
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

D e a d l o c k A n a l y s i s i n N e t w o r k s of C o m m u n i c a t i n g P r o c e s s e s

S. D. Brookes A. W. Roscoe f

June 1989

CMU-CS-89-161 ^

School of Computer Science tPrograran^g Research Group
Carnegie Mellon University Oxford University
Pittsburgh, PA 15213 Oxford, England

Expanded version of a paper that appeared in
Logics and Models of Concurrent Systems, Springer Verlag 1985

and as CMU-CS-85-111

A b s t r a c t

We use the failures model of CSP to describe the behaviour of a class of networks of communicating
processes. This model is well suited to reasoning about the deadlock potential of networks. We introduce
a number of simple conditions on networks which aid deadlock analysis either by localizing the analysis
required for a proof of deadlock-freedom or by restricting the circumstances in which deadlock could occur.
In particular, we formulate some simple theorems which characterize the states in which deadlock can occur,
and use them to prove some theorems on the absence of global deadlock in systems. We identify a special
class of unidirectional networks and develop specialized results on their deadlock-freedom. We develop more
general methods based on (at most) pairwise local deadlock analysis in networks, applicable to the large
class of conflict-free networks. We introduce a methodology for proving deadlock-freedom in a large network
by decomposing it into subnetworks which can be analysed separately. A variety of examples is given to
show the utility of these results. We compare our work with earlier work by several other authors, and make
some suggestions for future research.

This research was supported in part by funds from the Computer Science Department of Carnegie Mel­
lon University, and by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976,
monitored by the Air Force Avionics Laboratory under Contract F33615-87-C-1499. A. W. Roscoe grate­
fully acknowledges support by ONR Grant N00014-87-G-0242.The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the offical policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the US Government.

1

DEADLOCK ANALYSIS IN NETWORKS OF COMMUNICATING PROCESSES

S. D. Brookes
Carnegie Mellon University

Pittsburgh, PA 15213

A. W. Roscoe
Programming Research Group

Oxford University
Oxford, England

0 . A b s t r a c t .

We use the failures model of CSP to describe the behaviour of a class of networks
of communicating processes. This model is well suited to reasoning about the deadlock
potential of networks. We introduce a number of simple conditions on networks which aid
deadlock analysis either by localizing the analysis required for a proof of deadlock-freedom or
by restricting the circumstances in which deadlock could occur. In particular, we formulate
some simple theorems which characterize the states in which deadlock can occur, and use
them to prove some theorems on the absence of global deadlock in systems. We identify
a special class of unidirectional networks and develop specialized results on their deadlock-
freedom. We develop more general methods based on (at most) pairwise local deadlock
analysis in networks, applicable to the large class of conflict-free networks. We introduce
a methodology for proving deadlock-freedom in a large network by decomposing it into
subnetworks which can be analysed separately. A variety of examples is given to show the
utility of these results. We compare our work with earlier work by several other authors,
and make some suggestions for future research.

1. I n t r o d u c t i o n .

In [4,5] we described the failures model of communicating processes and used it to de­
scribe some interesting parallel programming examples. The simple mathematical structure
of this model lends itself to clean formulation of deadlock properties and to formal manipu­
lation of process behaviour. The model is well suited, by its very construction, to reasoning
about the potential or the absence of deadlock in systems of processes. In this paper we
elaborate this point in some detail, developing some ideas which originated in Roscoe's the­
sis [17], discovering various conditions on networks which make deadlock analysis easier and
which enable a more structured approach to the entire problem of deadlock analysis.

Our emphasis is on methods for proving deadlock-freedom that allow localized analysis
(by focussing on small subnetworks, such as pairs of processes) and support hierarchical
decomposition. There is a good reason for finding such techniques: a straightforward proof
of deadlock-freedom based on the above definition must take into account all possible traces
of a system; in a network with many processes the trace set may be very large, and the
combinatorial explosion inherent in such an analysis may be prohibitively expensive. We
provide some simple yet useful theorems which may be used to analyse networks for the
potential of deadlock. We demonstrate the utility of these results by examining a variety of
examples, some well known and some novel.

2

University Libraries

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

O u t l i n e o f P a p e r .
A f t e r th is i n t roduc t i on , the paper begins (Sect ion 2) by summar i s i ng some background

mate r i a l a n d p lac ing th is wo rk i n context. W e summar ize relevant no ta t i on and basic

termino logy on C S P a n d the fai lures semant ic mode l , and we give a f o rma l def in i t ion of

deadlock-freedom.

Nex t , i n Sect ion 3, we in t roduce networks a nd their stat ic communication graphs, and

we discuss behav ioura l propert ies of networks. W e define an appropr ia te no t i on o f state for

networks, and we prov ide a s imple character izat ion of states i n wh i c h dead lock occurs. W e

in t roduce snapshot graphs, wh i c h prov ide instantaneous pictures o f the dynam i c state of a

network a n d he lp i n v isua l i z ing a n d analys ing deadlock. T h e arcs i n a snapshot g raph are

determined b y the requests for commun i ca t i on current ly be ing made among the nodes of

the network. A network dead locks i f a nd on ly i f a l l o f i ts processes are blocked, i n tha t a l l

ex ist ing requests are ungrantea\ Some examples are g iven to i l lustrate the def in i t ions a n d to

show the close connect ions between dead lock a n d cycles o f ungranted requests i n snapshot

graphs.

I n Sect ion 4 we ident i fy several spec ia l types o f deadlock-freedom proper ty o f networks,

t ak ing the topo logy of a network i n to cons iderat ion. W e mot ivate our desire t o deve lop

methods for hierarchical analysis of networks, a l lowing the t reatment of networks whose

nodes are themselves bu i l t u p as networks. T h i s leads us to restr ict a t ten t ion to the class of

busy networks, a l l o f whose nodes are themselves free of deadlock. In a l l cases ou r purpose

is t o find methods o f p rov ing deadlock- f reedom that require on ly l o ca l analysis, such as

analys is o f i nd i v i dua l nodes or pairs of adjacent nodes i n a network.

Sect ion 5 gives e lementary results on dead lock analysis, i nc lud ing s imple bu t very usefu l

techniques invo lv ing the in terac t ion o f the C S P h id ing operat ion w i t h dead lock. T h e results

o f th is sect ion are app l i ed throughout the paper.

I n Sect ion 6 we restr ict a t ten t ion t o a class o f unidirectional networks, w i t h the i m ­

por tan t subclass o f un id i rec t iona l tree-structured networks treated as a spec ia l case. A n

example is worked out i n deta i l .

I n Sect ion 7 we in t roduce not ions of conflict, a nd develop results tha t are app l i cab le

to networks w h i c h are free of conf l ict , not just to un id i rec t iona l systems. Conf l i c t - f reedom

is a pairwise checkable property, and we argue that i t is suff ic iently genera l tha t most

interest ing systems w h i c h are deadlock-free can be presented as confl ict-free networks, so

that our methodo logy is w ide l y app l i cab le . A g a i n we address some examples.

I n Sect ion 8 we show how to decompose a network i n to regions (essential components)
that can be treated independent ly i n dead lock analysis, p rov ided the interact ions between

regions are we l l behaved. T h i s type of decompos i t ion can be very useful i n reduc ing the

amount of comb ina to r i a l analysis requ i red i n dead lock analysis, bu t is on l y of p rac t i ca l

benefit when a network has non- t r i v ia l essential components . A g a i n we tack le an example.

W e also propose a network design rule based on these ideas, wh i c h guarantees dead lock-

f reedom p rov ided a network can be bu i l t i n such a way that i t adheres t o the des ign ru le.

F ina l l y , we discuss re lated wo rk and po in t to d irect ions for future research.

3

2. B a c k g r o u n d .
This paper evolved from a preliminary draft (with the same title) which was published

in [2] as [6]. In this evolution some of the definitions and results have been replaced, notably
by the inclusion of some simpler and sharper mater ial on "conflicts*. Closely related works
applying some of the results of this paper are [8,18,19]. We use basic terminology and
notat ion tha t is (for the most part) consistent with the usage in these related papers; in a
few cases our notat ion improves slightly on tha t of [6], but readers familiar with the earlier
version should find it easy to relate the new terminology to the old. We have tried to
include enough background material to make this paper self-contained, even though this
causes some overlap with the contents of [19] in particular. Although this paper is intended
to be a companion to [19], there is no requirement to read tha t paper first.

We assume some familiarity with the material of [13], [4] or [5], where details were given
of the syntax for processes in an abst ract version of Hoare's language CSP (Communicat ing
Sequential Processes), and of the mathemat ica l construction of the failures model. Here we
will provide a brief summary of terminology; the reader should consult the references for
more detailed explanations.

E v e n t s , a l p h a b e t s , a n d p r o c e s s e s .
C S P is a language of non-deterministic communicating processes. Communicat ion and

parallel composition are taken as primitive notions. Our abst ract version of the language
is sometimes referred t o in the l i terature as TCSP , or "Theoretical C S P " , t o distinguish it
from the more concrete language introduced as C S P by Hoare in [12]. However, since Hoare
himself continues to refer t o our abstract version as CSP, as in [13], we will do so too.

We use P, Q, -R, etc., to range over the set of C S P processes. The basic actions
performed by processes are called events, which may be regarded as representing communi­
cations. A process may also be able to make nondeterministic choices which affect its ability
to perform events. Each process is associated with an alphabet: a set of events (usually,
though not necessarily, the set of events mentioned in the syntax of the process).

Two methods have been used in the l i terature for introducing process a lphabets . In
[4,5,6] for example, a lphabets were introduced explicitly into the (syntax of the) parallel
operator : thus a parallel composition of P and Q, using alphabets B and C respectively,
would be denoted PBWCQ- In [13], however, all processes are defined in such a way tha t
they automatical ly have an associated alphabet : the a lphabet of P is denoted aP. In this
approach, which we will adopt here for consistency with [13] and [19], there is no need
to introduce explicit a lphabets in the syntax for parallel composition. Instead we use the
syntax P\\Q. The a lphabet of P\\Q is simply aP U aQ. The two methods are closely
related: P\\Q is semantically equivalent to the explicitly alphabetized version Pap\\aQQ-
Parallel composition is commutat ive and associative, so tha t we may use notat ion such as
||Jl_1P» without ambiguity.

In a parallel composition of processes, each process performs events from its own al­
phabet , with the constraint tha t events in the alphabets of two processes require their
cooperation. As in the original C S P language of [12], we focus on two-way communication,
and hence we restrict a t tent ion to parallel compositions which are triple-disjoint, in tha t no
event is common to the alphabets of more than two processes.

The observable behaviour of a process is explained entirely in terms of the events (from
its a lphabet) it may or may not perform when placed in an environment which is trying to
interact with it. We are particularly concerned with deadlock: the inability to perform any
event (or, equivalently, the ability to refuse all events) in the relevant a lphabet .

4

T r a c e s , r e f u s a l s , a n d f a i l u r e s .
If A is a set of events, we write A* for the set of finite sequences, or traces over A. We

let a, 6, c range over events, s, t, u range over traces, and Xy Y, A, B, C range over sets of
events. We wri te () for the empty t race, (a) for the trace consisting of the single event a,
and st for the concatenat ion of s and t. We write s^A for the trace obtained from s by
deleting all events not in A.

A trace of a process is a finite sequence of events which the process may be able to
perform in sequence; a refusal of a process is a set of events all of which it may be unable
t o perform; a failure of a process is a pair (s, X) consisting of a t race s and a refusal set
X. If (s , X) is a failure of a process P , we interpret this as saying t h a t the process may
refuse all of the events in X immediately after having performed the sequence s; thus , if t he
process is placed in an environment which only wants to perform events from this set next
a t t h a t stage, deadlock is possible. T h e traces, refusals and failures of P are all composed
exclusively of elements of a P . If a process refuses i ts entire a lphabet it is deadlocked (in
any environment) .

As in [4], we identify (the semantics of) a process P with i ts failure set, which we
denote ^ J P J . Th i s is a subset of (a P) * x p(aP). We use t races(P) C (a P) * for the set
of t races of P ; ini t ials(P) C aP is t he set of initial events of t races of P , Le., the set of
events c which begin a t race of P ; refusals(P) C p(aP) is the set of P ' s initial refusals.
All of these sets can be extracted from the failure set of a process: for instance, s is a
t race of P if and only if (s ,0) is a failure of P ; Le., t r aces (P) = {s \ (s ,0) € / f f P l) .
When s is a t race of P we wri te P after s for the process whose behaviour describes P ' s
subsequent behaviour after first performing the sequence s. I ts defining proper ty is t h a t
/ I P a f t e r * !] = {(*,X) | (st,X) € T\P\).

T h e failure set of a process is closed under certain na tura l conditions: in part icular ,
t race sets are prefix-closed, refusal sets are subset-closed, and impossible events can be
included in refusal sets. A denotat ional description of the failures semantic function J is
given in [4,5]. A na tu ra l ordering based on nondeterminism makes the failures model into
a complete par t ia l order, wi th respect to which all C S P constructs are continuous; thus ,
recursive process definitions can be t reated in the usual way as denoting least fixed points .

D i v e r g e n c e .
T h e failures model of processes as described in [4] is adequate for analysing deadlock

potential , bu t less well suited to a proper t r ea tment of divergence, which occurs when a
process is able to perform an unbounded number of hidden internal actions wi thout com­
municat ing to i ts environment. T h e improved failures model of [5] was developed to allow
a more satisfactory t r ea tmen t of divergence. In this model a process is described by a pair
(F, D) containing a failure set F and a divergence set D. Divergence was t rea ted pessimisti­
cally, in the sense t h a t we t rea ted any possibility of divergence in a process as catas t rophic .
In such a pessimistic view, it is useless to t ry to prove absence of deadlock if there is a
possibility of divergence.

In this paper we will again adopt this view of deadlock and divergence: we are only
interested in proving deadlock-freedom in divergence-free processes. Therefore, we will
generally assume tha t all processes are divergence-free (i.e., have empty divergence set) , so
t h a t a process is fully described by its failure set. All examples discussed in this paper are
divergence-free, and all of the results apply to divergence-free processes. We will be careful to
s ta te the necessary assumptions on divergence-freedom when dealing wi th operators which
may introduce divergence (in part icular , with the hiding opera tor) .

5

I n f i n i t e r e f u s a l s e t s .
In [5] we also allowed for the possibility of infinite refusal sets when processes were able

to use infinite a lphabets (for example, if a process can input an arbi t rary na tu ra l number) .
This is impor tan t for the present paper, since it allows cleaner s ta tements and easier proofs
for several results. It is only a minor technical issue, since even in [5] we take the view tha t
every infinite refusal set of a process is determined by the fact tha t all of its finite subsets
are refusal sets; the main point is tha t we make infinite refusals explicit in this t r ea tment
instead of implicitly characterizing them as finitely generable in this way. By doing this we
avoid having to resort to annoyingly verbose phraseology when we want to say (for instance,
below, in defining deadlock) t ha t a process may refuse its entire a lphabet : in order t o find a
form of words t ha t works bo th for finite and infinite a lphabets we do not have to paraphrase
and say tha t the process may refuse all finite subsets of its a lphabet . Thus , in this paper,
we focus on a failures model in which refusal sets can, where necessary, be infinite.

D e a d l o c k .
To match our earlier informal description of deadlock with the failures semantics of

processes we now supply formal definitions. As remarked above, these are very simple.

D e f i n i t i o n 1. T h e process P can deadlock after the t race s if (s, aP) € / | [P J . I

D e f i n i t i o n 2 . T h e process P is fret of deadlock (or deadlock-free) if

V s € (a P) * . (*,aP)*TlP\. I

3. N e t w o r k s o f C o m m u n i c a t i n g P r o c e s s e s .

A network is a parallel combination of processes (and, implicitly, a lphabets) . We will use
an indexed tuple notat ion (Pi | 1 < 1 < n) for a network of n processes, with each Pi using
a lphabet aP». T h e processes in a network may be themselves built by parallel composition.
By presenting a collection of processes as a network we have a means of imposing topological
or hierarchical s t ructure on deadlock analysis: it may prove advantageous to group several
processes as a single node in a network for the purposes of proving deadlock-freedom.

T h e networks we consider will be static, in the sense tha t number of processes and
their a lphabets are fixed throughout the execution of the system. The problem of treating
dynamically changing networks will be addressed briefly in the conclusions section of this
paper.

Graphical representat ions of networks of processes have been used extensively in the
l i terature, for instance by Milne and Milner [15]. First we introduce a graph representing
the stat ic communicat ion topology of a network.

D e f i n i t i o n 3 . The communication graph of a network (P» | 1 < t < n) is an undi­
rected graph whose nodes represent the processes Pi, and whose arcs are uniquely determined
by the alphabets : there is an arc between Pi and Py iff a P , D aPy 7̂ 0 and t ^ j . |

T h u s two processes are linked in a communication graph if and only if there is an event
common to their a lphabets , representing a communication between them. Since C S P t reats
communicat ion in a symmetric fashion, we do not assign directions to the arcs. The existence
of an arc linking process PT with Py in this graph, of course, says nothing abou t whether or
not such a communication will ever take place dynamically as the network operates .

6

D e f i n i t i o n 4 . T h e vocabulary of the network V = (P . | 1 < % < n) is the set

\J{aPi n aPy I 1 < t < j < n } . I

T h e vocabulary of a network consists of the events common to the a lphabets of two processes;
we will refer t o these as internal communications. Since we restrict a t ten t ion to two-way
communicat ions (all networks in this paper are assumed to be triple-disjoint), no event is
common to the a lphabets of more t han two processes, and we do not need a more complicated
notion of vocabulary.

We will use the obvious notion of subnetwork: W is a subnetwork ofV if.it arises from
V by removing some (or none) of its processes. T h e communication graph of a subnetwork
of V will be the subgraph of the communication graph of V obtained by removing the
corresponding nodes and arcs involving those nodes. Note t h a t if W is a subnetwork of V,
t hen the vocabulary of W is a subset of the vocabulary of V.

Many interesting networks have tree-structured communication graphs . For example,
trees arise as communicat ion graphs of networks built wi th the master-slave opera tor (called
subordinat ion in [13])

[P | | m l : Q 1 | | . . . | | m n : Q r , l ,

in which for each t the process mtiQi is said to be a slave of P because i ts a lphabet is a subset
of a P . Th i s alphabetic constraint implies t ha t in this parallel context each act ion of a slave
process can occur only if P also performs it, Le. t h a t slave processes can only communicate
wi th their master . In a general tree network, the only internal communications are between
processes and their sons. Formally, we define the class of tree networks as follows:

D e f i n i t i o n 5 . A network V is a tree when its communication graph has no cycles,

or equivalently when it has one more ver tex than arcs. I

Note t ha t a tree network is necessarily triple-disjoint, for if aP» n aPy D a P * 0, wi th
», y, k all dist inct , there would be a cycle of edges through these three nodes.

N e t w o r k B e h a v i o u r .
T h e behaviour of a network V = (P» | 1 < t < n) is t ha t of (the process representing)

i ts parallel composition PAR(V) , defined

PAR(V) = HS-i « •

T h e a lphabet of this network is defined to be aV = \JiaPi I * < * ^ Under our
assumption tha t all the processes involved are divergence-free, the failures of V are given
(as in [5,19]) by

r{PAR{V)\ = {(s, Q Xi) | Vt(l < t < n => (s h a P . , *) € r{Pi\)h

7

http://if.it

Intuitively, each process in the network is responsible for performing or refusing events
in its own alphabet , with the constraint tha t an event in the vocabulary of the network
requires cooperation of two nodes. Correspondingly the behaviour of a network V = (P t |
1 < % < n) after the trace s will be tha t of the network V af ters defined by:

V a f t e r 3 = (Pi after lalaPj) I 1 < t < n) ,

because at this stage the process at node t has performed the sequence s^aPu obtained by
including only the events in s which belong to the set a P t . This is shown by the law

PAR(V) after J = PAR(V af ters) .

T h e definition of deadlock-freedom for a process P generalizes in the obvious way t o a
network V: the network is deadlock-free if and only if the process representing its parallel
composition is. For convenience, we repeat here the obvious adapta t ions of Definitions 1
and 2:

D e f i n i t i o n 6 . A network V can deadlock after s if {s,aV) € / ÎPARfV)]] . I

D e f i n i t i o n 7 . A network V is free of deadlock if PAR(V) is free of deadlock, Le., if

Vs € (aV)\ (s, aV) £ / (P A R (V) l . I

T h e vocabulary of a network is an impor tant set from the point of view of deadlock
analysis because it is the set of events for whose performance the agreement of two node
processes is necessary. Failure to reach agreement is a typical cause of deadlock. At any
t ime when V is deadlocked it is clear t ha t no Pi can be willing to perform any event outside
the vocabulary of V: such an event would be under the control of Pi alone, and by definition
of parallel composition PAR(V) would also be willing to perform it.

Since parallel composition is commutat ive, networks differing only in the order in which
we list the nodes have the same behaviour, and of course will also have identical commu­
nication graphs (up to isomorphism). But parallel composition is also associative, so tha t
combining several nodes of a network into a single node (whose process is defined to be the
obvious parallel composition) does not affect the behaviour. However, a network reorgani­
zation like this will produce a different communication graph. We wish to allow ourselves
the freedom to choose the most suitable network topology for proving deadlock-freedom, so
it is impor tan t to remember t ha t network reorganizations involving grouping of nodes leave
deadlock properties invariant.

We will restrict a t tent ion in this paper to networks whose communication graphs are
connected. This causes no loss of generality when trying to prove absence of deadlock, since
one may prove absence of deadlock in a general network by analysing the connected com­
ponents of its communicat ion graph separately, as explained by the following observation:

R e m a r k . If the connected components of a network V are V i , . . . , V*, then V can
deadlock after s if and only if for each t the subnetwork Vi can deadlock after s^aVi.

This follows easily from the definition of parallel composition, since the connected
components necessarily have disjoint a lphabets . Dually, V is deadlock-free if and only if a t
least one of its connected componets is deadlock-free.

8

S t a t e s o f a N e t w o r k .
Execution of a communicat ion by a node will generally change the process a t t h a t node;

nevertheless, the communicat ion graph of the network remains the same. To account for
the dynamic effect of communicat ion events, we now introduce a notion of state. A s ta te is
simply a cross-section of the network giving the local information about wha t each process
in the system has done so far and is refusing to do on the next step.

D e f i n i t i o n 8 . A state of a network V = (Pi | 1 < t < n) is a t race s of V together
wi th an indexed tuple (X i , . . . , Xn) of refusal sets Xi such tha t for each t,

(slaPi,Xi)€?lPil

A s ta te is maximal if each of i ts refusal sets is maximal, Le., if

VY. (^ a P < , Y) € flPil => Y 2 Xi. I

W h e n V is in the s t a t e (s , (Xx,..., Xn)) each node Pi has so far done the sequence
s^otPi and is currently capable of doing any event from aPi — Xi on the next s tep.

T h e s t ruc ture of the failures model (specifically, the closure conditions on refusal sets)
guarantees t h a t each s ta te may be extended to a maximal s ta te . For the purposes of deadlock
analysis it is sufficient to focus a t tent ion on maximal s ta tes : the more events each individual
process refuses, the more likely deadlock becomes. Therefore, throughout this paper , we will
assume for convenience t h a t all s ta tes have this form. We will denote the maximal failures
of a process P , in the sense above, by f\P\. It will be convenient also to use a to range
over s ta tes , and 2C t o range over indexed tuples of refusal sets. Thus , a typical s t a te may
be wri t ten a =s (a, X).

A simple characterizat ion of s ta tes in which deadlock occurs is provided by:

L e m m a 1 . A network V = (Pi | 1 < t < n) can deadlock after s iff there is a state
(s , (Xi,..., Xn)) for which

\JaPi = [JXi.
i s l t s l

Proof. By definition of / I P A R (V)] | and Definition 6. I
We will refer to such a s ta te as a deadlock state. Note tha t , in accordance wi th the

remarks above, any deadlock s ta te extends to a maximal deadlock s ta te . Henceforth, when
we refer to a deadlock s ta te , maximali ty will be assumed implicitly.

R e q u e s t s a n d S n a p s h o t G r a p h s .
Next we introduce the notion of a "request" in a s ta te . O u r choice of terminology

is in tended to be suggestive. A pair of indices (t, j) is a request when Pi is t rying t o
communicate with Py, Le. when there is an event common to the alphabets of Pi and Py
tha t is not in P t ' s refusal set; (i,j) is a strong request if P« can only communicate wi th Py,
because all events available to Pi on the next s tep belong also to the alphabet of Py (and
Pi is not itself deadlocked, so tha t there is a t least one event possible for its next s tep) .
A request is ungranted if the target Py of the request is unwilling to respond to the
source P», Le., Py is currently refusing all of the events relevant to P* in this s t a te . T h e
formal definition is:

9

file:///JaPi

D e f i n i t i o n 9 . Let a = (s, JQ be a s ta te of the network V = (P< | 1 < t < n) . A
pair of indices (t, j) (with t ^ j) is:

• a request if (aP» — X») O aPy ^ 0;

• a strong request if 0 ^ (aP» — Xi) C aPy;

• ttngrant«(f if in addit ion aP» fl aPy C Jfi U X , . I

An al ternat ive and equivalent formulation of the condition for ungrantedness is t ha t

(aPi - Xi) D (aPy - Xj) = 0.

Strictly speaking, the notions of request, strong request, and ungrantedness refer to a specific
s ta te . In practice, the s ta te will be clear from the context and we will often omit explicit
reference to it. Clearly, by definition, every strong request is also a request.

Ungranted requests can be regarded as the basic building blocks of deadlock. Some­
times we need only be interested in ungranted requests when neither process is able to
communicate outside some set A; an especially common case is when A is the vocabulary
of the network, since events outside of the vocabulary do not require cooperation between
processes. This motivates the following definition.

D e f i n i t i o n 1 0 . The pair (t, j) is a request (or strong request) with respect to A if,
in addit ion to the above requirements, we also have:

[aPi - Xi) U (aPy - Xj) C A . I

Using the notat ion of [19] we will write

Pi -Z-Pj or Pi = ^ P y

when (t, j) is a request or strong request of <7. Similarly we will write

Pi - ^ P / or Pi = ^ « P y

when (t, j) is a ungranted request or strong request of cr, and

* P i ±^p. O T p . 2±>.p.

when (t, j) is an ungranted request with respect to A.

As a trivial consequence of the definition, any request (t, j) is a request with respect to
aPi U aPy . Thus , for example,

Pi ^ • • P , Pi ^•Pj when a P . U a P y C A .

It is also obvious t ha t only events belonging to the alphabets of the two processes mat ter :
(t ,y) is a request with respect to A iff it is a request with respect to A n (aP t- U aPy) . An
ungranted request with respect to A is still ungranted in any superset of A; t ha t is,

if A C A', then Pi ^ # P y => Py ^ # P y .

Of course, similar observations are true of strong requests.

10

In a network V = (J^ | 1 < » < n) the procedl Pi is said to be blocked in the s ta te a
when it is the source of a request , it can only perform events internal to the network, bu t
all of i ts requests are ungranted: i.e., when

• Pi P3 for some j ,

• Pi ^ # P f c whenever P . P f c ,

where A is the vocabulary of the network.
There is an obvious relationship between blocking and the existence of deadlock: a

s ta te a of a network V is a deadlock s ta te if and only if every process of V is blocked in a.
This follows easily from the definitions.

T o aid in the visualisation of deadlock, we next introduce a graphical representat ion
for the collection of requests being made in a s ta te : we call this a "snapshot* graph. This
gives an instantaneous picture of the dynamically evolving behaviour of a network, and
summarises the information we need to know in order to determine wha t the next actions
(if any) of the network are in a par t icular s ta te .

D e f i n i t i o n 1 1 . T h e snapshot graph of a network V = (Pi | 1 < % < n) in a s ta te
(s , (Xit..., Xn)) is the directed graph on the nodes of V in which there is a directed arc
from node i to node j iff (t, j) is a request in this s ta te , Le., if (aP< — Xi) n aPy ^ 0. I

D e f i n i t i o n 1 2 . Let a be a s ta te of the network V = (P» | 1 < i < n) . A sequence of
indices (tot. • •, t r - i) wi th r > 3 is termed a cycle of requests in a if, for each y, (iy, »y+i) is
a request in a (where addit ion is modulo r) . I

Cycles of requests correspond precisely to cycles in snapshot graphs. A cycle of requests
is proper if all of i ts indices are distinct. I t will be termed a cycle of ungranted, or of s t rong
etc. , requests in case each of the requests has the appropria te property. T h e length of this
cycle is r, which for a proper cycle is the number of distinct nodes involved. We restrict
a t ten t ion here t o cycles of length a t least 3; the case of a cycle of length 2 is sufficiently
different to meri t special t r ea tment later in the paper . In fact, a pair of ungranted requests
(t , j) and (j , i) will be called a conflict, and we will devote considerable a t ten t ion to notions
of conflict later.

We will develop techniques for proving deadlock-freedom tha t rely on establishing a
connection between the presence of deadlock and the existence of cycles of ungranted re­
quests. T h e analogy is not exact, however: there are deadlock-free networks wi th s ta tes in
which there are cycles of ungranted requests; there are even deadlocking networks in which
no cycles exist (for example, a tr ivial network with a unique, deadlocked, node) . Neverthe­
less, we will see tha t for certain general classes of network (ruling out trivial cases like this)
deadlock can only be caused by cycles of ungranted requests; this will enable us to focus
a t tent ion on regions of a network in which such cycles might exist.

To end this section we provide some examples of network definitions and use t hem to
demons t ra te and elaborate upon the terminology we have jus t introduced. These examples
also demonst ra te the prominent role of ungranted requests in deadlock.

11

E x a m p l e 1: A d e a d l o c k e d c h a i n .
A chain of processes in which each one communicates solely with its immediate neigh­

bours is represented as a particularly simple form of tree network: a single branch. Here is
an interesting family of chains, parameterized by the number of processes.

Define a chain of n + 1 processes for any n > 1 as follows. T h e processes will be
Po» • • • i Pni with a lphabets aP» given by

a P 0 = { l . a , l . b } ,

aPi = {La, Lb, i + l . a , i + l . b } , 1 < t < n,

aPn = {n.a, n .b} .

Events have suggestive names comprising a "channel* number and a "message". For sim­
plicity, the only possible messages are a and 6, and the channels are numbered 1 to n . We
specify the node processes informally as follows. The left-hand end process PQ can send
message b along channel 1 to process Pi in response to receiving a from it. T h e right-hand
end process Pn can send message a to P n _ i along channel n in response to message 6. Each
of t he intermediate processes P i , . . . , P n - i can t ransmit a from its right to its left, and b
from its left to its r ight . T h e (recursive) process definitions are (* = 1 , . . . , n — 1):

(l . a — l .b — PQ)

(n.b —•> n.a —• Pn)

(i + i . a - + p ?) D (i . b - * P / %

(L a - P O D (L b - i ^) ,

(i + l . a - P ^ J D (i + l . b - P t) ,

(La (i + l . b - > / ?) .

The superscripts on the auxiliary processes (e.g. in P ") indicate the messages which the
process is ready to t ransmi t on the next s tep.

T h e vocabulary of this network is its entire alphabet , so t ha t every event requires the
part icipation of two processes. However, the process definitions do not allow any single
process to initiate ei ther an a or a 6 signal, and no pair of processes can agree initially on a
communication, so the chain deadlocks immediately. T h a t is, there is a deadlock s ta te with
the empty trace. In this s ta te there are requests {i — 1, t) and (t, % — 1) for 1 < t < n . All
of these requests are ungranted, and only (0,1) and (n, n — 1) are strong. This s tate yields
the following snapshot graph:

S n a p s h o t o f D e a d l o c k e d C h a i n

D I A G R A M 1

The as tu te reader may notice tha t despite the fact tha t the entire network may deadlock,
every non-empty subnetwork is deadlock-free! Informally, this is because in every non-empty
proper subnetwork some event is no longer in the vocabulary and can therefore be init iated
by a single process. We will prove tha t every non-empty subnetwork is deadlock-free later
in the paper, as a consequence of a more general result.

pn =
Pi =

p? =
Pt =

pab

12

E x a m p l e 2 : D i n i n g P h i l o s o p h e r s .
In this example, a t t r ibu ted to Dijkstra and Scholten by Hoare [12], there are five

"philosopher" processes, five "fork* processes, and a "butler* process. T h e deadlock prop­
erties of this system are well known. T h e process definitions are:

PHIL* = (t en t e r s —• Lpicks.i —• Lpicks.i+1 —•

Leats —• Lputs.i —• L puts , i-hl —* Heaves —• PHIL*),

F O R K . = (i . p i c k s . i ^ L p u t s . i - ^ F O R K .) D (i - l . p i c k s . i ^ i - l . p u t s . i ^ F O R K t) ,

for t = 0 , . . . , 4, and

B U T L E R « ADMIT ||| A D M I T | | A D M I T ||| ADMIT,

where A D M I T = • £ s s 0 (L e n t e r s -> Lleaves -+ ADMIT) .

Addit ion and subtract ion of indices is modulo 5. Each philosopher wants to enter , pick u p
the fork on his r ight , pick u p the fork on his left, eat , then pu t down the two forks, then
leave, and resume his cyclic pa t t e rn of behaviour. Each fork will initially allow itself to be
picked u p by either of i ts neighbouring philosophers, after which it mus t wait to be pu t down
again before resuming its initial configuration. T h e butler is an interleaving of four copies
of a process which repeatedly allows the entering and subsequent leaving of a philosopher.
T h e a lphabets of these processes are:

a P H I L ,

aFORK*

a B U T L E R

{Lpicks.i, Lputs.i, Leats, Lenters, Lleaves, Lpicks. i+1, Lputa . i+1},

{Lpicks.i, i - l . p i cks . i , Lputs.i, i - l . p u t s . i } , (t = 0 , . . . , 4),

{Lenters, Lleaves | 0 < i < 4} ,

Diagram 2 shows the communicat ion graph for a network with nodes for each of the philoso­

phers, forks, and the butler .
P H I L

P H I L
H I L I

C O M M U N I

3 3

c a t i o n G r a p h o f D i n i n g P h i l o s o p h e r s

D I A G R A M 2

13

It is possible in this system for four philosophers to enter and each to pick up one fork,
for instance as described by the trace

(1.enters, 2.enters, 3.enters, 4.enters, 1.picks. 1, 2.picks.2, 3.picks.3, 4.picks.4).

At this point , for i = 1 . . . 4 the future behaviour of the XTH philosopher is described by:

PHIL* after (Lenters. Lpicks.i) = (i.picks.i+1 —• • • •) .

In other words, each of these four philosophers now refuses a P H I L , — {Lpicks.i+1}. The
other philosopher (P H I L 0) is still t rying to enter, so he refuses aPHILo — {Centers} . T h e
future behaviour of the i t h fork (t = 1 . . . 4) is tha t of

FORK* after (i.picks.i) = (Lputs.i —* FORK*),

so t ha t each is refusing aFORK* — {Lputs. i}. T h e fork numbered 0 is still waiting to be
picked up , refusing a F O R K o — {O.picks.O, 4 .picks .0}.

T h e but ler is described at this point by

B U T L E R after (l .enters,2.enters,3.enters ,4 .enters) = | | | J = 1 (Lleaves —• ADMIT) .

Thus , the butler is refusing a B U T L E R - {Lleaves | 1 < ii < 4 } .
We have now described all of the information for a part icular s ta te of the system: a

trace, and corresponding (maximal) refusals for each process. This is not a deadlock s ta te ,
because the union of these refusal sets does not contain the event 4.picks.0 (in which fork
0 is picked up by philosopher 4); the network is able to perform this event when in this
s ta te . Diagram 3 shows the snapshot graph of this network in this s ta te . The requests are
all ungranted except for the requests involving the pair P H E L 4 and FORKo.

PHIL
. 0

Snapshot Graph of Dining Philosophers

DIAGRAM 3

14

E X A M P L E 3 : DEADLOCKED PHILOSOPHERS.

If t he dining philosophers are allowed to operate without the guidance of the butler
there is a potent ia l deadlock (when all five philosophers enter and pick up a single fork
each). This is summarized in the snapshot graph of Diagram 4. All of these requests are
s t rong and ungranted.

P H . L

JORK 0 FORKj.

P H I L 4 P H I L ,

\ /
FORK FORK

*\ /
PHIL^ F Q R K ^ PHIL 2

Snapshot of Deadlocked Philosophers

DIAGRAM 4

E X A M P L E 4 : VARIANTS OF THE D I N I N G PHILOSOPHERS.

If we regroup the nodes of the dining philosophers network (Example 2) by combining
the philosophers in to a single node and combining the forks into a single node, we get the
network

(BUTLER, | |*_ 0 PHIL», H L O F O R K .) ,

with identical behaviour to the original system but the following communication graph:

H 4 * P H I L I
1 = 0 ^ l

4 F O R K BUTLER FORK .
i = 0 1

DIAGRAM 5

Each node in this network is deadlock-free. However, if we combine aU philosophers and
forks into a single node, we get a network with jus t two node, , one of which I " * ™ * ?

above) can deadlock. Nevertheless, again we have the same overall behaviour, so t h a t the
system is still deadlock-free.

15

4 . D e a d l o c k P r o p e r t i e s of N e t w o r k s .
We have already defined deadlock-freedom as a global property of a network, involving

the behaviour of the process PAR(V) . We have s ta ted tha t deadlock-freedom is invariant
under network reorganizations like permuta t ion of nodes and grouping nodes together. We
want to be able to take advantage of well chosen network presentat ions for C S P processes:
to use network topology and graph s t ructure as an aid in s t ructuring proofs of deadlock-
freedom. For non-trivial networks there are several interesting variations on the theme of
deadlock, which take into account the network topology.

Firstly, we will say t ha t a network has a proper ty hereditarily if it and all of its non­
empty subnetworks have it. A proper ty (of networks) is hereditary if and only if whenever
it holds of an entire network it also holds of all non-empty subnetworks. Deadlock-freedom
is not an heredi tary property; equivalently, a network can be free of deadlock wi thout
having t h a t proper ty hereditarily. This has already been shown by the Dining Philosophers
network (Example 2): the subnetwork obtained by removing the but ler (Example 3) fails
to be deadlock-free. Hence, it is worthwhile making the following definition.

D e f i n i t i o n 1 3 . A network V is hereditarily deadlock-free if (it and) each of its
non-empty subnetworks is deadlock-free. I

It may even be possible (with care, al though perhaps misguidedly) to design a deadlock-
free network from nodes which may deadlock: one needs in such a case to ensure t ha t the
synchronization requirements forced by the rest of the network prevent each node from
reaching deadlock. We believe t ha t this si tuation is ra ther irrelevant from the point of view
of developing general methods for establishing deadlock-freedom. Since we are specifically
interested in developing techniques based on local analysis it is hard to imagine a general
method (as opposed to ad hoc techniques) in which deadlock-freedom of individual nodes is
not crucial. For example, it is easier to reason about dining philosophers when presented
wi th the original network s t ructure , in which all nodes are deadlock-free, ra ther than using
the two-node variant version. Hence, we will concentrate on networks built from individual
nodes which are themselves deadlock-free: these we call busy networks.

D e f i n i t i o n 1 4 . A network V is busy if all of its node processes are deadlock-free. |

Another advantage of this type of restriction is t ha t it fits well with our desire to develop
methods which support hierarchical analysis of a network: if a network is built from nodes
which are themselves networks, we will be able to use our techniques for proving deadlock-
freedom first for the individual nodes, and then to analyse the entire network we need no
longer take into account the network s t ructure of its nodes, since all we require to know
about them is tha t they are deadlock-free.

Note t ha t the properties of triple-disjointness and busyness are obviously hereditary.
T h e proper ty of being a tree is almost hereditary, in the sense t ha t whenever W is a non­
empty subnetwork of a tree network V, each of its connected components is again a tree.
Given this fact, we will abuse notat ion slightly and say tha t treehood is hereditary.

We should remark on the relationships between these various notions of deadlock-
freedom. Trivially, hereditary freedom from deadlock implies freedom from deadlock, and
also implies busyness. Deadlock-freedom neither implies nor is implied by busyness.

In the rest of the paper we will develop some general techniques for proving deadlock-
freedom tha t use busyness as a hypothesis. The main aim is to develop deadlock-freedom
proofs which require only local analysis: busyness (involving single nodes) and pairwise
analysis.

16

5 . P r o v i n g D e a d l o c k P r o p e r t i e s o f N e t w o r k s .
We begin with some very elementary results . T h e first gives us a base case in beginning

hierarchical proofs of deadlock-freedom: when all the parallelism in a network is a t the
outermost level, so t h a t none of the node processes involve parallel composition, it is very
easy t o prove busyness. T h e second pair of results allows us freedom to disregard uses of
hiding, or to introduce carefully selected hiding operat ions to simplify deadlock analysis.

B u s y N e t w o r k s .
T o show t h a t a network is busy in general requires a proof of deadlock-freedom for all

individual processes. T h e following simple rule is useful as a basis for establishing deadlock-
freedom for C S P processes built wi thout parallel composition; it can be used to prove
busyness in a network whose node processes conform to a simple subset of C S P (in par t ic­
ular, no node is itself a parallel composition, and no node can ever te rminate successfully).
Node processes are allowed to be built by prefixing, by nondeterminist ic choice (internal
and external forms, n and • respectively), by renaming (with an a lphabet t ransformation
/) , by recursion (/ ip.P) , and by sequential composition (P;Q). T h e successfully te rminat ­
ing process S K I P may be used in building up node processes, bu t only in limited contexts
t o prevent terminat ion of the node process (every occurrence of SKIP must be directly or
indirectly followed by a sequential composition). T h e reason for this constraint should be
obvious: a terminated process (like a deadlocked process) cannot perform any event. Note
t h a t i t is possible to define divergent processes using these constructs (e.g., by unguarded
uses of recursion such as /ip.p or by slightly less obvious cases such as /xp-SKIP;p). Con­
sequently, as remarked earlier, we need to check for divergence-freedom before a t t empt ing
deadlock analysis.

It is easy to prove (by induction on syntactic s t ructure) tha t a divergence-free process
built wi th these constructs alone and obeying this constraint on S K I P can never refuse its
entire a lphabet , and is therefore deadlock-free. Hence the following rule (called D l in [19]):

L e m m a 2 . Suppose the definition of the process P uses only the following syntax:

P::=SKIP\a-*P\P;Q\PQQ\PnQ\f{P)\p\w.P

(where p denotes a process variable), and P contains no free process variables, is divergence-
free, and every occurrence of SKIP in P is directly or indirectly followed by a *;* . Then P
is deadlock-free. I

Thus , trivially, any network in which the component processes satisfy Lemma 2 will be

busy.

H i d i n g a n d d e a d l o c k a n a l y s i s .
In many applications (as for instance in occam [14]), uses of parallel composition are

. accompanied by the hiding of internal communications. These are often regarded as un­
interesting to the external observer and in practice outside his controL However, when
considering the possibility of deadlock, it is usually vital to keep a full record of the internal
events of a network; therefore the networks we consider do not as a rule have internal events
hidden. Indeed, the operator PAR defined above does not involve any hiding. Nevertheless,
since node processes may be arbi t rary C S P processes and may thus involve uses of hiding,
we do need to be able to deal with hiding in deadlock analysis. Since hiding may intro­
duce divergent behaviour (if arbitrari ly long sequences of the hidden action were possible)
we mus t be careful t o ensure divergence-freedom when we apply the hiding opera tor to

17

processes. Fortunately, in considering hiding and deadlock analysis the following two laws
(called D2 and D3 in [19]) are particularly helpful:

L e m m a 3 . / / P\C is divergence-free, then it is deadlock-free if and only if P is. |

L e m m a 4- / / C n aQ = 0, then {P\C\\Q) = {P\\Q)\C. I

Given any process definition built by parallel composition and hiding, Lemma 4 permits
one to move all the hiding to the outermost level, provided any relevant internal communica­
tions are renamed to make the condition CDaQ = 0 true. One thus obtains a behaviourally
equivalent process involving an outermost application of hiding. Thus this law says t ha t as
far as behavioural analysis is concerned it does not ma t t e r whether hiding is all done a t the
outermost syntactic level or is done in various stages as a network is pu t together. Once
Lemma 4 has been used in this way and the system has been proved free of divergence (not
necessarily in t ha t order) , Lemma 3 simply observes tha t , the presence of hiding does not
affect the presence of deadlock so we may, for the purpose of proving absence of deadlock,
remove the hiding operator altogether.

T h e above argument permits us, with care, to ignore applications of hiding. It is also
possible to introduce hiding carefully, and this idea may be very useful in reducing the
number of events in a network's a lphabet and hence reducing the complexity of its deadlock
analysis. If C C aP — aQ is a set of events such t ha t P\C is divergence-free, then Lemma 3
and Lemma 4 tell us t ha t P\\Q is deadlock-free if and only if (P \ C) | | Q is. This concealment
of "irrelevant* communication in P can substantially reduce simplify deadlock analysis:
a suitable choice of C may greatly diminish the number of s ta tes one needs to consider.
Examples later in the paper will i l lustrate this type of reasoning.

6 . D e a d l o c k A n a l y s i s i n U n i d i r e c t i o n a l N e t w o r k s .

Many interesting networks have the especially simple property t ha t a t all t imes each
process is prepared to communicate with a t most one other process; the choice of com­
munication par tner may vary during execution of the network. For instance, Dijkstra [9]
discusses networks in which each process a t t emp t s to communicate with its neighbours in
cyclic order. The general property, which we te rm unidirectionality, is formalized as follows.
It is clearly an hereditary property.

In this section of the paper we will develop some results based on pairwise analysis
for establishing deadlock-freedom properties of unidirectional systems. First, the formal
definition.

D e f i n i t i o n 1 5 . A network V = (Pi | 1 < t < n) is unidirectional if for each trace s
of V and each t there is a t most one j ^ t such tha t

init ials(P, af tersbaPi) n aP3 ^ 0 . |

Unidirectionality of a network obviously implies tha t in a deadlock s ta te any request is
also a s trong request. It also clearly implies t ha t in any s ta te the snapshot graph can have
at most one arc leading from any node. Of course, processes in a unidirectional network
may still be able to perform events outside of the network's vocabulary.

A connection between cycles of requests and deadlock is made by the following result . It
gives a simple characterization of the snapshot graph of a unidirectional system in a deadlock
s ta te : if the system satisfies the conditions of the theorem then deadlock corresponds to a
cycle in the snapshot graph involving at least three distinct nodes, each request being
ungranted.

18

T h e o r e m 1. Let V = (Pi | 1 < t < n) be a busy unidirectional network of processes.

If each pair [P»||Py] is free of deadlock, then any deadlock state ofV contains a proper cycle

of ungranted strong requests.

Proof.
Let P = PAR(V) and let (s , (Yi, • • . • Yn)) be a deadlock state of P . Then by definition

Vt. (slaPuYi) e ?lPi¡, (a)

and by Lemma 1,

[Ja* = {J*. (b)
i s l t s l

It follows from this and the fact that the network is triple-disjoint that, whenever t # j ,

aPi n ctPj CYiU Y„ (c)

By assumption, the Y¿ are maximal refusal sets in (a). For each t let Qti itt^aftejr shaP,-,
so that Paf ter s = HjLiQ*- We argue as follows, letting i be an arbitrary index.

• Since Pi was assumed to be deadlock-free, we have 2 From (b) we see that

for each t,
a P < - ((J a P y) C Yit (1)

so that in this state of the network each process is refusing all events unique to its own

alphabet. Hence,
t*aPi-YiC[J aPy . (2)

• By maximality of V» we know that Yi contains all of the impossible events, those in

the set aPi — initials(Q»):
aPi - initials(Qi) C Yi.

Hence,

ctPi -YiQ initials(<?,).

But there is at most one j ^ i with

initials(Q ¿) O aPj ¿ 0,

since the system is unidirectional. Hence there is at most one j ^ t for which
(aPi-Yi)naPJ ¿t. (3)

Putting these facts together, we see that there is a unique j (depending on t) such that

i T¿ j and
0 # aPi - Yi C aPy .

In the above analysis, i was arbitrary, and clearly the unique j satisfying (3) depends on
i. Now consider this y as a function of t, mapping indices to indices. Note that j(i) ^ t,
and it also happens that j(j(i)) # i, because if this were to happen we would have a pair
of indices t,y = j (t) with

ctPi -YiQ a P y , aPy - Yy C aP{.

19

But by (c) we would then have

aPi n aPj CYiU Yy,

which would in t u rn imply tha t

aPi - Yi C Ky, aP3 - Y3 C YJ.

Hence, we would get
y. U = aPi U a P , ,

contradict ing the assumption tha t the pair was deadlock-free.

T h e sequence
I , J (I) , J 3 (I) . - -

must contain a first repeti t ion, say j m (l) = y m * r (l) > since there are only finitely many
indices. Define ik = jm+k(l), for k = 0 . . . r - 1. Then (i 0 , . . . , t r - i > i* a proper cycle of
strong ungranted requests. I

An intuitive interpretat ion of this theorem is tha t global deadlock (i.e., deadlock of the
entire system) can only be caused in a unidirectional system by local deadlock (involving
a t most two processes) or else by a cycle of a t least three distinct nodes each demanding to
communicate with its successor and refusing to communicate with its predecessor.

Theorem 1 thus gives us a way to focus on specific par t s of a unidirectional network
(cycles in its communication graph) if we can first establish busyness and pairwise deadlock-
freedom. If a network has only a small number of cycles, this type of approach may be
advantageous. An impor tan t special case is when we have a unidirectional tree network.

C o r o l l a r y (i) . / / a tree network is busy, unidirectional, and pairwise deadlock-free
then it is hereditarily free of deadlock.

Proof. A tree has no proper cycles, and all of the hypotheses of the theorem are heredi tary
properties. I

C o r o l l a r y (i i) . In a busy unidirectional tree network, pairwise deadlock-freedom
implies absence of global deadlock. I

T h u s we have a simple method requiring only pairwise deadlock analysis for establishing
deadlock properties in unidirectional tree networks.

Another special case where the number of cycles is very small is in a unidirectional ring
of processes: there are only two possible cycles to consider: clockwise and anticlockwise.
To satisfy the preconditions of Theorem 1 we still need to prove pairwise freedom from
deadlock. This may also often be possible by a simple case analysis based on the traces and
refusals of the two processes in question, and the amount of work involved in the analysis
can often be reduced substantial ly by making further use of Lemma 3 and Lemma 4 above.
Here is an example to illustrate this type of reasoning.

E x a m p l e 5 : A T o k e n R i n g .

This example is based on [10]. We consider a ring of n processes (n > 3) each of which
wants to keep entering a "critical section"; to maintain mutua l exclusion, a process is only
allowed to enter its critical section when it has obtained a "privilege" token, which is passed
around the ring. When a process wants to begin its critical section it first requests the token
from its neighbour; when it is granted the privilege (i.e., when the token reaches i t) , the
process performs its critical section (represented here by a single event) and then releases

20

the token. Using m u t u a l recursion, and with mnemonic event names, we may define the

individual processes Pi (t < n) by

Pi =s (Lget i + l.find —> i.priv Lcrit —* Lrel —• Qi)

D (i f ind —• i + l.find —* Lpriv —• i - l .p r iv —• P»),
Qi = (i-g«t —• Lcrit —• Lrel —• Qi) • (i . f i n d —• i - l .p r iv —• P t) .

All ar i thmet ic here is modulo n. T h e neighbours of process t are t — 1 and t + 1 . Pi represents
a node without the token and Qi represents a node with the token. Thus , if Pi wants to
get t he token i t must pu t in a request first to its successor, and wait for t ha t process to
find the token and pass it back; if P» is asked t o find the token it passes the request on to
i ts neighbour, and will la ter relay the token towards the requester. A Qi process with the
token may either allow the critical action or pass the token on to its predecessor.

For each t , let aP» = aQi be the obvious alphabet consisting of all events appear ing
in the syntact ic description of processes above. For the network V = (Q0, PXt... , P » - i) ,
in which initially the process with index 0 has t h e token, and these alphabets are used, we
would like to prove freedom from deadlock. T h e communicat ion graph of V is the obvious
cycle.

Each of the node processes is obviously deadlock-free, by Lemma 2, since they are built
by prefixing, conditional choice, and recursion. It is easy to see from the process definitions
t ha t the system is (triple-disjoint and) unidirectionaL We wish to use Theorem 1. Firs t we
prove pairwise freedom from deadlock. Since non-adjacent pairs of processes are trivially
deadlock-free (their alphabets are disjoint and each individual is deadlock-free), i t is only
necessary t o show t h a t each of the adjacent pairs

№ 1 ,

Pi\\Pi+i (0 < t < n) ,

Pn-iWQo
is deadlock-free. These analyses are simplified by judicious use of hiding, as follows.

For each t, let Li = {Lget, Lrel, Lfind, i - l .p r iv} and Ri = {Lcrit, Lrel, i+l . f ind, Lpriv}.
Clearly, Li C aPi — aP*+i and Ri C aPi+i — <*Pi. We can hide the events from Li in P» (or
in Qi) without introducing divergence, because a t all stages Pi cannot perform arbi trar i ly
long t races consisting only of events from this set. The same is t rue of Ri and P» or Qi. Let
Pf* = Pi\Li and = Qi\Li, with similar notat ion P/* and Q? for Pi\Ri and Qi\Ri. By
Lemmas 3 and 4, the original network is pairwise free of deadlock if and only if t he pairs

< # I I J ? . (i)

PMP&1 (0<i<n), (2)

Pt-M (3)

are deadlock-free. We have, by definition, and using s tandard properties of the hiding

operat ion [5],

P ^ = i + l.find — Lpriv — (Qf n ^) ,

= (Lcrit - > Q *) n J * f

Q f = P / 2 = (i . f i n d - i - l .p r iv - P / *) D (L g e t - ^ Q f) .

Since n is associative and idempotent , it follows easily t ha t Pf* satisfies the simpler equation

P^ = i + l.find — Lpriv Qf\

21

Since (3) is in fact case t = n - 1 of (2), we need only consider (1) and (2). These
pairwise deadlock analyses may be done by a fairly straightforward analysis based on the
process definitions. To il lustrate the type of reasoning necessary here, consider a typical pair
in case (2), P^WPf+i for an t in the range 1 . . . n - 1. The a lphabets of these two processes
are

aPf = {i+l .f ind, Lpriv, i .cr i t},

a P £ x = {i+l.f ind, Lpriv, i + l . g e t } .
Hence, deadlock is only possible if at some point Pf* refuses Lcrit, P / ^ refuses i+ l .ge t ,
and one of the processes refuses i+l .f ind, and one of the processes refuses Lpriv. Let # a
denote the number of occurrences of the event a in the current trace of this pair of processes.
From the process definitions it is clear t ha t in all stages where Pf0 refuses {Lcrit, Lpriv} we
have # i + l . f i n d = #Lpr iv , whereas whenever Pf^x is refusing { i+ l .ge t , i+ l . f ind} we have
L p r i v = # i + l . f i n d — 1. This combination of refusals is therefore impossible. T h e only
remaining possibility for deadlock would thus be if Pf* refuses {Lcrit, i+l . f ind} and Pf^x

refuses { i+ l .ge t , Lpriv}. A similar counting argument disposes of this case, and we have
thus shown tha t the pair Pt

L\\P^i is deadlock-free.

We leave it to the reader to fill in the details, and to use similar techniques for case (1),
the pair QoWP*. T h e conclusion at this stage in the analysis is tha t the original network is
pairwise free of deadlock. We now re turn to the original network s t ructure .

Now we can use Theorem 1 to deduce the existence, in any deadlock state, of a cycle.
Thus , deadlock is possible only if either each process is waiting for its successor or each
process is waiting for its predecessor. In order to show tha t these cycles are impossible, we
first prove tha t the proper ty tha t there is exactly one process with the token is an invariant
for the network.

Now let # a denote the number of occurrences of event a in the current t race of the
entire network. Clearly, process 0 has the token when # n - l . p r i v = #0 .p r iv , and does not
have the token when # n - l . p r i v = #0 .p r iv + 1. For t ^ 0, process t has the token when
i - l . p r i v = # L p r i v — 1, and does not have it when # i - l . p r i v = # i .p r iv . It is easy to
prove from the process definitions tha t , for all t, one of these two possibilities always occurs.
Initially one process (numbered 0) has the token; and every communication of the form
Lpriv affects the two adjacent processes in whose alphabets it is. Therefore, there is always
exactly one process wi th the token.

To rule out a "clockwise* cycle in which (for each i) process i is waiting for process
t + 1, note t ha t this can only occur if each process t does not have the token. This violates
the invariant property, showing tha t no such cycle can arise.

To rule out the a ant ic lockwise 9 cycle, note tha t process t + 1 can only have an ungranted
request to process t when it can also communicate outside the a lphabet of the network (Le.,
in the initial s ta te of P» or This is not a strong request. Hence, there can never be a
cycle of strong ungranted requests with each process waiting for its predecessor. |

T h e proof given for this example assumed tha t there is exactly one token. A modifica­
tion of this proof goes through whenever the network is s tar ted with at least one token in
the ring. Of course, in the degenerate case where there is no token, deadlock must occur.

22

7 . D e a d l o c k A n a l y s i s i n A r b i t r a r y N e t w o r k s .
Theorem 1 is only applicable to unidirectional networks. T h e token ring described

above served to i l lustrate this class of networks. More general results are needed to tackle
non-unidirectional systems such as the Dining Philosophers. We seek results which allow
us t o deduce t h a t deadlock can only be caused by some sort of global misbehaviour (for
instance, proper cycles of ungranted requests), and which are general enough a t least to
eliminate deadlock from trees. We can expect the preconditions of such theorems to involve
a certain amount of local analysis; in the unidirectional case this amounted t o a check t h a t
all individual processes and all pairs of processes were deadlock-free.

I t is clearly of practical importance to keep the amount of local checking as small
as possible: any more t h a n pairwise checking could easily prove prohibitively expensive
in calculation. Unfortunately, even simple types of network can sometimes require much
more t han pairwise analysis. We have already seen t h a t there exist networks in which
deadlock is a global property: for example, the deadlocked chain network, all of whose
non-empty proper subnetworks were deadlock-free. T h a t example also demonst ra tes t h a t
even for simple communicat ion graphs there is no simple bound on the sise (or even on the
diameter , to use the graph-theoretical term) of the local regions requiring analysis: it might
be necessary to analyse t h e entire graph a t once.

For any par t icular network it is possible t o identify a collection of local regions (called
"competi t ion sets* in [6]) which can form the basis of a deadlock analysis, b u t this may
not break down the problem into significantly smaller subnetworks. We will r e tu rn t o t he
problem of decomposing a general network into separable regions later. For now we will
concentrate on types of network which require only pairwise checking. And instead of
competi t ion sets we introduce some sharper mater ial on "conflict*.

In a non-unidirectional network we cannot expect t ha t proper cycles of strong requests
will again correspond precisely to deadlock. Nevertheless, an analysis based on proper cycles
of requests will clearly be enough to exclude deadlock in trees, since (as we said earlier) trees
have no cycles. Our task is therefore to find extensions of the unidirectional condition which
are still pairwise checkable and which are s trong enough to generate proper cycles of requests
in deadlock s tates . T h e following definitions, formalizing notions of conflict between pairs
of processes, are motivated by this aim.

Conf l i c t s*
Basically, a conflict is a degenerate cycle of two ungranted requests . We give a general

definition of a T-conflict, or conflict relative t o a set T of events: a T-conflict is a cycle of two
ungranted requests wi th respect to I \ We will normally be concerned with the case where
r is the vocabulary of the global network containing the two conflicting processes, since if
any individual process can perform an event outside of the network's vocabulary, then the
network cannot be deadlocked. Since the emphasis here is on pairwise analysis, we find it
convenient to use the abbreviat ion pair for a subnetwork with two nodes.

D e f i n i t i o n 1 6 . A s ta te cr = (j , (X, Y)) of the pair (P , Q) is a T-conflict if each has
an ungranted request to the other (with respect to T), i.e., if:

P ^•Q and Q ^•P.

T h e s ta te is a strong r-conflict if (at least) one of these ungranted requests is s t rong Le., if

additionally
p or Q S I U P . I

23

A r-conflict is a s ta te where each of P and Q wants to communicate with the other,
neither can communicate outside T, and they cannot agree on a joint communication. The
conflict is s trong if one of the two processes is completely blocked by the other one.

D e f i n i t i o n 1 7 . A pair (P , Q) is free ofT-conflict if none of its s ta tes is a r-conflict.
A process is free of strong T-conflict if none of its s ta tes is a strong r-conflict. |

Informally, (P , Q) is conflict-free with respect to T if P and Q can never simultaneously
be offering to communicate with each other without either agreeing on some action or one
of them being able to communicate outside T. The pair is free of strong T-conflict if it can
never get into a s ta te where one process can only proceed by communication with the other,
which is offering it only inappropriate communications and cannot communicate outside of
T. Clearly, each pair which is free of T-conflict is also free of strong T-conflict.

We extend these notions of conflict-freedom to a general network as follows.

D e f i n i t i o n 1 8 . A network V = (P t | 1 < i < n) is conflict-free iff each pair (P t , Py)
is conflict-free wi th respect to the vocabulary A of V. The network is free of strong conflict iff
each pair is free of strong A-conflicc. I

We note tha t , if T ' C T, then freedom from T-conflict (or strong T-conflict) implies
freedom from T'-conflict (or strong T'-conflict). Since the vocabulary of a subnetwork is
a subset of t ha t of whole network, it follows tha t both of these properties are hereditary.
Thus , conflict-freedom and strong conflict-freedom can be proved by purely local analysis.

Here are three elementary results on conflict-freedom, giving some simple criteria which
guarantee freedom from conflict. In each case we assume tha t aP n aQ C T, which will
certainly be the case when T is the vocabulary of a network containing P and Q. We also
assume tha t P and Q are deadlock-free, which will be t rue when the network containing P
and Q is busy.

The first result is almost trivial:

L e m m a 5 . The pair (P, Q) is free of T-conflict whenever \aPr\aQ\ < 1.

Proof If two processes have no event in common, they never t ry to communicate with each
other and the question of conflict is vacuous. Conflicts never arise between deadlock-free
processes with a unique event in common: if each is offering to communicate with the other,
they must be agreeing on this event. |

The second result applies if at all stages, whenever P and Q are trying to communicate
their choice is restr icted to a unique event.

L e m m a 6. The pair (P,Q) is free of T-conflict if there is an infinite sequence of
events common to the alphabets of P and Q, say u € (c*P H aQ)", such that in every trace
of P and in every trace of Q the communications between P and Q form a prefix of u , i.e.

Vs 6 traces(P) U traccs(Q), s^(aPnaQ) < u.

Remark. When u has the special form tu for some finite trace t this is essentially a cyclic
communicat ion condition.

Proof Let w be a trace of P | | Q , so tha t sx = w\"aP is the corresponding trace of P and
s2 = w^aQ t ha t of Q. Clearly, ^ (a P n aQ) = s 2 ^ (a P n aQ). By hypothesis this t race
is a prefix of u. If neither of the processes is able to communicate outside of T on the next
step, the event in u immediately following this prefix must be a communicat ion on which
the two processes can agree. I

24

file:///aPr/aQ/

T h e th i rd result applies in case the behaviour of P and Q is such t h a t in all relevant
s ta tes one of them is acquiescent, in the sense tha t it cannot refuse anything the other
one may offer. T h e s ta tes to which this condition must apply are those in which P and
Q are refusing to do any external event, bu t neither is refusing the entire a lphabet of the
other . I t is easy to see t h a t this condition prevents conflict when P and Q are known to be
deadlock-free. Hence:

L e m m a 7 . The pair (P,Q) is free of V-conflict if for every trace s of P\\Q, whenever

(s h * P , X) € f\P\ and (s*Q,Y) € f\Q\ satisfy

XDaP-T, Y DaQ-T ,X2aQt Y 2aP,

it follows that either

X O initials(Q afters

or Yn initialsjP after s^aP) = 0. I

Each of the above criteria in Lemmas 5, 6 and 7 is more general (but more complex)
t h a n the previous one. Of course, each also implies freedom from strong r-conflict. It is
also easy to find yet weaker conditions than those of Lemma 7 which imply freedom from
strong conflict; an obvious one is t h a t no process ever makes a s trong request.

T o il lustrate these concepts of conflict-freedom we re turn to some of our earlier exam­

ples.

E x a m p l e 1 : D e a d l o c k e d C h a i n .
Here, no pair of adjacent processes is conflict-free, and the pairs (Po, P i) and (P n - i » Pn)

are not even strong conflict-free. It is easy to see, however, t ha t the o ther pairs of adjacent
processes are s t rong conflict-free: each Pi (0 < t < n) is always in a position where it
can either ta lk to bo th of i ts neighbours or it can refuse all communications wi th the only
neighbour it can talk to . In neither of these cases can it be the blocked process in a s t rong
conflict. I

E x a m p l e 2 : D i n i n g P h i l o s o p h e r s .
Th i s network is conflict-free. For the philosopher-fork combinations observe t h a t there

is a pa t t e rn of cyclic communication; for example, the communications between PHIL» and
FORKt always form a prefix of the sequence (Lpicks.i, i .pu ts . i) w . Hence, by Lemma 6, each
philosopher-fork pair is conflict-free. For the philosopher-butler combinations, note t ha t
whenever the but ler can talk to a philosopher he cannot refuse anything the philosopher
might offer, so t ha t (in the terminology used above), the butler is acquiescent. Hence, by
Lemma 7, each phi losopher-but ler pair is conflict-free.

E x a m p l e 5 : T o k e n R i n g .
Here we have a P i n a P » + i = {i+l .f ind, i p r i v } , and it is easy to see t ha t the interact ions

between Pi and P»+i follow the cyclic communicat ion pa t t e rn (i-fl.find, Lp r iv) w . Hence the
network is conflict-free (and also free of strong conflict) by Lemma 6. I

Of course, our reason for the invention of the conflict-freedom conditions is t h a t they
enable us to establish some useful results on deadlock.

25

D e a d l o c k A n a l y s i s i n Conf l i c t - f r ee N e t w o r k s .

T h e o r e m 2 . Let V = (Pi | 1 < i < n) be a busy network with vocabulary A. / /
V is free of strong k-confiict, any deadlock state of the network contains a proper cycle of
ungranted requests with respect to A. IfV is conflict-free then any deadlock state contains
a proper cycle of ungranted requests (t 'o , . . . , tV-1) with respect to A (r > 3), such that the
only requests being made in this state by the processes involved in the cycle are the requests
recorded in the cycle.

Proof. Similar to that of Theorem 1, using the fact that freedom from strong A-conflict im­
plies that in any deadlock state, whenever there is a request from Pi to Py and Py is not itself
deadlocked, there must be a request from Py to some other process Pk with k^i. I

Note that Theorem 1 is a corollary to Theorem 2, since in a unidirectional network
every request in a deadlock state must be a strong request.

It is not hard to improve this result slightly to allow for one pair of processes in the
network to fail to be free of strong conflict, if instead the pair is deadlock-free. That we
cannot go further and allow two pairs of processes to be deadlock-free but not free of strong
conflict is shown by the deadlocked chain example.

T h e o r e m 3 . The conclusions of Theorem 2 remain valid, even if we allow one pair of
processes (Pi, Py) to be deadlock-free but not free of strong conflict. I

C o r o l l a r y . If a tree network satisfies the conditions of Theorem 2 or Theorem 3 it
is hereditarily deadlock-free. I

Again, we return to the examples to demonstrate the uses of these results.

E x a m p l e 1: D e a d l o c k e d C h a i n .
Even though the pairs (Po, Pi) and (P n - i , P n) have strong conflicts, it is easy to prove

(using Lemma 3 and Lemma 4) that they are both deadlock-free. We already know that all
other pairs are free of strong conflict. Since the removal of any number of processes (strictly
between 1 and n) leaves us with a collection of chains, none of which contains both of these
pairs of processes, we conclude by the above corollary to Theorem 3 that every non-empty
proper subnetwork is deadlock-free, confirming our earlier prediction to this effect. |

E x a m p l e 2 : D i n i n g P h i l o s o p h e r s .

Since we have already shown that this network is busy and conflict-free, Theorem 2
implies that any deadlock state contains a proper cycle of ungranted requests. We sketch a
proof demonstrating the impossibility of such a cycle as follows.

• The network structure implies that such a cycle must involve at least one fork
process and therefore must contain an edge from a philosopher to a fork.

• No philosopher can have an ungranted request to a fork unless that fork has been
picked up by the other adjacent philosopher. Because of its position in the cycle, this fork
must have an ungranted request to the philosopher who is currently holding it.

• While a philosopher holds a fork he cannot communicate with the butler. Therefore,
the only process to which this second philosopher can have an ungranted request is his other
fork.

• We can clearly continue this argument to show that the cycle must run through all
of the philosophers and forks (either clockwise or anticlockwise).

• Further, we can deduce that each of the philosophers holds exactly one fork. This
means that so far each philosopher has communicated one more 'enters' events than 'leaves'.

26

However, the but ler process was designed to prevent this s t a t e arising in more than

four philosophers a t once. Hence, this contradict ion proves t h a t the network is free of

deadlock. I

E x a m p l e 5 : T o k e n R i n g .
By applying Lemma 6 and Theorem 2 we can prove deadlock-freedom of the token ring

more easily t han by our earlier techniques. We have already shown (easily) t h a t the ring is
free of strong conflict. By Theorem 2, this means tha t any deadlock must be caused by a
cycle of ungranted requests, which in this part icular network means t h a t either each process
is wait ing for its successor or each process is waiting for its predecessor. In the previous proof
for this network we had to go through a much more involved pairwise analysis to reach this
stage in the argument . T h e remainder of the proof is t he same. I

O n a c h i e v i n g c o n f l i c t - f r e e d o m .
Networks in which the design of processes and the potent ia l communicat ion pa t t e rns are

r a the r symmetr ic may fail t o be conflict-free; a good example is provided by the deadlocked
chain wi th its two end processes removed. Typically this happens where there are messages
which P might wish to send to Q and vice-versa. Conflict typically appears when P and Q
are bo th waiting for a message from the other, bu t neither is ready to send one.

It is hard, however, to imagine a reasonable example (of a deadlock-free network)
which has conflict and yet cannot be redesigned t o achieve freedom from strong conflict. A
communicat ion which is being offered to the blocked process in a conflict s t a t e can never
occur, and it is therefore quite likely t h a t this event can be removed from the design of the
blocked process wi thout changing the behaviour of the network as a whole. For example,
in the typical conflict described above there must be some mechanism, either a message
from some other process or the external environment, which could generate a message from
P t o Q, or else there is no point in Q waiting for it. We il lustrate this potent ia l need to
redesign processes so t h a t networks become conflict-free wi th yet another variant of the
Dining Philosophers.

E x a m p l e 6 : C o n f l i c t i n g P h i l o s o p h e r s .

If we replace the but ler process of Example 2 with the following process, which has

different t races from those of the original butler, but the same alphabet , the resulting

network would fail t o be conflict-free:

B U T L E R ' = A D M I T 4 .

A D M I T 4 = Cf = 0 (i . e n t e r s —• A D M I T 3) ,

A D M I T * = Qf-o((. .enters - » ADMITfc_ i)D (..leaves -» ADMITfc+i)), (k = 1,2,3)

ADMITo = C£.o (Heaves A D M I T !) .
In this network the pairs consisting of a philosopher and but ler are not even free of s t rong
conflict, since when the but ler has admi t ted the other four philosophers he is quite happy
to let the remaining philosopher "leave* even though he is blocking him by preventing him
from "en te r ing 9 . T h e snapshot graph describing this s t a te is the same as for the earlier
version (Diagram *) , except t ha t there is an addit ional edge, from B U T L E R t o P H I L o

However, the behaviour of the network as a whole is unaltered if we replace the old
but ler by this one (because the remaining philosopher of course is not even t rying to
leave a t this point) . There is a sense in which the network's correctness (i.e. deadlock-
freedom) depends more on the overall s t ructure of the network than it did with t he original
definition of the butler. I

27

In summary, then, we believe tha t conflict-freedom is a widely applicable condition,
since we are aware of no na tu ra l and correct network which fails to meet this condition
and cannot be redesigned to yield a behaviourally equivalent network tha t is indeed free of
strong conflict.

8 . N e t w o r k D e c o m p o s i t i o n .

In this section we introduce a general method for decomposition of a network into sub­
networks which may be t reated largely independently for the purposes of deadlock analysis.
The role of conflict-freedom of a pair of processes is crucial in this method.

If V is a network, we define the disconnecting edges of V to be the edges of the com­
municat ion graph whose removal would increase the number of connected components . The
disconnecting edges are precisely the edges which cannot be par t of any cycle in the graph.
We also define the essential components of V to be the connected components of the graph
tha t remains after all disconnecting edges are removed. (In graph-theoretic terms, the essen­
tial components are the maximal edge bi-connected subgraphs.) The essential components
of a tree are its individual processes, and every edge is a disconnecting edge in a tree. Even
in a general network the essential components themselves always form a tree when an edge
is drawn between a pair of essential components if and only if the a lphabets of two of their
members intersect non-trivially.

In any busy network free of strong conflict, Theorem 2 showed tha t deadlock can only
be caused by a cycle of ungranted requests. It is not difficult t o see tha t such a deadlock-
causing cycle necessarily lies in one of the essential components of the network. It follows
tha t if none of the essential components of such a network can contain such a cycle, the
whole network is deadlock-free. Note, however, t ha t it is necessary to prove the absence of
cycles of ungranted requests in an essential component with respect to the alphabet of the
whole network, not jus t with respect to tha t of the essential component .

These facts, and analysis of conflict-freedom, help to establish the following result.

T h e o r e m 4* Suppose V is a network with essential components VXl..., V* where the
pair of processes joined by each disconnecting edge are conflict-free with respect to A, the
vocabulary ofV. Then if each of the Vi is deadlock-free, so is V.

Proof. This result follows from the associative law of PAR, for the behaviour of V is
the same as tha t of the network whose nodes are the parallel compositions of V 's essential
components .

PAR(V) = PAR((PAR(V.) | 1 < i < Jb»

The communicat ion graph of this new network is a tree as observed above. It is busy by
assumption tha t each V» is deadlock-free. To show conflict-freedom we argue as follows.

• If the pair [PAR(Vi)||PAR(Vy)] were in conflict with respect to the vocabulary of
V, their a lphabets would intersect and so there would be a (necessarily unique) pair of
processes P € Vi and Q 6 Vy such tha t aPDaQ ^ 0.

• If (s, (X,Y)) were a conflict of [PAR(V;)||PAR(Vy)] then, by definition of PAR(K)
and PAR(Vy) there would be states (s[aVi9X) and (s^aVy, y) of K and Vy corresponding
to the failures {slaVit X) € / | [PAR(V;)J and (s\<aV3,Y) € / [PAR(Vy)] | .

• If X' and Y' are the components of 2L and K corresponding to P and Qt the
conditions ensure tha t Xn aVy = X' n aQ and tha t Y naVi = T n a P .

• It follows tha t (s ^ (a P U a Q) , (X'f Y')) is a A-conflict of [P\\Q\, contrary to assump­
tion, giving the desired contradiction.

28

I

T h u s we have some results identifying par t s of networks which can, from the point of
view of deadlock analysis, be regarded as independent . Of course, this is only useful in
practice if the network decomposes into significantly smaller or simpler subnetworks: we
can reasonably expect a small network to be much easier to analyse than a big one.

To il lustrate the use of the type of network decomposition we propose, and to demon­
s t ra te the use of Theorem 4, here is another example.

E x a m p l e 7 : I n t e r c o n n e c t e d T o k e n R i n g s .

Suppose tha t , instead of the single ring which we saw earlier, it is for some reason
desired to implement a system of interconnected rings. Provided the connection s t ruc ture
between the rings is a (connected) tree, it is straightforward to develop a deadlock-free
system from our earlier work and Theorem 4. T h e rings will consist of the processes P» and
Qi as before (Pi for processes with no token initially, Qi for processes having one) and a
new type of process Li for linking two rings. Each link will have one of these L processes a t
each end, r a the r t han having one process sit t ing in bo th rings, for the la t ter would not pu t
the two rings in different essential components . These link processes never initially contain
a token and always pass one on immediately after having received one. T h e y do, however,
remember how many tokens there are in each of the two components t ha t would be created
were its link to be cut . Provided it is correctly initialized such a process can always know
these numbers since changes can only come about when the process itself effects the transfer.
We give here the definition of a link process for t he case where there is only one token.

T h e definition given here assumes tha t the link process is to replace process t in a ring
where all the Py and <?y have the same a lphabets as before except t ha t , to keep the internal
a lphabets of distinct rings disjoint, the events of each ring are tagged with a label (e.g. p, z/).
If a link process is t o connect ring p to ring v and is to be placed a t position t in ring p we
will use the notat ion £«(p, v) to denote it. Such a link process will have a lphabet

a£*(p , u) = {p.Lfind, p. i+l .f ind, p.Lpriv, p . i+ l .p r iv , z/.p.req, p.i/.req, p.i/.pass, i/ .p.pass}.

There is an obvious directionality associated with a link process, and we may correspondingly
refer t o the two sides of a linking arc as the part i t ion of the network which would occur if
the linking arc were cut . Somewhat loosely (but , we hope, in accordance with intuit ion) we
refer, when describing the behaviour of the link process, to these two subnetworks as "its*
side and " the o t h e r 9 side. Informally, we specify the behaviour of a link process as follows.

When the token is on its side of the linking arc, the link process is prepared to accept
ei ther a request for the token from the ring (the event p.Lfind), or a request from the o ther
side of the link (i/.p.req). In either case since the token is to be found on its side of the link
the process then makes a request to its neighbour (the event p . i+l . f ind) . Once the token
has been found and reaches the link (p.Lpriv) the link process will respond appropriately
to the request t ha t began this activity: either pass the token on to the next process in the
ring (p.i-l .priv) or pass it over the to the other side (p.i/.pass).

When the token is on the other side of the link, the link process is prepared only to
accept a request for the token (p.Lfind) and t o pass this request on over to the other side
(p.i/.req). When the token arrives and is passed over (p.i/.pass), the link process hands it
over to the neighbour who requested it (p.Lpriv).

Formally, we describe the behaviour of a link process by means of two auxiliary process
definitions: when the token is on its side the link process is denoted L*(p,i/), and when

29

the token is on the other side the process is denoted Li (p, u)\ these auxiliary processes are
defined (omitt ing the ring names) by:

L* = (i/.p.req —* p. i+l . f ind —• p.Lpriv —* p.j/.pass —• L~)

0 (p.Lfind p. i+l . f ind —• p.Lpriv —• p . i - l .p r iv —* L*)

LT = p. L find —• p.i/.req —• l/.p.pass —• p.Lpriv —• L*

This formal description is intended to correspond to the informal remarks above; for in­
stance, the passage of the token across a linking arc results in a change of "sign*.

Note t h a t we allow networks in which some of the rings consist only of link processes.
Except in the trivial case where there is only one ring, all rings must contain at least one
link process. It should be obvious tha t the essential components of a multiple ring system
like this are jus t the rings; the disconnecting edges are the links between rings.

When the network is set u p all pairs of link processes are in opposite s ta tes (one + ,
one —), since the token is on one side or the other. Here is an example of such a network:

L (p , e) Q

l (e , p)

L (6 , 5) L (5 ,8)

L i n k e d R i n g s

D I A G R A M 6

To prove the link pairs conflict-free it is sufficient to prove tha t any adjacent pair
with opposite signs, say L*(vy p) | | £~ (p, ^) , are. This follows from Lemma 6 since the
communications between this pair are cyclic, repeating (p.i/.req, i/.p.pass, i/.p.req,p.i/.pass).

The proof tha t the individual rings are deadlock-free is essentially the same as in the
earlier example. (Note t ha t each ring is still unidirectional, even though the whole network
is not.) The invariant which prevents there being a cycle of strong requests is now tha t in

30

each ring t he number of nodes holding a token plus the number of "negative" link nodes
(for which the token is on the o ther side) always equals one.

There are several interesting ways to extend this idea to deal with multiple tokens, but

we will not discuss these here. I

T h e methodology based on Theorem 4 relies on showing first t ha t the essential compo­
nents of a network are deadlock-free, and then t h a t the links between essential components
are well behaved (conflict-free). One could, of course, relax the condition t ha t the links
between essential components are conflict-free if there were some other means of showing
the interactions between the whole essential components to be strong conflict-free. O n e
assumption t ha t is not in general s trong enough for this is tha t the network V is s t rong
conflict-free; the reader might like to confirm this by considering the following example.

E x a m p l e 8 : A B o w t i e N e t w o r k .

Let Pi (i =s 0 . . . 7) be the following simple processes:

P% - t — t + 1 — P . ,

where ar i thmet ic is done modulo 8 and where processes have the obvious a lphabets . Con­
sider the network formed by the six processes P 0 , P i , P4 , P5, [JP-JUJPT], (ftllPsI- This corre­
sponds to the communicat ion graph shown below (and hence the name "bowtie") :

p 2 h p 7

p "
1 5

Communication Graph of Bowtie Network

DIAGRAM 7
This network is deadlocked, even though its essential components (P<j, P i , [PallPrD and

(Pi.Psil-fljII-Pe]) are each deadlock-free and the one disconnecting edge is s trong conflict-
free. T h e snapshot graph summarizing this deadlock is: ^

P 2 I I P 7 .
- P IIP

l
Snapshot Graph of Bowtie Network

DIAGRAM 8
T h e deadlock s ta te has two cycles of ungranted requests, one in each of the two essential

components . *

31

A D e s i g n R u l e G u a r a n t e e i n g D e a d l o c k - F r e e d o m .

We have so far proven some results which show that , under certain circumstances (such
as unidirectionality, or conflict-freedom) deadlock can only be caused by cycles of ungranted
requests. This allowed us to tackle deadlock analysis by proving the non-existence of such
cycles. For tree networks this is sufficient to prove deadlock-freedom directly. However,
for general networks the problem remains of establishing tha t cycles of ungranted requests
are impossible. So far, our methods for doing this have been ra ther ad hoc: we have relied
largely on case analysis of traces and refusals, and finding of invariant properties tha t are
false in all potent ia l deadlocks. This type of case analysis was made simpler by selective
use of hiding. Nevertheless, we have so far not introduced any general results which can
themselves directly prove the deadlock-freedom of a network whose communication graph
has cycles. All we have managed to do for those is to get a be t te r understanding of the ways
deadlock can arise.

It is our intention tha t the work of this paper should serve as the foundations for
the development of more specific techniques for proving deadlock-freedom. A wide class
of such techniques, mainly based on the concept of variants, have already been described
in [19]. In this section we give another example: a theorem stat ing some simple (though
admit tedly ra the r curious) conditions under which deadlock cannot arise. One may regard
these conditions as imposing a design rule which, if adhered to, guarantees absence of
deadlock directly, wi thout need for detailed investigation into cycles of requests. The utility
of this part icular design rule is demonstra ted by applying it to a part icular example network
which does meet these conditions: a mail system involving a ring of user processes.

T h e o r e m 5 . If, in the busy, strong conflict-free network, whenever a process P has
an ungranted request to another process Q in the same essential component, P was the last
process in that component with whom Q communicated, the network is deadlock-free.

Proof. By Theorem 2, any deadlock s ta te has a cycle of ungranted requests necessarily
lying in a single essential component . Suppose tha t the most recent communication between
two consecutive elements of this cycle was between P and Q, with P now waiting for Q.
Now P must be blocking some process other than Q in the cycle, bu t this is impossible by
assumption. |

E x a m p l e 9: M e s s a g e - p a s s i n g r i n g .

Consider a message-passing ring in which a number of users can send mail to one
another . Each user is associated with a node; the nodes are connected in a ring; a node may

(i) accept a message from its user and pass it to its clockwise neighbour, or

(ii) accept a message from its anticlockwise neighbour and give it to its own user or
pass it clockwise as appropria te .

Clearly if each node has the capacity to store only one message at a time, the system
may deadlock. (When all users simultaneously decide to output a message, none of these
messages can ever leave its source node.)

However, if each node has capacity bigger than one, and if also each node has a non­
zero limit strictly smaller t han its capacity such tha t , when the node contains the limit or
more items it will only accept a message from the ring (Le., not from its own user), the
network is deadlock-free. Intuitively this is because the network can never become "full"
(the last message entered would need to be into a node with only one slot left, but this is
not allowed).

32

Of course, the simplest example of such a network is where each node has capacity two
and will only accept input from the environment when empty. However, the parameters of
a practical implementat ion would be more generous. I

9« Comparison and Conclusions*
We have shown how to use the failures model of C S P to provide a succinct and math­

ematically t ractable representat ion of deadlock. We have been able to use the model in
proofs of some interesting and useful results on the analysis of deadlock in networks, and
then to prove absence of deadlock in a variety of examples. We have focussed firstly on
results pertaining to unidirectional systems (e.g. Theorem 1) and also on results applicable
t o general networks (Theorems 2, 3, 4, 5) . All of our methods suppor t hierarchical analysis
of networks, assuming tha t deadlock-freedom of individual nodes has already been es tab­
lished. We singled out for special a t ten t ion the class of t ree networks (Corollaries (i) and (ii)
to Theorem 1, and the Corollary t o Theorem 3.) We demonst ra ted the power of our tech­
niques by applying t hem to a collection of example networks. We argued t h a t the concepts
developed in this paper (such as cycles of requests, conflict-freedom, essential components)
provide the basis for a ba t te ry of theorems on deadlock analysis t h a t are widely applicable.

T h e theorems of this paper are only a sample of a large class of general results which
we and others have derived for analysing the deadlock properties of networks. As s ta ted
earlier, the results of t he current paper have already been used extensively in [19], where
more specialized techniques were developed such as those based on "variants'*. A variant is
a function from the s tates of the components of a network into a par t ia l order. These simple
combinatorial techniques often allow localized proofs t h a t no cycle of ungranted requests can
arise, even in networks whose communicat ion graphs have many cycles. These techniques
seem to be widely applicable bu t are certainly not complete, since they cannot handle all
networks.

We analysed in Example 10 a simple message-passing network. A far more complex and
sophisticated message-passing network has been developed in [18] (as an occam program)
based on this one, wi th analysis again based on Theorem 5. It makes use of the general
topology of a network to pass messages efficient routes, bu t uses the ring behaviour as a
last resort to avoid deadlock. I t would be interesting to see if this theorem is applicable to
any other types of example.

Again, Theorem 5 was specialized to networks which have been designed to meet a
simple "design rule*. Adhering to the design rules will then guarantee deadlock-freedom.
There is much to be said for such design rules, especially if they are chosen to be easy to
apply in practice. T h e discovery of more of t hem should therefore be regarded as a priority.

Related Work.
Dathi ' s thesis [8] will give a broad survey of techniques bo th new and old which can

be brought into this framework. He also gives a very thorough comparat ive survey of the
relative power and applicability of various deadlock-proving techniques.

Dijkstra [9] proved some theorems on the absence of deadlock in unidirectional networks
for the special case in which the pa t te rns of communication were cyclic: each process ro ta ted
its communicat ion requests in cyclic order through its immediate neighbours. Dijkstra s ta ted
t ha t his results were applicable in a more general setting, and [19] has demons t ra ted t ha t
this is indeed the case.

Chandy and Misra have developed a method for proving deadlock-freedom using pri­
orities [7]. Roughly speaking, they proposed tha t , for every s ta te of a network, one should

33

assign priorities to the edges of the communication graph in such a way tha t every process
can always communicate over its adjacent edge of highest priority. T h e existence of such a
prioritization is equivalent to a certain s t rengthened version of our deadlock-freedom con­
dition. In fact, their condition implies tha t every non-empty subnetwork can make progress
in future. To use such a technique requires a global analysis of all s tates of the network,
which may in practice be expensive because of the exponential growth in the size of the
s ta te space of a network as a function of the number of processes. It is for reasons such as
these t ha t we advocate localized analysis wherever possible. Da th i [8 represents the method
of [7] in our sett ing.

In [16] Reisig discusses proof rules for deciding if deadlocks can occur in dis tr ibuted
systems of sequential processes which communicate deterministically by means of buffers.
He uses a Pe t r i net model and gives a characterization of deadlock s tates .

T h e work of Apt et ai. [1,2,3] on reasoning about C S P programs includes some methods
for analysing deadlock. Essentially, this work is based on a ra the r different approach from
ours: a C S P program is first transformed syntactically into a program in a guarded command
language [11] which no longer involves communication. In this transformation syntactically
matching pairs of communicat ions are combined into assignment s ta tements to mimic the
affect of synchronizing an inpu t with a matching ou tpu t . Then one reasons about the
absence of deadlock by finding a global invariant which guarantees tha t no deadlock s ta te
can be reached, because it is false in deadlock s ta tes .

Dynamic Networks.
In this paper we have focussed entirely on s tat ic networks in which both the number

of processes and their topology remain unchanged throughout the execution history of the
network. Dynamically changing networks may arise in practice, for instance when recursion
is used inside a parallel composition: it may be possible for a process to spawn one or more
recursive parallel instances of itself, or indeed of other processes, during execution. The most
difficult problem arising when trying to extend techniques such as ours to cover dynamically
evolving networks is t ha t of keeping track of the network's s t ructure during execution. This
means tha t a lot of specialized concepts and notat ions have to be introduced to deal with
network s t ructure . Of course deadlock only arises in a s tat ic situation, so tha t the ideas of
this paper carry over to the analysis of dynamic networks more or less wholesale. We plan
to develop the theory of dynamic networks, including deadlock analysis, in a future paper .

Acknowledgements.
The authors would like to thank C. A. R. Hoare for his many helpful suggestions and

discussions, and for his encouragement and guidance during the development of the failures
model for CSP. Discussions on deadlock analysis with Krzysztof Apt , Naiem Dathi , Jay
Misra, Ernst-Rudiger Olderog, David Reed and Wolfgang Reisig have been very useful.

34

10. References.
[1] Apt, K. R., A Static Analysis of CSP Programs, in: Logics of Programs, Proceedings,

Springer LNCS VoL 164, pp. 1-17 (1983).

[2] Apt, K. R., (editor), Logics and Models of Concurrent Systems, Springer Verlag

NATO ASI Series, Series F, Vol. 13 (1985).
[3] Apt, K. R., Frances, N., and de Roever, W. P., A Proof System for Communicating

Sequential Processes, ACM TOPLAS, voL 2, no. 3, pp. 359-385 (1980).
[4] Brookes, S. D., Hoare, C. A. R., and Roscoe, A. W., A Theory of Communicating

Sequential Processes, J ACM (July 1984).
[5] Brookes, S. D., and Roscoe, A. W., An Improved Failures Model for Communicating

Processes, Proc. NSF-SERC Seminar on Concurrency, Springer LNCS VoL 197, pp. 281-

305 (1985).

[6] Brookes, S. D., and Roscoe, A. W., Deadlock Analysis in Networks of Processes, pp.

305-323 in [2].
[7] Chandy, K. M M and Misra, J., Deadlock Absence Proofs for Networks of Communi­

cating Processes, Information Processing Letters, VoL 9, no. 4, Nov. 1979.
[8] Dathi, N.. D. PhiL thesis, Oxford University (forthcoming, 1989).
[9] Dijkstra, E. W., A Class of Simple Communication Patterns, EWD643, in: Selected

Writings on Computing, Springer Verlag (1982).

[10] Dijkstra, E. W., Invariance and non-determinaey, in: Mathematical Logic and

Programming Languages, Prentice-Hall.
[11] Dijkstra, E. W., Guarded Commands, Non-determinacy, and Formal Derivation of

Programs, CACM VoL 18, No. 8 (August 1975).
[12] Hoare, C. A. R. t Communicating Sequential Processes, CACM 1978.
[13] Hoare, C. A. R., Communicating Sequential Processes, Prentice-Hall (1985).
[14] INMOS Ltd., The occam programming manual, Prentice-Hall (1984).

[15] Milne G., and Milner R., Concurrent Processes and their Syntax, JACM 26, No.

2, pp. 302-321.

[16] Reisig, W., Deterministic Buffer Synchronization of Sequential Processes, Acta

Informatica 18, pp. 117-134 (1982).

[17] Roscoe, A. W., A Mathematical Theory of Communicating Processes, D. PhiL

thesis, Oxford University (1982).
[18] Roscoe, A. W., Routing messages through networks: an exercise in deadlock avoid­

ance, Proceedings of OUGTM7, Grenoble 1987, published by IMAG.

[19] Roscoe, A. W., and Dathi, N., The Pursuit of Deadlock Freedom, Information and

Computation, Vol. 75, No. 3 (December 1987).

35

