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Abstract

In this paper, the parallel complexity of the Random Matching Probiem-a problem
of generating a perfect matching in a bipartite graph uniformly in random-is consid-
ered. We show that the only known polynomial time random matching algorithm,
due to Broder, Jerrum and Sinclair, can not be parallelized in NC, unless NC = P.
The reduction is from the Lerical First Mazimal Independent Set Problem. This re-
sult shows many interesting structural properties between matching and lexical first
maximal independent sets. It also leaves many interesting and important open ques-
tions. We also show that any polynomial time scheme (NC scheme) for the Random
Mazimal Independent Set Problem implies NP = RP (NP = RNC). This provides
another example that the problem of uniform random generation is harder than the
corresponding construction problem.

1 Introduction

The Matching Problem is a natural and important problem in computing theory. Like the
Mazimal Independent Set problem, it has been used as an important subroutine in several
computational problems.

A set of edges, M, of a graph G(V, E) with no self-loops, is a perfect matching if every
vertex is incident to exactly one edge of M. The problem of computing a perfect matching
in a bipartite graph is also known as the marriage problem.

Generating a perfect matching in a general graph is first solved in polynomial time
by Edmonds [6] and improved by Even and Kariv [7]. By reducing the bipartite matching
problem to the maximum flow problem, Hopcroft and Karp first present a simple O(|V[V/2 .
E) time algorithm. On the other hand, Karp, Upfal and Wigderson [12], Karloff [11],
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and Mulmuley, Vazirani and Vazirani [17] showed that parallel RNC algorithms exist for
computing a perfect (maximum) matching in general graphs.

However, the Random Matching Problem— a problem of generating a perfect matching
in a bipartite graph uniformly in random-had been left open for a many years. Until very
recently, Border and Jerrum and Sinclair [3,9] showed how to computing a random matching
in polynomial time.

In this paper, the parallel complexity of the Random Matching Problem is considered.
The efficient generation of a random perfect matching plays a critical role in efficiently ap-
proximating the number of perfect matching in a bipartite graph, or equivalent the permanent
of a 0-1 matrix {3,9,18].

We show that the only known polynomial time random matching algorithm, due to
Broder, Jerrum, and Sinclair, can not be parallelized in NC, unless NC = P. The reduction
is from the Lerical First Mazimal Independent Set Problem. Some interesting structural
properties between matching and the lexical first maximal independent sets are presented.
Qur results provides some evidence to the following conjectures.

Conjecture 1.1

1. There is no RNC algorithm to generate a perfect matching in a bipartite graph uni-
formly in random unless P = RNC.

2. There is no NC algorithm to approzimate permanent of ¢ 0-1 matriz unless P = RNC.

We also show that any polynomial time scheme (NC scheme) for the Random Maximal
Independent Set Problem implies NP = RP (NP = RNC). This provides another example
that the problem of uniform random generation is harder than the corresponding construction
problem [10].

2 Definitions and Notations

2.1 Perfect Matchings

Let G(V, E) be a undirected graph where V = {vy,..., vy} is the vertez set and E is the
edge set. G is bipartite if V can be partitioned into X and Y such that each edge has one
end vertexin X and onin Y.

A set of edges, M, of a graph G(V, E) with no self-loops, is called a matching if every
vertex incident to at most one edge of M. A matching M is a perfect matching if every
vertex incident to exactly one edge of M.

2.2 The Lexical First Maximal Independent Set Problem

A set of vertices I € V of a graph G(V, E) is an independent set if there is no edge between
two vertices of I. An independent set I is mazimal if for each vertex v € V — I, there is
u € I such that (v,u) € E.




For each permutation = € Sy, define order(v;} = w(¢). The Lezical First Mazimal
Independent Set of a graph G(V, E) and a permutation 7, denoted by LFMIS;.,, is an
independent set such that

1. U,r—l(]_} E LF.‘[IS#,G;
2. for each v;  LFM1Sg ., there is j : 77%(j) < #71(d), such that (vi,v;) € E.

Problem 2.1 (Lexical First Maximal Independent Set Problem) Given a graph G(V, E)
and e permutation =, compute the lezical first mazimal independent set of G.

Without loss of the generality, it is assumed that #(i) = 7. The Lexical First Maximal
Independent Set Problem can be solved by the following simple greedy algorithm in linear
time.

Algorithm GREEDY LFMIS
I=9, V=V
while V' # §
I'=1Umin(V');;
V'=V — N(min(V"));
ocutput 1.

where min(V"’) = vmngijv,evry and NG (v) is the set of neighbors of v in G of order larger
than that of v.

Lemma 2.1 (Cook [4]) The Lerical First Mazimal Independent Set Problem is log-space
complete for P. '

2.3 Notations
For each graph G(E, V),

® Ed(G) = E, the set of edges of a graph G:
Vr(G) =V, the set vertices of a graph G;

Ag(v), the degree of a vertex v in a graph G;

Ag(v), the number of lower order neighbors of v in G;

Ng(v), NZ(v), and N5 (v), the sets of all neighbors, all higher order neighbors, and all
lower order neighbors, respectively, of v in G;

~1 if ug N3(v)

Rankg ,(u} = { Hwiw € N5 (v) & order(w) < order(u)}| otherwise
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3 Random Generation Schemes

3.1 Random Generation Problems

Definition 3.1 (Random Generation Problem over Sets) Let S be a finite set. The

Random Generation Problem over S is to generate uniformly, at random, an element
of S.

The Random Generation Problem over many interesting sets has been studied [2,19,16].
The following are some examples.

o Random Permutation Problem: S = S, the set of all n-element permutations
[16,15,13];

¢ Random Factored Composite Problem: S = {factored composite numbers of lent
[2];

e Random Labeled Tree Problem: S = {labeled trees of n vertices} [16];

o Random Unlabeled Graph Problem: S = {unlabeled graphs of n vertices} [5];

The Random Generation Problem can also be defined over binary relations.

Definition 3.2 (Random Generation Problem over Relations [10]) Let £ be an al-
phabet and R C £* x £* be a binary relation. The Random Generation Problem over
R is to generate uniformly, at random, a y € L* which satisfies R(z,y) for a given z € L~.

Definition 3.3 (Random Matching Problem) Given a bipartite graph G(W1, V2, E), gen-
erate a perfect matching of G uniformly in random. In other words, the Random Matching
Problem is a Random Generation Problem over the relation R, where R(G,M) if M is a
perfect matching of G.

The following are some other interesting Random Generation Problems.

» Random Maximal Independent Set Problem: R(G,I) if I is a maximal inde-
pendent set of G;

e Random Cycle Problem: R(G,C) if C is a cycle of G;

e Random Topological Labeling Problem: R(G,~) if 7 is topological labeling of a
DAG G;

Follows from Jerrum, Valiant, Vazirani [10], the relation in the Random Generation
Problem is restricted to the following set of p-relations where the relation can be checked
efficiently.

Definition 3.4 (P-relations [10]) R C Z* x X* is ¢ p-relation if
1. there is a polynomial p(n) such that R(z,y) = |y| < p(Iz]);

2, the predicate R(z,y) can be tested in deterministic polynomial time.

h N},



3.2 Probabilistic Turing Machines

The model of computation used in this paper is the general probabilistic Turing machines
(PTM) [8,10]. A probabilistic Turing machine is a Turing machine (1] equipped with an
output tape and having a set of distinguished coin-tossing states. In each con—tossing state,
two possible transitions of machine are specified. The computation of a PTM is deterministic,
except when the PTM is in a coin-tossing state, in which case the next transition is decided
by the toss of a biased coin which is a ratio of two integers computed previously by the
machine.

The PTM can be viewed as a random generator [10], with the distribution depending

on the input z, and on some underlined relation R. A PTM is a uniform generator for a
relation R C £* x U~ iff

1. for each z,y € &=,

o 0 if(z,y) ¢ R
Pr(given input z, M outputs y) = { m if((-‘l’z',yg) eR

2. for all inputs z € £* such that {y € T~ : R(z,y)} is not empty,
1
Pr(M accpets z) > 5

A PTM M is f(n) time-bounded iff, for each natural number » and for each input
z € I, every accepting computation of M halt within f(n) steps. A PTM M is polynomially
time-bounded if there exists a polynomial p(n) such that M is p(n) time-bounded.

In the context of parallel computation, the computation model used in this paper is
probabilistic PRAM which is a PRAM where each processor is a PTM.

3.3 Random Generation Schemes

There are four types of (uniform) random generation schemes (for examples, see Miller and
Teng [16]).

e Type(0)—Scheme: A random generation scheme is a Type(0)-Scheme for a relation
R, iff for each input z, the scheme always halts successfully and each y: R(z,y) is
completely unbiasedly generated;

e Type(1)-Scheme: A random generation scheme is a Type(1)-Scheme for a relation
R, iff for each input z, the scheme may not halt successfully but each y : R(z,y) is
completely unbiasedly generated;

¢ Type(2)-Scheme: A random generation scheme is a Type(2)-Scheme for a relation
R, iff for each input z, the scheme always halts successfully and the difference of the
probabilities between each pair of each y,y; : R(z, 1), R(z, ;) is bounded by a small
epsilon;



» Type(3)-Scheme: A random generation scheme is a Type(3)-Scheme for a relation
R, iff for each input z, the scheme may not halt successfully and the difference of the
probabilities between each pair of each y1,¥2 : R(z, 1), B(z,y;) is bounded by a small
epsilon.

Definition 3.5 ((¢,6)-Schemes) A random generation scheme S is an (¢, 6)—schemes for
a relation R if for each input z € L™, S halts successfully with probability 1 — é and for each
pdi?‘ 1,42 ¢ R(I, yl)a R(zv y?):

€

H{y : B(z,9)}]

An (¢, §)-Schemes is a fully polynomial-time scheme if there is a polynomial p(n, 1/¢,1/6)
such that the scheme always halts in p(n, 1/¢, 1/6) steps.

An (¢, 6)-Schemes is an NC scheme if there is a polynomial p(n,1/¢,1/8) and a k € N
such that the scheme uses p(n, 1/¢,1/8) processors and always halts in log®(n,1/¢, 1/6) steps.

|Pr(M outputs y1) — Pr(M outputs y2)| <

4 A Polynomial Time Random Matching Algorithm

The first polynomial time algorithm for the Random Matching Problem was given by Broder
[3] and was rigorously verified by Jerrum and Sinclair [9]. The algorithm is very simple. The
algorithm uses a Markov chine that converges to a uniform distribution on the space of
perfect matchings for any given bipartite graph. .

Given a bipartite graph G(W4, Vi, E) (|Vi| = |Val), define M,(G) be the set of all perfect
matchings of G and M,_,(G) be the set of all matchings of size [V}| — 1.

The following notations will be used throughout the paper.

e For each M € M,(G)U M,_,(G), for each v € V;, M(v) denotes the vertex in V; that
(v,M(v)) € M,

¢ For each M € M,_i(G), B,(M) stands for the unmatched vertex in ¥; and B,(M) the
unmatched vertex in V5.

The random matching generating scheme of Broder, Jerrum, and Sinclair uses a Markov
chain MC(G) with state space N' = Mn(G) U M,_1(G) in which transitions are made by
adding and/or deleting edges locally.

The simpler transition was given by Broder, which are specified as follows.

MC1-Broder’s Transition
1. Choose a vertex v uniformly at random in ¥i;

2. f M € M,(G), then move to M — (v, M(v));




3. If M € M., (G),

(a) if (v, By(M)) € E, then move to M + (v, By( M) — (v, M(v));
(b) otherwise do nothing.

A slight modified transition was given by Jerrum and Sinclair. The transitions in MC(G)
are specified as follows, in any state M € NV, choose an edge e = (u,v) € F uniformly at
random and

Jerrum and Sinclair’s Transition

1. if M € M,(G) and e € M, move to state M' = M — ¢;
2. M e M,_1(G) and u and v are unmatched in M, move to M' = M + ¢€;

3.if M € M,_1(G), v = By(M) and u # B(M), move to M + e — (u, M{u)), and

symmetrically with v and v interchanged;

4. in all other case, do nothing.

For each M and M € M, (G) U M,_1(G), for each integer ¢, let Pr(M, < M) denote
the t—step transition probability from matching My to matching M.

Jerrum and Sinclair proved that the above Markov chain is rapidly miring. i.e., that
after a short period of evolution in the distribution of the final state is essentially independent
of the initial state. Here short means bounded by a polynomial in the input size. Formally,

Theorem 4.1 (Jerrum and Sinclair) Thereis a k € A independent of G(Vi, V3, E), such
that for each ¢ > 0, for each My, M € Mg,
l—c¢
IMa(G) U M, _1(G)]

I +e¢

[Vif*
< M, M) <
S Pr(My = M) < M. (G)U M._(G)]

The following is a polynomial time algorithm for the Random Matching Problem.

Random Matching Scheme

1. Generate a perfect matching M using any known polynomial time algorithm:
2. apply one of the above transitions |V;|* times, letting M’ be the resulting matching;

3. if M' € M,(G), output M’ and halt, otherwise goto Step 1.

It follows easily from Theorem 4.1, that the above scheme randomly generates a perfect
matching uniformly. The following theorem due to Broder implies that the above scheme
runs in polynomial time.

Theorem 4.2 (Broder) For each bipartite graph G(V,, V3, E),

1 |M (G 2
< < |4
Vi = Do) =

=1



5 The Walking Problem for Matching

In this section, we show that the polynomial time Random Matching Scheme presented in
the last section can not be parallelized in NC, unless NC = P. We shall prove the case
when the Broder’s transition is used. The proof also applied to the case when Jerrum and
Sinclair’s transition is used.

For each bipartite graph G(V4, V3, E), define a binary operator @ : M,(G)U M,_1(G) x
Vi = M. (G)U M,_1(G) as, for each M € M,(G) U M,_(G) and v € ¥,

M — (v, M(v)) i; é\rf < JE/I,,SG) |
- if (v, M E
Mowv= M+£v‘,BgEMg; if v = By ¢
M+ (v,By{M)) — (v, M(v)) otherwise

Assume @ is left associative, that is M Q v, @ va = (M Q v1) @ vy).

Definition 5.1 (The Walking Problem for Matching) Given a bipartite graph G(V;, V3, E
Me M, (GYUM._(G), and vy,...,ux € Vi, compute WPM(M,v,,...,vn), where

WPM(M,n,...,oN)=MQu Q- Q vn.

The Walking Problem for Matching can be viewed as an execution of a random walk of
the algerithms of Broder, Jerrum, and Sinclair. Clearly, if the Walking Problem for Matching
isin NC or RNC, then the Random Matching Problem is also in NC or RNC, respectively.

However, we shall show

Theorem 5.1 (Walking Problem for Matching) The Walking Problem for Matching is
log-space complete for P.

The reduction is from the Lexical First Maximal Independent Set Problem.

5.1 Some Structure Properties

We will present some interesting and important properties of the Walking Problem for Match-
ing. These properties will be used in the NC reduction from the Lexical First Maximal
Independent Set Problem to the Walking Problem for Matching.

Lemma 5.1 (Idempotent Properties) For all M € M,(G)U M,_1(G), for all ve W,

WPM(Mv,v)=MQuvQuv=M

[PROOF]: There are four cases,
1. if M € M,(G), then clearly, by the definition of @, WPM(M,v,v) = M;
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o

ifv= B(M)and (v,B(M)i = £, then /Dv = M+(v, By(M)), hence, WPM(M. v, v) =
M+ (v, Ba(M)) = (v, Bo(M)) = Al

3. if (v, Ba(M)) € E. then M D v = M, hence, WPM(M,v,v) = M:

4. if (v, Bo(M))e Fand v # Bi(M)then M= MQv=M— (v, M(v)) + (v. By(M)).
Hence, By(M') = M(v) and M'(v) = B,(M), which implies that WPM (M, v, v) =
MQv=M+(V,M(v)) ~ (v, B{M)) = M:

A Bi-valued Graph of name j and k, denoted as BG,, is a bipartite graph of four
vertices as shown in the following figure (Figure 1}.

)X

BG; O-marching 1 -matching
Figure 1: A Bi-Valued Graph of Name j and & and two Matchings

Each Bi-valued Graph BG,, has two matchings. They are My = {(7,7), (k, &)} and
My = {(3,¥),(k,7")}. Mo and M, are called the O0-matching and the 1-matching of BG;,
respectively.

We can attach a Bi-valued Graph BG; to an edge (3, ') of a bipartite graph G'(V{, V], £,
by connecting vertex j with vertex i’. In other words, we define another bipartite graph, de-
noted by Attatchingg:((i,v), BG;i) = (Vy, Vo, E), where V; = VIG{s.k}, Va= ViU {; ¥},
and £ = E'U Ed(BG;;) U {(j,7)} (see Figure 2).

Awaching _ (ii). BG, )

Figure 2: An Attached Graph
Lemma 5.2 (0~1 Devices) Foreach M = M'U{(j,;"), (k, k")} € M. -1(G) where G(V}, V4, E) =
Attatchinga:((1,v), BG;.) and M’ € M,_,(G") such that M'(i) = ¢,
C o, M ifgi’ ngMg% ¢ E
W = M
Put ki) = {4 (G a,e y HUEBOD) EE.
See figure 3.
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Figure 3: Two Cases of the 0-1 Devices Lemma

[PROOF]: if (i, Bo(M)) € E, then
MQi=M@j=MQk=M.

Hence, WPM(M,:, 5, k,7,:) = M.
if (3, Bo(M)) € E, then the proof is in the following figure (Figure 4).
: a
Lemma 5.2 shows that there is a very simple walking sequence that the matching ob-
tained after the walking sequence sets the Bi-valued graph BG; to the 0-matching if ¢ is
not connected with the unmatched vertex in V; and to the 1-matching otherwise. Moreover,
the changing is localized inside BG;x. Such a walking sequence is denoted as C; ;x, i.e.,

b C‘erk = (i’j? k’j’ z)'

A L-place Bi-valued graph of name j and k, denoted as BGf-:k, is a bipartite graph of
2(L + 1) vertices as shown in the following figure (Figure 5).

Each BG’f”,, contains L Bi-valued graphs BGj 4, ..., BGj, &, as subgraphs. Note that
BGf{k has 2% + 1 perfect matchings: one contains the edge (k,j;), called the infeasible
matching and all others are called feasible matchings, which are formed by a matching from
each of its Bi-valued subgraph plus the edges (J, j') and (k, &"). In other words, each feasible
matching M of BGE; can be written as

M = (0 M,) U {(k, ), G5},

=1

where M, is a matching of BG,, +,. M is the all I’s-matching ifforall1 <1< L, M is the
1-matching of BG; . M is the all 0’s-matching if for all 1 <{ < L, M, is the O-matching
Of BGjl-kl‘
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Figure 5: BGﬁk, the All 0’s-Matching, and the All 1's-Matching
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We can attach a Bi-valued Graph BGJI{,‘ to an edge (¢, ¢') of a bipartite graph G'(V{, VJ, E'),
by connecting vertex j with vertex i’, & with all neighbors of ¢ but ¢/, and attaching each Bi-
valued subgraph to (z,#'). In other words, we define another bipartite graph (see Figure 6),
denoted by Attatchingg((i,?’), BG; k) (W, V,, E), where

‘/1 = V';U{j,k,j],---,jL,k],...,kL}
Vo = VJU{i K, 51, . i, ks KL}
E = E'UEd(BGE)U{(J, )} u{(nil <1< LU {(k,v)|(5,v) € B v #14'}

Attaching ;. ((i.i),BG5)

Figure 6: An Attached Graph

Lemma 5.3 (Checking Devices) Foreach M = M’UM,’SGL € M._1(G) where G(V],V,, E) =
Attatchinga((i,4), BGL,), M’ € Mn_1(G") such that M'(i ) = ¥, and MBGI- is a feasible
matching of BGJ,,, such that if

WPM(M$ ka kLijs kL-—l:jL—l: "',j21 kly k? t.hjs k11j2$k21 ey jLa kL: k!]) M"U MBG "

then
MY = { M - (3,i) + (i, Bs(M") 'fM;BGL is ¢ all 1’s-matching and (¢, Bo(M')) € E

M othcrunse

where (i) M" € M,_1(G") and (i) ng‘,n is a feasible matching of BGE,

[PROOF]: We prove the case when L = 1. For L < 1, the similar argument applied. The
proof is in Figure 7.
]
Lemma 5.3 shows that there is a very simple walking sequence that the matching ob-
tained after the walking sequence moves the unmatched vertex to a particular node if the
matching in an attached L-place Bi-valued graph is a all 1's matching. Such a walking
sequence is denoted as ONE; j4, i.e.,

® ONEi,j,k.L = (ks kijLa kL—l;jL—ly ---sj2$k11 ka%]a klajh k?s ‘“sjln kL! k$j)'
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Figure 7: A Proof to the Case When L
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6 The Reduction

In this section, we will show that the Lexical First Maximal Independent Set Problem is
NC-reducible to the Walking Problem for Matching. The reduction hinges on the structure
properties of the matching problem and the @ operator.

Theorem 8.1 The Lezical First Mazimal Independent Set Problem is NC-reducible to the
Walking Problem for Matching.

6.1 Informal Discussions

The reduction is carried out by using Lemma 5.2 and 5.3. For each vertex
v in the given graph G(V, E), we introduce another vertex v’ and make (v,v’)
an edge in the bipartite graph and also an edge in the initial matching, where
V = {v1,...,0,}, and order(v;) < order(v;4;). We introduce another pair of
vertices o and o’ such that o and o’ are the unmatched pair in the initial matching.
The vertex o' is connected with all vertices in V. We will show that a walking
sequence can be constructed such that the matching obtained after the walking
sequence has the properties that for each v € V, v is in the lexical first maximal
independent set iff (v, v’) is not in the matching.

Informally, the walking tests the vertices in V sequentially according to their
order. The vertex v, is tested first. Note that initially, the unmatched vertex
is o' which is connected with all vertices in V. The test is performed by a
walking sequence of Lemnma 5.2 followed by a walking sequence of Lemma 35.3.
The Lemma 5.2 sequence tests whether a vertex, say v;, is connected the current
unmatched vertex. If the test succeeds, then the Lemma 5.3 sequence tests
whether v; had been disconnected from the unmatched vertex. If v; has never
been disconnected from the unmatched vertex, then as a side-effect, the test
makes (v;, the current unmatched vertezr) an edge of the matching and make v;
the current unmatched vertex.

In the construction of the bipartite graph, if (v;, v;) is an edge of E, then nei-
ther (vi, v}) nor (v;,v}) is an edge of the bipartite graph. Hence, if v! becormes the
unmatched vertex (v; is placed in the independent set), then all its higher order
neighbors are disconnected from the unmatched vertex. This connectivity can
be recorded by a walking sequence of Lemma 5.2 on the higher order neighbors. -

Hence, the walking sequence performing the following tests.

1. test the whether a vertex v; had been disconnected from the unmatched
vertex. If v; was disconnected from the unmatched vertex before, then some
of v,’s lower order neighbor had been placed in the independent set. hence,
v; is not in the independent set. If v; has not been disconnected from the

14




6.2

unmatched vertex. then no of v;’s lower order neighbor had been placed in
the independent set. hence, v; is in the independent set.

2. after testing v;, all of v,’s higher order neighbors are tested. If v; is placed in
the independent set, then its higher order neighbors are disconnected from
the unmatched vertex. Hence. by the time when they are tested, thev can
not be placed in the independent set.

The Proof

For each graph G(V, E), a higher neighborhood graph Hgo( H,, H,., E'x) is a bipartite graph
defined as following,

H1 = Vu {O}
Hy, = {V|veV}u{o}
Eg = {(v,v),(v,0)|v e Viu{o, o'} U {(u,v)|ve Viu & Ng(v)}

Clearly, given a graph G(V, E), Hg(H,, H,, Ex) can be computed in O(log |V]) time,

using {|V| + {E| processors.

[PROOF]: (Theorem 6.1) The reduction procedure on input a graph G(V, E), generates a
bipartite graph Bg(Vi, V2, Eg), a perfect matching M of Bg, and a walking sequence WSe,
where Be(V1, Vs, Eg) is called the matching bipartite graph of G and M is called the natural
matching of Bg.

Bg(Vi, V2, Eg) has |V| + 1 subgraphs, Sg and S;, for all i : 1 <1< |V Siisa
subgraph for the i** vertex in G.
The subgraphs are defined as,
— Sg = Hg, the higher neighborhood graph of G;
-5 = Bﬁ‘._)l(:(‘g)"'l, a A7 (v;) + 1 place Bi-valued graph.
Bg is defined in such way that for each v;,

Bg = Attachingp._s.((vi,v]), Si) (1)

It follows the Equation (1) that Bg can be computed in Oflog |V|) time, using O(|V| +
IE|) processors.

The natural matching, M, of Bg is defined as,
M = (U M,-) U {(v,v")[v e V}u{(o,0"}
=1
where M; is the all 0’s—matching of 3;.

Clearly, M can be computed in O(1) time, using O(|V| + [E]|) processors.
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e The walking sequence consists of |V| + 1 subsequences, that is
WSe=(0)o WS oWS0---0 WS,

where WS, is a walking sequence defined on the vertex v;.

W S; consists of three subsequences, i.e., WS; = C;0 IN;0 NE;, where letting N*(v;) =
(u1,...,%,) and r; = Rankgz, (vi), 1 <J <'s,

Ci = Cvi.J'(f)A—+1"‘(")A—+l
IN; = ONE, ji)kiia-+
NE; = Cupjtri)k(rs) 0~ 0 Cupi(ra) k(o)

Clearly, WSg can be computed in O(log |V|) time, using |V| + |E| processors.
The correctness of the reduction follows from the following lemma. a

Lemma 8.1 For each G(V, E), Mg = WPM(M,WSg) has the property that for each v €
V, (v,v") € Mg iff v is in the lezical first mazimal independent set of G.

Lemma 6.1 follows the following lemma.
For each 1 <i < n, let LMIS; = max{j|j < i,v; € LFMIS(G)}.

Lemma 6.2

1. Foreach 1l <i<n, Bo(WPM(M,W55,)) = vimrs,;

2. For each v; € V, if v is in the lezical mazimal independent set, then for alll < j <7,
(vi, By WPM (M, W Sg,;))) € E(Bg), where WS, = (0)o WS, 0---0WS5,.

[PROOF]: The lemma is proven by induction on :.

The lemma is clearly true for : = 1.

Assume that the lemma is true for all j < i, we shall show that it is true for i.

Let us first consider the case when v; € LFMISg. Sinceforall j < i, Bo(WPM{M,W Sg ;)) =
VLMIS, clea.rly, (U,', ULMIS,') ¢ E(G) Hence (U“, BQ(WPM(M., WSG.J;)) € E(Bc,') Therefore,
it follows from Lemma 5.2 and 5.3 and the definition of Bg, and W Sg that in WP M (M, WSs.i-1))
the matching edges from S; forms an all 1’s matching of S;. Therefore, B,(WPM (M,WSg,)) =
vl

We now consider the case when v; & LFMIS;. Since there is a j < 1 such that
v; € LFM1Sg and (vj,v;) € E(G). By the induction hypothesis, Bo(W PM(M,WSg ;))) =
LMIS,. Hence, (v1,Bo{ WPM(M,WSq,;))) € E(Bg). Thus, in WPM(M,WSg,i-1)) the
matching edges from S; does not form an all 1's matching of Si. Therefore, it follows
from Lemma 5.2 and 5.3 and the definition of Bg, and WS¢ that By(WPM(M,WSg,)) =

By(WPM(M, W Sg,-1)) = vimis,- O
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7 The Random Maximal Independent Set Problem
In this section. we prove the'following theorem.
Theorem 7.1

1. [fthere is a fully polynomial time bounded PTM for the Random Mazimal Independent
Set Problem, then NP = RP:

2. If there is an NC Random Mazimal Independent Set Scheme, then NP = RNC.

[PROOF]: A similar technique of Jerrum, Valiant, and Vazirani [10] is used. The reduction
is from the Mazrimum [ndependent Set Problem-an N P-complete problem.

The basic idea. as that of the Jerrum, Valiant, and Vazirani. is to transform a given
graph G to a one G’ in which more that half of its maximal independent sets are maximum
ones. Moreover, a maximum independent set of G can be computed in polynomial time
when a maximum independent set of G’ is given.

For each undirected graph G(V, E) of n vertices, let G(V", E’), the cligue graph of G,
be an undirected graph derived from G by replacing each vertex v in G by a graph G, of n
n—cliques, complete graphs of n vertices, such that if (v, u) is an edge of G, then each vertex
of G, is connected with each vertex of G, (See Figure 8).

Figure 8: A Graph and its Clique Graph

Formally, the vertex and edge sets of G’ are given by

Vi = Vx{l,..,n} x{1,..,n}
E' = {{<vii><uki>)|(v,u) € BEY (< v,4,) >, < vk, j >))

Clearly, G’ contains a maximal independent set of size kn iff ¢ contains one of size k.
and if G’ has an independent set of size kn, then it contains at least n** independent set of
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such size. Moreover, each maximal independent set I = {u;,...,u} of size k in G defines
exactly n** maximal independent sets of size kn in G’. They are of forms

{<up, Lty >,y <UL R In >y, < Uky L k1 Dy eeey < Uy Ltk > (2)

where 1 < 4;,...,% < n. And each maximal independent set of G’ is of the form as (2).

It is easy to check that each maximal independent set of G’ is of size kn for some k and
the number of maximal independent sets of size less than kn is bounded above by

k-1
S ( ? )nj" < knfinlk=bn o ook
i=1

Thus, it G has a maximum independent set of size k, the probability that a randomly
generated maximal independent set of G’ is of size kn is at least %.

It is easy to show that a maximal independent set of size k£ can be computed in polyno-
mial time given a2 maximal independent set of size kn in G'. Moreover, this transformation
is NC computable.

Since each step of the reduction is NC computable, the second part of the theorem
follows. B o

Since the Maximal Independent Set Problem is polynomial time and NC solvable {14],
our reduction provides another example that the problem of uniform random generation is
harder that the corresponding construction problem. For other examples, see [10].

8 Final Remarks and Open Questions

It is known that the Random Permutation Problem can be solved polylogarithmic time,
using polynomial number of processors. In fact, Miller and Teng gave an O(logn) time,
n processor Type(0)-Scheme for the Random Permutation Problem [16]. Therefore the
Random Matching Problem over the set of complete bipartite graphs can be solved efficiently
in parallel. It is important and interesting to show whether this is true for the class of general
bipartite graphs. It is also important to show whether the Random Matching Problem over
some of other naturally restricted classes of bipartite graphs can be solved in NC in parallel.
One natural class is the planar bipartite graphs, for which Miller and Naor showed that the
perfect matching problem is in deterministic NC and Vazirani showed that the number of
perfect matching of a planar bipartite graph can be computed in NC.

8.1 Open Questions
1. Is the Random Matching Problem over planar bipartite graphs in NC?
2. Is the Random Maxima! Independent Set Problem over planar graphs in P (NC)?
3. Is the Random Maximal Independent Set Problem over chordal graphs, circular arc

graphs, and circle graphs in P (NC)?
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8.2 Conjectures

Conjecture 8.1

1. There s no RNC algorithm to generate a perfect matching in a bipartite graph uni-
formly in random unless P = RNC.

2. Thereis no NC algorithin to approrimate permanent of a 0-1 matriz unless P = RNC.

Conjecture 8.2 The Approrimation Counting Problem (s not NC equivalent to the Random
Generation problem.
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