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Abstract 

In this paper, the parallel complexity of the Random Matching Problem-a. problem 
of generating a perfect matching in a bipartite graph uniformly in random-is consid
ered. We show that the only known polynomial time random matching algorithm, 
due to Broder, Jerrum and Sinclair, can not be parallelized in iVC, unless NC = P. 
The reduction is from the Lexical First Maximal Independent Set Problem. This re
sult shows many interesting structural properties between matching and lexical first 
maximal independent sets. It also leaves many interesting and important open ques
tions. We also show that any polynomial time scheme (NC scheme) for the Random 
Maximal Independent Set Problem implies NP = RP (NP = RNC). This provides 
another example that the problem of uniform random generation is harder than the 
corresponding construction problem. 

1 Introduction 
The Matching Problem is a natural and important problem in computing theory. Like the 
Maximal Independent Set problem, it has been used as an important subroutine in several 
computat ional problems. 

A set of edges, M, of a graph G( V, E) with no self-loops, is a perfect matching if every 
vertex is incident to exactly one edge of M. The problem of computing a perfect matching 
in a bipartite graph is also known as the marriage problem. 

Generating a perfect matching in a general graph is first solved in polynomial time 
by Edmonds [6] and improved by Even and Kariv [7]. By reducing the biparti te matching 
problem to the maximum flow problem, Hopcroft and Karp first present a simple O d ^ l 1 / 2 • 
E) t ime algorithm. On the other hand, Karp, Upfal and Wigderson [12], KarlofF [11], 
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and Mulmuley, Vazirani and Vazirani [17] showed that parallel RNC algorithms exist for 
computing a perfect (maximum) matching in general graphs. 

However, the Random Matching Problem- a problem of generating a perfect matching 
in a bipartite graph uniformly in random-had been left open for a many years. Until very 
recently, Border and Jerrum and Sinclair [3,9] showed how to computing a random matching 
in polynomial time. 

In this paper, the parallel complexity of the Random Matching Problem is considered. 
The efficient generation of a random perfect matching plays a critical role in efficiently ap
proximating the number of perfect matching in a bipartite graph, or equivalent the permanent 
of a 0-1 matrix [3,9,18]. 

We show that the only known polynomial time random matching algorithm, due to 
Broder, Jerrum, and Sinclair, can not be parallelized in NC, unless NC = P. The reduction 
is from the Lexical First Maximal Independent Set Problem. Some interesting structural 
properties between matching and the lexical first maximal independent sets are presented. 
Our results provides some evidence to the following conjectures. 

Conjec ture 1.1 

1. There is no RNC algorithm to generate a perfect matching in a bipartite graph uni
formly in random unless P = RNC. 

2. There is no NC algorithm to approximate permanent of a 0-1 matrix unless P = RNC. 

We also show that any polynomial time scheme (NC scheme) for the Random Maximal 
Independent Set Problem implies NP = RP (NP = RNC). This provides another example 
that the problem of uniform random generation is harder than the corresponding construction 
problem [10]. 

2 Definitions and Notations 

2.1 Perfect Matchings 
Let G(V, E) be a undirected graph where V = {vx,..., v\v\) is the vertex set and E is the 
edge set. G is bipartite if V can be partitioned into X and Y such that each edge has one 
end vertex in X and on in Y. 

A set of edges, M, of a graph G(V, E) with no self-loops, is called a matching if every 
vertex incident to at most one edge of M. A matching M is a perfect matching if every 
vertex incident to exactly one edge of M. 

2.2 The Lexical First Maximal Independent Set Problem 
A set of vertices / 6 V of a graph G(V, E) is an independent set if there is no edge between 
two vertices of / . An independent set / is maximal if for each vertex v 6 V — / , there is 
u E I such that (u, u) € E. 
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For each permutation it 6 S|v|, define order(vi) = 7r(z). The Lexical First Maximal 
Independent Set of a graph G{V,E) and a permutation 7r, denoted by LF MISq^, is an 
independent set such that 

1- ^rr-i(l) £ LFMIST,G', 

2. for each V{ £ LFMISQ,*, there is j : TT"" 1^) < 7r - 1(z), such that (vi,Vj) 6 

P r o b l e m 2.1 (Lexical First M a x i m a l I n d e p e n d e n t Set P r o b l e m ) Given a graph G(V, E) 
and a permutation tr, compute the lexical first maximal independent set of G. 

Without loss of the generality, it is assumed that = i. The Lexical First Maximal 
Independent Set Problem can be solved by the following simple greedy algorithm in linear 
time. 

A l g o r i t h m G R E E D Y L F M I S 
/ = 0, V = V;; 
whi le V1 ± 0 

/ = / u m i n ( ^ / ) ; ; 
V'= V-A£(min(V'));; 

o u t p u t / . 

where min( V ) = Vmin{i|t/,€V"} and NQ(V) is the set of neighbors of v in G of order larger 
than that of v. 

L e m m a 2.1 ( C o o k [4]) The Lexical First Maximal Independent Set Problem is log-space 
complete for P. 

2.3 Notations 
For each graph G(E, V), 

• Ed(G) = £ , the set of edges of a graph G; 

• Vr(G) = V, the set vertices of a graph G; 

• AG(V), the degree of a vertex v in a graph G; 

• AQ(V), the number of lower order neighbors of v in G; 

• NG(V), NQ(V), and NQ(V), the sets of all neighbors, all higher order neighbors, and all 
lower order neighbors, respectively, of v in G; 

Rankn (u) = ( ~ 1 if ix £ NG(v) 
G'vK ) \ \{w\w £ No(v) k order(w) <order(u)}\ otherwise 
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3 Random Generation Schemes 

3.1 Random Generation Problems 
Defini t ion 3,1 ( R a n d o m Generat ion P r o b l e m over Sets ) Let S be a finite set. The 
R a n d o m Genera t ion P r o b l e m over S is to generate uniformly, at random, an element 
ofS. 

The Random Generation Problem over many interesting sets has been studied [2,19,16]. 
The following are some examples. 

• R a n d o m P e r m u t a t i o n Prob lem: S = 5 n , the set of all n-element permutations 
[16,15,13]; 

• R a n d o m Factored C o m p o s i t e Prob lem: 5 = {factored composite numbers of lent h JV}, 

[2]; 

• R a n d o m Labe led Tree Prob lem: S = {labeled trees of n vertices} [16]; 

• R a n d o m U n l a b e l e d Graph P r o b l e m : S = {unlabeled graphs of n vertices} [5]; 

The Random Generation Problem can also be defined over binary relations. 

Def in i t ion 3.2 ( R a n d o m Genera t ion P r o b l e m over Re la t ions [10]) Let E be an al
phabet and R C E* x E* be a binary relation. The R a n d o m Generat ion P r o b l e m over 
R is to generate uniformly, at random, a y 6 E* which satisfies R(x,y) for a given x G E * . 

Def in i t ion 3 .3 ( R a n d o m M a t c h i n g P r o b l e m ) Given a bipartite graph G(VX, V2,E), gen
erate a perfect matching of G uniformly in random. In other words, the Random Matching 
Problem is a Random Generation Problem over the relation R, where i?(G, M) if M is a 
perfect matching of G. 

The following are some other interesting Random Generation Problems. 

• R a n d o m M a x i m a l I n d e p e n d e n t S e t P r o b l e m : R(G,I) if J is a maximal inde
pendent set of G; 

• R a n d o m C y c l e P r o b l e m : i?(G, C) if C is a cycle of G; 

• R a n d o m Topologica l Label ing Prob lem: R(G,ir) if ir is topological labeling of a 
DAG G; 

Follows from Jerrum, Valiant, Vazirani [10], the relation in the Random Generation 
Problem is restricted to the following set of p-relations where the relation can be checked 
efficiently. 

Def in i t ion 3.4 (P -re la t ions [10]) R C E* x E* is a p - r e l a t i o n if 

1. there is a polynomial p(n) such that R(x,y) \y\ < p ( |x | ) ; 

2. the predicate R(x,y) can be tested in deterministic polynomial time. 
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3.2 Probabilistic Turing Machines 
The model of computation used in this paper is the general probabilistic Turing machines 
(PTM) [8,10]. A probabilistic Turing machine is a Turing machine [1] equipped with an 
output tape and having a set of distinguished coin-tossing states. In each con-tossing state, 
two possible transitions of machine are specified. The computation of a PTM is deterministic, 
except when the PTM is in a coin-tossing state, in which case the next transition is decided 
by the toss of a biased coin which is a ratio of two integers computed previously by the 
machine. 

The P T M can be viewed as a random generator [10], with the distribution depending 
on the input x, and on some underlined relation R. A PT M is a uniform generator for a 
relation R C £* x E* iff 

1. for each x, y £ E", 

Pr(given input x, M outputs y) = j { { y ^ m if (x, y) G R 

2. for all inputs x £ E* such that {y G E* : R(x, y)} is not empty, 

Pr(M accpets x) > ^. 

A P T M M is f(n) time-bounded iff, for each natural number n and for each input 
x E E n , every accepting computation of M halt within f(n) steps. A P T M M is polynomially 
time-bounded if there exists a polynomial p(n) such that M is p(n) t ime-bounded. 

In the context of parallel computation, the computation model used in this paper is 
probabilistic PRAM which is a PRAM where each processor is a PTM. 

3-3 Random Generation Schemes 
There are four types of (uniform) random generation schemes (for examples, see Miller and 
Teng [16]). 

• Type(O)—Scheme: A random generation scheme is a Type(0)-Scheme for a relation 
i?, iff for each input x, the scheme always halts successfully and each y : R(x,y) is 
completely unbiasedly generated; 

• Type ( l )—Scheme: A random generation scheme is a Type( l ) -Scheme for a relation 
R, iff for each input x, the scheme may not halt successfully but each y : i?(x,y) is 
completely unbiasedly generated; 

• T y p e ( 2 ) - S c h e m e : A random generation scheme is a Type(2)-Scheme for a relation 
i?, iff for each input x, the scheme always halts successfully and the difference of the 
probabilities between each pair of each y x , y2 : i?(x, ĵ ), i?(x, y2) is bounded by a small 
epsilon; 
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• Type(3)— Scheme: A random generation scheme is a Type(3)-Scheme for a relation 
i?, iff for each input x, the scheme may not halt successfully and the difference of the 
probabilities between each pair of each j/i, j/2 * j/i), y2) is bounded by a small 
epsilon. 

Def ini t ion 3.5 ((e, 5)—Schemes) A random generation scheme S is an (c, 5 ) - s c h e m e s for 
a relation R if for each input x 6 S n , S halts successfully with probability 1 — 5 and for each 

y\,V2'- yi)iR(*,vi), 

\Pr(M outputs yi) — Pr(M outputs t/^)| < 
\{y : R(x,y)}\ 

An (c, 5)-Schemes is a fully polynomial-time scheme if there is a polynomial p(n, 1/c, 1/5) 
such that the scheme always halts in p(n, 1/c, 1/5) steps. 

An (c, 5)-Schemes is an NC scheme if there is a polynomial p(n, 1/€,1/5) and a k 6 JV 
such that the scheme uses p(n, 1/c, 1/6) processors and always halts in log*(n, 1/c, 1/5) steps. 

4 A Polynomial Time Random Matching Algorithm 
The first polynomial time algorithm for the Random Matching Problem was given by Broder 
[3] and was rigorously verified by Jerrum and Sinclair [9]. The algorithm is very simple. The 
algorithm uses a Markov chine that converges to a uniform distribution on the space of 
perfect matchings for any given bipartite graph. 

Given a bipartite graph G(Vi, V2j E) (|Vi| = |V^J), define Mn(G) be the set of all perfect 
matchings of G and M n _i(G) be the set of all matchings of size |Vi| — 1. 

The following notations will be used throughout the paper. 

• For each M £ Mn(G) U Mn-i(G), for each v 6 Vu M(v) denotes the vertex in V2 that 
(v,M(v)) G Af; 

• For each M 6 Af n_i(G), B\(M) stands for the unmatched vertex in \ \ and B2(M) the 
unmatched vertex in V2. 

The random matching generating scheme of Broder, Jerrum, and Sinclair uses a Markov 
chain MC(G) with state space M = M n (G) U M n_i(G) in which transitions are made by 
adding and/or deleting edges locally. 

The simpler transition was given by Broder, which are specified as follows. 

M C l - B r o d e r ' s Trans i t ion 

1. Choose a vertex v uniformly at random in Vx\ 

2. If M e M n ( G ) , then move to M - (v, M(v)); 
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3. If M G A / n - i ( G ) , 

(a) if (u,B2(iV/)) G £ , then move to M + (v,B2{M)) - (v, A/(u)); 
(b) otherwise do nothing. 

A slight modified transition was given by Jerrum and Sinclair. The transitions in MC(G) 
are specified as follows, in any state A/ G iV, choose an edge e = G £ uniformly at 
random and 

Jerrum and Sinclair's Transit ion 

1. if M G A/ n (G) and e G A/, move to state A/' = A/ - e; 

2. if M G A/ n«x(G) and u and u are unmatched in A/, move to A/' = A/ + e; 

3. if Af G A / n . i ( G ) , v = B 2 ( M ) and u ^ #i (Af) , move to Af + e - (u,Af(u)), and 
symmetrically with u and v interchanged; 

4. in all other case, do nothing. 

For each M0 and A/ G Af n(G) U Af n _i(G), for each integer *, let Pr(M0 4̂  M ) denote 
the t -s tep transition probability from matching Mq to matching M. 

Jer rum and Sinclair proved that the above Markov chain is rapidly mixing, i.e., that 
after a short period of evolution in the distribution of the final state is essentially independent 
of the initial state. Here short means bounded by a polynomial in the input size. Formally, 

T h e o r e m 4.1 (Jerrum and Sinclair) There is a k G J\f independent ofG(Vu V2, E), such 
that for each e > 0, for each MQ, A/ G MGy 

The following is a polynomial time algorithm for the Random Matching Problem. 

R a n d o m M a t c h i n g S c h e m e 

1. Generate a perfect matching M using any known polynomial time algorithm; 

2. a p p l y one of the above transitions |Vi|* times, letting A/' be the resulting matching; 

3. if M1 G Af n(G), o u t p u t M1 and halt , o therwise go to Step 1. 

It follows easily from Theorem 4.1, that the above scheme randomly generates a perfect 
matching uniformly. The following theorem due to Broder implies that the above scheme 
runs in polynomial time. 

T h e o r e m 4.2 ( B r o d e r ) For each bipartite graph G(VX,V2,E), 

1 - e 
< Pr(M0 'W* Af) < 1 + c 

\Mn(G) U Mn^(G)\ \Mn(G)uMn^(G)\ 

\Mn(G)\ <l^|2 

\Mn^(G)\ 



5 The Walking Problem for Matching 
In this section, we show that the polynomial time Random Matching Scheme presented in 
the last section can not be parallelized in NC, unless NC = P. We shall prove the case 
when the Broder's transition is used. The proof also applied to the case when Jerrum and 
Sinclair's transition is used. 

For each bipartite graph G(Vi, V2, E), define a binary operator 0 : Mn(G) U M n _i (G) x 
Vx Mn{G) U M n _ i ( G ) as, for each M € Mn(G) U M n _ i (G) and v € Vx, 

Assume 0 is left associative, that is M 0 vx 0 v2 = ( (M 0 v\) 0 V2). 

Defini t ion 5.1 ( T h e Walking P r o b l e m for M a t c h i n g ) Given a bipartite graph G(VX,V2, E 
M e M n ( G ) U Mn„i(G), and vx,..., vN € Vl9 compute WPM(M, vx,..., vN), where 

The Walking Problem for Matching can be viewed as an execution of a random walk of 
the algorithms of Broder, Jerrum, and Sinclair. Clearly, if the Walking Problem for Matching 
is in NC or RNC, then the Random Matching Problem is also in NC or RNC, respectively. 

However, we shall show 

T h e o r e m 5.1 (Walk ing P r o b l e m for M a t c h i n g ) The Walking Problem for Matching is 
log-space complete for P. 

The reduction is from the Lexical First Maximal Independent Set Problem. 

5.1 Some Structure Properties 
We will present some interesting and important properties of the Walking Problem for Match
ing. These properties will be used in the NC reduction from the Lexical First Maximal 
Independent Set Problem to the Walking Problem for Matching. 

L e m m a 5.1 ( I d e m p o t e n t P r o p e r t i e s ) For all M € Mn(G) U Af n _i(G), for all v G V\} 

WPM(M, vi,..., vN) = M 0 vi 0 • • • 0 VN. 

WPM(M, v,v) = M 0v0v = M 

[ P R O O F ] : There are four cases, 

1. if M € Afn(G), then clearly, by the definition of 0 , WPM(M, v, v) = M; 
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2. if v = BX{M) and (u, 5 2 (A / ) ) = £ , then MQv = A/+(u, B 2 (A/) ) , hence, WPM(M. v , v) = 
M + (v,B2(M))-(v,B2(M)) = M; 

3. if (v ,B 3 (A/ ) ) £ E, then A/ 0 u = A/, hence, WPM{M, v,v) = A/; 

4. if (v, B2{M)) £ E and v ^ then A/' = M 0 u = Af - (u, Af (u)) + (v. 5 2 (Af) ) . 
Hence, B2{M') = Af(u) and M'(v) = £ 2 (Af ) , which implies that WPM(M,v,v) = 
M' 0d = Af' + (V, M{v)) - (v, £ 2 (Af) ) = M; 

A Bi-valued Graph of name j and k, denoted as BGjtk, is a bipartite graph of four 
vertices as shown in the following figure (Figure 1). 

1 1 X 
O-maiching I -matching 

Figure 1: A Bi-Valued Graph of Name j and k and two Matchings 

Each Bi-valued Graph BGhk has two matchings. They are M 0 = {(j, j f ) , and 
Mi = {(j , M) a n d Afi are called the O-matching and the l-matching of BGj^, 
respectively. 

We can a t tach a Bi-valued Graph BGj^ to an edge (i, i') of a bipartite graph G'( V{, V2', £ ' ) , 
by connecting vertex j with vertex z'. In other words, we define another bipartite graph, de
noted by AttatchingG>((i,i'), BGjik) = (VUV2,E), where Vt = Vr

1

/U{j,fc}, V2 = V2' U 
and E = E'U Ed{BGhk) U {(j, i')} (see Figure 2). 

AttachingG.((u), BGjk) 

Figure 2: An Attached Graph 

L e m m a 5.2 ( 0 - 1 D e v i c e s ) For each M = M \ j { ( j , j ' ) * (M')> € M n - i ( G ) w/iere G(V t , V2, £ ) = 
AttatchingG,((i,i'), BGJik) and M' G M n _ 1 ( G / ) stzcA that M'{i) = i', 

^ W M - . * . , - . o « { j j , u { w , 4 0 i ( t , , , ) } i $ K $ j f i 
5ee figure 3 . 

9 



Figure 3: Two Cases of the 0-1 Devices Lemma 

[PROOF]: if (t, B 2 (Af)) £ E, then 

M 0 i = M 0 j = A f 0 f c = M. 

Hence, WPM(M,iJ, = M. 
if (z, B2{M)) € then the proof is in the following figure (Figure 4). 

• 
Lemma 5.2 shows that there is a very simple walking sequence that the matching ob

tained after the walking sequence sets the Bi-valued graph BGjtk to the 0-matching if i is 
not connected with the unmatched vertex in V2 and to the 1-matching otherwise. Moreover, 
the changing is localized inside BGjtk- Such a walking sequence is denoted as C ^ , i-e., 

A L-place Bi-valued graph of name j and k, denoted as BGfk, is a bipartite graph of 
2(L + 1) vertices as shown in the following figure (Figure 5). 

Each BGfk contains L Bi-valued graphs BG^^u BGjLtkL as subgraphs. Note that 
BGfk has 2L + 1 perfect matchings: one contains the edge (k,j[), called the infeasible 
matching and all others are called feasible matchings, which are formed by a matching from 
each of its Bi-valued subgraph plus the edges ( j , / ) and (A:, kf). In other words, each feasible 
matching M of BGfk can be written as 

where M\ is a matching of BGjltkr M is the all 1 Vmatching if for all 1 < / < L, M\ is the 
1-matching of BGjlM. M is the all 0 Vmatching if for all 1 < / < L, M\ is the 0-matching 
of BGjlikr 
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We can attach a Bi-valued Graph BGfk to an edge (i, i') of a bipartite graph G'(V{, V{, E'), 
by connecting vertex j with vertex z', k with all neighbors of i but z', and attaching each Bi-
valued subgraph to (z,z'). In other words, we define another bipartite graph (see Figure 6), 
denoted by AttatchingG*((i, z'), BGfk) = (Vu V2y E), where 

V2 = VjU{j\kfJ[,...Jl%,...,VJ 

E = £ ' U Ed(BG$k) U { ( j , i ' ) } U {(j/,011 < I < L) U { ( f c , t / ) | ( z , z / ) € £ ' , < / # i '} 

AttachiBf0.((U')3GJJy 
Figure 6: An Attached Graph 

L e m m a 5.3 ( C h e c k i n g D e v i c e s ) For each M = M'UM'L e M n _ i ( G ) w/iere G(V1, V2, £ ) 

AttateAm0G'((MO>£^£*)> € Af n_i(G') such that M'(i) = i', and M'BQL^ is a feasible 

matching of BGjk, such that if 

WPM{M, k, kLyjL, JCL-IJL-U J2, * i , M> kuj2> h, Jl> J ) = Af " U M £ G ^ 

M» - I M ' " + ( ^ ( M ' ) ) ifM'BQLk is a all l's-matching and ( i ,B 2 (M' ) ) € £ 
\ M' otherwise 

where (i) M" € M n _i (G') and (ii) MBGL is a feasible matching of BG^k. 

[ P R O O F ] : We prove the case when L = 1. For L < 1, the similar argument applied. The 
proof is in Figure 7. 

• 
Lemma 5.3 shows that there is a very simple walking sequence that the matching ob

tained after the walking sequence moves the unmatched vertex to a particular node if the 
matching in an attached Z,-place Bi-valued graph is a all Ts matching. Such a walking 
sequence is denoted as ONEij^, i-e., 

• ONEijXL = ( * , kL, j L , kL-i,jL-U - M J2i fcli *i hh kl,J2, k2, ...,JL, *L, 
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6 The Reduction 
In this section, we will show that the Lexical First Maximal Independent Set Problem is 
iVC-reducible to the Walking Problem for Matching. The reduction hinges on the structure 
properties of the matching problem and the 0 operator. 

T h e o r e m 6.1 The Lexical First Maximal Independent Set Problem is NC-reducible to the 
Walking Problem for Matching. 

6.1 Informal Discussions 
The reduction is carried out by using Lemma 5.2 and 5.3. For each vertex 

v in the given graph G{V,E), we introduce another vertex v' and make (v,v') 
an edge in the bipartite graph and also an edge in the initial matching, where 
V = { u i , . . . , u n } , and order(vi) < order{vi+i). We introduce another pair of 
vertices o and o1 such that o and o1 are the unmatched pair in the initial matching. 
The vertex o1 is connected with all vertices in V. We will show that a walking 
sequence can be constructed such that the matching obtained after the walking 
sequence has the properties that for each v € V, v is in the lexical first maximal 
independent set iff (v, vf) is not in the matching. 

Informally, the walking tests the vertices in V sequentially according to their 
order. The vertex Vi is tested first. Note that initially, the unmatched vertex 
is o' which is connected with all vertices in V. The test is performed by a 
walking sequence of Lemma 5.2 followed by a walking sequence of Lemma 5.3. 
The Lemma 5.2 sequence tests whether a vertex, say t;t-, is connected the current 
unmatched vertex. If the test succeeds, then the Lemma 5.3 sequence tests 
whether V{ had been disconnected from the unmatched vertex. If V{ has never 
been disconnected from the unmatched vertex, then as a side-effect, the test 
makes (ut-, the current unmatched vertex) an edge of the matching and make v'{ 

the current unmatched vertex. 
In the construction of the bipartite graph, if (v,-, Vj) is an edge of £ , then nei

ther (vi, v'j) nor (vj, vf) is an edge of the bipartite graph. Hence, if v[ becomes the 
unmatched vertex (v,- is placed in the independent set), then all its higher order 
neighbors are disconnected from the unmatched vertex. This connectivity can 
be recorded by a walking sequence of Lemma 5.2 on the higher order neighbors. 

Hence, the walking sequence performing the following tests. 

1. test the whether a vertex V{ had been disconnected from the unmatched 
vertex. If v,- was disconnected from the unmatched vertex before, then some 
of V{S lower order neighbor had been placed in the independent set. hence, 
V{ is not in the independent set. If V{ has not been disconnected from the 
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unmatched vertex, then no of vfs lower order neighbor had been placed in 
the independent set. hence, i\ is in the independent set. 

2. after testing t;,-, all of i>,-'s higher order neighbors are tested. If i;,- is placed in 
the independent set, then its higher order neighbors are disconnected from 
the unmatched vertex. Hence, by the time when they are tested, they can 
not be placed in the independent set. 

6.2 The Proof 

For each graph G(V, E), a higher neighborhood graph HG{H\, H2, EH) is a bipartite graph 
defined as following, 

Hx = V U {o} 

H2 = W\v ev}u {o'} 

EM = {(v,v'\(v,o')\ve V}u{o,o'}u{(u,v')\veV,u£NG(v)} 

Clearly, given a graph G(V,E), HG(Hi, H2, EH) can be computed in 0 ( l o g | V | ) time, 
using \V\ + \E\ processors. 
[PROOF]: (Theorem 6.1) The reduction procedure on input a graph G(V, E), generates a 
bipart i te graph BG(Vi, V2, E G ) , a perfect matching M of BG, and a walking sequence WSQ, 
where BG(VX, V2, EG) is called the matching bipartite graph of G and M is called the natural 
matching of BG. 

• BG(Vi,V2,EG) has \V\ + 1 subgraphs, SG and 5,-, for all i : 1 < i < \V\. 5,- is a 
subgraph for the i t h vertex in G. 

The subgraphs are defined as, 

- SG = HG, the higher neighborhood graph of G; 

- Si = Bf(i)lk(i)'1 * a &~(vi) + 1 place Bi-valued graph. 

BG is defined in such way that for each v,-, 

BG = AttachingBG-st((vi, u-), 5t-) (1) 

It follows the Equation (1) tha t BG can be computed in 0( log \V\) time, using 0(\V\ + 
| £ | ) processors. 

• The natural matching, Af, of i?G is defined as, 

M = (\J M)j U {(V,V')\V €V}U {(o,o')} 

where Mi is the all O's-matching of 5». 

Clearly, Af can be computed in 0 (1 ) time, using 0 ( | V | + \E\) processors. 
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• The walking sequence consists of \V\ + 1 subsequences, that is 

WSG = (o) o WSi o WS2 o • • - o WSn 

where WSi is a walking sequence defined on the vertex V{. 

WSi consists of three subsequences, i.e., WSi = CioINioNEi, where letting N+(vi) = 
(tii, • • •, u.) and r, = RankQUj(vi), 1 < j < s, 

^•.i(*)A-+i»*(0A-+i 

Clearly, WSG can be computed in 0( log \V\) time, using |V| + \E\ processors. 

The correctness of the reduction follows from the following lemma. • 

L e m m a 6.1 For each G(V,E), MG = WPM(M, WSG) has the property that for each v € 
V, (v, v') £ MG iff v is in the lexical first maximal independent set of G. 

Lemma 6.1 follows the following lemma. 

For each 1 < i < n, let LMIS{ = mzx{j\j < i, Vj € LFMIS(G)}. 

L e m m a 6.2 
1. For each 1 < i < n, B2(WPM(M,WSGji)) = v'LM1Si; 

2. For each Vi € V, if v is in the lexical maximal independent set, then for all 1 < j < i, 
fa, B2(WPM{M, WSGJ))) e E(BG), where WSGyi = (o) o WSX o . . . o WS{. 

[ P R O O F ] : The lemma is proven by induction on i. 
The lemma is clearly true for i = 1. 
Assume that the lemma is true for all j < i, we shall show that it is true for i. 
Let us first consider the case when vt- G LFMISG. Since for all j < i, B2(WPM(M, WSGj)) 

VLMiSi, clearly, ( v u v L M I S j ) & E(G). Hence (v»B2(WPM(M,WSGJ)) 6 E{BG). Therefore, 
it follows from Lemma 5.2 and 5.3 and the definition of BG, and WSG that in WPM(M, WSG^X) 
the matching edges from Si forms an all l's matching of 5t-. Therefore, B2(WPM(M, WSGyi)) = 

We now consider the case when u,- £ LFMISq. Since there is a j < i such that 
Vj € LFMISq and (v,-, v{) 6 E{G). By the induction hypothesis, B2(WPM(M, WSGj))) = 

LMISj. Hence, K , B 2 ( W P M ( M , W S G J ) ) ) <? E{BG). Thus, in WPM(M,WSa,i-i)) the 
matching edges from 5,- does not form an all l's matching of 5,. Therefore, it follows 
from Lemma 5.2 and 5.3 and the definition of BG, and WSG that B2(WPM(M, WSa,i)) = 
B2(WPM(M, WSa*-i)) = v'LMISi. • 

Ci = 

NEi = 
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7 The Random Maximal Independent Set Problem 
In this section, we prove the following theorem. 

T h e o r e m 7.1 

1. If there is a fully polynomial time bounded PTM for the Random Maximal Independent 
Set Problem, then NP = RP; 

2. If there is an NC Random Maximal Independent Set Scheme, then NP = RNC. 

[ P R O O F ] : A similar technique of Jerrum, Valiant, and Vazirani [10] is used. The reduction 
is from the Maximum Independent Set Problem-^n iVP-complete problem. 

The basic idea, as that of the Jerrum, Valiant, and Vazirani, is to transform a given 
graph G to a one G' in which more that half of its maximal independent sets are maximum 
ones. Moreover, a maximum independent set of G can be computed in polynomial time 
when a maximum independent set of G' is given. 

For each undirected graph G(V, E) of n vertices, let G ( V , E'), the clique graph of G, 
be an undirected graph derived from G by replacing each vertex v in G by a graph Gv of n 
n-cliques, complete graphs of n vertices, such that if (v, u) is an edge of G, then each vertex 
of G v is connected with each vertex of Gu (See Figure 8). 

Figure 8: A Graph and its Clique Graph 

Formally, the vertex and edge sets of G' are given by 

V = Vx { l , . . . , n } x { l , . . . , n } 

E' = {(< v,ij >,< u,k,l >)|(v,u) e £}U{(< V^J >< >)} 

Clearly, G' contains a maximal independent set of size kn iff G contains one of size A\ 
and if G' has an independent set of size Aw, then it contains at least nkn independent set of 
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such size. Moreover, each maximal independent set I = { u 1 ? . . . , Uk) of size k in G defines 
exactly nkn maximal independent sets of size kn in G'. They are of forms 

where 1 < ix,..., < n. And each maximal independent set of G1 is of the form as (2). 
It is easy to check that each maximal independent set of G1 is of size kn for some k and 

the number of maximal independent sets of size less than kn is bounded above by 

Thus, it G has a maximum independent set of size A:, the probability that a randomly 
generated maximal independent set of G' is of size kn is at least | . 

It is easy to show that a maximal independent set of size k can be computed in polyno
mial time given a maximal independent set of size kn in G'. Moreover, this transformation 
is NC computable. 

Since each step of the reduction is NC computable, the second part of the theorem 
follows. • 

Since the Maximal Independent Set Problem is polynomial time and NC solvable [14], 
our reduction provides another example that the problem of uniform random generation is 
harder that the corresponding construction problem. For other examples, see [10]. 

8 Final Remarks and Open Questions 
It is known that the Random Permutation Problem can be solved polylogarithmic time, 
using polynomial number of processors. In fact, Miller and Teng gave an O(logn) time, 
n processor Type(0)-Scheme for the Random Permutation Problem [16]. Therefore the 
Random Matching Problem over the set of complete bipartite graphs can be solved efficiently 
in parallel. It is important and interesting to show whether this is true for the class of general 
bipartite graphs. It is also important to show whether the Random Matching Problem over 
some of other naturally restricted classes of bipartite graphs can be solved in NC in parallel. 
One natural class is the planar bipartite graphs, for which Miller and Naor showed that the 
perfect matching problem is in deterministic NC and Vazirani showed that the number of 
perfect matching of a planar bipartite graph can be computed in NC. 

8.1 Open Questions 
1. Is the Random Matching Problem over planar bipartite graphs in NC? 

2. Is the Random Maximal Independent Set Problem over planar graphs in P (NC)? 

3. Is the Random Maximal Independent Set Problem over chordal graphs, circular arc 
graphs, and circle graphs in P (NC)? 

{< ui, l , i u >,...,< v>i,n,i\,n >,...,< >,...,< u*,l,i*,n >}, (2) 
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8.2 Conjectures 
C o n j e c t u r e 8.1 

/. There is no RNC algorithm to generate a perfect matching in a bipartite graph uni
formly in random unless P = RNC. 

2. There is no NC algorithm to approximate permanent of a 0-1 matrix unless P = RXC. 

C o n j e c t u r e 8,2 The Approximation Counting Problem is not NC equivalent to the Random 
Generation problem. 
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