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Abstract
DECADE (Design Expert for CAtalyst DEvelopment) is a prototype expert system for catalyst

selection. The objective of DECADE'S development has been to investigate and evaluate the

potential of expert system's technology applied to the solution of chemical engineering problems.

DECADE'S particular application problem consists of prescribing a set of catalytic materials that have

an acceptable probability of being appropriate for a target reaction. The class of reactions for which

DECADE has specific knowledge is carbon monoxide hydrogenation.

Given DECADE'S architecture and implementation, it can illustrate the integration of different

paradigms along some of the several dimensions of expert systems applications: knowledge

representation, problem-solving methods, and levels of knowledge abstraction. All these properties

are achieved through the use of different languages (FranzLisp, OPS5, SRL1.5) brought together

in a blackboard model architecture.

1. Introduction

1.1. Motivation

Many of the tasks encountered in the engineering practice cannot be completely articulated into a

well-formed algorithmic procedure. They are a combination of a variety of special-purpose heuristic

problem-solving methods and traditional algorithmic parts, scheduled in different sequences

depending on the particular problem.

With the advent of computers those tasks that have been amenable to formalization into a

mathematical language have been successfully automated and are currently solved by computers,

making their solution faster and more accurate. However, those tasks, that because of their nature

have not been successfully reduced to an algorithmic form, have only very recently been attempted to

be solved by computers. The end result is that the current approach for the solution of engineering

problems has been the combination of fully automated tasks, and a set of symbolic or heuristic tasks,

that are being performed "by hand" by the engineer. The sequencing and conciliation of these parts

is also performed outside the computer. As seen in Figure 1-1, the four traditional subparts of the

Chemical Engineering design process are a combination of encoded routines (shown in upper case),

and symbolic problem-solving (in lower case). We can offer two comments regarding Figure 1-1:

• although the knowledge encoded in the numerical algorithms is necessary, it is not
sufficient, and
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INTRODUCTION

integrating the different parts of the design process into a single procedure increases the
quality of the results.

Formalize idea into .

\ mathematical representation /

V
select models

\

propose

(superstructure

SYNTHESIS

evaluation of

alternatives

X
set up equations

select approximations

decide variables

and relations

\set up model

select parameters J

I (solve computational models)

interpret results

Figu re 1 - 1 : Dichotomy of approaches in the design process

Advances in the area of Computer Science, and in particular Artificial Intelligence, provide the

means of automating the heuristic tasks. A number of successful expert systems or

knowledge-based systems have been developed for areas other than engineering, areas that do
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INTROOUCliO.N 3

not contain an algorithmic part. Also, many of the initial knowledge based systems dealt with

simplified tasks, that allowed the use; of an exclusive representation and problem solving method to

solve the problem. Unfortunately (for engineering), these initial programs lacked facilities to reflect

the rich variety of knowledge necessary to solve engineering problems.

• As the Expert System area has matured, it has been possible to start proposing architectures to

solve engineering design problems. It is one of the goals of this paper to convince the reader that in

order to do so, a hybrid knowledge-based system is convenient if not necessary. There is a budding

set of hybrid architectures being developed and tested. This paper investigates one possible way to

implement a hybrid system: the Blackboard model architecture.

1.2. Overview

Having introduced the nature of the areas that are touched by this study and stated the objectives of

the work, the rest of the document is organized as follows:

The second section attempts to provide background on the catalysis area, especially on the process

of catalyst selection. The treatment will be focused on the hydrogenation of carbon monoxide, which

is the specific area of knowledge of DECADE [Banares-Alcantara 86].

The third section also provides background to the reader, in this case about hybrid knowledge-

based systems. Hybridity can be attained in different areas, and this section characterizes those

areas and investigates their relevance to the design process.

In section four DECADE is presented as an example of a blackboard model. DECADE is a hybrid

knowledge-based system for catalyst selection, and its structure and control are reviewed in light of

the blackboard architecture characteristics.

The ending section will summarize the most important facts. From these facts, a set of conclusions

is drawn, and the contributions of the work can be weighed. Also, some recommendations for future

work in this and related areas are given.

DECADE Banares. Westerberg, Ko and Rvchener AlChE Annual Meeting [70] a



INTRODUCTION 4

2. Background on catalyst selection
The selection of a catalyst has a major impact on the economics of chemical processes because the

catalyst affects the feasibility and the degree of conversion of raw materials to final products, and

generally raw material and product costs dominate the total cash flow of a process. From the point of

view of the design process, it is important to realize that not only the reactor, but the totality of the

plant, are designed taking into account in a direct or indirect way the characteristics of the reaction

(conditions of temperature and pressure in which it must run, side products, conversion).

Selecting a catalyst is not an easy task since there is little information on:

• which are all the properties of a catalytic material that affect the characteristics of a
reaction

• how each of these properties affect the characteristics

• the interactions that the components of combined catalysts (catalysts with more than one
component) have on each other in relation to the reaction that they are catalyzing

2 . 1 . The catalyst selection problem

The catalyst selection problem is a very complex and inexact activity, based to a large extent on

experience. Furthermore, the underlying theory for catalyst selection is not complete enough to

permit the prediction of a unique, complete and certain answer.

The selection of a catalyst is a problem that is currently solved only by a relatively small number of

experts interacting in a consultation environment with the user. It is prone to decomposition into

smaller and very different subproblems, some of them amenable to algorithmic solution, but the

majority only solvable through the use of heuristic reasoning given their lack of formalization. Also,

since the order of execution of the subproblems is not fixed, but varies greatly depending on the

characteristics of the individual problem, a flexible solution strategy is needed. The solution to the

overall problem should not only preserve the functionality (proper selection of catalysts), but the form

(interactive environment with the user) as well.

Some attempts have been made to formalize the process of catalyst selection, among which the one

described in the book "Design of Industrial Catalyst" ([Trimm 80]) is a good example. The "scientific

basis of design" of catalysts described in the book, and other methodologies contained in some other

publications, although different, coincide in prescribing a number of subtasks that are useful to

perform when selecting a catalyst (for the other methodologies see for example the section "Catalyst

Selection" in [Klier 82]). An enumeration of the subtasks follows:
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BACKGROUND ON CATALYST SELRCTION

• Stoichiometric analysis

Write down all the reactions that come from all possible combinations of the reactants
and products of the target reaction, incorporating only chemically stable compounds,
and without making reference to the reactions en the surface. This task is akin to the one
solved in the Ph.D. thesis of R.B. Agnihotri ([Agnihotri 78]).

A simplification of this step consists of listing only the target reaction, the reactions
producing useful or acceptable side products, and the reactions that need to be inhibited
because they produce unacceptable side products.

• Thermodynamical analysis

Calculate the Gibbs free energy of the listed reactions in order to identify those which are
(thermodynamically) feasible. Calculate the equilibrium conversions.

Calculation of the enthalpy of reaction is also useful in terms of the thermal stability
required from the catalytic material, and for heat transfer calculations.

• Literature Search

One step that is consistently stressed is the literature search. As a matter of method, it is
advised to search for all available information about the target reaction, analogous
reactions, and data like activity patterns, heats of adsorption, proposed mechanisms,
observed intermediates, etc. The search for general data should be done prior to the
selection process (this practice can prune the search space considerably), while search
for very specific information can be done whenever it is needed.

• Classification of reactions

It is convenient to group the reactions listed in the stoichiometric analysis in terms of their
class. The list of possible reactions may be very large, but the list of classes of reactions
is considerably smaller. This is important because many of the heuristics are given in
terms of the classes of reactions rather than reactions themselves (e.g. the activity
patterns).

• Identify types of chemical bond rearrangements occurring in each reaction.

Although this step is not explicitly mentioned in some of the methodologies, it is
consistently used as the basis for the proposal of surface steps whenever there is no
experimental data available.

• Proposal of a surface mechanism

None of the methods have a formalized strategy for the proposal of the surface steps, all
of them either extract them from the literature, or obscurely propose them using a priori
knowledge. This step many times could be considered as the basis of the design, in that
the information conveyed from it supplies pointers to many alternative methods of
enumerating and ranking catalytic materials.
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BACKGROUND OU CATALYST SELECTION

!t is worth mentioning that a mathematical method for the enumeration of all possible
mechanisms has been proposed ([Happel&Sellers 83]). Its inputs are the possible
intermediate species and elementary surface steps that the user wants to consider, even
though it is often necessary to obtain such data from the literature. The availability of the
surface data is assumed, when many limes such data are uncertain and difficult to find.

> Reaction path identification and preliminary catalyst material selection

From the data obtained in the mechanism prediction, those steps that have to be favored,
and those steps that have to be inhibited are identified. This will produce a list of
requirements to demand from the materials that will be catalysts.

• Experimental testing

Sometimes, during the process of selection, a set of experiments is proposed. Such
experiments have the purpose of either obtaining missing data or studying the behavior
of a partial solution (e.g. study the interactions between the different components of a
catalyst).

Nevertheless there are subparts of the problem that not only are far from being formalized, but also

are even lacking a consensus of which methodology to follow. Take for example the specification of

the problem. There is no information on what is considered enough input information for the

prediction of catalysts. In the method proposed by Trimm, the input information is the desired

product. A combination of other data like the available raw materials or the ranges of operating

conditions can also form part of the input, but there is no clear idea on what is the minimum amount

of data needed. As a rule of thumb, the more information that is available from the user, the easier it

is to prescribe a catalyst. Data are not always available though.

2.2. The Fischer-Tropsch reaction

The knowledge in DECADE has been focused to a single reaction: the Fischer-Tropsch reaction

(for more information about this reaction, consult the book written by Anderson [Anderson&KR 84],

the monograph by Dry [Dry 81], or the short article by Haggin [Haggin 81]). While constraining the

area of knowledge reduces the search space in size, we think that it maintains the important

characteristics of the domain. The Fischer-Tropsch reaction is thought to be a representative

reaction in terms of catalyst selection, given the fact that enough studies have been made about it,

but no one can claim to understand it perfectly well, leaving room for the application of knowledge-

based systems.

The Fischer-Tropsch reaction is named after two German chemists: Franz Fischer and Hans

Tropsch, who, in 1926, described it for the first time. The Fischer-Tropsch reaction can be
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BACKGROUND ON CAT ALYST SELECTION 7

considered the main reaction of C chemistry. It can be described as the production of hydrocarbon

and oxygenated organic molecules via the reaction of carbon monoxide and hydrogen. The mixture

of carbon monoxide and hydrogen is known as synttiesis gas or synyas. The molecules so produced

have predominantly straight carbon chains, at least in the C4—C? range ([Haggin 81 ]).

The range of subreactions possible when using carbon monoxide and hydrogen as reactants falls

into three divisions ([King&CG 81]):

1. Direct process starting with syngas (see Figure 2-1),

2. Indirect process starting with methanol1 or methanol mixed v/ith syngas, and

3. Indirect process by combining a third molecule with syngas or methanol.

Only the first division is of specific interest to this study.

CO +

FUELS CHEMICALS

I gasoline | ^ — — ^ I ethylene glycol

I SNG I << p> I acetic acid

. dteselfuel ' 4 I • ethanol

fuel oil M • I dimethyl ether

alcohol fuels i M—'—• I polyethylene

• Hp or CO2

Figu re 2 - 1 : Some of the products derived from the direct processes of synthesis gas

All the Fischer-Tropsch reactions are exothermic, and produce water as a side product (at certain

conditions, a reaction known as water-gas shift { CO + H2O —• H + CO2 } may change the overall

side product from water to carbon dioxide). One other side reaction is the decomposition of carbon

monoxide ({ 2 CO —• CO2 + C }; also known as the Boudouard reaction).

Given a set of starting conditions for the Fischer-Tropsch process, the Schultz-Flory equation

predicts the proportion of C1 products to higher carbon-number products. The product distribution

depends on such variables as the catalytic material, reaction temperature and pressure, and feed gas

composition. However, only methane and methanol can be produced with a 100% selectivity.

Note that in this instance methanol is a derived product of the hydrogenation of carbon monoxide.
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Several mechanisms have been proposed over the years, but no single mechanism is applicable to

all catalytic surfaces. A very complete review can be found in the work of Rofer-OePoorter

[Rofer-DePoorter 81]. A mechanism worth mentioning for its simplicity and generality is the one

proposed by Bell [Bell 81], for the formation of hydrocarbons over Group VIII metals.

3- Background on Hybrid Knowledge-Based systems
Among the problems that are well suited for hybrid implementations are design problems (in

particular in engineering). The justification for the need of hybrid systems is that, since engineering

knowledge is heterogeneous (in terms of the kinds of problems that it encompasses and the methods

used to solve them), then the use of heterogeneous representations is natural. Another important

factor to take into account is the fact that some programs that solve a part of a given problem may

already exist, and it would not be feasible or convenient to rewrite them into another format only to

make them compatible with the overall system.

A system may be hybrid in several ways. Attempts to characterize this hybridization have resulted in

the following classification of the properties that may be of importance when constructing a

knowledge-based system:

1. Knowledge Representation

Deals with what is known in traditional numerical applications as the database, and in
knowledge-based systems as the knowledge base. It can be considered as the
description of the problem space, its properties and internal laws.

2. Problem-Solving Strategy

Encompasses the set of methods that can be used when attacking a problem. The
methods describe how to manage the available information and how to obtain the missing
information in order to achieve a goal state. In terms of the problem space, problem-
solving methods prescribe the way in which one should move from the initial state to the
solution state passing through the partial solution states.

3. Knowledge Abstraction

It is a common method of decomposing the problem into subproblems (in a more general
way it could be considered as one particular problem-solving strategy). More abstract
representations hold less information about the problem but are easier to work with. A
solution in an abstract level can be used as a guide for the search of the solution of a less
abstract one.

4. Implementation

DECADE Banares, Westerberg, Ko and Rychener AlChE Annual Meeting [70] a



BACKGROUND ON HYBRID KNOWLEDGE-BASED SYSTEMS 9

There are a large number of languages, operating systems, nnri processors that can be
used when programming. There are relations among these items though. Only a limited
number of languages are supported in a given operating system. In turn, a particular
processor can run only a single operating system at a given time.

Note that the factors enumerated above are not completely independent, but were separated only in

order to ease the characterization of a system. For example, a choice of problem-solving strategy

may influence the choice of knowledge representation, and, in turn, these two can determine the

implementation used. In some other cases the implementation tools limit the choice of the rest of the

factors.

3.1 . Knowledge Representation

Knowledge has different forms. It can be certain or uncertain, formalized or unformalized,

structured or unrelated, etc. It can be found in formulas, tables, statements, traditional practices or

embedded in methodologies, but, when it has to be translated in such a way that it can be stored and

used by a computer, a knowledge representation mechanism has to be chosen. The issues that affect

the selection of knowledge representation are the naturalness of representation, efficiency of storage

and manipulation, and consistency and compatibility with the rest of the representations in the

system.

There is no consensus on how to classify the different classes of knowledge representation. The

following is one of the ways in which it can be classified:

1. Production rules

Production rules or IF-THEN statements consist of a conditional part and an action part.
The conditions of a rule have to be satisfied in order for the rule to act. The actions of a
rule execute a series of operations that will modify the state of the problem. Demons and
active values ([Kunz&KW 84]) are special cases of productions rules.

Production rules are prescribed for the representation of control mechanisms, problem-
solving strategies, heuristics, and in general any kind of knowledge that is applicable only
when a given context is present.

A reference to the usage and advantages of production systems is [Brownston&FKM 85],
while [Hayes-Roth 85] is a good introductory document.

2. Frames

A frame is a structure that represents a concept. It can have any number of attributes or
properties attached to it, some of the properties can be relationships. An attribute may
have any number of values (i.e. no value, one value, several values). The importance of
being able to represent relations is that a given frame can inherit properties (attributes
and/or values) from the frames to which it is related. In reality the frame concept is

Baoare«: We«?tPrtw»ro Kn and Rychener AlChE Annual Meeting: [70]



BACKGROUND ON HYBRID KNOWLEDGE-BASED SYSTEMS 10

considered to be a special case of another representation structure: the semantic
networks. Semantic networks are used mostly in Natural Language research, and, in
general, frames are appropriate for knowledge-based applications.

Frames are a convenient and natural way to represent descriptive information, that is,
objects, their properties and their relations. They also represent very naturally the
information carried in hierarchically structured domains.

For an introduction to frames consult [Fikes&Kehler 85].

3. Procedures

Procedures are probably the best known representation structure to engineers.
Traditional numerical formulas map in a straightforward way into procedures. The
concept is more general though, since one can think of procedures that deal with
symbolic data rather than with numerical data. Sequential execution of statements,
iteration and recursion are the three control schemes available to procedures.

A procedure can be used as an action of a production rule, or as the mechanism that
manipulates the information contained in a frame.

4. Logic

Theorems, axioms, and any knowledge that can be formalized into a first-order logic
notation can naturally be mapped into a logic representation (for an introduction see
[Genesereth&Ginsberg 85]).

5. Graphics

Sometimes it is convenient to represent objects by icons in the user interface display.
The icons can be manipulated. Although the icons are eventually translated into internal
structures of a different nature, those structures are transparent to the user, and
therefore the icons can be thought of as primitive representation objects.

6. Object oriented

Object oriented programming is actually a mixture of knowledge representation, and a
style of programming. The structures used in representing knowledge are a constrained
case of the more general frames in that they can be modified only by procedures within
themselves known as methods (as defined in the object-oriented paradigm). The objects
are allowed to communicate and interact only through messages.

Object-oriented programming has been most successful for simulation problems,
especially where graphic displays of the dynamics are desirable.
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BACKGROUND ON HYBMIO KNOWLEDGE-BASED SYSTEMS 11

3.1.1 . Rule-based representation

As an example of a production rule we present the rule in Figure 3-1. Its purpose is to determine if

the precondition (i.e. whether the reaction has been classified or not) for the surface mechanism

prediction is satisfied. The motivation for this test is that the prediction of surface steps is restricted

to certain classes of reactions.

The production rule has three conditions. The first two conditions determine whether the goal of

predicting a set of surface steps is being executed by the surface steps knowledge source or not.

The third condition determines if the reaction has been classified. The symbol <reaction-name> is a

variable bound to the name of the reaction for which the mechanism is going to be predicted (and

therefore this rule can be applied to any reaction and not only to one alone).

{{ rule: [goal : surface mechanism] argument present, precondition unsatisf ied

IF
(1) current goal is to propose a reaction mechanism

for a reaction with name <reaction-name>
AND

(2) there is a knowledge source attempting to execute the goal
AND

(3) the reaction with name <reaction-name> has no classification

THEN
(a) propose as a subgoal of the current goal to classify

the reaction with <reaction-name>

(b) put the current goal on hold

(c) put the current knowledge source on hold

(d) inform the user of this decision

Figu re 3 -1 : Example of a production rule

The production rule above has four actions. The first one is to post a subgoal of the mechanism goal:

classify the current reaction. The second and third actions put the parent goal and the knowledge

source on hold (until there is information about the success or failure of the subgoal). The last action

informs the user of the situation and the previous actions taken.

3.1.2. Frame-based representation

Figure 3-2 contains an example of a frame. The frame in Figure 3-2 describes the object

"hydrogenolysis" as being a "class of reaction" and being of class "multimolecular". The rest of the

attributes are used during the process of classification of a reaction. Any reaction that satisfies the

»orberg, Ko and Rychener AlChE Annual Meeting: [70J a



BACKGROUND ON HYBRID KNOWLEDGE-BASED SYSTEMS 12

{{ frame: [hydrogenolysisj
is a: class of reaction
is class: inul t imolecul ar
constraints: { hydrogen must be a reactant

AND EITHER
there must be tv/o d i f f e ren t kinds of products

OR
if there is only one type of product
then there must be two molecules of it }

Figure 3-2: Example of a frame

constraints contained in them (and also all the constraints of the nodes which are its parents), is of

class "hydrogenolysis". Note that the constraints, rather than properties, are statements to be

satisfied.

3.1.3. Procedural representation

Figure 3-3 shows a formula for the estimation of enthalpy, used for the calculation of AG during the

prediction of the thermodynamic feasibility of a reaction. The estimation is represented as a

mathematical expression.

CpJT+

Figu re 3-3: Example of a numerical procedure (mathematical version).

The formula displayed in Rgure 3-3 calculates the enthalpy of a system at a temperature T as the sum

of the enthalpy at a reference temperature TQ, the contribution of the heat capacity over the

temperature range, and the contribution of the latent heat. If Cp is approximated to be:

r 2 + dr3 (1)

then the integral / r CpdTbecomes

T °

I CpdT = a ( T - TJ + ^7"2 - 7;2) + |<r 3 - 7;3) + ^J* - T*) (2)

0
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BACKGROUND ON HYBRID KNOWLEDGE -BASED SYSTEMS 13

3.2. Problem-Solving Methods

Problem-solving is the process of developing a sequence of actions to achieve a goal. There are

several classifications of problem-solving methods, each one springing from a different viewpoint of

the area. The following list describes.the most useful:

• Newell (in [Newel! 69]) identifies two kinds of problems: the well-structured problems and
the ill-structured ones. Accordingly, he reasons that there are two kinds of problem-
solving techniques. He terms the one that deals with ill-structured problems Heuristic
programming.

• Cohen and Feigenbaum propose a classification for Heuristic programming. They focus
the problem-solving in terms of planning, and arrive at four types of planning strategies:
nonhierarchical, hierarchical, script-based and opportunistic ([Cohen&Feigenbaum 83]).

• Nilsson recognizes three types of problem-solving methods: state-space search
methods, problem reduction search methods and predicate calculus ([Nilsson 71]).

• Stefik proposes a division in his prescriptive guide to building expert systems ([Stefik
82]). He starts proposing simple methods for simple problems, and as the problems grow
more difficult (in terms of size, uncertainty, abstraction, etc.), he describes how given
refinements on the methods can cope with the increased difficulty of the problem and
give rise to a new method.

The following classification orders appropriately the issues found in the area of engineering design.

Notice that it is nothing more than a combination of the ideas exposed above.

1. Mathematical programming

Used in the solution of problems that can be represented in a mathematical format (well-
structured problems). It encompasses the traditional numerical methods used in
engineering.

2. Heuristic programming

Used in the solution of ill-structured problems, it can be subdivided into:

a. Nonhierarchical

The problem-solving strategy has only one level of abstraction. Weak methods are
examples of nonhierarchical problem-solving:

i. Generate & Test
ii. Search (depth-first, breadth-first, best-first, etc.)

iii. Hill-climbing
iv. Means-ends analysis (specific case of the General Problem Solver strategy)
v. General heuristic search

b. Hierarchical

AIChE Annual Meetino• r7ni ->



BACKGROUND ON HYBRID KNOWLEDGE-BASED SYSTEMS 14

Generates a hierarchy of representations of a plan. The highest level is the
simplest or most abslract, the rest are refinements of the previous one. One
example of this method is the General Problem Sclver proposed by Newell and
Simon.

c. Script-based

It uses a skeleton plan from a library of plans (as opposed to generating it, like in
the case of the hierarchical methods). Any agenda-based method is an example of
this approach.

d. Opportunistic

This method has a more flexible control. The blackboard model implements this
idea (more about this subject ahead).

3. Formal Methods

These methods correspond to the logic knowledge representation mentioned in section
3.1.

If the reader is interested in further information about the subject, we recommend

[Cohen&Feigenbaum 83] as a reference. Now we present two specific examples of the use of these

methods in DECADE.

3.2 .1 . Depth-first search

DECADE uses the depth-first search method during the process of classifying a reaction. Figure 3-4

shows the process of classification for the reaction of producing ethane. Each of the nodes in the

tree is a frame of the type described in Figure 3-2. The nodes in the upper levels represent classes of

reaction, those leaf nodes in the fourth level (i.e. ethane synthesis and propane synthesis) are

instances of a reaction. Because of space limitations some of the nodes are grouped into rectangular

boxes. Also note that two syngas reactions: "formaldehyde synthesis" and "methanoi synthesis" are

not grouped with the rest of the "fischer-tropsch" reactions. This arrangement was chosen because

it reflects the fact that for these two cases the carbon monoxide bond is not broken, as opposed to

the case for the rest of the syngas reactions. Indeed, this difference manifests later in the type of

catalysts that these reactions require.

In order to classify a reaction, the problem reaction is tested to check if it satisfies the constraints

contained in a node. If it does, the constraint satisfaction is tested recursively for each of the child

nodes. In the particular case of the reaction to produce ethane, the evaluated nodes are shown in

solid lines, and the satisfied nodes in bold lines. The result of the classification presents the problem

reaction as of class "Fischer-Tropsch", and recognizes that it is identical with the "ethane synthesis"

reaction already stored in the knowledge base.
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~lhydrogen transfer

disproportionation

f C-C
hydrogenolysis J

j methanol

. v synthesis

/'formaldehyde

) y^ synthesis J

Figure 3-4: Depth-first search applied to the classification of the reaction producing ethane

3.2.2. Means-Ends analysis

The Means-Ends analysis method is used in DECADE for the proposal of reaction steps on the

surface. Figure 3-5 contains the means-ends analysis table with the necessary entries to propose

steps for alkane forming Fischer-Tropsch reactions (a different kind of product requires an additional

set of entries). The horizontal entries represent the differences. There are two kinds of differences:

the phase where the species are present (gas or solid), and the difference in bonds from one species

to another. The input data consists of the set of reactants and products of the target reaction. Aided

with a knowledge base containing the bonds present in different chemicals, two lists of bonds are

compiled: one containing the bonds present in the reactant side of the reaction, and the other one

containing the equivalent list for the product side. The objective of the process is to find the

necessary steps that transform the first list into the second.

The upper vertical entries stand for the operators, for which the preconditions are given in the

lower vertical part of the table. There are two kinds of operators corresponding to the two kinds of

differences described above. The first type represents the physical steps that transport a species

from the gas phase to the surface and vice versa. The second type stands for the surface steps that
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'adsorb /dissoc / R1 / R2 / R3 / R4 /« l esorb

spc --> *spc

break bonds

form O:H bond

form C:H bond

form C:C bond

•spc -> spc

*

/

/

/

/

s/s \ s/s x s/s x s/s x s/s
1) species on gas phase

2) species is reactant

Figu re 3-5: Means-Ends analysis table for the prediction of mechanism for

S/S
2) spc is product

alkanes

can break, modify or form a bond. Because of space reasons some of the entries are represented by

large fonts symbols, the key to these symbols is:

*OHx •OH

(x = 0, 1)

(x,y>0;z>2)

• R1:

• R2:

• R3:

• R4:

• S/S: species are in the surface

The first four are operators that have preconditions, which can be seen as constraints to be satisfied

before the operator can execute its action. The last item is one of the preconditions.

The schematic of the action of the means-ends analysis process on the methanation reaction is

presented in Figure 3-6. The symbols represent the species that are likely to exist in the reaction

process. Symbols preceded by a ••' are adsorbed species, the others are species in the gas phase.

The lines joining the symbols represent the operators needed to transform the species, and the

overall flow of information goes from left to right. The list of proposed steps produced by the means-

ends analysis cannot be considered as a series of mechanistic events (in the sense that there is no
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CO + CH

*CH4

Figu re 3-6: Means-Ends analysis applied to the methanation reaction

claim that the steps will occur in the exact order, or that some steps could be concerted rather than

sequential). It is nevertheless useful in that it provides pointers to some of the necessary surface

events that have to take place in order for the reaction to occur.

3.3. Knowledge Abstraction

The abstraction of knowledge is a useful technique for the decomposition of complex problems, it

divides the problem space into levels, each level holding a different representation or view of the

problem. The more abstract a level is, the simpler it is to find a solution since less information has to

be managed.

There are two useful general classifications in terms of abstraction. The first one was proposed by

Michie in [Michie 82], and according to it there are two kinds of knowledge:

1. The "low road" or heuristic type, represented by [pattern —• advice], and

2. the "high road" or causal type, represented as [situation x actions —> situation]

Chandrasekaran and Mittal [Chandrasekaran&Mittal 83] expanded this concept proposing the

following division:
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1. Table look-up

2. Partial Pattern Matching

3. Compiled structures

4. Deep structures

For DECADE, three levels of knowledge abstraction are used. As mentioned earlier, the more

abstract the level is, the easier it is to solve a problem, but with less understanding of the causality.

1. Reaction level

The objects managed at this level are reactions. Reactions have pointers to materials
that can catalyze them. If the problem reaction is identical to a reaction contained in
DECADE'S knowledge base, then the properties attached to the known reaction are
associated with the problem reaction (in particular the catalytic material).

2. Molecular level

In this level the objects are molecules. Molecules are parts of a reaction if they are
contained in the reactant side or the product side of that reaction. It is possible to
deduce properties of a reaction by observing the molecules that form it (in particular, it is
possible to classify it). Once a reaction is recognized as a member of a reaction class,
something additional may be said about the materials that can catalyze the problem
reaction.

3. Species/Metal Surface level

The objects in this level are species that can exist on the surface of a metal while a
reaction is taking place. With these species (which are deduced from the molecular level
and a set of heuristics), and a collection of rules, it is possible to propose a mechanism or
series of steps that have to take place on the surface in order for the reaction to take
place; These steps are affected by the reaction conditions and the nature of the surface
(i.e. the catalytic material).

The above classification goes from decreasing level of abstraction, increasing level of difficulty in

terms of problem solving, and decreasing level of accuracy in the prediction.

3.4. Implementation

There are many possible implementation procedures available inside the knowledge-based systems

domain. Their choice depends on the basic approach taken [Hayes-Roth&WL 83]:

1. General-Purpose Programming Languages.
Program the knowledge-based system from scratch. Although in principle any language
can be used, only a few are convenient

• LISP and dialects (e.g. MACLISP, FRANZLISP, INTERLISP, ZLISP, COMMONLISP, etc.)

(see for example [Winston&Horn 81]).
• PASCAL [Jensen&Wirth 74].
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» FORTRAN, etc.
The advantage of this approach is that the knowledge-based system can be built as
flexible, and appropriate ao dosired. The dinnclvanlago is that every capability has to be
created by the programmer, where many of these tools and routines may already be
programmed elsewhere.

2. Skeletal Systems.
Borrow from previously built systems. One common practice is to generalize a successful
knowledge-based system and try to make it domain-independent, using this
generalization in the construction of a new system. This has the advantage of allowing
one to create a new knowledge-based system in a very short time with relatively small
effort. The main problems with this approach are that many times the skeletons are very
inflexible and difficult to extend to deal with tasks not originally planned; and that the
generalization step is not completely successful, thus keeping some domain-specific
characteristics that could interfere with the new task. In general, their convenience is
directly proportional to the similarity of the original task and the proposed new
application.

• MYCIN [Davis&BS 77] -• EMYCIN [vanMelle&SB81]-* PUFF [Feigenbaum 77]
• CASNET[Weiss&KS 77] -• EXPERT [Weiss&Kulikowski 79]
• PROSPECTOR [Reboh81] -» KAS [Reboh&Duda80]-> HYDRO

[Gaschnig&RR 81] and CONPHYDE [Banares&WR 85]

3. General-Purpose Representation Languages.
Developed specifically for knowledge engineering. A knowledge-based system can be
tailor-made using high-level tools in the development. Although they are supposedly
domain independent, their choice should be affected by the proposed application.

• ROSIE, RLL[Greiner&Lenat80], HEARSAY-III [Erman&LF81]
• OPS5[Forgy81], OPS83
• SRL1.5 [Wright&Fox 83], PSRL [Rychener 84]
• LOOPS by XEROX, KEE by IntelliCorp, Knowledge Craft by Carnegie Group

Aside from the three approaches just described, other factors affect the choice of implementation,

and they could prove to be even more important: the type of problem to be solved, the desired

capabilities of the knowledge-based system, and the availability of the selected tools.

3.4.1. LISP

Figure 3-7 is the Lisp implementation of the formula shown in Figure 3-3.

(defun deih ()
(plus delhO

(times a dt)
(times 0.5 b dt2")
(times (quotient 1.0 3.0) c dt3**)
(times 0.25 d dt4*«)
Hvap

Figure 3*7: Example of a numerical Lisp function
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For brevity we are assuming that the values for the variables (e.g. a, dt2* *, Hvap) are global and have

been bound previously.

The next figure is somewhat more typical to Lisp. It is a recursive function that works with symbolic

arguments rather than with numerical ones. Its purpose is to compare if the objects contained in the

list listi are all also contained in the list list?.. The function is used when determining if two reactions

are the same (by testing if they have the same set of reactants and products).

(defun compare-mats ( l i s t l I i s t 2 )
(cond ((null l i s t l ) )

( t (cond ((member (first l i s t l ) I i s t 2 )
(compare-mats (tail l i s t l )

(delete (first l i s t l ) I i s t 2 ) ) )
(t nil)

Figu re 3-8: Example of an algorithmic Lisp function

The first statement in the conditional (cond) is the termination condition, a test to see if listl is empty.

If listl is not empty, then the function tests if the first element of listl is a member of Iist2% if so, the

compare-mats function is applied recursively to the tail of listl as first argument and the result of

extracting the coincident element from Iist2.

3.4.2. OPS5

One of the languages used in DECADE is OPS5. OPS5 is a programming language used extensively

in knowledge-based system applications and in other Artificial Intelligence areas. OPS5 primitives are

production rules that "fire* {i.e. execute its actions when its preconditions are matched) according to

the content of working memory, and whose actions modify that working memory, create other

production rules, or perform information input/output. For a better description of the language,

consult its manual [Forgy 81], and the recent book on OPS5 programming [Brownston&FKM 85].

OPS5 is a very appropriate language to encode the production rules contained in DECADE, i.e the

control rules and the heuristics. Figure 3-9 is the codification of the production rule shown in Figure

3-t. It uses predefined objects such as goal, EKS (knowledge source) and reaction, in order to match

its conditions. Its actions can modify the matched objects or can create new ones as in the case of

messg. Boldface strings are OPS5 operators.
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(p sin: :+arg-precund

"name propose-mechan ism
"ass i g11ed- to median i sm-eks
"status
"argument
"id

{ (EKS
"name
"status

- (reaction
"name

in-process
{ <> nil <reaction-name> }
<id-number>

mechanism-eks
active

<reaction-name>
"classification <> nil

— >
(make goal

"name
"status
"argument
"subgoal-of
"id

(modify <goal>
"status

(modify <EKS>
"status

(make messg
"type
"source
"status
"default

classify-reaction
proposed
<reaction-name>
<id-number>
(1isp-function:generate-un

waiting

waiting

entering-subgoal
mechanism-eks
sent
classify-reaction

<goal>

<EKS>

Figure 3-9: Example of an OPS5 rule

3.4.3. SRL

SRL1.5 [Wright&Fox 83] (or SRL for short) is a language interpreted into FranzLISP that runs on a

VAX computer using the UNIX operating system. It has been developed by the Intelligent Systems

Laboratory at Carnegie-Mellon University.

It is appropriate for declarative knowledge, and it is therefore used for descriptive purposes. SRL

supports a very sophisticated representation of concepts and their relations, and the support is very

flexible. It is possible to inherit values from related schemata, specify the inheritance path, modify

the inheritance mechanism, etc. Figure 3-10 is the codification of the frame shown in Figure 3-2.

Double quoted symbols stand for other frames (therefore the slots containing them are relations).

Lambda is a generic name of a function, in this example both Lambdas have the same argument:

schema. The function mat@rside with the parameters (material reaction side) returns true if the

material is present in the side of the reaction, and false otherwise, (e.g.

M" . - - •
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{{ hydrogenolysis
is-A: "class of reaction"
ISCLASS: "mul timolecular"
HASCLASSES: "OC hydrogenolys is" "f ischer- tropsch"

" h y d r o d e s u 1 f u r i z a t i o n "
CONSTRAINTS: 2
CONSTRAINT TYPE: and
CONSTRAINTS (lambda (schema)

(matSrside H2 schema reactants))
explanation: "H2" is a reactant

CONSTRAINT2:
(lambda (schema)

(or (= ( length (valueg schema products)) 2)
(and ( = ( length (valueg schema products)) 1)

(> (nth-coeff schema products 1) 1 ) ) ) )
explanation: "C-C" bond breaking}}

Figu re 3-10: Example of an SRL schema

(mat@rside HCOH MmethanationH "reactants") -+ true). The function length with the parameter

(list) returns the number of elements that are contained in the list, it is applied to the result of (valueg

reaction "products"), a list containing the products of reaction. Lastly, the result of executing (nth-

coeff reaction "products" n) is the coefficient of the nm product in the reaction.

3.5. Conclusions

In summary, it would always be important to consider the use of the most appropriate language for

the representation and solution of a subproblem. This factor has to be weighed against the

advantages of uniformity. One disadvantage of using hybrid systems is that a diversity of

representations may hide some of the sequencing of a task. Another is that since data types are in

general not the same, it is necessary to check for data type consistency and compatibility.

4. DECADE as a hybrid knowledge-based system
As we have seen so far, there are advantages to using different representation and control

structures within the same system. The blackboard model is a general and simple architecture that

allows the integration of dissimilar pieces of code ([Hayes-RothB 83] is a good introduction to the

blackboard model architecture). DECADE is an example of the implementation of a blackboard model

hybrid system.
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4 . 1 . Blackboard Model Structure

The blackboard model is a paradigm that allows for the flexible integration of modular pieces of

code into a single problem-solving environment, it is a general and simple model that allows for the

representation of a variety of behaviors. Given its nature, it is prescribed for problem-solving in

knowledge intensive domains that use large amounts of diverse, errorful and incomplete knowledge,

'therefore requiring multiple cooperation of knowledge sources in the search of a large problem

space. In terms of the type of problems that it can solve there is only one major assumption: that the

problem-solving activity generates a set of intermediate results.

It was originally proposed in the development of Hearsay-ll, a speech understanding system that

interprets spoken requests for information from a database [Hayes-Roth&Lesser 77], Since then it

has been used in a number of application programs, for example for signal processing ([Nii&FAR

82]), design of alloys( [Hulthage&RFF 85]), VLSI design ([Bushnell&Director 85]), and several more.

The blackboard model consists of a data structure (the blackboard) containing information (the

context) that permits a set of modules (knowledge Sources or KSs) to interact (as illustrated in Figure

4-1).

Figu re 4 - 1 : General Structure of a Blackboard

In the following subsection the structure of a typical blackboard model is described in more detail.

4 .1 .1 . The Blackboard

The blackboard can be seen as a global database or working memory in which distinct

representations of knowledge and intermediate results are integrated uniformly. It can also be seen

as a means of communication among knowledge sources, mediating al] of their interactions. Finally,

it can be seen as a common display, debugging and performance evaluation area.

It may be structured so as to represent different levels of abstraction and also distinct and possibly
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overlapping intervals in the solution. The division of the blackboard into levels parallels the process

of abstraction of the knowledge, allowing elements at each level to be described approximately as

abstractions of elements at the next lower level. This partition of the knowledge may be not only

natural, but useful, in that a partial solution (i.e. group of hypotheses) at one level can be used to

constrain the search at adjacent levels.

4.1.2. The Knowledge Sources

The Knowledge Sources in DECADE are kept separate, independent and anonymous (i.e. they do

not have to know of the existence of the rest). This partitioning into "modules" is useful in that it

makes the problem more tractable by creating a set of subproblems, each of which is easier to pose

and solve. Of course, at a higher level their activities must be coordinated. Equally important, this

separation eases the modification and evaluation of the system.

Knowledge Sources in DECADE are divided into two components:

1. Condition, Precondition or Front End

Monitors the blackboard for elements matching its precondition. The precondition has
the double purpose of finding a subset of hypotheses that are appropriate for an action
and of invoking the knowledge source in that subset. The subset has been called the
Stimulus Frame of the knowledge source instantiation ([Lesser&Erman 77]). Each
knowledge source is data-directed in that it monitors the blackboard for data matching its
precondition.

2. Action or knowledge-specific component

When the precondition component is matched, a copy of the knowledge source is
instantiated (invoked) and finally executed. In the case that more than one knowledge
source fulfilled its precondition part, the execution is subject to the result of a conflict
resolution process (more on this in the blackboard model control section).

The knowledge sources may be divided in a number of different ways, depending on the

characteristic that is used to discriminate them.

1. Generic vs. specific

The knowledge source may be useful in a whole set of knowledge-based systems (e.g.
the Focus of Attention), or specific to one application (e.g. the mechanism prediction
knowledge source).

2. Unique vs. redundant

Several knowledge sources performing the same task but with different capabilities may
be present in the same system. The difference in capabilities can be in terms of
accuracy, consumed resources, certainty of the result, required preconditions, etc.
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3. Local vs. distributed

Knowledge sources may reside in the same processor or in different ones.

4. Homogeneous vs. hybrid

Knowledge sources may have the same structure and/or control, but they may be
completely different in either.

Table 4-1 lists the current components of the blackboard environment present in DECADE. The

headers of the second to fifth columns of the table reflect the dimensions in which DECADE is a

hybrid system.

Name

User
Interface

Focus of
Attention

Scheduler

Specify
Reaction

Thermo
Checking

Classify
Reaction

Surface
Steps

Select
Catalyst

Knowledae
ReDresentation

rules

rules

rules

rules
frames

functions
rules

functions
frames

rules
frames

rules
frames

functions

Problem Solvina
Method

. —

agenda

—

search
numerical

generate & test
numerical

search

means-ends

search
generate & test

Lanauaae

OPS5

OPS5

OPS5

OPS5
SRL

Lisp
OPS5

SRL
OPS5

OPS5
SRL

SRL
OPS5

Levels

—

—

1.2

1

1.2

2,3

1,2,3

[rules.functionsl

[12,16]

[23,1]

[9,0]

[50,25]

[25,4]

[14,15]

[42,36]

[143,59]

Table 4 - 1 : DECADE as an example of a Blackboard Model.

The last column contains two numbers representing the amount of code (and therefore the size) of

each of the knowledge sources. The first quantity is the number of production rules, and the second

the number of Franz Lisp functions. Not all the code is represented in the table though. There are
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assorted Franz Lisp functions used in the communication of OPr>!5 and SHI . Also, the frames or

schemas constituting most cf the database are not present (they are not counted in the table because

there is no clear-cut assignment of a given schema to a knowledge source). I"ho total amount of code

is:

• OPS5 production rules: 318

• Franz Lisp functions: 203

• SRL schemas: 328

4.1.3. The Context

The context is the set of entries or context elements contained in the blackboard that contain the

information representing the state of the solution process. Those entries may include perceptions,

observations, beliefs, hypotheses, decisions, goals, interpretations, judgements, or expectations.

Also, they may have relationships to one another. In particular, one such organization may combine a

set of entries as the representation of a single object viewed from different levels of abstraction.

In DECADE there are objects that represent goals {goal), questions and information messages

(messg), knowledge sources (EKS), and other general concepts in the blackboard. There are also

domain specific objects: those which represent reactions (reaction), catalysts {catalyst), surface steps

(ss), etc. Figure 3-9 shows some of these objects in action.

4.2. Blackboard Model Control

The blackboard model can accommodate a range of control mechanisms and problem-solving

strategies. This flexibility in range applies at all levels: from each of its components (knowledge

sources), to the system as a whole.

4.2.1. Overall control

In DECADE, the overall control is determined by one of the knowledge sources: the Focus of

Attention. A simplified description of the behavior of the Focus of Attention is schematized in Figure

4-2. A lower case string can be interpreted to be a production rule that is part of the Focus of

Attention knowledge source. The rectangles represent parts of the process where the control passes

to knowledge sources other than the Focus of Attention. According to the figure, after the user

selects the kind of problem he wants to solve, the rule post goal will post in the blackboard a

description of the goal that needs to be solved. Any knowledge source that has access to the

blackboard and is able to solve such kind of problem can post an estimate for the solution of the
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-• USER Ar

post goal

\ v \
subgoal KS finished KS failure

j I

Figu re 4-2: Simplified version of the overall control in DECADE

previously posted goal. Since this last step is performed by modules other than the Focus of

Attention, it is depicted as a rectangle. The Focus of Attention waits until all the estimates have been

submitted, then it evaluates them, assigning priorities to each of the knowledge sources that

submitted an estimate. Once each knowledge source is rated, the best one is assigned the original

goal, and that module will start the solution of it.

There are three possible outcomes after a goal has been assigned to a knowledge source.

1. The module solves the problem, it posts its solution in the blackboard and returns the
control to the user (if the goal was originally requested by him), or to the part of the Focus
of Attention that assigns the next goal (when the goal was requested by another
knowledge source as a subgoal — see next item —)

2. The module cannot solve the requested problem because it needs some other partial
results. In this case a subgoal is posted, or, more accurately, a goal with a pointer to the
parent goal is posted in the next level of recursion. The subgoal is to be treated exactly
as any other goal, with the only difference that any outcome from it is not considered a
final solution, but is passed to the knowledge source that requested it. There is no limit to
the levels of recursion that can be used.
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3. The module cannot solve the requested problem; it failed. In this case the control is
handed back to the part of Ihe Focus ot Attention ihat assigns the execution of goals. If
more estimates are present the goal is assigned to the next best estimate, if not the
control is handed back to the user.

4.2.2. Internal control in the knowledge sources

We have described the behavior of DECADE as a whole. Also, each of the knowledge sources has a

set of rules representing a common internal control mechanism for the effects of common operation

inside the blackboard environment. It reflects the actions that the knowledge source must take with

respect to factors such as the presence or absence of an argument, the success or failure of the

preconditions, the success or failure of the knowledge source itself, etc. This control mechanism can

be subdivided into three parts:

1. The first part is a rule that responds to requests for identification (see the left side of
Figure 4-3). This is used in what is called the census. Having this internal process
permits the use of a set of initially anonymous knowledge sources, while at the same time
it permits the system to know which modules are present during run time, and what are
their main characteristics. This knowledge is only used as information to the user, and in
no way diminishes the generality of the architecture.

2. The second part is another rule that responds to requests for estimates as described in
Figure 4-2 (see right side of Figure 4-3).

3. The third part is a set of rules that determines when a goal can be solved
straightforwardly, how to request a subgoal and receive its result, and finally what to do if
a goal has been requested but it is not clear which argument should be used.
Explanation of this last item follows in the next paragraphs.

The central part of Figure 4-3 shows the internal manipulation of goals in a knowledge source, it

follows the same notation as the one from Figure 4-2. Once a goal has been assigned to a knowledge

source, the rule begin action activates the knowledge source and starts processing the.goal. There

are several possibilities at this point, but the most important ones are:

1. Rule + arg + precond fires.

The goal has an specified argument and its preconditions are satisfied. In this case the
knowledge source executes its actions and whenever it ends, it passes the control back
to the blackboard (in effect the Focus of Attention).

2. Rule + arg-precond fires.

The goal has a specified argument but its preconditions have not been satisfied. New
subgoals are proposed corresponding to the preconditions that have not been satisfied in
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census

• arg + precond

do action

end

begin action

i
• arg precond

continue

1
arg

1
prompt for arg

estimate

Figure 4-3: Simplified version of the control inside the knowledge sources

an attempt to do so. Whenever these subgoals are solved (assuming no failure, in which
case the Focus of Attention would take charge of the situation), the original knowledge
source continues with its execution by having reduced the situation to + arg + precond.

3. Rule -arg fires.

This is a particular case of the + arg-precond situation, if we consider that obtaining an
argument (by asking the user to give one, or prompting for the necessary data to form
one) can be thought of as a subgoal. In this case the subgoal is much simpler though.

4.3. Using DECADE

While this paper has concentrated on the organization and control aspects of DECADE from the

expert system's point of view, a follow up paper will present in detail the selection strategy from the

"chemistry" point of view. Specifically there are three levels of responding to a request for catalyst

selection:

1. responding with catalysts that are known to work from published experimental results
and that are in the DECADE knowledge base,

2. classifying the reaction from generic to specific classes and recommending catalysts
known to catalyze reactions in all of these levels of classification, and
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3. determining both required and not wanted surface r,u*\vr, (adsorption, desorption,
dissociation, addition) for the reaction, and selecting catalysts known to enhance the
needed steps and to suppress the unwanted ones for related reactions.

Table 4-2 shews catalysts and operating conditions recommended by DECADE at the third level for

the synthesis of methane, ethane, methanol and ethanol.

Product Temperatures (K) Pressures (atm)

methane 600-700 < 10.

methanol 500-600 > 100

ethane 500-600 - 1 0

ethanol 500-600 ~ 10

Prescribed materials

Fe, Ru, Co, Rh, Ni, Pd

groups IB & IIB, Rh, Ir, Pd, Pt, Cu

Fe, Ru,Co, Rh, Ni, Pd

Rh, Ir, Pd, Pt

Table 4-2: Results for different reactions at the same level of abstraction.

These species include no chain formation (methane, methanol), chain formation (ethane, ethanol),

complete CO dissociation (methane, ethane), partial dissociation (ethanol) and no dissociation

(methanol). These answers compare very favorably with known literature results.

The following paper will also illustrate the explanation facilities of DECADE for an example request.

Specifically, DECADE can explain why certain catalysts are (or are not) selected, why the operating

conditions ranges are selected and which surface steps are required to be present or absent.

4.4. Conclusions

This section has presented the basic components of the blackboard model architecture: its

structure and operation. In particular, it has showed how these concepts are used in DECADE, The

blackboard architecture is, nevertheless, useful in the general case where the integration of various

representation and problem-solving methods is desired.
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5. Future Work end Conclusions
All the features described in this document are implemented and tested, but as of the middle of

September of 1935 DECADE is not yet fully operational. Results from trie different abstraction levels

have yet to be conciliated, knowledge about some reactions completed, the explanation capabilities

finished, etc.

Several other issues will have to be investigated in the future in order to make the application of

knowledge-based systems to engineering more practical. A few of these items are:

• Characterization of the control

In DECADE the control was centralized within the Focus of Attention knowledge source.
Alternative control schemes with decentralized control could prove to be more powerful.

• Parallel processing

DECADE runs in a single computer. Although no mention has been made of this issue, it
is conceivable that the efficient integration of several processors could be the single most
important factor in improving the performance of knowledge-based systems. This area
remains largely unexplored.

• Alternative implementations

This document has only investigated one way of implementing hybrid knowledge-based
systems. There are other systems that make use of different representations and
problem-solving methods at the same time (see [Kunz&KW 84] for example). There are
hybrid environments (e.g. LOOPS, KEE, Knowledge Craft) and hybrid languages (e.g.
OPS83, S.1) that would be worth evaluating as an alternative to the blackboard
architecture.

Although it is not the purpose of this document to compare the ideas presented here with
other systems, one comment is in order: systems like KEE, which were designed as
hybrids, have a larger degree of integration than the one achieved in a blackboard model;
but in order to attain such integration, the subparts tend to be less powerful than the
subparts that DECADE has. In other words: there is a compromise between degree of
integration and the expressive power of the subparts.

• Integration of symbolic and numerical computing

The main purpose of the document has been to introduce the reader to the symbolic
parts of engineering design, yet the issue of coupling numerical and symbolic
computations still exist. It is addressed in the next subsection.
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5.1. Links between symbolic and numerical languages

The question of integrating traditional numerical algorithms with knowledge based systems has

been the goal of several research efforts in Chemical Engineering (see [Bariares&SVWR 85] for a

review of knowledge-based systems in Chemical Engineering). The approach has been in general to

start from a typical Chemical Engineering system and then adapt pieces of nontraditional

code/programming techniques to it. The present research has taken a different stand, in that it

began in the Expert System end of the problem and has been extending to the traditional algorithmic

end, therefore DECADE currently uses very limited amounts of numerical computation (and the little it

has is encoded in FranzLisp). Parallel research has been conducted in the interfacing of existing

Fortran programs to symbolic code, and the results have been successful.

As a result of the effort of a team in the Design Research Center at Carnegie-Mellon University, the

following results can be reported on four different methods that have been used to connect symbolic

to numerical languages ([Talukdar&CLBJ 85]). The results are summarized in Table 5-1.

Ooeratinq Svstem

Concurrencv

Number of Machines

ImDlementation lanauaaes

Transferred information

Data tvoe

Additional code

Relative Soeedd

Disk Files

Any

Yes

Onea

Any

I/O

Any

None

2

Foreian Functions

Any

No

One

Lisp, C, Fortran, Pascal

Parameters

Limited by language

None

1

Pioes or Sockets

UNIX 4.1/4.2

Yes

Multiple6

Lisp, C

I/O

Strings

Minimal6

3

IPC

UNIX 4.1

Yes

Multiple

Lisp, C
Pascal

I/O

Structured
data

Minimal0

4

(a) Multiple if the installation has over-the-network file-transfer facilities

(b) One machine in the case of pipes, Multiple machines for sockets

(c) About 250 lines of code to use pipes and IPC from Franz Lisp

(d) 1 is the fastest. 4 the slowest

UNIX is a trademark of Bell Laboratories

Ta ble 5 -1 : Four ways to link programs written in different languages.

1. Disk Files: The programs to be linked read and write from common files. This is a
simple mechanism but tends to be slow.
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?. Foreign Functions: LISP, C :\nc\ PASCAL allow compiled versions of programs written
in other languages to be treated as callabie functions. I he parameters that can be
passed through this mechanism vary from LISP to C to PASCAL. The interpreted version
of OPS5 runs in a LISP environment. Therefore, OPS5 programs can use foreign function
calls to exchange data with other programs.

3. Pipes and Sockets: These are interprocess communication facilities provided by UNIX.

4. IPC: This is an Inter Process Communication facility written at CMU for machines
running UNIX 4.1 and connected by a local area network. IPC places no restrictions on
the data types to be communicated. Connections between C and PASCAL programs are
made directly. FORTRAN and LISP require small C interfaces.

5.2. Conclusions

Experience in the application of knowledge-based systems to engineering design has shown us that

the use of hybrid systems is necessary. Hybrid knowledge-based systems make it possible to take full

advantage of the existing programs, and also allow the automatization of a larger portion of the

design process.

Hybridity is a concept that can be achieved in several dimensions: knowledge representation and

abstraction, implementation languages, problem solving methods, etc. In order to construct hybrid

systems it is necessary to be able to mix different components (programming languages, modules,

programs, levels of abstraction, etc.) into a common working space. Although no complete solution

has been developed to accomplish this goal, the blackboard model seems to be the ideal paradigm

for this purpose.

In particular we have presented the specific problem of catalyst selection, described how it consists

of a variety of subtasks, described how each one of these subtasks is subject to representation and

solution using existing computer methods, and finally presenting DECADE, a knowledge-based

system that illustrates the above ideas.
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