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Abst r act

.Moving finite element nmethods allow grid points to follow steep fronts and
provide accurate solutions with |ess conputational expense. There are
problems that nust be recognized in the inplenentation of this nunerical
sol ution technique, but they. can be systematically analyzed and overcone.
Singularity or near singularity of the solution equation set provides specific
information about the node notion which can be used to inprove the solution.
A front tracking and heat conserving solution is presented for a noving

boundary probl em

| nt roducti on

In solving sets of partial differential equations:nunerical nethods such as .
finite differences or finite elements calculate the approxinmate value of the
field variables on a discrete set of points in the conputational donmain of space
and tinme. Adaptive gridding techniques allow noverent of the grid points to
capture phy_sical phenonena that are on a nuch different scale than the overall
domain. In par ablolic or hyperbolic problens such phenonena include shocks, steep
gradi ent regions, ar}d.phase change fronts. In'eIIiptic problens the grid nust be
sufficiently fine to capture rapid changes in the field variabl es due to cracks,
or high gradient regions, or be able to satisfy extra boundary conditions to
determine a free surface.
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In this work we discuss some features of a parti_cul ar class of adaptive
gridding methods, the noving finite element method (MFEM, which was originally
devel oped by MIller et al. (1981; Celinas et al, 1981). The solution procedure
is suited to parabolic or hyperbolic problenms requiring a fine grid that nust
follow a feature moving in tinme through the overall domain or where there are
domai n changes in time. MWEM is characterized by simultaneously calculating the
node nmotion and the field variable approximation to mininmze the least square
error residual of the governing PDE's with respect to field variable and nodal
coordinate trajectories. W shall present a brief overview of the 1-D method and
discuss some of the details that are inportant in successful inplenmentation of
the nethod. Specific problemareas that will be addressed include: discontinuous
inner products due to low order approximations, singularity and near singularity
in node motion, initial grid point placement, choosing integrators for the
ODE set, and how to handl e noving boundary problens. Further background naterial

is available in the references.

The MEE Met hod

Consi der asystemof p PDE' sinonespatial di nension,
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We define an approximation to u*, v\, defined as a piecewise continuous function,
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where aj*(t) is the value of v*(xj.t). Nodal amplitudes and nodal coordinates XJ are both

functions of time, t.
The temporal variation of v is given by,
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for linear basis functions, as shown in Figure 1.

~Ue minimze the least square functional
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Note (,) denotes an inner product and the values of these products have  been
catal ogued (CGelinas et al, .1961). A nunber of exanples have been sol ved using
‘the MFEM In 1-D these include: viscous and inviscid Burgers' equations, quench
fronts, Stefan problems (enthalpy fornulation), hyperbolic color equati on,
Buckl ey-Leverett equation, Dwyer-Sanders Flanme nodel, gas dynamc shocks,
el astic-plastic deformations, and convective-diffusion equations (Celinas et al,

1981, 1981; 1982; Johnson, 1984; MIller et al, 1981; Wathen, 1984).

Difficult |nner Products

Oten L* (v") contain v’\"and the inner products of (Of ", Vxxl) are undefined in

the usual sense, because the basis functions oe* are discontinuous at node i, and
vxx!' is formally a delta function at each node when a |inear approxinmation basis
is used within an element; low order basis functions wll not give snooth i
estimates to higher order derivative operators. Using a higher order elenent
would elinmnate the difficulties in the inner products, but, if we wish to use
linear basis functions with second order spatial deriva-tive operators for
exanpl e, then the inner products nust be approximated. The nmin disadvantage in
going directly to higher order basis functions is that there will be nmany nore
i nner products to evaluate in the ODE coupling matrix.
One way of handling these terns would be to use nollification, or put nore
sinply, trq:’;\ting the functions as limts of snoother functions. For exanple, the
basis function Bj . woul d take a mean val ue-of
sl eme )
at node i and vxx" is a delta function of weight nt+i !'~n1‘l- > )
For the inner product (aj ,VXX") one may use integration by parts. Note that v

the two basis functions are related as defined previously. In one dinension this




limit approach is quite feasible but in higher dimensions, there are difficulties
in interpreting the different limits. The approach also does not lend itself to
practical generalization to higher order basis functions with even higher order
differential operators.

Another approach is to recognize that the solution must be smooth, and one
may “"recover” a smoother approximation for the second derivative, Wy,, from the
MFE solution (Johnson, 1984). Local higher order polynomial approximations of
the field variable and its gradient are made and differentiated to produce
piecewise linear, but discontinuous, approximations of the second derivatives.

For example, Johnson has shown that a local Hermite cubic defined by,
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gives exactly the same inner products as the mollification approach of Miller et al.
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(e 8D = (v, 8D)= = 3 (k& mBy1)miyy - mp)

This makes intuitive sense because the mollification process is essentially
smoothing the derivatives between elements by taking an average value. The
Hermite basis is explicitly requiring a derivative smoothing. The Hermite form
is appealing in higher dimensions since it is relatively easy to use» higher

dimension Hermite elements to define the inner products.
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Another local approximation would define W, on a quadratic,
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It has been reported that there is little difference in accuracy between the two
approximations when used on the viscous Burgers’ equation. There is some
difference in the maximum time step allowed between the two methods, but the
results do not favor either of the two approximations.

Therefore, the basic idea in defining the inner producté, for second order .
differential operators using a linear approximation, is to use some type of
smoothing; either use the limiting pr;ocess of mollification, or explicity define
a local approximation to the second order derivative terms using the solution at
the m;dal points. The latter approach is preferred. Higher order elements would
reéuire quadraturé or more involved integration for the inner products and would

make the basis functions of the nodal motion trajectories more complicated.

Singularity of the ODE Set

The MFE formulation is an optimization problem and if a value of a variable




does not affect the objective then the necessary conditions for the minimzation
wi Il become singular.

If one is using a linear approxinmation basis the equation set is singular
whenever the slope of the approximation is the sane in two adjacent elenments or
whenever the solution is flat. The weighting functions, 04 and 6i" becone
linearly dependent at node i. Node i may lie anywhere between its nei ghbors and
give the same residual val ue.

The original nethod of dealing with weighting function singularity was to
i nvol ve penalty functions that essentially required the singular node to nove at
a weighted average of its neighbors' velocities (Hymk et alg 1985). Another
approach is to note that the singular node is a redundant equation. Here one can
let the node mption be explicitly determned by its nonsingular neighbors'
vel ocities rather than by using an orthogonal error critefion. Vat hen suggests
that, at any point in tine when the ODE set beconmes singular, the singular node
notion equation can be replaced by an explicit node velocity averaging fomula and
|ater, when it becomes nonsingular, replaced again by the error criterion.
Hymak et al. have shown that for the viscous Burgers' equation one need have
only a subset of nodes nove independently throughout the time domain and achieve
good results with less conputation tine.

The local time decision .of Vat hen's approach requires a means for detecting
singularity. Al so, sever-al nodes' equations may becone singular at any tine
step. O course, singular value deconposition (SVD) is one alternative in
determining the true rank of the system but it is expensive.

A sinpler solution, and one we are considering, is to monitor the pivoting
invol ved in sol vi ng the set of ODE's and, when a pivot becones too small for a

row an alternate node notion expression can be used. (The system is positive




definite in the nondegenerate case so the pivots would be the diagonal elements
normal l'y).

Another simple method would be to scan the slopes of the field variable
approximation on the mesh, and note when the difference between two adjacent
element slopes is less than some arbitrary quantity. If such a small slope
difference is found, the node common to the elements may have its node motion
temporarily tied to that of its neighbors.

A final alternative is to detect singular node equations and remove the
nodes altogether since they are redundant. An advantage of this approach is that
there would be fewer equations to integrate. However, if there are features
developing in the solution, this approach would necessitate some kind of
monitoring of error in the individual elements to determ ne when a node should be
reinserted to prevent loss of accuracy. Reinsertion could be done sinply by
-using the superelement approach of Hrymak et al. where only a subset of nodes is
given independent movement throughout the time domain. As new features develop
in the solution nodes can be "turned on" and given independent movement.

The important point is that an understanding- of the nature of the
singularity allows one to see alternate approaches to the specification of the
grid motion. Because penalty functions introduce extra‘para'meters and increase

the stiffness of the ODE set, they should be less desirable as an approach to

overcomng singularity. (>

Near Nodal Movement Sinqularity

It is important to understand what the MFEM is really doing. It is actually
determning the evolution of the fitting of the solution with piecewise Iinear

functions and thus a strong mnimum with respect to the grid trajectories, would




be observed with a solution containing a steep gradient or shock condition (or
di scontinuity-). In diffusive problenms the mninumresidual, wth respect to node
position, is quite weak and there is little or no advantage in determining the
node novenent in this manner since the optimal grid is fairly evenly spaced
(given no steep solution gradients due to point sources or material
di sco‘ntinuities). Additional grid points may be needed for nore accuracy, but
they do not have to be given independent novenent.

‘W have observed this effect in the simulation of isothermal trace component
pressure-swi ng adsorption where the initial adsorption transient required a fine
or moving grid. Later tines are essentially at steady state dom nated by
di ffusion and adsorption (reaction) terms, and no grid refinement was necessary

(Hymak,' 1984). The basic equations used were of the form

where ¢ is the concentration of the trace conponent in. the gas phase, and q is
the concentration of the trace conponent in the solid phase. Ini'_[ially, t he bed
is free of the trace conmponent, and the feed enters the bed, creating a Steep
profile that 1is governed basically by convective effects in the initial
transient. Then the diffusion and adsorption forces predom nat e. The solution
is a very snooth profile after the initial transient, and an equidistributed nesh
woul d be adequate. Usi ng MFEM the nodes convected with the steep front in the
initial transient |eaving the upstream portion of the bed bereft of nodes. Ve

found that the best solution was to renove independently noving nodes, |eaving
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only one free node for exanple. For the trace conponent case, the standard
Galerkin finite elenents proved to be a superior way of solving the system
However, this exanple did point out that there is the danger of instability and
unnecessary expense in having an adaptive mesh for a relatively snooth problem
Note that one could do a singular value deconposition to test whether the grid
nmovenent equations are necessary, but observing the contributions from reaction
and diffusive terns relative to convective terms will be a good first estimator.

The pressure swing adsorption simulation points out the necessity for a
strategy with regard to noving grids. The initial transient and convective
forces conbined with a steep front moved all the grid points downstream but
al so required the novement of nodes to allow an accurate solution with few
nodes. However, there were no transient forces available to redistribute the
nodes when a snmooth solution devel oped. MFEM is formulated with noda
trajectories as degrees of freedom One nethod of solving such a probl em woul d
be to use MFEM during the initial transient, stop and redistribute the nodes with
respect to an error criterion, project the old solution onto the new grid and
then use a fixed grid nethod. Future work involves a conparison of adaptive
nmet hods that use equations for the evolution of the nodél positions for many tine
steps (such as MFEM and nethods that nmove the grid points by essentially fitting
the solution after prescribed time steps.

To detect a near singularity, simlar tests could be used as jn the truly
si ngul ar case. For exanmpl e, one could use a rough pivot test in the solution of
the inplicit ODE set, wth the additional provision for a testing order. The
center of the domain could be tested first for near singularity, and then the
tests continued in a tree pattern which halves the renaining subdomains, until

addi tional independent nodes create a nearly singular set of equations to solve.
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Initial Node Placement - |t Mkes a Difference

Uhen solving the sinple transient convective-diffusion equation,
2

a ax? **

dx, 0) =0
c(Qt) =1
c(« t) =0

using finite difference or finite element nethods one usually sets the value ¢ =
1 at x ss Of and lets ¢ =0 for t =0 for all Xj. The famliar sloping step then
fornms and nmoves fromx = 0 to x = infinity with height 1. However, when these
initial conditions were used vvith. MFEM a ranp formed and did not approximate the
solution at all. One must start the solution with a step inside the domain
Xx£{0¢~} for the node trajectories to be correct.

A sinple hand analysis may be perforned on the hyperbolic Iimt of the above

equation
N
_3C: . ch_
at ax

leading to the usual characteristic solution vt = 0, xt = Pe, where vt is the

approxi mated value of c at node x$ as in Figure 2. Let ¢ be approxi mted by

t hreeq~l | near el ementg,. The MFEM e(lu&[‘lrio*r_livar e) foaxnode i
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let Pe = 1 and consider tw; cases (both with fixed boundaries at x = 0 and x =
1).
Case i) the initial step is within the computational domain
vo=1 vi=1 v2=0 v3=0.
x0=0 x1=0.01 x2=0.02 x3=1.
and the nodal amplitude and nodal positions at i = 0 and i = 3 do not change with
time. Substituting these values into the MFEM equations results in,
01=0 v2=0
i1=1 i2=1
which is precisely the analytical solution and is shown in Figure 2. As an
aside, note. that the exact solution may be determined by an ODE integration
method in one step for any time until the step encounters the right boundary.
Now, consider another case, using a more traditional initial value set.
Case ii)
vo=1 v1=0 v2=0 v3=0.
x0=0 x1=0.01 x2=0.02 x3=1.

Substituting these values into the MFEM equations two‘things happen. First,
the gquation set is singular; iz is undetermined becaQse the slopes are the same
in the adjacent elements. From our earlier discussion, we note that the node
motion may be determined by another criterion. Also, we find

v1=0 , v2=0 x1=1.5
Thus, the solution forms a ramp with a node velocity of 1.5 as in Figure 3.
Similar_results are seen in cases i) and ii) regardless of position of x] and x3

initially. In both cases the non-singular part of the coupling matrix is

positive-definite; therefore, some minimum is being calculated. However, we see

in case i) that the trajectories are free to minimize the residual error, while
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in case {i) the trajectory of the corner s constrained by being on a fixed
boundary. This example highlights a very important point about the moving finite
eleﬁent method. One must remember the method is not minimizing with respect to
absolute nodal positions, but rather with respect to nodal trajectories in time

given an initial grid layout.

Time Integrators

Most of the work done with MFEM has involved the use of stiff ODE solvers.
However, iq many cases there is no necegsity for a stiff solver, if no penalty
functions are used. An explicit Euler ODE method works quite well as reported by
Wathen (1984) and Johnson (1984). We have found that LSODI, an implicit
variable-order and variable time step ODE integrator, does work quite well,
however. Stiff solvers are favored if a penalty function approach is used to
.control singularities in the MFE equations because of the disparate time
constants introduced into the system. Recognizing that singular equations may be
removed allows simpler ODE solvers to be used. Obviously, an explicit Euler
method for solving the ODE set would be much faster per time step than a
predictor-corrector approach and should be used.unless a higher order
approximation to the field variable can drastically reduce the number of time
steps. This issue is still under research because the problems solved thus far

have not proved conclusive in favor of either approach for general application.

Following Moving Domains

The example problems solved with MFEM have shown considerable promise for
solutions which contain shocks and steep gradients which move in time through the

domain. However, it would be useful to allow the spatial domain itself to chansge
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in time. Because M-EM requires many fewer nodes than other fixed grid rret_hods
one nust worfy about accuracy and conservation properties. In this section, the
grid novenent equations are not used to minimze an error residual, but rather to
foll ow boundary novenment which is a function of tine and field variabl es.

An exanple problemw th a noving domain is the one-phase Stefan problem for
exanple, ice growing snoothly into a liquid nediumw th density Jb*, heat capacity

Cty and thernal conductivity Kt

ST. T,
1 .
p.c. —=K. [
11 * ' fc2

i=1 olid

=2 liquid

V\_/ith a surface at x=0
T(Gt) =0 To(-,t) =V

at t=0, x>0 is liquid, with boundary conditions

(Dirichlet) T =Ty at x X(t)

(S ef an) L:—? n={(KVT); - (KVT)~ & at x=Xt)

where T, is the nelting tenperature, L is the latent heat of solidification, and
X(t) is the phase boundary position. There is an analytical simlarity solution
available in (Crank, 1984).

Let V=T, which inplies T2=V (liquid ‘at the nelti né poi nt) . W use the
physical properties of Lynch that ¢=0.62 cal/°C cn?, T,=10°C, L=17.68 cal/cn?,
and K=0.0096 cal/cms/°C giving the analytical boundary notion trajectory,

X(t) = 0.09880t%?2

There are many nunerical nethods to solve the Stefan problem however, we

Y
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show that the tt FEMapproach provides a natural framework for such a problem and
nore inportantly is heat conserving. This observation derives from the recent

work of Lynch (1985) which also uses defornming elenents but decouples the grid

,and nodal anplitude calcul ations. One nust be careful in determining the
boundary novenent because using a sinple gradient calculation, i.e. naking a
first order estimate of the boundary flux ‘to directly determ ne novenent, |eads

to degradation in the residual error order with respect to nesh spacing. The
approxi mati on method may have second-order error with respect to the mesh spacing
in the domain interior. However, if a gradient calculation is required on the
boundary, and only a first order gradient approximation is used, then the entire
solution will have a first—orde-r error unless the entire Glerkin form is used
whi ch involves heat capacity termns.

In a franework where we do not have two degrees of freedom per node (in MFEM
there are the trajectories of nodal anplitude and nodal position) there is a
problem due to the Dirichlet boundary condition on the nmoving interface. If the
condition is enforced by renoving the Galerkin equations, for-exanple, then the
Stefan condition requires diffe.rentiation of the tenperature field. If the
gradient is done with respect to linear elenents, there is a numerical heat
i mbal ance leading to a first-order error in the nesh.

Wth MEM there is no problem since both Drichlet and Stefan boundary

conditions can be sinultaneously used. The M-EM equations with respect to T
nodal anplitude trajectories are *derived as usual; however, we wll .speci fy the
node notion through the Stefan condition. For sinmplicity, interior node notion
is
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(since the transients in tenperature die away quickly and the dom nating tine
variable is the interface position there is no advantage in having independent
‘internal phase node nmovenent) where XJ is the velocity of Nth node on the phase

change interface. The value of T is si nply,

T=Tm => fu=0

at x = X
by'the Dirichlet condition (TJJ = Tq). The tenperature is at the nelting
temperature at the i nterface. W do, however, have the N h node anplitude
equati on,
AxN_"i‘ aTN_l' +.Axui‘ ATN. _E( T
6 Nt~ g *nat 3 Tn—F7 W= 6T
and
K -
Ra.7)=--Fa 7)+%1 aTds
c | * % C I % * _ c \]g | X

using integration by parts. W substitute the Stefan condition into the surface

i ntegral
dXN
KTz =L —
d

and the inner product is easily calculated as

E(( )T )=
T TIs T —m

Thua the flhal equation, in the ME format is,

AxN-l,;, AT, AiCN'-r- I/*TN LV kAT N
6 *'-1T g N-1T g NTy g s W TTTA

The alternative form using the nore traditional ideas, would be sinply
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which leads to a nonconserving solution* with error decreasing in a first-order
manner with nmesh size (Lynch and Sullivan, 1985).

Both formulations were integrated froma starting tine of 0.01 s to 1 s and
the resulting solid position X was conpared to the analytical solution X in Table
1. The results were consistent with those of Lynch. The difference between our
approach and that of Lynch lies in the inplenmentation and the results for this
sinple problem are expected to be the sane. Note that even with only 5 nodes the
solution for the interface position is very gbod, and the errors are consistently
an order of nagnitude |less than the non-conserving form

The decision of not directly differentiating the field variable
approximation to determ ne the donain nmotion can be thought of in the context of
essential and natural boundary conditions. The Dirichlet boundary condition is
an essential boundary condition and nust be satisfied. The MEM equations wth
i nner products involving the node anplitude basis functions, 04, involve
conservation properties and therefore nust also remain but their boundary
integrals contain the natural boundary conditions which in-this case is the
Stefan condition. The formulation is quite natural given the additional degree
of freedom at each node. Note that we have not Iimtéd the MFEM nethod in any
way. One could have sone other steep gradient phenonena occuring in one of the

phases and the nodes could track such features, as shown in previous. M-EM work.

| npl enent ati on

The met hods described are being inplenmented in a code for one dinmensional
problens with any nunber of partial differential equations. Each of the problens
addressed thus far is being systematically handled in coding the algorithm

Since the differences between problens involves only the right hand side inner
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products, a nunber of common operators inner products have been provided for the
user (e.g. convection, -diffusion, reaction). Dirichlet, Neumann and Stefan
boundary conditions are all easily avail able.

The fact that MEM is actually doing a least squares fit would inply an
"optimal" initial node distribution would be desirable. Guven a function with
continuous first derivatives the node redistribution algorifhnlof de Boor (1978)
is used for nodifying an initial user defined nesh. The redistribution may also
be done on segments of the domain if there are first derivative discontinuities
Usi ng super-elements, or using a subset of independent nodes, reduces the
conputer tine by allowing far fewer Jacobian evaluations in the time integrator.
Prelimnary results using an algorithm which determ nes the independent subset by
jumps in the curvature are very encouraging. Essentially the domain is being
partitioned so that each region has simlar curvature and only the ends of the
- segnents are determ ning the node notions. Future work will be reported in this
inmportant area involving initialization

The ODE solver currently being used is LSO BT which takes full advantage of
the inmplicit block structure of the ODE set

Singularities are detected by nonitoring relative élope di fferences so that
when the equation set is nearly singular, the redundant'equations are renoved and
temporarily replaced by an equation |inking adjacent node vel ocities.

Two dinmensional solutions using the ideas of this work and a search for an

ODE solver that can be used on nmuch larger problens are imediate priorities.

Concl usi on

W have |ooked at sone of the conputational problenms that were encountered

in the inplenentation of a particular adaptive gridding nethod, the MFEM  Though
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gome of the features are unique to the particular method, the work points oug the
importance of recognizing redundant or singular equations, and using that
knowledge to our advantage.

We have discussed simple ways of overcoming the problem of using low order
basis functions for approximating higher order derivatives. Near singularity of
the ODE set indicates that independent node motion may not be necessary in a
local region and in the limit of a flat or parallel profile leads to a
singularity and recognitién of redundant equations that must be replaced. MFEM
minimizes error with respect to node motion and therefore the initial conditions
must not constrain the nodes from following the true solution. A front tracking
and heat conserving solution is easily done with the MFEM for a moving boundary
problem with no restrictions on being able to follow other steep profiles within

the solution.
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Tablgl
Error = (X/X)-1

Nodes Conserving Non-Conserving
X Error Q Error
5 0.098822  0.2227E-3 0.10019 14.07E-3
10 0.098830 0.3036E-3 0.099520 7.29E-3
20 0.098832 0.3239E-3 0.099179 3.84E-3
30 0.098833 0.3340E-3 0.099064 2.67E-3

"y
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Figure 1 Finite El enent Approxination and Myving

Finite El enent Basis Functions.

Figure 2 Case i) initial conditions. Analytic and

Figure 3

MFEM sol utions coincide exactly and X* =
(0.01 + t). Solid circle tracks point
(vll xl)o

Case ii) initial conditions. MEM forns
ranp and XB = (0.01 + 1.5t). Solid circle
tracks point (Vi XI).




Notation
a node amplitude
A MFAEM coupling matrix,
c concentration (in gas phase for PSA)
f arbitrary function
right hand side vector of inner products
K - thermal conductivity
latent heat
*C  spatial differential operator
m. slope
number of partial differential equations
Pe Peclet number
q concentration (in solid phase for PSA)
t time
T temperature
u state variable
v discrete approximation to u

w local polynomial approximation to vy

x

space coordinate
phase change front

X
Greek

a basis function

B basis function

p density
Subscripts

i,j values at discfete points

"




Superscripts

[ PDE equation number
time derivative

H Hermite

Q Quadratic




Ai+1

Xj+l

X,
i+l

i+l

i+l
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