective function (minimization case).

The new binary values are then substituted in the NLP subproblem, and the

alternating sequence is repeated by accumulating in the MILP master problem all the

successive linear approximations, as well as integer cuts to exclude alternatives

previously analyzed. In this way, as iterations proceed in the sequence, the lower

bounds predicted by the MILP master problem will increase monotonically since an

increasingly tighter approximation of the original MINLP is obtained. The upper

bounds predicted by the NLP subproblems will not necessarily decrease

monotonically. The search procedure is stopped when the MILP master problem has

no feasible solution because it cannot locate a new binary combination whose lower

bound lies below the best upper bound obtained from the NLP subproblems. The

global optimal solution will then correspond to the combination of binary variables

that produced the best upper bound. This method can be shown to require fewer

iterations than generalized Benders decomposition (Duran and Grossmann, 1984) and

details of this algorithm are given in Duran and Grossmann (1983).

In order to guarantee a global optimum solution in the outer-approximation

algorithm of Duran and Grossmann, the MINLP formulation for the retrofit problem

must be transformed to a convex form to ensure that feasible solutions that might

correspond to the global optimum are not excluded by the master problem. For

example, Figure 5a shows a bilinear constraint that is typical of this formulation.

Linearization of this constraint excludes the shaded regions from analysis. To avoid

elimination of potential solutions, an exponential transformation of the variables

results in a convex constraint. In the two variable example, the constraint becomes

linear as shown in Figure 5b. The required transformations for the retrofit design
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problem are detailed in the following section.

Exponential Transformation of Variables

From the section on problem formulation the objective function in terms of

minimization can be expressed as:

N M ZB No l d ZC

ZZmin - X P Z{
i=1 j=1 k=1m=1 k=1

M Z B N o l d Z C

2
k=1 m=1 k=1

Since bilinear terms are involved in the final summation term, the following

variables are defined and substituted into the objective function.

n. = exp(ulj) i = 1, 2, ..., N (16)<

B. = exp(u2j) i = 1. 2 N (17)

N M ZB Nold ZC

J J J

min - X p. exp(Ulj * u2j) * j<
j=1 k=1 m=1 k=1

M ZB No l d ZC

J J J

' * Z ( Z I K (y*) • Jk.v<
• t V. € t € t j ' jk JW * * j ' jl

j=1 k=1 m=1 k=1
Using Equations (16) and (17), the production goals:

rv B. < Q. i = 1, 2 N (2)

become the following linear constraints.
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u^ • u2j < In Q. i = 1, 2 N (19)

The constraint (5) defining cycle times can be rearranged as:

yfk • -^- * N ? d (20)
k=1 Li

Note that the term (t. / TLJ ) is convex. However, Tu appears in the horizon

constraint (6) in the bilinear term n. T , which is nonconvex along some directions.

Therefore, it is convenient to define:

Tu = exp(u3.) i = 1, 2 N (21)

with which (20) becomes,

Z yc
t • t.. exp(- u.) ^ No ld (22)

JK ij Ol J

k=1

which is also a convex constraint.

Finally, using Equations (16) and (21), the horizon constraint in (6) can be expressed

as a convex constraint:

N

,. • u,. ) ^ H (23)

The constraints defining the volumes of the new vessels are shown below.

Z (VB, L + <VoldL ^ S.. B. i = \. 2 N; j = 1, 2 M; (24)

k=1
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m « 1. 2 N° ld

U [1 - yCJ • VC
t * S.. B. i « 1. 2 N; j • 1. 2 M; (25)

k = 1. 2, .... Zf

0 £ (VB. L * (VB)U j - 1. 2 M; k = 1. 2 zf; m - 1. 2 N° ld (26)
Jl\ III J J J

0 < VC. £ (VC)U j • 1. 2 M; k • 1. 2 z f (27)C £ (VC)U

(l (y* )ffl j » 1, 2 M; k = 1, 2 Z*; m « 1. 2 N ^ (28)

Vjk * U yjk j s 1 ' 2 M ; k s 1- 2 z f ( 2 9 )

If B. is transformed as in (17), the above linear constraints for capacity become

nonlinear. Since the number of nonlinear constraints should be kept at a minimum to

facilitate the solution procedure, it is convenient to keep the variable B for the

constraints (24) and (25). The following covex inequalities can be used for this

purpose:

exp(u2j) - B. £ 0 i = 1, 2 N (30)

Because u2 j is maximized in the objective function (18), this variable will take its

largest possible value. However, since B will be limited by at least one constraint

in (24) or (25), and increasing B. increases the required volumes constraint (30) will

actually hold as an equality. Finally, the constraints used previously to eliminate

redundant combinations of binary variables are included here also.

j )• j » 1. 2 M; k = 1, 2 (ZB - 1); (3D

ffl = 1, 2 Nold

yjk * y j*-M j = 1' 2 M; k s 1- 2
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Piece-Wise Linear Approximation of Objective Function

All the nonlinear terms in the transformed MINLP defined by Equations (18) to (20)

and (22) to (32) are convex except for the negative exponentials of the income term

in the objective function. Despite the fact that these terms are concave, for fixed

values of the binary variables, the corresponding NLP has a unique optimum solution

as shown in the Appendix. However, since the linearization of the negative

exponential terms in (18) will overestimate the objective function, the MILP master

problem may eliminate some valid solutions, possibly the global optimum. To

remedy this situation, a piece-wise, linear underestimator must be constructed to

approximate the negative exponentials in the objective function, as shown in Figure 6.

The scheme that will be used to underestimate the objective function with a piece-

wise linear approximation consists of selecting as base points those that result from

the solution of successive NLP subproblems. Lower and upper bounds of the

function are selected for the initial iteration. The following constraints can then be

written for the selected points of the piece-wise linear approximation (see Garfinkel

and Nemhauser, 1972):

N

X. s. (33)

N

y* = 3 ^ X. f. (34)

N

~" X = 1 (35)

X, < 3 , (36)

X < h. * 5.xl i = 2; 3 (N-1) (37)
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X < d (38)

N S N-1

N-1

S. = 1 (39)

where s, f are given variable and function values

x, X. are continuous variables

y* is the approximation of the function

5 are 0*1 binary variables

Each binary variable 6 is associated to a line segment. A value of 3 equal to

one indicates that x lies within the interval (s., s + 1 ) , whose function is approximated

by the line segment containing function values f. and f . Constraint (39) forces

only one S. to be non-zero. Using Inequalities (36), (37), and (38), at most two

consecutive X. can be non-zero. Equation (33) defines then the point at which the

approximation y* is obtained as a linear combination of the two function values

contained in the line segment as given by Equation (34).

The underestimation of the negative exponential terms of the objective function

assures the global solution of the MINLP because valid linearizations that preserve

the bounding properties are used in the MILP master problem. Note also that the

solution of the NLP problems is unique.
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Example 1

The example problem presented previously in the paper will be solved with the

outer-approximation method of Duran and Grossmann (1983) using the exponential

transformations and the piece-wise linear approximations for the master problem.

The existing plant (all integer variables set equal to zero) was selected as the initial

point. MINOS/Augmented was used to solve the NLP, and the MILP was solved using

LINDO (Schrage, 1981). Two iterations were necessary to find the optimal solution,

3,115 (103 $/yr), as listed in Table 4. It should be noted that since maximization of

the objective function has been used, the NLP provides for this case a lower bound,

while the MILP provides an upper bound. Each iteration (MILP and NLP solutions)

required about six CPU-seconds on a DEC-20 computer. Thus, this method only

required 12 CPU-seconds versus the 38 CPU-seconds of the enumeration of the

fifteen cases in Table 3. For larger problems greater savings with the outer-

approximation method can be expected as will be shown with the next example.

Example 2

Tables 5 through 8 present the data for example 2, a multi-product facility

involving four products and four stages. The super-structure embedding all of the

alternatives for new equipment are shown in Figure 7. The thick lines represent the

existing structure. The use of one item for each option (cycle or batch) has been

considered in each stage. The resulting MINLP formulation requires 9 binary variables

to represent the potential new units, 25 continuous variables, 26 nonlinear constraints.

and 52 linear constraints. The cost coefficients (in 10 $/yr) for this model are

shown in Tables 7 and 8; the total operating time considered is 6000 hours/year.

Using the outer-approximation algorithm, the three iterations (one NLP and one MILP

for an iteration) shown in Table 9 required 1.7 minutes of CPU-time on a DEC-TO

computer. As seen in Table 10, the optimal solution is to buy one unit (V4 = 2547 u

to expand the capacity of stage 4. This solution was found at the second iteration
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and has a profit of $5i3,300/year, compared to the profit of $460,900/year when no

additional equipment is purchased for the existing plant. Thus, an 11% increase in

the profit is achieved with the optimal retrofit design. The production levels of the

products were at their upper bounds in the optimal solution.

This example problem has 29 or 512 possible different combinations for additions

of new equipment. Since the NLP for each iteration requires an average of 6.5 CPU-

seconds, 55 CPU-minutes would have been required to enumerate all of the

possibilities. Since the outer-approximation method only required 1.7 CPU-minutes, it

is clear that significant computational savings have been achieved.

Extension to Multi-Period Problems

The MINLP formulation presented for the optimal retrofit design of a multi-product

plant can be extended to multi-period forecasts. For instance, different production

levels of a product may be specified for different time periods due to the seasonal

nature of the product, such as the case for pesticides, fertilizers, soups, etc., or due

to expected changes in the marketplace. This scenario is shown in Figure 8. Given

a demand forecast for a set of products over several time periods, the retrofit

design must then determine when new equipment should be purchased, as well as

what size and what option (B or C), and also what operating levels for each product

in each period. The time value of money must be taken into account here.

The MINLP formulation for NT periods of operation is a direct extension of

Equations (1M2), (5M15). The objective function that reflects maximization of profit

of NT periods is given by:
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NT N NT M ZB No ld ZC

max { Z & > ! B ! - I I K ; ( Z X (yJH, • £ y° ) ,401
t=1 i=1 t=1 j=1 k=1 m=1 k=1

NT M ZB No ld ZC

i i i- z z c- ( i i <vf'»m. i v«
t=1 j=1 k=1 m=1 k=1

where K{ and c! are discounted costs of equipment

NT is the number of time periods

t is the index for time periods, t = 1, 2. .... NT

The production goals and horizon constraints are expressed as a function of the

periods.

n[ Bj < Q| i = 1, 2 N; t = 1, 2 NT (41)

N

n* Tj. < H* t=1, 2 NT (42)

H l is the length of each period t, t = 1, 2. .... NT

Units purchased in previous time periods as well as the current period must be

counted in the total number of units.

t Zf
^T y ^ + -JL < NO\6 ( 4 3 )

k=1 TLi

i = 1. 2 N; j = 1, 2 M; t = 1f 2. .... NT
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The capacity constraints also depend on the time periods:

7old\ . X

? )m * U {Y*X J s ^ 2 M - k • 1- 2 Z*>;

m = 1, 2, ..., N°ld; t = 1. 2 NT

0 £ (V*< )m ^ ( v j ) u j - 1. 2 M; k = 1. 2 ZJ3;

m = 1, 2 Nold; t = 1. 2 NT

0 < V^ £ ( v £ ) u j-1.2 M; k=1.2 Z^; t-1.2 NT

i • 1. 2 N; j • 1. 2 M; ff) = 1r 2, ..., N° ld; t = 1, 2 NT

S.. B[ < U [1 - y ^ ] • V j ^ (45)

i = 1, 2. .... N; j = 1, 2. .... M; t « 1. 2 NT

I = 1, 2 t

where £ is an index for time periods; £= 1, 2, ..., t

Finally, bounds on equipment size and logical constraints are

included.

(46)

I, 2. .... M; k = 1, 2 Zu; t = \, 2 NT (47)

n j = 1, 2 M; k = 1, 2 (ZB -1); (48)

«• 1, 2 Nold; t * 1. 2 NT

yjk ^ y S + i J s ^ 2 M; k « 1. 2 (Z^ -1); t » 1. 2 NT (49)

(50)

(51)
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This MINLP formulation can also be convexified using the transformations in (16)

and (17). Thus, by using the piece-wise linear approximation scheme for the MILP

master problem, the global optimum can be found by solving the MINLP given by

(40M51) with the outer-approximation method.

Example 3

In this example, the same plant used in example 1 is considered, but with new

production goals for two years as shown in Table 11. The prices listed in period 2

of Table 12 and the cost of the equipment in period 2 of Table 13 are discounted to

take into account the time value of money. The use of two items for each option

for each stage per time period has been considered in this retrofit study, as shown

by the super-structure of Figure 9. The MINLP formulation involves 16 binary

variables, y , to represent these new units, 28 continuous variables, 6 nonlinear

constraints, and 56 linear constraints. Applying the outer-approximation algorithm,

four iterations have been required, using a total of approximately 4.5 CPU-minutes

(see Table 14).

As shown in Table 15, the optimal solution consists of expanding the volume of

stages 1 and 2 in period 1. In this way 75% of the capacity of vessel V^ and 72%

of that of vessel V^l is used in period 1, with full utilization of both vessels

occurring in period 2. As seen in Table 14, which reports the results for the

maximization case (i.e., lower bounds from the NLP, upper bounds from the MILP), the

optimal profit is $6,079,000/year which is a 20% increase over the case when no

equipment is added to the plant. The production levels of the two products were at

their upper bounds in the two periods.
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Discussion

The retrofit design of multiproduct batch plants has been formulated as an MINLP

problem which provides a systematic approach for solving this problem. As has

been shown, by using exponential transformations and piece-wise linear

appoximations the global optimum solution is guaranteed with the outer-approximation

method. Furthermore, this method circumvents the combinatorial problem of having

to analyze all possible alternatives for the addition of equipment. In the three

examples only 2 to 4 alternatives had to be analyzed with very modest computer

time to determine the global optimum solution.

Also it has been shown that the MINLP model can be extended to account for

multiperiod forecasts of the demands. This allows to determine the optimal

expansion policy of a multiproduct batch plant over several periods of time. Further

work may be required, however, to decompose the MINLP for problems involving

many time periods.

Finally, it is interesting to note that the solution of the three examples had their

production limits at the upper bounds, and that the equipment selected was for

increasing the batch sizes. In general, however, one cannot expect that the optimal

solutions will always exhibit this characteristic (see Vaselenak, 1985).
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Appendix

On the uniqueness of the solution of the NLP subproblems

For fixed values of the binary variables the MINLP defined by Equations (1-2), (5-15)

can be written in compact form as

N

. max T^ p. n. B. - W , , V9, . . ., V j (A1)
~^^ I I I I ^ IVI

s.t. n: B: <, Q: i = 1. 2, .... N (A2)

t.. / N. i = 1, 2, ...N. j = 1.2 .... M (A3)

S.j B. - a. i = 1,2, ...N, j = 1,2 .... M (A4)

< H (A5)

n. B.

V.
j

N

<,

where the cycle and batch volumes have been merged in the vector variables \l .

V2, ..., VM, which have zero components for the volumes not selected by the binary

variables; 4> is the linear investment cost function. In constraint (A3) the number of

units N. is a constant for fixed binary variables as implied by Equation (3); constraint

(A4) represents constraints (8) and (9) with a. being the corresponding non-negative

constant terms. Finally, (A5) is identical to Equation (6).

Since the variables N. are constant, as well as the processing times t., the cycle

times TLJ in (A3)can be set to

T u = max { ty/N. } i=1,2, ...N j=1,2, ...M (A6)

Furthermore, by defining the actual production amounts q. as

q} £ n. B. i = 1,2, ...N (A7)
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the formulation given by equations (A1MA5) can be written as
N

max 2L, Pj q. - 4>(Vr V2 VJ

s.t. q. <, n.B. i = 1,2 N

qj £ CL i = 1.2 N

V. * Sy B. - a. i = 1,2. ...N j = 1,2, .... M (A8)

N

since n., B., are bounded by the last two constraints, and q. has a positive

incremental profit in the objective function. Note that the variables for the

optimization are q., V., B., n.. Also, the objective function and all the constraints are

linear, except the first one which can be rewritten as

q./n.B. *1 i = 1,2 N (A9)

If n.B. > 0, this constraint is quasi-convex since in general the ratio function f(x)/g(x),

where f(x) is convex and g(x) > 0, can be shown to be quasi-convex (see Greenberg

and Pierskalla, 1971). Therefore, the formulation (A8) with the constraint in (A9)

corresponds to a nonlinear program that involves a linear objective function, linear

inequalities and quasi-convex inequalities. It then follows that if a Kuhn-Tucker point

exists in this nonlinear program it will correspond to the global optimum solution

(see Avriel, 1976). Hence, the NLP subproblems that arise from fixing the binary

variables in the MINLP given by Equations (1M2), (5M15), have a unique local optimum

solution provided the production amounts for each product are strictly greater than

zero.



Table 1: Size Factors for Example Problem 1 (L/kg roduct)

Stage 1 Stage 2

product A 2.0 1.0

B 1.5 2.25

Table 2: Processing Times for Example Problem 1 (hr)

product A

B

Stage

4.0
5.0

1 Stage

6.0
3.0



Table 3: Options for the Purchase of Two or Fewer Equipment Items

for Example Problem 1

case goals production
number N^ N2° N^ N 2

B met? profit (xlO3$)

no 2750

2 1 0 0 0
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1

6 1 0 0 1
7 1 0 1 0
8 1 1 0 0

9 0 1 0 1
10 0 1 1 0

11 0 0 1 1 yes 3090

yes
no

no

yes

yes

yes

yes

yes

yes

3044
2997

3029

3115

3014

3014

3000

3033

3033

12
13

14

15

2
0

0

0

0
2

0

0

0

0

2

0

0

0

0

2

yes
yes

no

yes

2889
2869

2998

3084



Table 4: Progress of Upper and Lower Bounds for Example 1

iteration

Lower Bound

(NLP Sub-problem)

Upper Bound

(MILP Master)

1 (All y = 0)

^ 1; other yjk =0)

2750

3115

3142

(no solution)

Table 5: t.. (hr/batch) for Example 2

Stage

product A
B
D
E

6.3822
6.7938

1.0135
3.1977

4.7393
6.4175

6.2699

3.0415

8.3353
6.4750

5.3713

3.4609

3.9443
4.4382

11.9213

3.3047



Table 6: S.. (L/kg/batch) for Example 2

Stage

product A
B

D

E

7.9130
0.7891

0.7122

4.6730

2.0815
0.2871

2.5889

2.3586

5.2268

0.2744

1.6425
1.6087

4

3

3

2

.9523

.3951

.5903

.7879

Table 7: Existing Equipment and the Cost of New Equipment
for Example 2

ag€

1

2

3

4

V.(L)
J

4000

4000

3000

3000

N
j

1

1

2

1

K
j

15.28

38.20

45.84

10.18

c
j

0.1627

0.4068

0.4881

0.1084



Table 8: Forecast of Prices ($/kg) and Demands (kg) for Example 2

product i

A

B

D

E

Pi

1.114

0.535

0.774

0.224

268 200

156 000

189 700

166 100

Table 9: Progress of Lower and Upper Bounds of Example 2

non-zero binary Lower Bound Upper Bound
iteration variables (NLP Sub-Problem) (MILP Master Problem)

1 none 460 900 532 700

2 yB=l 513 300 523 600
• 4

3 y*=l 461 900



Table 10: Optimal Solution of Example 2

VB = 2547 L

product i

A

B

D

E

ni

530.6

95.48

122.8

151.7

B. (kg)

505.5
1634.

1545.

856.0

TLi °

6.382

6.794

11.92

3.305

Table 11: Demand Forecast for Example 3 (kg)

product A

B

period 1

1,200,000

1,000,000

period 2

1,400,000

1,200,000

Table 12: Price Forecast for Example 3 ($/kg)

period 1 period 2

product A
B

1.00
2.00

0.80
1.60



Table 13: Cost Equations for Example 3 (10 $/yr)

period 1 Cost(V) = 30.5600 + 32.5400 (V/1000)
2 Cost(V) = 26.5739 + 28.2957 (V/1000)

Table 14: Progress of Lower and Upper Bounds of Example 3

non-zero binary Lower Bound Upper Bound
iteration variables (NLP Sub-Problem) (MILP Master Problem)

1

2

3

4

none

yB1

vB 1 vB 1
y n ' y2i

vB 1 vB 2

y y

5070

5992

6079

6000

6176

6106

6088

(no solution)

Table 15: Optimal Solution of Example 3

= 1310.0 L

V21 = 1 7 6 0 - ° L
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Figure 1: Option C: Decrease Cycle Time
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Figure 2: Option B: Expand Batch Size

REACTOR CENTRIFUGE

'X, •PRODUCT A

PRODUCT B

a) Existing Plant

REACTOR CENTRIFUGE

41
new

vessel

/ —^PRODUCT A

vy,
|

v X \ \ \

•PRODUCT B

new
vessel

b) Modified Plant



Figure 3: Super-Structure for Retrofit Design of a Multi-Product Plant
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Figure 4: Super-Structure for Example Problem 1
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Figure 5: Bilinear Constraint Example
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Figure 6: Piece-Wise Linear Approximation of Objective Function
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Figure 7: Super-Structure for Example 2



Figure 8: Multi-Period Demand for Products A, B, and C

demand (Q)

Q

A

B

C

period 1 period 2 period 3
time



Figure 9: Super-Structure for Example 3
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