
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



On The Optimization Of Differential-Algebraic Process Systems

by

J. E. Cuthrell, L. T. Biegler

EDRC-06-21-86:

September 1986



ON THE OPTIMIZATION OF DIFFERENTIAL-ALGEBRAIC

PROCESS SYSTEMS

by

J, E. Cuthrell and L. T. Biegler

CARNEGIE-MELLON UNIVERSITY

To be presented at Annual AIChE Meeting
Miami, FL

November, 1986

Session on Applied Mathematics I I

Paper f

Author to Whom Correspondence should be Addressed



TABLE OF CONTENTS
1. Introduction 1

1.1. A Nonlinear Program with ODE Models 2
2. An NLP Formulation for Differential-Algebraic Optimization Problems 4

11. Discretization of the ODE Models 4
11 Extension of Orthogonal Collocation to Finite Elements 7
13. Development of an Error Minimization Strategy 11

13.1. Jackson's Theorem 11
13 .1 An Error Minimization Problem 12
13.3. Development of Knot Placement Equations 12
13.4. Knot Placement Equations with Multiple State Profiles 14

14. An NLP Method for Optimizing Differential-Algebraic Systems 14
3. Extension of the Method to Problems with Discontinuities 16

3.1. An Example - A Failure of NLP4 16
3.1 Super-Elements - Problem PI Solved 21

4. Optimization of a Reactor Problem with Adaptive Knot Placement 22
4.1. Statement of Problem P2 ' 23
4.1 Initialization Procedure for Reactor Optimization 24
4.3. Results and Discussion of Problem P2 27

5. Summary and Conclusions 32
References 34
Appendix 36

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213



11

LIST OF FIGURES
Figure 2-1: Global Collocation 7
Figure 2-2: Finite Element Collocation g
Figure 3-1: Control Profile u (t) with NE=2 17
Figure 3-2: State Profile Z(t f & (z (t)) with NE=2 18
Figure 3-3: State Profile Z2(t) & (z (t)f with NE=3 18
Figure 3-4: Control Profile u (t) with NEM 19
Figure 3-5: State Profile Z (tf & (z (0) with NE=3 19
Figure 3-6: State Profile Z2(t) & fe^W)"!, with NE=3 20
Figure 3-7: Super-Element Structure m" 21
Figure 4-1: Flowsheet for Problem P2 23
Figure 4-2: Starting Conversion Profile for Problem P2 Case la and Ib 26
Figure 4-3: Starting Temperature Profile for Problem P2 Case la and Ib 27
Figure 4-4: Final Conversion Profiles for Problem P2 Case la 28
Figure 4-5: Final Temperature Profiles for Problem P2 Case la 29
Figure 4-6: Final Conversion Profiles for Problem P2 Case Ib 30
Figure 4-7: Final Temperature Profiles for Problem P2 Case Ib * 30
Figure 4-8: Final Conversion Profiles for Problem P2 Case II 32
Figure 4-9: Final Temperature Profiles for Problem P2 Case II 33



iii

LIST OF TABLES
Table 3-1: Results for PI using NLP4
Table 3-2: Results for PI using Super-Elements
Table 4-1: Initial Bounds for Problem P2
Table 4-2: Initial Decision Variables and Objective Function for P2
Table 4-3: Results for P2 Solved with NLP6
Table 4-4: Initial and Final Knot Distributions for P2

17
22
25
26
31
31



ABSTRACT

The optimization of systems of differential and algebraic equations is required in many

important areas of Chemical Engineering. Solution of these optimization problems is usually

done either by replacing the differential equation based models with simple algebraic models (as

in Flowsheet Optimization) or by using an implicit numerical integration scheme to solve the

differential equations (as in process control). Each of these approaches has serious drawbacks

when applied to large problems. The use of simple models renders any solution obtained sub-

optimal (that is, optimal with respect to the level of approximation the model affords), while

optimization involving repeated numerical integration can be prohibitively expensive.

Furthermore there is presently no general and accurate method (other'than doing them

analytically) to handle optimal control problems which include discontinuous and singular

profiles.

This paper describes a method to solve the above type of problems and avoid the stated

difficulties. Finite element collocation is used to convert the differential equations to a set of

algebraic residual equations with unknown coefficients. Then a nonlinear program is

formulated with the residuals incorporated as equality constraints and the coefficients as

decision variables. Collocation points are fixed relative to the finite element knots but

adaptive knot placement is done to minimize the error due to collocation. The conditions for

optimal knot placement are necessary and sufficient and can be incorporated as additional

equality constraints in the nonlinear program. All of the equality constraints (i.e. the

collocation equations and knot placement constraints) are then solved simultaneously with the

optimization problem, thus requiring only a single solution of the approximated model. The

effectiveness of this strategy is illustrated by optimizing a reactor with state variable constrain is

and steep temperature profiles.

In addition, singular problems and profiles with jump conditions are treated by

introducing an extra level of elements (super-elements) to allow for the location of

discontinuities. These locations are chosen while solving the overall optimization problem. A

simple optimal control problem is also solved to illustrate this strategy.



1. INTRODUCTION

Optimization involving both differential and algebraic equation models represents one of

the new frontiers facing optimization techniques. Currently optimization of differential

equations and algebraic equations can be done separately by various methods. Successive

Quadratic Programming (SQP) (Han (1977), Powell (1977)) and Reduced Gradient techniques

(Murtagh & Saunders (1978)) are available for handling nonlinear algebraic problems, while

variational calculus (Bryson & Ho (1975)) can be used for differential equation optimizations.

Up to this point, however, no general and accurate method is available for handling

differential-algebraic optimization problems. Standard nonlinear programming (NLP) methods

cannot be used without resorting to an often expensive numerical integration scheme.

Furthermore, few options exist (Sargent & Sullivan (1977)), even in this case, for imposing

constraints on continuous profiles and for handling discontinuities and/or singular profiles.

Methods based on optimal control theory, conversely, have difficulty handling even simple

types of algebraic equations. Moderately sized (say 3 or more state equations) nonlinear two

point boundary value problems, for example, composed of nonlinear ODEs and algebraic

boundary conditions, can be difficult to solve using numerical integration. Furthermore,

repeated numerical integration (often implicit) can make these optimizations very expensive.

Additional complexities such as discontinuous/singular profiles, profile constraints, as well as

other complex algebraic side conditions (see Bryson & Ho (1975)) can make these problems

almost impossible to solve using variational calculus.

In this paper we present a method that solves, under certain conditions, differential -

algebraic optimization problems efficiently and accurately. Here the differential equations will

be discretized using polynomial approximation and orthogonal collocation. The resulting

algebraic equations are then written as part of an NLP which is solved with an SQP

optimization technique. Accuracy of the approximation is guaranteed by developing a set of

finite element knot placement equations which represent the sufficient conditions for error

minimization. These equations also become part of the NLP. In addition to finite elements

an extra level of elements, super-elements, is introduced. Inclusion of these extra breakpoints

allows for the approximation of discontinuous/singular profiles.

In the remainder of this section a general statement of a differential-algebraic



optimization will be made along with a discussion of some of its features. t Section 2 will

formulate the problem as an NLP through use of orthogonal collocation on finite elements. A

discussion of optimal placement of finite element knots will follow with reference to some

standard knot placement methods. Next, in Section 3, the need for super-elements will be

outlined and illustrated by example. A final example will be presented in Section 4 to

• demonstrate the effectiveness of the knot placement equations.

1.1. A NONLINEAR PROGRAM WITH ODE MODELS

A differential-algebraic optimization problem (DAOP) which includes an ODE model

(written here for the sake of convenience as an initial value problem) can be posed as:

Min
x,Utt),ZCt)

S.L

where

4>(x,Utt).Ztt))

c(x.UCt),Ztt)) = 0

g(x,Utt).Ztt)) £ 0

Ztt) = F(x.Utt).ZttU)

Z(0) = Zo

xL £ x £ xu

UL £ Utt) £ Uu

z L <> nt) <> z u

4>
g,c
x
ZCt)

UCt)

(DAOP)

X6CO.1]

x\xu

= an objective function
= design constraint vectors
= decision variable vector
= state profile vector (of dimension M)

= control profile

= variable bounds

U\U U = control profile bounds

ZL
tZ

u = state profile bounds

The differential equations, as written, include a possible dependence on some scalar

parameters (for example length of a reactor or pressure in a column). These we've chosen to

include in the decision variable vector x. The algebraic constraints and objective function in

DAOP are written as functional indicating a possible dependence upon the continuous control

profile UCt) and state profiles Ztt).



As stated DAOP cannot be solved directly either by typical nonlinear programming

techniques or optimal control methods. With an NLP technique one cannot directly optimize a

continuous control profile nor is it possible to impose bounds on continuous profiles. Optimal

control methods, on the other hand, generally do not deal with scalar variables nor is it

possible to handle efficiently general algebraic constraints (such as c or g).

It is possible, under certain conditions, to handle DAOP by using both an NLP

optimization method and a numerical integrator (Cuthrell & Biegler (1985)). This can be done

in a straightforward manner only if no control profiles exist and no profile bounds are

enforced. Under these conditions DAOP can be solved with a two step procedure where the

optimizer chooses x in an outer loop followed by numerical integration of the ODE model in

the inner loop. This approach, however, often requires expensive integration of sensitivity

equations of the form

k ) . BUt)
ax " 8x 3x ant)

along with the state equations. In general, however, DAOP cannot be solved by any available

method. We are aware of only two attempts at solving DAOP. Bapat & Heydweiller (1985)

used polynomial approximation to discretize the ODE models in some optimal control problems.

For problems containing a discontinuous control profile the time domain was divided into two

elements each containing a state and control profile polynomial approximation. Here the

location of thp discontinuity was included into the optimization as a variable and found by the

search procedure. This method, however, met with only limited success since a relatively

simple optimization technique was used; moreover the question of accurate profile

approximations was not directly addressed. Sargent & Sullivan (1977) considered a form of

DAOP by parameterizing the control profile over variable time intervals and transforming sutc

variable constraints into constraints enforced at final time. This method was successful m

addressing some of the above problems but still required repeated numerical solution of the

ODE modeL

To avoid the above problems we present a method in Section 2 which allows simultaneous

solution of the optimization problem and ODE modeL



2. AN NLP FORMULATION FOR DIFFERENTIAL-ALGEBRAIC OPTIMIZATION

PROBLEMS

This section will focus on two key ideas. First, by using orthogonal collocation the

differential equations in DAOP can be converted to a set of approximating algebraic equations.

And, second, the error of the approximation can be minimized by incorporating into the

resulting NLP a finite element method which adaptively chooses the locations of the finite

element knots.

2.1- DISCRETIZATION OF THE ODE MODELS

Recall the ODE model presented in DAOP as:

ht) = Hxvtt\m)x) *eco,i] (i)

Z(0) = Zo

Next we make use of the two polynomials written in Lagrange form

^ TT*& = n
i=0 j=0.i

1 (3)

where zv CO denotes a (K-^l)th order (degree < K+l) polynomial and u Ct) a Kih order

(degree < K) polynomial (Note that <f>W is a polynomial df degree K and \f/ U) is a

polynomial of degree K-l.) The difference in the orders is due to the existence of the initial

condition for ZCC). And, the notation j=0,i indicates that j=0....,i-l.i+l*....K. The Lagrange

form polynomial has the desirable property that (for zK+,0t) for example)

which is due to the Lagrange condition

6lt (6(j = Kronecker delta).



Since for chemical engineering problems the states and controls represent quantities like

temperature or concentration, using Lagrange polynomials produces coefficients z. and u. which

are physically meaningful quantities. This becomes useful when providing variable bounds,

initializing a profile, or interpreting solution profiles. For other types of polynomial forms (e.g.

B-splines) the coefficients do not have these features.

Substitution of (2) and (3) into (1) yields the residual equation:

K

Rtt) = X zi $& " Fd.u|ctt)^1tt)^) , (4)
i=0

with zQ = Zo

which still remains a function of time. Discretization of the residual equation is next done

through use of one of the Methods of Weighted Residuals (see Villadsen & Michelsen (1978).

Finlayson (1972)). We choose the method of collocation which requires

RCt) &U-£.) dt = 0 i=l,...,K (5 = Dirac delta) (5)f

since this integral can be written simply as:

K

RCt) =
j=o

with z0 = Zo

With the Lagrange condition, the polynomials evaluated at discrete points reduce to the

coefficient at that point, and thus

j / , j , , = 0 i=l....K (6)
j=o



with zo = Zo

Similarly the polynomial approximations when substituted into DAOP and evaluated at some t
i

become just the corresponding coefficient Using the ODE model (6), DAOP becomes:

Min <Hx,u.,z.) (NLP1)

x,u..z.

s.t g(x,u.,z.) ^ 0

c(x,u..z.) = 0

RU) = 2 z. bit) - Fixji^X.) = 0 i=k...,K
j=o

xL<
UL:

ZL<-

; x £

* tti

1 zi

xu

^ Uu

S Zu

With NLP1 we can now solve, once the points £f i=L.MfK have been chosen, very general

differential-algebraic optimization problems. An example of a flowsheet optimization problem

solved with NLP1 can be found in Cuthrell & Biegler (1985). The location of the points i.

i=l,...,K are chosen to correspond to the shifted roots of an orthogonal Legendre polynomial of

degree K (hence the term orthogonal collocation (see Villadsen & Stewart (1967)). Orthogonal

collocation can be equivalently thought of as a Galerkin procedure with the resulting integrals

approximated by an optimal K-point quadrature. It turns out that the quadrature points for

this approach correspond to roots of an orthogonal polynomiaL

Essentially the discretization of the ODEs is done over a set of points which can be

visualized as follows in Pig. 2-1 for K=3. Here the initial condition specifies the first state

coefficient leaving MK residual equations in the K(M+1) unknowns z.. tt.t i=l K. The

control profile coefficients are left as decision variables in the optimization so the algebraic

system of approximating equations has dimension MKxMK.



z o =Z o RUX)=O Rtt2)=0

S

Figure 2-1: Global Collocation c

2.2. EXTENSION OF ORTHOGONAL COLLOCATION TO FINITE ELEMENTS

The global collocation method discussed in the preceding section constructs the state

approximation using (K+l)th order polynomials. For functions which are poorly behaved (i.e.

rapidly changing in some small region) an accurate approximation using global collocation would

require K to be very large. The steep region could then be approximated well at the expense

of grossly overapproximating the rest of the function.

An alternative to global collocation uses piecewise polynomial approximations. Here a set

of (K+l)th order state polynomials z* CO and Kth order control polynomials u'Ct) are defined

on finite elements. Each finite element Aa. is bounded by two knots &., and a M with

Aa.=a.M~ a.. The distribution of elements now can be chosen so that the approximations are

done both efficiently and accurately.

To begin a discussion of orthogonal collocation on finite elements consider Fig. 2-2

(where K=2, and NE=3; NE is the number of finite elements). To preserve the orthogonal

properties obtained with global collocation the domain *£[0 , l ] is mapped into each finite

element through the formula (with a =a, <* =b)
I NE+l

t = a . • # a M - a.) i=i N E for ^

And the locations of the orthogonal Legendre roots (with <to=0) are mapped to the points



i=l i=2 i=3

Figure 2-2: Finite Element Collocation

- « , + *,<*,•," ai> ^ - " . N E ' (7)
j=Of...,K

It is convenient at this point, in order to save a considerable amount of rewriting, to define

the expression (i-l)(K>l)+j as the new variable [ij]. The expression [ij]=(i-l)(K+l)+j is not to

be confused with the commonly used double subscripts for matrices (eg. A., meaning the

element in the ith row and jth column). Furthermore, the indices T and "j" can themselves

take on other characters when the context requires i t For example, [ile] becomes (i-l)(K+l)+k

for some i and k, and [il]=(i-l)(K+l)+l for some i. For an equivalent derivation of finite

element collocation which uses matrix notation see Finlayson (1980). With this convention (7)

becomes:

The Lagrange polynomials can now be expressed as:

K K

j=0 k=0.i

K- n



for i=l,...,NE

For an equivalent representation of eqn (9) without the previous notation change see the

Appendix.

The discretized residuals can be immediately written down from eqns (6) as:

j=o

i t h ZI.o] = Zo

The calculation of the term ^Ti.^
lrJ^ c a n ^ simplified by chain ruling derivatives to obtain:

(11)

And thus eqn (10) is more simply written

= 2-
j=o

z[io] " Zo

In equation (12) the expression 4>Uf) can be easily calculated offline (see Villadsen &

Michelsen (1978)) since it depends only on the Legendre roots. Now assuming for the moment

the variables x and a[^] are fixed. (12) is composed of M(NHKM) equations and

M(NE(K+1)) state coefficients. To make the system well posed an additional set of M(NE-l)

equations are written to make the polynomials 2^ , (0 continuous at the interior knots a .

This is done by enforcing

(13)
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or equivalently

K

z[io] = Zl z[,-ij] <£/*=!> i=2,....NE (14)
j=o

These equations extrapolate the polynomial z£,(t) to the endpoint of its element and provide

an "initial condition" for the next element and polynomial z j ^ t ) . Each overall approximation

to the state profile is therefore a continuous and piecewise polynomial function of order K+l.

Stated mathematically, z ^ O G P ^ f l C C a i b ] where P ^ denotes the set off all polynomials of

order K+l and C[a,b] the set of continuous functions. A number of authors construct

dif ferentiable and piecewise polynomial approximations, from zv (t)€Pv PlC'Caub], to higher

order ODE or PDE systems (Finlayson (1980), Gardini (1985)). However, continuous

approximations are sufficient for our case particularly since our examples have non-

differentiable solution profiles.

Including the ODE model, discretized on finite elements, as well as the continuity at the

knot conditions the NLP formulation becomes:

Min <Kx.uflf1.zrip1) (NLP2)

S.L

= 0

Z[io] "

Z£«oj *

X L £ X

Zo

K

j=o

£ xu

i=2.....NE
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With a.. i=2 NE fixed, NLP2 can be used to solve most types of differential-algebraic

optimization problems. The importance of accuracy of the approximation however has not

been discussed. This we take up in the next section where a set of conditions are developed

that guarantee minimization of the approximation error at the solution of NLP2.

2.3. DEVELOPMENT OF AN ERROR MINIMIZATION STRATEGY

In this section we present a set of error minimization or knot placement equations.

These equations involve the state profile approximations z' (t), i=l,...,NE, and the interior knot

locations 0C.. i=2,...,NE. To make the presentation of these ideas simpler we shall treat the M-

vector Z(t) as having only one element for the next three subsections. In section 2.3.4 this

restriction will be relaxed to include multiple states (M>1). At the NLP solution these knot

placement equations require the interior knots to be at locations for which the approximation

error is minimized. The entire development of these equations is beyond the scope of this

paper. However, we begin with a useful theorem from the approximation theory literature and

develop from this, with some assumptions, the knot placement equations.

2,3.1. JACKSON'S THEOREM

EK^(Z(t) ; [« . .« . , , ]> * const At***1 |z(K*l)(t)|i (15)

(for the complete derivation of this equation see Rivlin (1969))

where

• E__ (Z(t) ; [a. ,a. ,]) represents the local error between a polynomial of (K+lHh
order and the function Z(t) over some region [a. ,a . 3.

• const is a calculable (but physically of little use) constant dependent only upon K.

• Att**1 is the (K+l)th power of the ith finite element length.

• |ZCK^°(t)|i is the max-norm of the (K+l)th derivative of the function Z(t) in the
interval [a . ,a | M 3.
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2.3.2. AN ERROR MINIMIZATION PROBLEM

To minimize the approximation error we formulate the following NLP.

Min Max Aa. |zfK*I)(t)|!'aw> i=2 NE (NLP3)
a. j ' ' j=l,....NE

S.L Aa. £ €

with a - a . aNE+1=b

€ = a small positive constant

NLP3 is now posed conceptually as a constraint in the optimization of NLP2. That is, we

minimize •fott[ i£]**[ i / ] ) m HLP2 over x, c i ^ j . z{.^y subject to the indicated constraints

and subject to NLP3 being minimized. This "inner-outer" optimization problem can be greatly

simplified, provided Aft. > € holds, by writing the necessary conditions for NLP3 as:

Att. \t™\l^x) = constant i=l....,NE (16)

It is easy to show (see Fiacco (1976)) that (16) also represents the sufficient opiimality

conditions for NLP3. These equations can now be used as basis for a set of knot placement

equations which can be included in NLP2 as equality constraints.

2.3.3. DEVELOPMENT OF KNOT PLACEMENT EQUATIONS

Numerous strategies exist in the approximation theory literature for choosing a "good"

distribution of knots when using finite elements. An excellent review, with accompanying

numerical comparison, is given in Russell & Christiansen (1978). The method presented here is

a slightly modified version of one developed by deBoor (1978) and based on (16). It LS not a

fully rigorous method, involves convergence of highly nonlinear equations, and can fail under

circumstances which vail be outlined as we proceed. However, both references report the

method to be quite effective on a number of examples and our results support this conclusion.

Recall that equation (15) represents a local approximation error. A much more detailed

analysis of polynomial approximation using collocation at Legendre roots (deBoor (1974) and

deBoor & Swartz (1973)) results in the addition of the global term o(Aa**1). This term.

however, is difficult to quantify and vanishes for small Attr We therefore must assume it is

negligible, and focus instead our efforts on the local term. The notion of equidistributing the

local term, that is, distributing the local term equally over the entire range [a,b] forms the
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basis for most of the knot placement methods we are aware of, even many not based on (16).

Our task therefore is to develop a simple strategy which equidistributes the error given by (16).

Two difficulties immediately arise from equation (16). First, the infinity norm must be

calculated, and we also need derivatives of the function Z(t), which itself is unavailable since it

is the true solution of the differential equations.

Notice, firstly, that the solution to (16), in terms of a., is asymptotically equivalent (i.e.

as Aa.->0) to the solution of:

^
i+1

For a proof of this equivalence see Russell & Christiansen (1978) and Pereyra & Sewell (1975).

As a result, an integral approximation to the infinity norm is used. Calculation of (17) is

made very simple by replacing the |2?K<l>1)(t)| term by the following piecewise constant

approximation:

••- \

2|A9«XJ/2)|

«r

I * * * • - . * > I l A e ( a
i + ,

.- a.

on

on [a. .a.+ 1] (18)

on [i
i=NE

where 6(a i + I / 2) = ( V
= the highest non-zero derivative of in

The function s( is obtained by deBoor with the important assumption that z'K+l(t) = Hi) over

[ a . ^ | + I ] . This aUows Z<K*I)(t) to be replaced in (17) by z**°(t). However, zj^/i) is only

(K+l)th order (degree K) and thus possesses only K non-zero derivatives; its Kth denvauve is

in fact a constant The function zj^*°(t) is next constructed using divided differences resulting
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in the function s.. Substituting s. into (17) gives a final set of working knot placement

equations:

h, = s;«K+" Aa i - s»?+" A«j+I = 0 i=l,....NE-l (19)

which can easily be included into NLP2 as equality constraints, replacing problem NLP3.

Equation (19) represents necessary and sufficient optimality conditions.

2.3.4. KNOT PLACEMENT EQUATIONS WITH MULTIPLE STATE PROFILES

A modified form of equation (19) can be used if it is desirable to include influence of

the errors from multiple profiles. This results in the knot locations being at positions for

which some overall error is equidistributed. '

Recall that the state profile vector ZXt) has dimension M which shall now be treated

explicitly. Approximations of these states on finite elements then yields the polynomials

(zj, (t)) for i=l NE, m=l M. Equation (18) can then be constructed for each state
K+l in

profile with the equations (19) becoming:

M M

m=l m=l

for i=l NE-1

Equation (20) incorporates the errors, in each element i, associated with all states m=l M.

into the knot placement equations through a 2-norm. (The 2-nonn of sJ/(K*° is required over

the theoretically more desirable max-norm because of differentiability considerations.)

2.4. AN NLP METHOD FOR OPTIMIZING DIFFERENTIAL-ALGEBRAIC SYSTEMS

This section simply states the NLP formulation which can accurately optimize differential-

algebraic systems of equations. Included are the residual approximations, the continuity at the

knots equations, as well as the knot placement equations.
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Min ** x « u [ i / r
z [ i£] ) (NLP4)

S.L etx,uulyz[ilj * 0

= 0 i=l NE

Z[«o] = Zo

z
I i 0 ]

K

j=o

h. = 0 i=l NE-1
t

f £ a.

x £ xu

The procedure used in NLP4 to position the knots differs from previous ODE solving methods

that use orthogonal collocation on finite elements. deBoor (1978) selects the knots in an outer

loop and then solves the collocation equations. Repositioning of the knots is then done to

obtain a better approximation, with the procedure terminating when knot movement is very

smalL Ascher eL aL (1979), in the FORTRAN package COLSYS, use a similar procedure.

Here an extrapolation technique is used to bound the approximation error which requires

repeated solutions of the approximated problem. Based on this error the knots are either

repositioned or new knots are introduced (which increases the size of the problem) by bisecting

all intervals.

Our method differs from deBoor (1978) and Ascher eL aL (1979), in that we solve the

knot placement and collocation equations simultaneously. However, we use the more desirable

Lagrange basis polynomials as opposed to the B-splines used in each above reference. The

simultaneous procedure we use has distinct advantages that will be pointed out in Section 4.

The ability to change the size of the problem by halving intervals, however, is not a feature

of NLP4.
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At this point we first discuss a type of problem NLP4 cannot solve and a number of

changes necessary for the method to handle more general types of problems.

3. EXTENSION OF THE METHOD TO PROBLEMS WITH DISCONTINUITIES

3.1. AN EXAMPLE - A FAILURE OF NLP4

A number of problems that occur frequently in the area of optimal control are those

which have discontinuous and/or singular arc control profiles. Consider the following example

problem:

Min t (PI)
U(t),tf '

s.L Z,(t) = Z2(t) Z^O)^) ^(^=300

Z2(t) = U(i

-2 * U(t)

Z2(t) = U(t) Z2(0)=0

which represents the problem of finding the minimum time a car requires to cover 300

distance units, starting and stopping at rest, subject to acceleration limits of -2 and 1. This

problem is linear in U(t) and has an analytic solution with a bang-bang control profile. The

optimal value of tf is 30 and the point of discontinuity (or switching time t) occurs at 20.

The optimal state profiles are drawn as solid lines in Figs. 3-2 and 3-3 with the complete

analytical solutions given below

For

For

t€[0.20):

t€ (26,30]:

U(t) = 1

Z,(t) = 1/2

Z2(t) = t

U(t) = -2

z^t) = -e
Z (t) = 60

t2

+ 60t - 600

- 2t

Note that the optimal control profile is a piecewise constant function and the state profiles are

simply piecewise polynomials of degree 2 or less. Problem PI was solved using NUM. with

both 2 and 3 finite elements, and with K = l Since Z^t) is a quadratic at the optimal solution.

both approximations were constructed using quadratics. This results, given that the optimal uK(t)

is found accurately, in the approximations for both Z^t) and Z2(t) being exact The solutions
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obtained using NLP4 are presented in Table 3-1 and Figures 3-1 to 3Hi. For the state

profiles the analytical solutions are indicated with solid lines and the approximations with

broken lines. For the control profile only the approximate solutions are presented as solid

lines.

a. i=2 NE

NE=2 NE=3

30.5154

15.2577

30.2933

12.9002.22.2971

Table 3 -1 : Results for PI using NLP4

Figure 3-1: Control Profile uK(t) with NE=2
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Figure 3-2: State Profile Z,(t) & (zv ,(t» , with NE=2
l iv*"l in" I

Figure 3-3: State Profile Z2(t) & (zK+I(t))m.2 with NE=3
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Figure 3-4: Control Profile u (t) with NE=3

F i g u r e 3 - 5 : S ta te P r o f i l e Z ( t ) & ( z ( t ) ) , w i t h N E = 3
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Figure 3-6: State Profile Z2(t) & (zKM(t))m.2 with NE=3

Clearly NLP4 fails to solve PI with neither the correct tr tf nor the profiles being found

accurately. The most obvious reason is that the bang-bang control profile is approximated

poorly in both cases (although it appears to have improved for NE=3). It is instructive at this

point to investigate some factors which did not contribute to this failure. First, the order of

the polynomial approximation is sufficient (quadratics were used). Second, the number of finite

elements used is also high enough (compared to the analytical solution). Here the two finite

element case, at. first glance, should have been acceptable since there is only one poini of

discontinuity. Third, jhe degree of polynomial continuity enforced is adequate. Recall thai

states are required only to be continuous (and here both analytical state profiles are non-

differentiable at O, and that no control profile continuity at the knots is enforced.

It is clear from these observations that the solution to the knot placement equations has

precluded the locations of the knots from being at positions of control profile discontinuity

Therefore an additional set of "elements" (or "knots") is needed, which is independent of the

knot placement equations. This motivates our discussion of super-elements which is presented

in the next section.
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3.2. SUPER-ELEMENTS - PROBLEM PI SOLVED

We now define a new level of elements, termed super-elements, defined by A^ije,

ise=l,...,NSE with the help of Figure 3-7 (for K=2, NE=3, NSE=2; NSE is the number of

super-elements).

•H—4- -+

Figure 3-7: Super-Element Structure

A super-element, A^i$e, is composed of a set of NE finite elements and is bounded by two

breakpoints £. , £. t with A£ =£. - £. . For the remainder of this paper the term
r Ue ise+1 ise ise* I ise r r

breakpoint will refer to a super-element boundary and is to be distinguished from the term

knot (which refers to finite element boundaries). In this strategy breakpoints are left

completely free, to be chosen to correspond to the optimal locations of control profile

discontinuity. Within each super-element the knot placement equations (20) are applied to

obtain accurate state approximations. Also, with the addition of this extra level of elements.

state profile continuity must be enforced at all interior breakpoints. The control profiles

however can be discontinuous at the breakpoints.

This modification makes it possible to solve problems which have both control profile

discontinuities and state profiles which are hard to approximate. The ability to do ih 15.

however, comes at the expense of having to solve a large optimization problem. The number

of equations and variables representing the approximation grows large as NE is increased and

almost doubles as NSE is increased from 1 to 1 Although it is difficult to imagine a problem

requiring NSE>3 one still deab with potentially very large OlOO variables and equations) NLPs.

To demonstrate the need to use super-elements, consider again problem PL Recall that

quadratic (K=2) approximations of the states will be exact if the control profile is found

accurately. The use of finite elements for this problem is therefore unnecessary; their only

function is to ensure accuracy of the state profiles. As a result PI was resolved using K=2.
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NSE=2 & 3, and no finite elements. The results are presented in Table 3-2 (with £ =0 and

noting that Zv%t+isl?m

NSE starting point optimum state errors

f £, ise=2,....NSE+l ^ ise=2 NSE+1

2 5.10 20,30 <1(T24 <10"26

3 30,40,50 12.66,20,30 <1<T17 <1(T18

Table 3-2: Results for PI using Super-Elements

The results point out clearly that, given enough flexibility, the method can solve problems

which have discontinuous profiles. Here the correct tf and t( were obtained, and uK(t) was

approximated exactly. And, as a result, accurate state approximations were obtained. Note that

2 super-elements were sufficient to solve this problem exactly. A few runs were tried for

NSE=3 from various starting points, £^ , although only one solution is presented here.

Interestingly, but not too surprisingly, the location of the "extra" breakpoint is not unique. It

has no effect on a problem that has only one discontinuity. Therefore it appears that to solve

problems which may contain discontinuities, NSE needs to be sufficiently large so that all

points of discontinuity can be found. This parallels the well known fact that the goodness of

an approximation obtained with finite elements increases up to a point where little more

accuracy is achievable.

4, OPTIMIZATION OF A REACTOR PROBLEM WITH ADAPTIVE KNOT

PLACEMENT

In this section we present the optimization of a reactor problem using NLP4. This

problem contains no discontinuities and hence requires no super-elements. A number of finite

elements, however, are necessary to approximate a temperature profile which contains a hot

spot Also shown, through this example, will be that imposition of bounds on continuous

profiles can be done easily by using bounds on the coefficients.
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4.1. STATEMENT OF PROBLEM P2

The reactor optimization problem is illustrated in Figure 4-1. Here a 3:1 ratio of

reactants B/A is first preheated by reactor effluent This stream is then fed to a packed bed

reactor where the reaction A+3B-»C+3D occurs. The reactor is jacketed to allow the heat of

reaction to be used to raise steam for the rest of the process.

3:1 B/A

110°C ) , r —

<

A+3B*O3D

1 i

T. V - c?) T r
Figure 4 -1 : Flowsheet for Problem P2

The differential-algebraic optimization problem for this reactor design is stated below in

PI

Min • = L - f ( T(t) - T / T . ) dt
Tp.TR.L.Ts.q(t).T(t) J °

^ L ^g(0_ m 0.3(i-q(t))cxp[20-20/T(t)]

(P2)

= -1.5(T(t)-T$/TR) • 2/3

q(0)=0

T(O)=1

te[O.L]

= 0

with

where

— AH n
preheater feed Rf ' product P f

Tp ^ 120°C T(L) ^ TR+10°C

T(t) = T(t)/TR

Tp = specified product temperature

TR = reactor inlet and reference temperature

L = reactor length
T s = steam sink temperature
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q(t) = reactor conversion profile for species A

T(t) = normalized reactor temperature profile

This optimization involves maximizing the production of steam (utility profit) from a reactor

while minimizing its length (capital cost). For the examples presented in this paper an equal

normalized unit price was used to weight each term in the objective function. Similar results,

however, were obtained with other weightings. The optimization of problem P2 is done with

respect to four decision variables, Tp. TR. L and T$ as well as the two continuous profiles q(t)

and T(t). The reactor model consists of two ODE state equations, one for conversion of A

and one for normalized temperature. More details about the reactor model can be found in

Finlayson (1972) and Hlavacek (1970). Under the conditions given in Tables 4-1 & 4-2 for

cases la and Ib the reactor model exhibits a hot spot while for case II no hot spot exists.

Normally, when minimizing capital cost a hot spot is undesirable since beyond the hot spot the

reaction rate is essentially zero. (The existence of a hot spot is really a manifestation of an

overly long reactor.) However, since steam is raised, better designs can exist at longer reactor

lengths. An additional process constraint appears in the form of a feed preheater heat balance.

This constraint merely equates the enthalpy changes between the reactor feed and reactor

effluent over the indicated temperature ranges. Two other temperature constraints are written to

prevent temperature crossover in the preheater.

These two cases (with and without a hot spot) will be discussed in more detail in the next

two sections. Initialization of the continuous profiles, however, is an important consideration

for these problems since it can affect significantly the performance of the optimizer and the

knot placement strategy. We treat this topic in the following section.

—. —-

4.2. INITIALIZATION PROCEDURE FOR REACTOR OPTIMIZATION

In order to illustrate the knot placement strategy and NLP4, we consider the following

cases as optimization problems:

Case la - reactor optimization problem P2 with a hot spot appearing in the temperature
profile.

Case Ib - same as case la except with the additional state profile constraint T(t) £ 1.45
imposed.
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Case II - reactor optimization problem P2 without a hot spot Although this case used
the same reactor model the hot spot was avoided by using a different starting
point and imposing different constraints (eg. a shorter length).

The decision variable and profile bounds used for these cases can be found in Table 4-1.

L

TS(°C)

Tp(°C)

q(t)

f(t)

Case

lower

bound

400

0.5

400

100

0

0

la

upper

bound

500

1.25

500

1000

1.5

3.0

Case

lower

bound

400

0.5

400

100

0

0

Ib

upper

bound

500

L25

500

1000

1.5

1.45

lower

bound

400

0.5

400

100

0

1.0

Case II

upper

bound

500

1.0

500

1000

1.0

3.0

Table 4 -1: Initial Bounds for Problem P2

Recall from section 2.3.3 that in order to obtain good knot placement the approximations
Z K * I ^ V * m u s t 1* reasonably close to Z(t). This requires that good guesses be used for the

initial approximations to q(t) and f(t). For cases I and II the starting profiles were different

and therefore we discuss them separately.

In both case la and Ib steep profiles exist and care must be taken in initializing the

optimization problem. For the initial decision variable sets given in Table 4-2, the model was

first integrated with the ODE solver LSODE (see Hindmarsh (1979)). Next an initial set of

knots a . i=2t...tNEf with 0^=0 and aN £ M=L were fixed and the collocation points calculated

using (7). State coefficients at the collocation points were then obtained from the integrated

profiles with the coefficients at the knots obtained by solving the linear system of continuity

equations (14). Note that since the linear system of continuity equations is solved initially any

subsequent Newton or SQP procedure always remains in the feasible subspace of these

constraints (assuming no infeasible QP subproblems exist). Finally the residual knot continuity.

and knot placement equations were completely converged prior to starting the optimization.
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This was done with Newton's method starting from an evenly spaced set of knots and resulted

in the knot distribution listed in Table 4-4. The resulting continuous approximations are

superimposed upon the integrated profiles in Figs. 4-2 & 4-3.

L

T s

T P

Case la & Ib

462.23

1.0

425.25

250

-120.702

Case II

434.80

0.67

400

400

-45.544 r

Table 4-2: Initial Decision Variables and Objective Function for P2

Figure 4-2: Starting Conversion Profile for Problem P2 Case la and Ib

For these approximations the maximum deviation from the integrated profiles is 0.02707 for

conversion and 0.01745 for normalized temperature. This additional effort was required since in

case la and Ib existence of the hot spot makes doing the approximation more difficult
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1.6

1 .5

1.4

1 .3

• • • .1 .2 .3 .4 .5 .6 ! - •

Figure 4-3: Starting Temperature Profile for Problem P2 Case la and Ib

For case II the profiles do not contain non-differentiabilities and are thus easier to

approximate. Consequently the initialization for this problem did not require the additional

initial convergence of the knot placement, continuity, and collocation equations with Newton's

method. Here it was sufficient to intialize the coefficients at the collocation points from an

integrated profile and solve the continuity equations to obtain the coefficients at the knots.

4.3. RESULTS AND DISCUSSION OF PROBLEM P2

In this section we present the results obtained from solving P2 using formulation NLP4

and the SQP algorithm described in Biegler & Cuthrell (1985). Table 4-3 presents the optimal

values of the decision variables, and some diagnostic information. The error norms represent

the max difference over t6[0.L] between a profile constructed using Lagrange polynomials (cqn

(9)) and one obtained a po&tejUoA*. through numerical integration. Also, # of iterations

refers to the number of QP subproblems solved using SQP, and K-T error represents the final

Kuhn-Tucker error. In Table 4-4 a comparison is made between the initial and final knot

distributions.



28

Case la and Ib represent formulations for which the solution has a hot spot From the

solutions the length and inlet reactor temperature clearly indicate that the utility term in the

objective function dominates. Since both variables are at their upper bounds the reactor is

producing as much steam as possible. This condition is preferred over one with a shorter (and

less expensive) reactor. Note also from Figs. 4-2 to 4-7 how the hot spot shifts in size and

location from the initial profile as a result of the optimization. Again, in these figures the

approximated and integrated profiles are superimposed. Good approximations are obtained for

the continuous profiles in both cases la and Ib with the max norms for conversion and

temperature errors being around 0.01 or less. Table 4-4 clearly demonstrates the effectiveness

of the knot placement equations. For cases la and Ib the final knots are grouped in the

region of the hot spot where both state profiles are very steep. *

Figure 4-4: Final Conversion Profiles for Problem P2 Case la
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1 .6

1 .5

• • .1 .2 .3 .4 .S . * .7 .« .9 ! . • 1.1 1.2

Figure 4-5: Final Temperature Profiles for Problem P2 Case la
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9 ! . • 1.1 1.2

Figure 4-6: Final Conversion Profiles for Problem P2 Case Ib

1 .6

• • • . 1 «2 .3 .4 .S .6 . 7 • • .9 ! • • 1.1 1-2

Figure 4-7: Final Temperature Profiles for Problem P2 Case Ib
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L

T s

T P

K-T error

•

# SQP iterations

CPU time (sec)

Case la

500

L25

473.8

192.3

0.01103

0.007113

10"*

-17L438

28

262

Case Ib

500

1.25

449.9

237.1

0.01129

0.006999

10"14

-145.644

18

162

Case II

500

1.0

448.4

344.9

0.02116

0.01437

10"14

-82.7024

24

228

Table 4-3: Results for P2 Solved with NLP6

Case la Case Ib Case II

0Li initial

a. final

0.0.365.0.534,0.591

0.636,0.692.1.0

0.0.287.0.416.0.456

0.489.0.528.1.25

same as la

0.0.486.0.728.0.828

0.908.1.00.1.25

0.0.201.0.268.0.335

0.402.0.469.0.67

0.0.369,0.624.0.771

0.852.0.924.10

Table 4-4: Initial and Final Knot Distributions for P2

In case Ib imposition of the state profile bound T(t) £ 1.45 lowered the peak of the

temperature profile and moved it to a later position in the reactor. This is partially due to a

lower sink temperature (449.9 for case Ib vs. 473.8 for case la) which reduced the rate of beat

removal from the reactor. More importantly, however, the optimal knot locations are near the

region t£[0.7.L0] of steep profiles and thus good approximations again result

In case II the hot spot does not exist (see Figs. 4-8 & 4-9). Nevertheless good
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approximations and good knot placement were again obtained Here the knots are grouped in

the region t€ [0.6,1.0] where both profiles are steep. Since a large part of the reactor for

case I represents unnecessary capital expense it was instructive to investigate a design without a

hot spot The solution for this ca.se, however, again has both inlet temperature and length at

their upper bounds and indicates that the desire to raise steam outweighs any capital cost

influence. Comparison of objective functions, <f>=-171.438 vs. 4>=-82.7024, therefore shows case

la is preferred over case II.

Figure 4-8: Final Conversion Profiles for Problem P2 Case II

5. SUMMARY AND CONCLUSIONS

This paper presents a general and accurate method for optimizing differential-algebraic

systems of equations. The differential equations are discretized by using Lagrangc form

polynomials and orthogonal collocation. The resulting set of algebraic approximations arc then

written as constraints in a nonlinear program. Accuracy of these approximations is guaranteed

by additionally solving within the NLP the sufficient conditions for error minimization. These

conditions are written as a set of knot placement constraints which allow the knot locations to

be chosen adaptively. An extra level of elements, super-elements, has also been developed in

order to solve problems containing control profile discontinuities. Location of the super-

element breakpoints is left as a decision in the optimization problem.
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.3 .4 .5 .4 .7 .8 ! - •

Figure 4-9: Final Temperature Profiles for Problem P2 Case II

Two examples are presented to illustrate the usefulness of the method First, a small

optimal control problem was solved using super-elements and quadratic state profile

approximations. Both the discontinuous (bang-bang) control profile and the state profiles were

approximated extremely well For this problem the need to use finite elements was avoided

since the analytical solutions were known to be linear and quadratic polynomials. Second, a

reactor optimization problem was presented to illustrate that accurate approximations can be

obtained within the context of optimization by using finite element collocation and an error

minimization strategy. This problem also illustrates that bounding of continuous profiles can

be done with no additional difficulty.

In future work more efficient methods need to be developed to solve the large NLPs

which result The advantage of the approach outlined in this paper over one using repeated

numerical integration was demonstrated in Cuthrell & Biegler (1985). However, for problems

solved with NLP4 which require both a large number of finite elements and super-elements the

task of solving the NLP is not trivial. Investigation of decomposition techniques applicable to

SQP methods remains one of the future directions of this research.
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APPENDIX

Equation (9) can be written in general as

j=o

K
A (t\ _ TT U " VIXK+IM/
Mi-lXK-MHj ~ 11 7f I~7 T

for i=l NE

which becomes for NE=3 and K=2:

2 2

j=o J k=oj

=z ̂  ̂  ^ - n
j=0

2 2

z:(t) = > z 0 (t) 4 (t! = TT 6^k

^J=0 k=Oj 6+^ 6^k


