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Abgract

Several computer programs that enumerate rectangular dissections as solutions to certain Livoui
problems have established a distinct paradigm for dealing with the crucial theoretical issues
involved. The present paper suggests an extension of the paradigm to include "looscly-pjcked
arrangements of rectangles, which arc of wider applicability in an architectural context. The paper
introduces orthogonal structuresto represent these arrangements and esuiblishes the conditions«
well-formedness for these structures. It presents a grammar to enumerate orthogonal structures
and suggests that best use is made of the grammar if it is incorporated into a generative ex pen
system, able to serve as a vehicle to discover, encode and utilize a broad range of constraints j:ui
criteriain the generation of layout alter natives.
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| Background
A usgful classification of approaches towar ds the computer -assisted generation of floor plansisgiven in [7J:

1. Automated appraisal of layouts that have been generated by traditional means

2. Stcpwisc automatic layout generation interactively guided by manual selection of desirable partial
solutions -

3. Noncxhaustive automatic generation satisfying given constraints
4. Hxhaugtive automatic generation satisfying given constraints

5. Automatic generation of optimal or quasioptimal layouts under given constraints.

Among these, approach 4 demands the most elaborate theoretical foundation. It is particularly attractive for
investigations in which the entire set of solutions to a given problem is to be put at the designer's (or
rescarcher's) disposal. For example, the solution set can be systematically searched for effluent or
Pareto-opiimal solutions, each of which is distinguished by a particular trade-off between [Uhanta"s and
disadvantages that warrant a closer analysis and comparison (see, for example. [11] for a demonstration of this

situation, albeit within a different context).

Starting with [9] and [13] and continued through [10] and [5], work on the exhaustive enumeration of solution
sets has produced a particular approach which, by now, has established itself as a fully developed paradigm.
This paradigm achieves great conceptual clarity by drawing a clean distinction between, on the one hand, die
guantitative and continuous properties of a solution (such as the dimensions of the spaces allocated) : td »n
the other hand, some of its qualitative or discrete properties (particularly the geometric or spatial - 4 i
necessarily topological - relations between the allocated spaces). The paradigm stresses the imp< r: tn,, *
using a formalized representation for properties of the second type and calls for an explit spcciticat; .-- ¢ -
necessary and sufficient conditions under which such representations are to be considered HW/-' .- .o ;-
s}ntactically correct', that is, every representation of a solution satisfies these conditions and ever\ .-nv.: e« r
satisfiesthese conditions'representsasolution. In the enumeration of solution sets, these representa; - ..

acrucial rolein. two ways:

(1) Each representation is an_ abstraction since it supresses certain properties of the solution it d.v s
Different solutions can therefore have the same representation, and each representation con” ...
describes not a single solution, but an entire class or subset of solutions. Under a suitabK
representation, the possibly infinite set of solutions is divided into a finite set of subsets whkh e e
enumer ated by generating all well-formed representations asobjects, The generation itselfisbased *-r , ,;
construction rules, and explicit proofs are required to assure that the set of well-formed represent.-... « sy

both closedand complete under application of these rules. that is, every rule application createsa weil ¢ - |



representation and every such rcpresentaion is generated by a sequence of rule applications. Apparently,

inductive proofs of these results arc straight-forward if the rules arc formulated as recursive rc-writc rules.

(2) Kach representation must record the spatial relations characterizing the solutions it describes accurately
enough to allow for an explicit formulation of the dependent or inter-element constraints that restrict the
dimensions of the allocated spaces and vary as the the spatial relations between spaces change (an elaboration
of this point can be found in [5]). After a representation has been generated, a particular member of the
subset of solutions described by this representation can be found by formulating all constraints imposed on
the dimensions of the allocated spaces and by computing a set of dimensions which simultaneously satisfy
N these congtraints. If this process fails, the subset does not contain a solution that is feasible for die particular
design problem at hand. "ITiis step can therefore be viewed as a test that deter mines the semantic correctness

of a representation with respect to the given problem.

This paradigm has been developed in connection with allocation problems that are restricted in two *as. v (1)
the tasks that can be solved are narrowly defined with respect to the criteria or constraints considered .mj (2)
the solutions that can be generated are limited to rectangulations or rectangular dissections that is
arrangements of rectangles that are 'densely-packed' within a larger rectangle. The present paper outlines
methods for extending the applicability of the paradigm beyond both types of limitations. The particular

directions suggested for these generalizations will be motivated through two examples.

Example 1

Table 1 shows the four spaces of an efficiency apartment together with dimensional and u>p* ><+K.il
constraints commonly imposed upon _Ehe design of such apartments (it is assumed that the area j\.i:".r;c >
bordered from the east by a corridor and from the west by an exterior wall). Figure 1 showsfour Wwek.: -~
this problem; they were generated by the program DIS, a floor plan generator which produces re:*:- , .a:

dissectionsassolutionst_o design problems of the type shown (see the description of the program in [°] >

The firg two layouts are well-known standard solutions, while the last two, although satisfying :: . - - .~
congtraints, would never be serioudly considered even by inexperienced designers: they too ob\ lousi. tv
common principles, conventions or rulesof good design. Solution 3, for example, containsahall*a» *« - >
unreasonably large and occupies valuable space along the exterior wall that could be used better Me, -, oo . '
the other rooms. The rulesviolated in layouts 3 and 4 and other layouts generated by the program >.

not explicitly stated in an architectural program or design brief, but are nevertheless used GOMM -

designers; they might reflect years of experience, and the designers using them are often not aware « * . -
unless confronted with a solution that obviously violates them. For me, the most intriguing aspect o\ * K «-*

with the program DIS was the discovery of precisdy these implicit rules of good design. The r '~ = .'s




Space Dimensional constraints Required adjacencies
1 Hallway Min. dimension 120 m Fast. Space 2. Space 4
2 Living/slecping arca Min. dimension 3.60 m West. Space 1. Space 3
Min. arca 2200 m-
3 Kitchenette Min. dimension 1.80 m Space 2
Min. arca 420 m?
4 Bathroom Min. dimension 1.80 m Space 1

Table 1: The spaces in an efficiency apartment

1 2 3 4
1 Hallway 3 4 1 2 3 4 3 : |
2 Living/sleeping area |2 1 1 2

2 3

3 Kitchenette 4
4 Bathroom

01 Sm

e

Figure 1: Four layouts satisfying the constraints of Table 1

emerged, in fact, as an effective vehicle to detect these rules. which, for the most part, are not sv~io-

documented anywhere (e.g. in textbooks).

[ was in many cases able to express these rules for a concrete task in terms of the constraints accep:.
program. This is. however, a laborious process and must be repeated for cach new problem to be ..
program would become more useful if it provided a mechanism for distinguishing between gene-

rules that apply over a broad range of applications, and those constraints that specify a particular d«~ .-
Rules of the first kind should be incorporated into a general knowledge base that is activated = -
problem to be solved, but does not have to be explicitly specified in each case. Furthermore. the .. :

new rules to the knowledge base and the modification of cxisting ones should be as easy as possit'.
involve major programming cfforts. But these are precisely the characteristics of an expert sysiem.

means to discover and express the implicit knowledge experts use in solving problems specific to the -

of expertisc (see [8] and [12] for a general discussion; the latter reference contains a uscful bib!




Section 4 will specify an expert system for architectural design which, together with the generalizations

suggested by die next example, will greatly increase the applicability of such programs as D1S.

Example2:
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Stages in the design of an apartment

1 Vestibu
2 Living;
3 Kitcher
4 Dining
5 Bcdrooi
6 Bathroc

Figure 2(a) shows the structural walls on atypical floor of a terraced house in the Boston South f-nd - .= I

once measured (while working for John Sharratt Associates). The house was to be remodelled jnj = .-=vd

into a multi-family dwelling with a two-bedroom apartment on each floor. Figure 2(b) shows an Inicr=. <:e

stage in the design process in which the major spaces have been allocated and given a rough shape
stage, no attention is paid to the form of the partitions needed to separate the spaces from each mher

the required circulation area delineated in any precise form. The spaces are treated more or less as; "'+ - --

and prime attention is given to the relations between them (and the context).
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Space-defining elements such us walls or partitions are introduced in Figure 2(c) whore the focus has shifted
from spaces to the physical elements defining them. The shape of some spaces is modified in the process, and

auxiliary spaces such as hallways or closets arc added.

Programs such as DIS arc inadeq-u'ale to model the more gtrategic phase in this process. They generate
densely-packed arrangements of spaces directly from a problem specification; all spaces arc immediately
given a precise form and treated formally the same. Auxiliary areas must be specified at the outset along with
the rooms they serve, and spaces that may have a non-rectangular outline must be divided into several
components. This makes it impossible to model the staged process illustrated in Figure 2. In this process, ‘an
intermediate solution is generated in the form of a loosely-packed' arrangement of rectangles describing
crucial spatial relations between the primary elements that are to be allocated; the arrangement contains gaps
or holes that arc used later to allocate auxiliary spaces or that arc added to previously allocated spaces once

the shape of the circulation area has been determined.

Applications of this type suggest an expansion of the paradigm to include the generation of loosch-packed
arrangements of rectangles. In this expanded form, the paradigm could also be applied to the layout of

equipment and furniture and similar configurations that are by definition loosely-packed.

Up to now, the most important generalization of the paradigm has been described in [4], where various
sructures for representing the incidence relations between the line segments and faces of connected rectilinear
shapes (among which the rectangular dissections form a proper subset) are presented. For the applications
described above, however, connectivity has little importance; primary focus is on spaces (or on the areas
occupied by the objects to be allocated) rather than the lines (or walls) that separate them. The following

sections indicate a distinct second direction for generalizing the results obtained for rectangular dissections,




2 Orthogonal Structures

"The rectangles to be dealt with in die following arc always assumed to have sides paralld to the axes of an
orthogonal system of Cartesan coordinates with a horizontal x- and a vertical y-axis. Any rectangle, r. is then
completely described by the coordinates of its lower left corner, (X,,¥,)% and by the coordinates of its upper
right corner, (X5 Y,). where obviously

X<XA\ndy,<Y,. d)

The spatial relations above, below, to the left and to the right arc defined on the set of rectangles as follows. |
cand z are two rectangles,

c” z (read cisabovez) <=>y2> Y, 2
# ¢ (read z isbelowc)< = >c i 2 3)
¢-> z(read cisto theleft of2) < = > X< X, (4)

z<- c(read zisto theright ofc) <=>c-> z (5)

Obvioudy, each of these relations is non-symmetric, non-reflexive and transtive, ¢ and z do not overlap if at
least one of tine relations (2) to (5) holds between them.

Suppose 2. . .. .z, are n rectangles no two of which overlap. The enclosing rectangle, Z, is the minimum
rectangle containing every rectangle z?, /=1,...,/?. Z always exists and is uniquely determined. In the
following, its upper, lower, left-hand and right-hand sides are always assumed to be bordered by four eicn<>r
rectangles labelled, respectively, N, S, W and E as shown in Figure 3. In contrad, the rectangles z arc called
interior. A sa of n interior and four exterior rectangles, L™ is called a loosely-packed arrangement -r
rectangles. Figure 3 shows the interior and exterior rectangles of a loosely-packed arrangement of r ecedes.

Ly.

L oosely-packed arrangements of rectangles can describe various types of layouts: building parts on a MIC

spaces or roomson a floor; and equipment or furniture in a room. These arrangements are subject to v.Inous
dependent and independent congraints regtricting the shape of the objects to be allocated and their reUions
to each other and the surrounding context. The dependent congtraints can be formulated (for example.
through a system of simultaneous equations and inequalities in the corner coordinates of the rcctandes)
provided that for each pair of rectangles, at least one of the spatial relations (2) to (5) has been defined. | h.s
observation suggests an expansion of the present paradigm based on the the spatial relations defined aNue.

These spatial relations cannot be selected independent of each other. For example, if a b and ¢ arc three




Figure 3: A loosely packed arrangement of rectangles L4

rectangles so that a-> band b -> c. then ¢ -> aisimpossible. In order to select, for /; given rectangles spjiul
relations that can be simultaneously realized, a simple directed graph, (7, is used. Its vertex set contains
exactly // interior vertices and four exterior vertices labelled N, S, Wand E. Each arrow of G, is colored in

one of two colors, h and w called horizontal and vertical respectively.

The following terminology and notation are useful for subsequent developments. A path in (i, is called
horizontal'iff every arrow on the path is horizontal; a vertical path is defined in an analoguousway. Itu . md
w are three vertices so that u and v are connected by a directed path, />i, and v and w are connected b\ i
directed path, pt then p, and p* have the same direction iff v is either the gtarting vertex or die termin.il

vertex of both p\ and p?. For two vertices, vand w, of G,, %
vA w (read v/5directly above w) <=> G, contains a vertical arrow pointing from wto v
v B w (read v isdirectly below w)<-=> G, contains a vertical arrow pointing from vto w
vLw (read v isdirectly to theleft ofw) <=> G, contains a horizontal arrow pointing from v to K

vRw (read v isdirectly to the right ofw)< = > G,contains a horizontal arrow pointing from K to .

Furthermore,

va w(read v isabove »v)<=>v A WOT
Ghcontains vertices U = V). U . . . .Uy(= W) so that for 7=1....m, Upmmx A Us.

vb w(read visbeloww) <=>vB WOT
(T, contains vertices u$(=v),ui. . . . . Un(= W) so that for /= 1,...,m uri Bw,.

v1w(read visto theleft ofw)<=>vL WOT




Ghcontains vortices ug( = WU \ ... wp(= *)sothat for/=1... . Um\ L U

vr *y(rcad v isto theright ofw) <=> v K WOT
Ghcontains vertices Wo( = V).U\ . . . .wy( = w)so Lhit for /=1 ... .MUipm\ R W-.

For any vertex vof <2,, a(V), /20m), \(v)and p(v)dcnotc the number of vertices that are, respectively, directly
above, directly below, directly to the left and directly to die right of v.

"The graph G, is an orthogonal structure iff it satisfies the following conditions:

For every pair of distinct vertices, vand w(given in that order).

either vawy, or vb H> or vl WOT vr w. (5)
If vBiv, the arrow pointing from v to wisthe only directed vertical path from v to w:
and if vLw, the arrow pointing from v to wis the only directed horizontal path from v to w. (7
For every interior vertex, v\ vai\ vb A, vr Wand VvIE. (8)
SBW . SBENAW

and N\E. . 9

The alternatives in condition (6) arc, as stated, exclusive; that is, any two vertices in G, are connected b> a
uniformly colored path whose direction and coloring are fixed for these two vertices.

An orthogonal structure, Gny represents a loosely packed arrangement of rectangles, L” iff theee OM S A
one-to-one correspondence, / between the vertices of G ,and the rectangles of L  mapping vertices \ / s

and W, respectively, on rectanglesN, E. Sand W so that for any two vertices, vand w, of GH

vLw=>f(v) > fiwpand vA w => F(¥} A f(W). £

Figure 4 shows, as an example, an orthogonal structure, G, and a loosely-packed arrangement ot v« « v
Z4, represented by G4.

Theorem 1. Every loosely-packed arrangement of rectangles, L, , is represented by an orthew. -
structure, G"

Proof: Any hole in L, can be filled by additional rectangles none of which overlaps *nh
rectangle in L, or an added rectangle. The result is a rectangular dissection, L,', with n'i = -
interior components. L, can be treated formally asa T-plan or trivalent dissection [5]. From [ .

construct a directed, arrow-clored graph, G,'. as follows. G, contains n' vertices correspond .-«
to the interior rectangles of L, and four exterior vertices labelled M 5. JFand fcorrespe»nj ~«
respectively, to the exterior rectanglesN, S, W and E. G,* containsa vertical arrow pointing r.
v to wiff the components corresponding to v and w border a horizontal wall or maximal line i: -
the left and right, respectively. G,> contains a horizontal arrow pointing from v’ to w' iff -«
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Figure 4: An orthogonal structure. (74. and a loosely packed arrangement of rectangles. /.y, reah/irz (s

components corresponding to v/ and w’ border a vertical maximal line from the left and right.
respectively.  Arrows arce defined between pairs of exterior vertices according to (9). It tollus
from the Structurc Theorem proved in [6] that the resulting graph. (/. satisfies (6) to (9).

Let now v be a vertex corresponding to a component not in L,. For every pair of vertices v and »
so that aA v and bB v. inscrt a vertical arrow pointing from b to a iff a and b are not on a dirccied
vertical path that avoids v. For every pair of vertices / and 7so that /1. vand rR v insert a vert: .l
arrow pointing from / to riff /and r are not on a dirccted horizontal path that avoids v. Remove
and all arrows incident with it. The resulting graph. G,/ _ . is an orthogonal structure. Repeut:~z
this reduction »’ — n times generates an orthogonal structure, G ,,. representing L ,.

A trivalent dissection with exactly n interior components to which four suitable exterior comporc: ~ =
been added is a special case of a loosely-packed arrangement of rectangles and will be denoted b. . .
orthogonal structure constructed from such a dissection according to the process used in the ;-

Theorem 1 is said to be defined by that dissection.

Theorem 2: Every orthogonal structure, G,, represents a loosely packed arrangement of rectar s o«
L,.

Proof: By (8), every interior vertex, v, is on a directed vertical path from S to v. Define y, a0
length of the longest of these paths and Y, = y,+ 1. Similarly. v is on a directed horizontal ; :»
from Wto v. Define x, as the length of the longest of these paths and X, = x,+ 1. Thisgnes e
coordinates of n rectangles corresponding to the n interior vertices of G,. Because of (6). no tw.+
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these rectangles overlap. Adding suitably selected exterior rccuinglcs generates a Iéosely—packed
arrangement of rectangles represented by (iy.

These theorems show that orthogonal structures arc well-formed or syntactically correct representations of
loosely-packed arrangements of rectangles. They can form the bass for a generator which determines,
according to the current paradigm, various sets of realizable spatial relations between pairs of rectangles. |If
used in this way, orthogonal structures have intuitive appeal to me mainly for two reasons. "They demonstrate,
first of all die possibility of finding a useful structure in non-connected arrangements which do not appear
amenable, at least at first sight, to the approach that has successfully been applied to connected shapes. | also

find the conditions that determine the well-for medness of these structursc particularly easy to understand.

~ However, a note of caution must be added here. The orthogonal structure representing a loosely-packed
arrangement of rectangles is not necessarily uniquely determined because certain pairs of spatial relations can
hold simultaneously between two rectangles, while an orthogonal structure records only one of these relations.
This problem can theoretically be resolved in two ways. (@) rulescan be established under which a uniquely
determined canonical representation is éélected for any arrangement; or (b) orthogonal sructures can be
refined so that they become able to distinguish cases in which only one relation holds between two rectangles

from those in which two relations hold.

None of these approaches is pursued here. For the experience with the densely-packed case, in which an
analoguous problem occurs, suggests that the practical implications of this problem are negligible: as a result.
the theoretical and computational complications resulting from approaches (a) or (b) become deudedK
unattractive. The final judgement with respect to this situation must, however, be suspended until more

experience has been gained with the present approach.

In order to develop an efficient generator, a closer look at the implications of conditions (6) to (9) isin .:focr

Lemma 3: Let w, v and wbethree verticesin an orthogonal structure, <7, sothat uand varcon i -
directed horizontal path, p\, and wand v are on a directed vertical path, pi. Then u and * arc
either on a directed horizontal path whose direction is the same as for p\ or on a directed \crticai

path whose direction is the same as for p*.

Proof: Suppose vxu and va >v(see Figure 5). By (6), w)f v, and therefore wfu. Similarly, u)6 \. a:"«
therefore uJB w. Thus, either wr u or u a w. The other cases indicated in Figure 5 can be pro* -«
analoguously.

Clearly, orthogonal structures are non-planar in the general case. They thus do not possess one - 7'«

important attributes shared by the structures used in[4] to represent various properties of con vxivi
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Figure 5: |.cmma3 - Illustration

rectilinear shapes. ‘llie following lemma shows, however, that orthogonal structures impl>. J lost, an

ordering on the arrows incident with a vertex.

Lemma4: Let vbc a vertex in an orthogonal structure.

(i) If a(v)>l. the vertices directly above v form a sequence a, ey SO thai r.r
h=1.....a(v)—l.a,,_;,La,._;,+1.

(i) 1f/?(v)>l, the vertices directly below v form a sequence bv\ . . . by, so thai vr
i=I,...,fi(v)-1bysLbwi+.

(iif) If X(v)> 1, the vertices directly to the left of v form a sequence ly;, . . . AX(y> so Lhii " -
7=1 ...  A(V)-Wy3B/,,;+!.

(iv) If p(v)> 1, the vertices directly to the right of v form a sequence ryq. . . . ! > S A
*=1 ... P(v)-lry,itBryik+1-

Proof: (i). Suppose a(v) > 1, and let a and & be any two distinct vertices directly above \. It. «
a’»aand a’ JB a Thus, either a X aor a | a The vertices directly above v therefore f'. -
sequence aj. . . . ay g v) SO that a, | ay”-j-i, /i=l. .. .a(v)—1.

Suppose that for some K I<h<a( v), a, /,JL aum+ \. Then there exists a vertex zso thai Jr .
and z | fly™+i. z/ v since otherwise, Jyo r v. By Lemma 3 then, za v. Butr/ .
consequently, there exists a vertex a, n'so that a, ,//bz. Ifh'<h, 2\ a, ,/,orza ay/, (by Lemir,
which is impossible. If /2> A+ 1, zr <z, /,+] or z a fly,-i-i, which is again impossible 1> >
cannot exist, and avi/,Lay)i+1.




12 L]
Statements (ii), (iii) and (iv) can be proved analoguously.

P a
v.l Voo {v)

v.p(v)

v, e b v, p(v)

Figure6: Lemma4 - Illustration

The notation introduced in Lemma 4 and illustrated in Figure 6 will be used repeatedly in Lhis jnd the
following section; that is, if v is a vertex in an orthogonal structure, ay;a and tfyw(y) denote, respeai-.c'. Lhc
first and last vertex directly above v: /, ; and /,x<v) denote, respectively, thefirst and last vertex diivi:i. s he
left of v; byi and by denote, respectively, the first and last vertex directly below v; and finall. ' md
'y, p(v) denote, respectively, thefirst and last vertex directly to theright of v.

Lemmab: Let vbeavertex in an orthogonal structure.
(0 A5A(V)B2, 1 °" 3y, | R Ay A)-

() V() B M.v) * V,aly) L Vil

(ii)/vil AByri0r6y R/y.

(iv) rvii A 6y0(v)* Pv,p(v)" "V,p(v)-

Proof: (i). By Lemma 3, either AX(,) b tf,i or a\ r I\ Suppose /,x(v) ~ »
L, X(y)" ay\. Then there exists a vertex zso that z a./,x(v) ®"d * B Q¢i- 2/ vby Lemmj -
Lemma 4 then, z1 v. But then z1/,, for some [(<X(v)). By Lemma 3, either z b I,
zl /y x(v/* which is impossible, ztherefore cannot exist, and /y,x(v) "l

The case wherea, i r /, x(v)* "®U * statements (i) to (iv) can be proved in an analoguous 1+




Lemma 6: Let vbc a vertex in an orthogonal stqructure. R L “\

B

() 1fay ) RA, pgand Myl 'y 11 v A(v) Bl 2 v My)™y,a(v)l
s e
then wLv< =>ivLayjand v=byy (H\\K =>H Alysapand r = r,\,_A(V),p</V'X(V))].

(i) Hrypa) R @ and ry py b<li, K,aqv)d rypand agy |1y 1,

then wAv< = >VV\rYin)dn<i vV = ||:y p{\,)Mr\pp(V))

[wRy<=D>wRa, o(yyand v=b, ‘-,.ﬁta.,;au))]'

(III) |fb%%p{\,) L ryy and 6Vf0<v) [ I‘thiv)[l'v/.\ A 6V,/j(v)and My a 6\/|1]

then »Rv<=>ivR6,"yjand v="(y)ja(bywy))I "Bv<=>wBryy_and V:!’vl'll'

(iv) Ifhg] A 6y-! and /\/f{ aivj?(\,) [6v|x R /vt, and by 1 /v.X(v)],

then wBv<=> wB/y;i and v:r/“.j [H:Lv<=>»Li, j and v=a® . ]].

Proof: Case (i). Lét /vi\(v) B a\ and /;,x(v) I* ®,a(v)- Suppose there exists a vertex : M :'U
za hX(v) and z b a, 4. z/vsinceotherwise, zl /y\(v) or zb Asx(v)- By Lemma3then, :ai Hut
then there exists a horizontal path from v to ciy .y longer than one, which is imposM”c
Tlierefore, 3y, “v)Alvix(v)- Furthermore, u A v=>HA[yX(v) and consequently, ‘Frll_\_iy)‘,pl(i\ YO

Suppose there exists a vertex z' so that z’A/Vx(V) but z*/v. z’/v and there exists a dire*.J
vertical path, which is longer than one, from v to z' and consequently from /,,x(v) t° - Since :r :s
is impossible, H>AV<= Wl jy(y)-

The other cases can be proved analoguously. %

The four cases distinguished in Lemma 6 represent the spatial relations between a component cofrresge rJ.‘ns
to v and various other components that border a maximal line in a rectangular dissection. The corresporedlag
cdnfigurations of components and lines are shown in Figure 7 (in this and s.or;;cm following Fzﬁwes He
rectangle corresponding to a vertex is identified, for the sake of simplicity, by the labd of that verkx* TWis

observation motivates the following definition.
An orthogonal structure, Gy, is dense iff for every vertex vin Gp, vertices a)\ and /,-\(v) satify the prtnix. <£

case(i), vertices tf,a(v)™ "v,pfv)¥-AA A° premise of case (ii), vertices ry and 6, ) sty the prr--.'n,-f

case (iii) and vertices by; i and / i(v) satisfy the premise of case (vi) in Lemma 6.

Lemma 7: An orthogonal structure, G,< isdense iff it is defined by a dissection D,.
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Case i Case ii
av.l a\-'.1 : vcx v <+ (V)
1 ' ro
v, AV) : v.oplv)
v v.Av) | Y “v.p(v)
Case iv Case iii
rv.l b
b byt T vp(v) V. p(v)

Figure 7: I.emma6 - Illustration

Proof: Necessity. If G, is defined by adissection D, it is obviously dense.

Qufficiency. The proof is by induction on n using operations 'in the upper left corner' as kno™n
from the literature. For n= 1, there exists only one orthogonal structure, G\, which is defined hylic
rectangular dissection, D\, and dense. Suppose that for some «(=1), every dense orihogi>rui
structure with /( < /7) interior venices is defined by atrivalent rectangular dissection D, Let (/, <.
be an arbitrary dense orthogonal structure with n+ 1 interior vertices. Clearly, ryd'y- \ -
denote this vertex by c. Since n> 1, bpiy or ry must be interior, and since 6,,+] is dense Jv
vertices directly below c are precisely the vertices directly below r. ] or the vertices directK u» ™
right of c are precisely the vertices directly to the right of r, (- The resulting two cases are sho* n ee
Figure 8. Contracting, in case 1, the arrow pointing from Wio c or, in case 2, the arrow p(»mi;-i:
from cto N creates a dense orthogonal structure, Gy, asshown in Figure 8. By hypothesis, C1L. h
these structures is defined by a dissection D,. The configurations at the upper left corner . -
shown for each case in Figure 9. Adding a component at the upper Ieft corner as shown m ire

same figure generates a dissection Dp+1 defining Gp+\. 1




Cae 1 N N

Case 2 N N

"¢.P(c)

bo, e bc.p(c)

Figure8: Lemma?7 - Transition from G,+1 to G,




Case 1 N N
r
c.P(c) _ 'c,P(c)
c Ny
W - W
r T
C.l c,l
b b | : be p(
c.l c,p(c) c. -Ple)
Case 2 N N
r ™
op(c) c.F(e)
. c
b b :
Vol et c.p($) — |
r r
c.l c.1
b b
c,1 c.B(¢)

Figure9: Lemma7 - Transtion from D, \oD,+\
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3 Generation of Orthogonal Structures

[.et 1, be a loosely-packed arrangement of rectangles. A hole in /. is rrivial iff it can be climinated by
extending selected sides of certain rectangles in /., parallel to the coordinate axes (without creating overlaps
between pairs of rectangles). If every hole in /., is trivial. /., can be gencrated from a dissection /), by
reversing this process and by reducing the sides of certain components. Thus. if every hole in a loosely-
packed arrangement of rectangles were trivial. the procedures developed for the generation of rectangular
disscctions could be used without major modifications for the generation of loosely-packed arrangements of

rectangles.

This is, however, not the casc. For cxample, the looscly-packed arrangement of rectangles, L4, shown in
Figure 4 contains a non-trivial hole, and the orthogonal structure representing /.4 consequently is not dense.
It is, furthermore, casy to scc that the only non-trivial holes that can occur in a loosely-packed arrangement of
rectangles (after all trivial holes have been climinated) are surrounded by four rectangles forming « pinwhec!
turning clockwise (as shown in Figurc 4) or counterclockwise. The cases in which the premises of | cmma
6 arc not met are standardized in the following and used to represent the spatial relations between rectangles

forming precisely thesc types of non-trivial holes.

Note. at the outset, that if for a vertex, v. a, 1R/, 5, but also a,;al, . then a, 1AL, ; for some uriguc
k(<A(v)) and a, R/, 4/ for k/’=k+1...., A(v): similarly. if [, x(,)Ba,) but also [, x(,)F a, 4, D00
I, av)Ray,  for some unique A(>1) and /, \(,\Ba, 4 for A’=1.. .., h—1. Analoguous results can be obtaned

if the premises of cases (ii) to (iv) in Lemma 6 are not satisfied.

An orthogonal structure is restricted iff it satisfies the following conditions for all vertices v.

Ifa, 1Rl \(yand a, | Al for some x( <A(V))

(1, xwBay,1 and [, \(nL.ay, » for some A(>1)] UY
then wlay ) AuR/, , => wLuand wAvAuB/, 4| => wAu

[wAl (A uBa, , => wAuand wLv A uRa, ) => wLuj.

Under condition (11). the spatial rclations among the rectangle corresponding to vertex v, f(v). und
other rectangles surrounding a non-trivial hole at the upper left corner of f(v) are defined accordiny
construction used in the proof of Theorem 1 (see Figure 10). The first part of (11) describes rec:
vforming a pinwheel that wrns counterclockwise. while the- second part describes rectangles torn

pinwhceel that turns clockwise. Based on this observation. the following thecorem is casy to prove.

Theorem 8: Fyvery loosely-packed arrangement of rectangles, /. is represented by a restncto:
orthogonal structure, G,,.




a) ' b)

v,1 v,h-1

Jk+1
v v,h

—_— 23100 —

v,k

Figure 10: Condition (11) - Illustration

To select vertex v as a reference in the formulation of condition (11) was an arbitrary choice. The following
lemma shows that each of the other three vertices representing a rectangle involved in the formation of a

non-trivial hole could have been used.

Lemma 9: Each of the the following conditions is equivalent to (11).

If"v,p( V)?Av,a<v) <t 1y Ray.  for some h( < a(v))

ka(v)kp(v)®?3a.aW)Ar, / for some /(< p(v))J, i
then wir, j(yAuBaji => wAw and wWRvA wLa, "+1 =>H>RW

[wRa\,la"y)Aqu\, i => wlLwand WAVA uBr,j+i => wiu].

If6y OwyLry j and 6y £)Bry ; for some /(> 1)

K 1%9v./3( V) '<* 1y i R6y, for somey( <fi(v))], 3
then H'Rft,",) A wLr, ; => n/Rwand wBVA WAr, -_i => wBu

[>VvBr,j Au\bj => wBwand >VRVA wL6,,.; =>wRu].

IfAf1\by i and /y, i Lbyj for somey( > 1)

[bvii RAxi and 6y i B/, ~ for some k(> 1)], St
then H>BJy i Aulbj => wBwand wLVA #Rbyy i => >vww

[wLb, | AuRl, g =>wLlicand wBvAuAl, ;i => wBu).

Proof: (11) => (14). |.ciG, be an orthogonal structure so that (11) holds for every vertex ot < >.
Let furthermore v' be a vertex of G, so that // PAly.\ and /[ \li/" for some /(> 1). | VP.s,.
bfi by v. Suppose /yxwB</y .. If /;\u)Btfyca<y. """ YAV A(V) ("> Lemma 6) and
connected to 6/,/- i by a vertical path longer than one. which is impossible. If !, \(y)\< some :
then a,i,=Vv or fln I’ Uv (12). H'LVAWR(/y,,.] =>K1W. Consequently, b,j \W'. whk
again impossible. ITius /.a,vB(/v j. and by Lemma 5. tf,iR/,.X( v furthermore, v~i/, K.
(11) then. '

wha/ AuRby _ =>nbuand uAbys jAwBle  =owBu.
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(14) =>(13).(13) =>(12)and(12) =>(11)can be provedanaioguously.

a) b)

Figure 11: Rectangles forming a pinwheel turning a) clockwise and b) counterclockwise

Let L, be a loosely-packed arrangement of rectangles and G, a restricted orthogonal structure represenung
Gn. Suppose /,u, vand ware vertices in G, representing four rectangles in L, that form a pinwheel around a

non-trivial hole. If the pinwheel turns counterclockwise (see Figure 11 a).

t=l, . u=a, ), v= Tw (W) and w= bﬂﬁiﬂ'

Furthermore,

y,a(vy=dwatwhr 1 o1 AT KMV) 2" 'w.1="u1e

If the pinwheel turns clockwise (see Figure 11 b),
1=y qiwy U= 11 v=by y and W=l )

and

Gy, 1 =8y, 1. by 8oy = bty o1 =t 0o Tp(y= v pion)
These observations show that (11) standardizes the spatia relations holding among rectangles in the . . -
of a non-trivial hole in a natural and - more importantly - predictable way. [Tiis proves extremel s, .-

' during the development of a generator for restricted orthogonal structures.

For the present context, tWo types of generators arc of interest: (a) those that enumerate al non-i“omor (Drsi ¢
restricted orthogonal structures G, for a given //: and (b) those that also distinguish for a given G, dif \ -.

created by different assignments of labels to the internal vertices of G,. The first type of pmcec)urt" i
interesting for theoretical purposes, while the second type is important mainly for practical jppiiccekinas
where labels arc used to distinguish different functional units. The present paper concentrate o* “‘Q

generation of non-isomorphic orthogonal structures and presents a grammar that can be used to thiscr -:
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Figure 12 shows the rules of the grammar. Hach mlic is a recursive re-write rule consisting of a left-hand and a
right-hand side both of which are parameterized. A rule can be applied to a restricted orthogonal structure G,
iff there exists an assignment of values to the parameters of its left-hand side under which this side becomes a
subgraph of G,. The application itself produces a directed graph G,+ j by substituting the right-hand side of
the rule (under the same assignment of values) for its left-hand side in G,. The grammar is complete by

adding as an initial configuration the orthogonal structure (7j which is dense (and therefore restricted).

Rule 1 N
r
W.f(W)
W —_> W A
iy
b
rLBUrY) et P e
Rule 2 N N

.
b\p(b"') r(b')
w > W
r f
b' 1 b . 1

Figure 12: Rules 1 and 2

All rules follow the basic approach that has been used before in a similar context: vertices arc insertv.:
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Rule 4 N N

b
N,1

L " ... T iy

Figure 12 (continued) - Rules3 and 4

upper left corner*, which makes it particularly easy to avoid duplication of isomorphic sruct..
Corollary 12). Rules 1 and 2 generate only dense structures, while rules 3 and 4 generate "::
representing arrangements with non-trivial holes. ‘ITic hole always occurs at the lower right conk"
rectangle corresponding to vertex (; it turns counterclockwise in case of rule 3 and clockwise in uise «

A geometric interpretation of the application of rules 1 to 4 isshown in Figure 13.




Rule 1
r r
W.p(¥) WL pW)
- C . '.
~ e
r' r'
b ., '
A Vi [Vep(r')
Rule 2 ;
b .f>(h") b'.p(la")
° C
b 1 b >
b b*
1

Figure 13: Rules 1 and 2 - geometric interpretation

Theorem 10: (Closure) If G, is generated from G; through a series of applications of rules 1 u +
G, isarestricted orthogonal structure.

Proof: Only ruleﬁ_l and 2 are applicable to G\ they produce the two non-isomorphic du- -
orthogonal structures shown in Figure 14.

Suppose G, is a restricted orthogonal structure to which rule 3 is applicable, generating a stria:
G.+\. Observe that W is the only vertex directly to the left of vertex ¢ and N is the onh w -
directly above c. For c\ery vertex z so that zbc. zbb' or 2W. For every vertex Z so that = r
z'aZ/ or Zxb'. ‘Thus (6) is satisfied for cand any other vertex of G+ \. The condition aso h.
for dl other pairs of vertices.

Suppose (/,+ j contains an v-colorcd arrow pointing form a to b and a directed, .v-colored pi*:
from a to b longer than one. Since (i, is an orthogonal structure. A or P cannot be in
Consequently, cither a or b is the vertex c. But the construction of G,+\ from the orthoi;- -
stniclurc G, assures that if <- is connected to another \ertex by an arrow, it is not connected u> -
\crtcx by a directed, uniformly-colored path longer than one. =~ Thus. (i,+\ satisfies ('»
obviously satisfies (S) and (9). (i,+ j therefore is <m orthogonal structure.




Rule 3 A
W,p(W) 'W.p(W)
> c —
r.1 r
hr',l bj v e
Ber g t)j
Rule 4
b\p(b") b .p(be)
c
b b' . —
N.I
r' re
—— bN I bt —_—
bf * ' -

Figure 13 (continued): Rules 3 and 4 - geometric interpretation

Observe that if u is a vertex in (7, +! not incident with c\ the vertices incident with u rom. -

unchanged in the trandgition from G, to G,+;. and u satisfies (-11). Any vertex v s o

v€{c, blf, r,j\i'\L>i} cannot satisfy the premise of (11).

Consider vertex r". In Gt == i(~ MRI"M'{"C) and  al'i\l," w( =Db).  wh,
*=\(r'")—1. Thus, r" satisfies the premise of (11). By construction, uRl,"=>cLu, and MFK
is the only venex directly to the left ofal'i\y

wLé,ﬂj A uKl/f, => wLu.

Furthermore, b/l B<;//5/ly and consequently, wAr”=>wAb/ji fa /=1 A
construction, ul\a» \ =>ul\c{ =L " 5.+ j). Thus,

WAr* A u Rl g+l =>wAw,

and r" satisfies (11).
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Figure 14: Generation of two structures S, from S

For every vertex w so that we {ry v |i’<p(b’)}. a, 1Rl aw) in both G, and G,4 . and the
incidences between a,, ) and the other vertices directly to the left of win G, remain unchanged in
the transition from G, 10 G,4+1. Since w satisfies (11) in G,. it also satisfies (11) in G4, .nd
Gp+1 Is restricted.

In a similar way. it can be shown that an application of rules 1, 2 or 4 to G, generates a restricic
orthogonal structure G, 4 1. The theorem then follows by induction on n.

Theorem 11: (Completeness) Every restricted orthogonal structure G, is generated from () h. -
series of applications of rules 1 to 4.

Proof: (Sketch). Let G, be a restricted orthogonal structure. Obscerve that the last vertex direc
to the right of W. ¢. is the sccond vertex directly below V. The configuration of arrows incice
with ¢ must belong to exactly one of the cases depicted as the right-hand sides of rules 1 o <
Figure 12. By applyving the appropriate rule ‘backwards’, a restricted orthogonal structure G, _
gencrated. ‘This fact suggests an inductive proof of the theorem.

Corollary 12: 'The sequence of rule applications generating an orthogonal structure is unig:.
determinced.

At the present time, a generator based on rules | to 4 is under development at the Computer-Aides
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Laboratory of the |*cpartmcnt of Architecture at Carncgic-Mcllon University. A pilot version, caled LOOS,
has been implemented and can be used to generate non-isomorphic restricted orthogonal structures. Rather
than showing these structures directly to the user (who might have a hard time trying to understand them),
the program derives, for each structure it has gener;';\ted, a loosely-packed arrangement of rectangles
represented by that structure and displays this arrangement to the user, “llic arrangements selected contain
only non-trivial holes, thus enabling the user to deduce the underlying structure without ambiguity (by

simulating the process employed in the proof of Theorem 1).

Examples of such arrangements are shown in Figure 15. The first of these is represented by a structure to
which all rulescan be applied, and rules 1 to 3 can be applied under more than one assignment of parameters.

The results of these applications are illustrated by the remaining arrangements shown in Figure 15.

LOOS was aso used to count the number of non-isomorphic restricted structures with up to 10 internal

vertices; the results are listed in Table 2.

n number of non-isomorphic,
restricted structures G,

1

2

6

24

116
642
3,938
26,194
186, 042
1,395, 008

OO ~NOUPRWNER

[EEN

Table 2: Enumeration of non-isomorphic restricted structures

The grammar implemented through LOOS can be extended in a straight-forward way to also generate all
assignments of |abels to the interior vertices of an orthogohal structure. "This can be done cither by generating
al permutations of assignments after a complete structure has been produced: or by assigning the labels thai
have not been assigned yet to the vertex c inserted during each application of a rule. Roth methods hj -
disadvantages. The fird method makes it impossible to use constraints (which arc usualy specific & the
objects that arc allocated) for pruning the search tree during the generation, a feature that is indispcnsihk -r. ¢
efficient searches. In the second method, the order in which the objects arc allocated changes between LCTL ::-

branches, which makes it difficult for users to follow the process (it aso creates inefficiencies because in
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higher constrained objects should be allocated first). In order to allocate labelled objects in a given (user-
defined) order, the gramimar must be expanded to allow for an allocation not only in the upper left comer,

but everywhere in the developing configuration.

The design of such a grammar has a precedent in the grammar described in [5] for the generation of
rectangular dissections with labelled components. Kach comer of such a component can be formed by two
walls in exactly two ways; thus, there exist 2*= 16 possibilities for forming the four corners of a component.
In order to generate these configurations, 16 rules are needed at the outset ITie quoted paper shows,
however, that the number of required rules can be reduced under suitable parameterizations. Given this
precedent, the tak to develop an expanded grammar for the generation of restricted orthogonal structures
with labelled vertices, where the vertices enter the process in a fixed order, is clear-cut There are four
possibilities for the configuration of rectangles at a corner of a given rectangle in a loosaly-packed
arrangement of rectangles. This results in 4*= 256 possibilities for the configuration of rectangles at the four
corners of that rectangle and in the same number of possibilities for the vertices incident with the
corresponding vertex in a redtricted orthogonal structure. Thus, 256 rules are needed at first to generate these
possibilities. To make the task of designing and testing these rules more manageable, parameterizations are
desired that dragtically reduce the number of required rules. The specification of these rules will be the topic

of a second paper.
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4 A Generative Expert System for the Design of Architectural Layouts

So far, the discussion has focusscd on the syntactic properties of loosely-packed arrangements of rectangles
and their representations. But for each problem domain, the rectangles being allocated have a specific
meaning, and specific congraints, criteria, guidelines or rules govern the aJIocatlon of these objects. To avoid
confusion, "wa" types of rules should be distinguished in this context: generatlve rules, such as the ones
described in the previous section, which create representations of layouts; and diagnostic rules used to
evaluate a layout Among the latter, it is useful to further distinguish rules that evaluate constraints (i.e.
properties a solution must posess if it is to be considered acceptable or feasible) from those that evaluate

criteria(i. e. propertiesthat make certain layouts better than others).

The incorporation ofefiagnostic rules into the generation process isjndispensiblejbr several reasons. These
rules assure, firgt of all, /t'hat the generated objects represent meaningful solutions to the problem at hand; in
addition, lhey can be used to filter out the less promising solutions so that users are presented Aiih a
manageable set of alternatives for further analysis and evaluation. The rules might also provide an important

device to prune the search tree so that the computations involved become feasible.

Section 1 argued that many diagnogtic rules are never stated explicitly in a problem description, nor h*ve [hey
been systematically documented and collected anywhere. They are part of the general expertise of designer
which is acquired over years of practice and remains unarticulated unless designers are forced to cxpl.un the
faults of a particular solution. The section also introduced expert systems as vehicles to extract exact!/ this
type of knowledge from experts and to encode it explicitly in the form of a knowledge base, which i“used by
the system to solve prbblems within their field of expertise. This knowledge base is built up through-&
sequence of iterations in which experts observe the performance of the program; criticize its per termance
inspect the knowledge that has been used; and suggest additions or modifications to the knowledge base
facilitate this process, expert systemsare programmed in a style that contrasts with the traditional, "pn~ . : .-
approach by making changesin the knowledge base as easy as possible.

Section 1 suggested that the performance of layout generators can improve if they take on the tor:

expert sysem. A precedent that appears particularly interesting within this context is thé DENDRAL.,
program, an expert syssem that predicts the chemical structure of certain compounds from their m.i® - -

and specifications (by type and number) of the atoms in the compound (see[2] or [1] for dcscripiu””
program). "The core of the program consists o( agenzralsir that produces candidate structures * hk h

tested againg the given spectrum; the structures most likely to have a spectrum of that kind arc p.isv -

user (in a ranked order). The structures arc represented as planar graphs, and the closure and u»mple’ Urv $°

of the process (with respect to the st of possible chemical structures) has been proved mathematics.": :
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space searched by the generator is restricted by ajlgnnez a program which infers congtraints from the input
data in order to reduce t_he (possibly large) number of structures that must be generated (and subsequently
tested), Ilie tester, in turn, accepts a candidate structure from the generator, predicts its mass spectrum and
comparegi-t_t_c_)ﬁe given spectrum. Unlike the generator, the tester is not based on a complete and systematic
theory, but reflects the various bits of knowledge expert chemical analysts bring to bear on this task. ‘ITie
program was used over a long scries of test runs to discover and encode this knowledge in the manner

described above (a detailed account of this processis given in [3]).

" The remainder of this section -will outline an expert system for the design of architectural layouts which is
loosely modelled after DENDRAL. The major components of the system are/Lgenerator and ajesLci_&hich

| are again developed by contrasting modes of reasoning: the generator is completely specified by a deductive
theory established apriori, while the tester isto be built up inductively over a series of applications.

The generative rules described in the previous section (or an expanded version of these rules) can form the
basis of a generator able to produce all possible orthogonal structures with a given number of \enices to
represent loosely-packed arrangements of the same number of rectangles. The rules by themselves, however.
do not completely specify this generator. Any intermediate structure generated by a series of rule applications
can normally be expanded by more than one rule and under various assignments of values to the parameters
in the rule. In order to select a particular application, a control strategy is needed which, together with the

initial configuration, completes the specification of the generator.

Such a control strategy is easy to define if the solution set is to be completely enumerated. In thiscase c-en,
intermediate structure must be expanded in every possible way, a process that can be implemented n *

sraight-forward manner as depth-first search through an appropriately constructed search tree whose nedes

correspond to the intermediate or terminal solutions that are generated. The program DIS, for exam pie, wses
this type of control stratégy. The same progfam has also shown that the search tree must he p- -

extensively if problems calling for the allocation of even a moderate number of objects are to become te s ~ .

The generative rules used by DIS, as wdl as the rules shown in the previous section, make it possible :.

. certain problem constraints or criteria for this purpose. For it can be shown that many constraintsand .- - -
that are not satisfied by an intermediate solution cannot be satisfied by any solution derived from u
intermediate solutions therefore do not have to be expanded. ITic program DIS uses only r”
adjacencies to this end. strategy which becomes efficient if enough of these constraints are _e

_Condraints that can only be evaluated if the layout is complete arc formulated for each terminal node
used to furthe reduce the number of alternatives (examples of this type of constraints are rres -
(mj.i.mensions or areas which can onl> be satisfied in certain densely-pack.ed arrangements if a sufficient n.

of objects has been allocated). Still, the number of alternatives presented to the user can remain Linic
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' mQ_r__c_:jJipr_qggh’\seI_ect_iqn is needed, taking into account not only constraints, but also critchéJtoiiUic_Ip__tc_)_find

the better solutions among the feasible ones.

| suggest that at least for a pilot__system',"this purpose can be achieved by a branch-and-bound srategy which

* expandsthose and only those intermediate solutions which are at least as good as any other solution generated

before (independent of its depth in the search tree). To evaluate a node, | suggest using a smple evaluation
function which computes for each node, s, the triple <p(s)=<c(s),d(s),e(s)>, where c(s) is the number of

congtraints, d(s) the number of'strong' criteria and e(s) the number of'weak' criteria violated by s. Based on

" these triples, solutionscan be ranked lexicographically'.

An example of a diagnostic rule evaluating a congtraint is the following:

The sum of the minimum horizontal dimensions of any sequence of objects arranged from left to
right between W and E cannot exceed the maximum horizontal dimension of the available area.

Clearly, this constraint can be used to pruhe the search tree provided that the addition of a new object docs
not alter the spatial relations between the objects that are already allocated (the rules presented in the
previous section guarantee this property.) Experiments with DIS have shown that this type of constraint is
one of the most frequently violated dependent constraints, it should therefore provide for an effective
pruning device. (Incidentally, this constraint also demonstrates how dimensional considerations can enter the

generation process at early stages.)

If the given design problem deals with the remodelling of a kitchen, the following rule might evaluate ,\ vtnmg

criterion:
The sink should be adjacent to the existing plumbing stubs.

For the same type of problem, the following rule might be used to evaluate a weak criterion:

If the main food pfeparer is right-handed, the range should be to the right of th_e main VMU
surface (when viewed from the front).

The challenge is to design and implement a tester which returns the proper value of the objcctile tere-

~ taking a broad range of constraints and criteria into account which, at the outset, arc not known, but - =

added to the evolving knowledge base with case, preferably through declarative statements of the typc *e -

" above.
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