
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Final Report on Supercomputer Research

15 November 1983 to 31 May 1988

Ellen P. Douglas, Alan R. Houser, C. Roy Taylor, Editors

June 1989
CMU-CS-89-157

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was sponsored by the Defense Advanced Research Projects Agency,
DoD, through D A R P A order 4864, and monitored by the Space and Naval Warfare Sys
tems Command under contract N00039-85-C-0134. Views and conclusions contained
in this document are those of the authors and should not be interpreted as representing
official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or of the United States Government.

A B S T R A C T 1

Abstract
This report documents DARPA-supported supercomputer research in Carnegie Mellon
University's Computer Science Department during the period 15 November 1983
through 30 September 1987, extended to 31 May 1988. Each chapter discusses one of
four major research areas. Sections within each chapter present the area's general
context, the specific problems addressed, our contributions and their significance, and
an annotated bibliography.

The research areas and their main objectives are:
• Supercomputer Workbench [SCW]: Develop a multiprocessor operating

system, programming environment, and instrumentation environment to
support multiprocessor computing research.

• Systolic Array Machine [SAM]: Develop a powerful computational engine
using systolic architectures and interconnections tailored to specific tasks.

• Production System Machine [PSM]: Explore the use of parallel
architectures for production systems and develop a machine especially for
production systems.

• Command Action Team [CAT]: Continue work on a knowledge-based
expert system designed to assess and monitor threats to a carrier group.

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E K ^ J I V 1 | ^ ^ R 2 R J E S

T A B L E O F C O N T E N T S

Table of Contents

1 . INTRODUCTION 1-1
1.1 Research scope 1-1
1.2 The Research environment 1 -1

2. SUPERCOMPUTER WORKBENCH 2-1
2.1 Challenges in Multiprocessor and Distributed Operating Sys- 2-1

tern Research
2.1.1 Previous multiprocessor operating systems 2-1
2.1.2 The Accent distributed operating system 2-2

2.2 A UNIX-Compatible Distributed Multiprocessor Operating Sys- 2-3
tern
2.2.1 Mach system overview 2-3
2.2.2 Building-block abstractions 2-4
2.2.3 A portable virtual memory management system 2-5
2.2.4 interprocess communication 2-5
2.2.5 integrating memory and communication 2-6
2.2.6 Sharing memory 2-8
2.2.7 Extending the kernel 2-9

2.3 A Multiprocessor Programming Environment 2-9
2.3.1 Programming multiprocessors for performance 2-9
2.3.2 A Programming and instrumentation environment 2-10

2.4 Bibliography 2-12
3. SYSTOLIC ARRAY MACHINE 3-1

3.0.1 System components 3-1
3.0.2 Chronology 3-3
3.0.3 Evaluation 3-4

3.1 Developing the Architecture 3-5
3.1.1 Powerful systolic cells 3-5
3.1.2 Systolic communication support 3-6
3.1.3 Inter-cell control coupling 3-7
3.1.4 Gaining programmability without sacrificing efficiency 3-7
3.1.5 An integrated, general-purpose host 3-8

3.2 Software system 3-9
3.2.1 Language design 3-9
3.2.2 An optimizing compiler 3-10
3.2.3 Programming environment 3-11
3.2.4 Debugger 3-11

3.3 Applications 3-12
3.3.1 Application areas 3-12
3.3.2 Program partitioning methods 3-13

3.4 Bibliography 3-14
4. THE PRODUCTION SYSTEM MACHINE PROJECT 4-1

4.1 Introduction 4-1
4.1.1 Sources of parallelism in production systems 4-1
4.1.2 Research goals and considerations 4-2

4.2 Designing a Parallel Interpreter 4-3

T A B L E O F C O N T E N T S

4.2.1 Evaluating opportunities for parallelism
4.2.2 Bounding parallel architecture alternatives
4.2.3 Building a preliminary system

4.3 Parallel Interpreter Implementations
4.3.1 Testing the O P S S parallel interpreter
4.3.2 Implementing a parallel Soar interpreter

4.4 Bibliography
5. THE CAT EXPERT SYSTEM PROJECT

5.1 Developing the Internal System
5.1.1 Structure and maintenance of C A T ' S knowledge base
5.1.2 Improvement of inference net maintenance rules
5.1.3 Studying alternative data representations

5.2 Developing the External System
5.2.1 Developing the alert facility
5.2.2 Developing an automatic knowledge acquisition system

5.3 Developing System-Testing Tools
5.3.1 Developing demonstration scenarios
5.3.2 L E A N C A T

5.4 Cooperation with NOSC
I. GLOSSARY

I N T R O D U C T I O N 1-1

1. INTRODUCTION

This report documents parallel processing research conducted by Carnegie Mellon
University's Computer Science Department (CMU-CSD). The Information Processing
Techniques Office of the Defense Advanced Research Projects Agency (DARPA) sup
ported this work during the period 15 November 1983 through 30 September 1987, ex
tended to 31 May 1988.

The remainder of this chapter describes our research scope and the CMU-CSD
research environment. Chapters 2 through 5 then present in detail our four major
research areas: the Supercomputer Workbench, the Systolic Array Machine, the
Production System Machine, and the Command Action Team (CAT) project. Sections in
each chapter present the area's general research context, the specific problems we ad
dressed, our contributions and their significance, and an annotated bibliography.

The bibliographies present selected references that reflect the scope and significance
of CMU's contributions to basic and applied computer science. Wherever possible, par
ticularly for key reports, we have included abstracts. Also, publication dates serve as a
reasonable indicator of progress in the various problem areas. CSD Technical Report
dates exhibit the closest correlation with temporal progress and the report text fre
quently reappears later in the more accessible archival literature.

1.1 Research scope

We organize the research reported here under four major headings. These interre
lated categories and their major objectives are:

• Supercomputer Workbench [SCW]: Develop a multiprocessor operating
system, programming environment, and instrumentation environment to
support multiprocessor computing research.

• Systolic Array Machine [SAM]: Develop a powerful computational engine
using systolic architectures and interconnections tailored to specific tasks.

• Production System Machine [PSM]: Explore the use of parallel architec
tures for production systems and develop a machine especially for produc
tion systems.

• Command Action Team [CAT]: Continue work on a knowledge-based ex
pert system designed to assess and monitor threats to a carrier group.

1.2 The Research environment

Research in the CMU Computer Science environment tends to be organized around
specific experimental systems aimed at particular objectives, e.g. the demonstration of a
systolic array machine or the design and fabrication of a parallel interpreter. This report
describes several such activities. Sometimes the creation and demonstration of a sys
tem is itself an appropriate scientific objective. At other times, some level of system

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

1-2 I N T R O D U C T I O N

performance constitutes the scientific goal. Thus our work tends to emphasize concept
demonstration rather than system engineering. These research systems provide a con
venient way to discuss and even to organize the projects at CMU-CSD. They are not
always, however, ends in themselves.

A major strength of the Carnegie Mellon University environment lies in the synergy
resulting from close cooperation and interdependence among varied research efforts,
despite their diverse foci. For example, our basic research in image understanding,
supported by D A R P A under a separate contract, has an extraordinarily large appetite for
computational cycles. Work in low-level vision and applied domains such as road fol
lowing and obstacle avoidance have put the high computational throughput and novel
architecture of the S A M project's Warp machine to good use. Likewise, the S A M project
has benefitted from the close relationship with researchers who actually apply the Warp
machine to real tasks. This inter-project collaboration significantly influenced Warp,
from the conceptual level of program partitioning models to the pragmatic level of rapid
feedback regarding performance criteria and bottlenecks.

We have no administrative structure that corresponds to our organization of effort.
We consist simply of faculty, research scientists, and graduate students of the Com
puter Science Department, with the facilities support divided into an Engineering
Laboratory and a Facilities Software Group. The rest of the organization is informal.
This organizational style minimizes the barriers between efforts and promotes the kind
of interactions and synergy reflected in the work distribution shown in Table 1-1.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

I N T R O D U C T I O N 1-3

Number of
Areas Mach Warp PSM/CAT

Roberto Bisiani 2 X X

Scott Fahlman

CM
 X X

Lanny Forgy 1 X

Thomas Gross 1 X

Takeo Kanade 2 X X

H.T. Kung 3 X • X

John McDermott 1 X

Allen Newell 2 X •
Rick Rashid 1 X

Raj Reddy 3 X X X

Zary Segall 1 X

Albert Spector 1 X

Daniel Siewiorek 1 •
Howard Wactlar 1 •

x = Active research in this area
• = Responsible for area
Faculty participating, total = 14

Figure 1-1: Distribution of faculty effort

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

1-4 I N T R O D U C T I O N

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S U P E R C O M P U T E R W O R K B E N C H 2-1

2. SUPERCOMPUTER WORKBENCH

Multiple-processor computer architectures have emerged as a viable response to the
challenge of providing sufficient computing power for computationally-intensive applica
tions. When such architectures were first developed, however, they typically suffered
from inadequate software support. Early multiprocessor systems normally featured a
poor or non-existent programming environment and an operating system that did not
take full advantage of the hardware's multiple-processor resources.

The goal of the Supercomputer Workbench project has been to provide software sup
port tools specifically designed for shared-memory, multiprocessor architectures. Our
work has produced two such support tools:

• A distributed multiprocessor operating system (Mach)
• A host software development and instrumentation environment (PIE)

These tools support researchers in producing, evaluating, and using multiprocessor
computing systems. The Mach operating system permits full utilization of multiproces
sor resources, an efficient mechanism for sharing memory, and full U N I X compatibility.
Developers can port Mach to a variety of different architectures, as it supports single
multiprocessor hosts, distributed computer networks, and individual workstations. The
P I E programming and instrumentation environment provides tools for writing and debug
ging efficient multiprocessor programs and for evaluating them for their ability to fully ex
ploit the underlying hardware and software.

2.1 Challenges in Multiprocessor and Distributed Operating System
Research

2.1.1 Previous multiprocessor operating systems

Before Mach, there had been several efforts in developing multiprocessor operating
systems. However, each has suffered from limitations in functionality, performance, or
usability. None has approached our goal of a general-purpose, multiprocessor, dis
tributed operating system.

Previous multiprocessor operating systems have generally fallen into one of three
categories:

• Simple operating systems providing minimal functionality—These systems,
such as the Cosmic Cube and the Butterfly, do not address operating sys
tem issues directly. Typically, they provide only basic functions required to
use the hardware. Users must often cross-compile programs on a different
machine, then download to execute. Such systems make it possible to use
the target machine, but their user environments are less than desirable.

• Uniprocessor operating systems with simple modifications for use in a mul
tiprocessor environment—-Numerous other multiprocessor operating sys-

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1983 -1988

2-2 S U P E R C O M P U T E R W O R K B E N C H

terns represent modifications of pre-existing uniprocessor systems. VMS
has been extended to run in a dual-processor configuration and several
U N I X 1 versions have been modified to run on multiprocessors. These sys
tems usually run in a master/slave configuration and are not realistically ex
tensible to large multiprocessors.

• Completely new operating systems typically designed to run on a specific
type of multiprocessor—-Where completely new multiprocessor operating
systems have been built, they were frequently accompanied by inadequate
user environments and were difficult to use. Intel's IMax operating system
for the 432 exemplifies such a system.

*

During this contract period, we began to lay the foundations for a general-purpose,
multiprocessor, software support environment that does not suffer the limitations com
mon to earlier efforts. Our current Mach operating system, built on the experience of
previous research efforts, forms the prototype nucleus of such an environment.

Our previous work produced Accent, a uniprocessor distributed operating system
[Rashid 86a]. Mach was conceived as an Accent-like operating system that would

provide multiprocessor functionality and complete U N I X compatibility. Mach was
designed to better accommodate the kind of general purpose, shared-memory mul
tiprocessors that appear destined to succeed traditional general purpose uniprocessor
workstations and timesharing systems.

2.1.2 The Accent distributed operating system

Accent was organized around the notion of a protected, message-based interprocess
communication facility integrated with copy-on-write virtual-memory management. Ac
cess to all services and resources, including the process and memory management ser
vices of the operating system kernel itself, was provided through Accent's communica
tion facility. This design allowed completely uniform access to resources throughout the
network. It also provided that access to kernel-provided services was indistinguishable
from access to process-provided resources (with the exception of the interprocess com
munication facility itself).

Accent went beyond demonstrating the feasibility of the message passing approach
to building a distributed system. Experience with Accent showed that a message-based
network operating system, properly designed, can compete with more traditional operat
ing system organizations. The advantages of this approach are system extensibility,
protection and network transparency.

While Accent demonstrated the feasibility of a network operating system, it
represented only an early step toward our long-term goal of a distributed, portable, mul
tiprocessor operating system. Accent was a distributed uniprocessor operating system.

UNIX is a trademark of AT&T Bell Laboratories.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S U P E R C O M P U T E R W O R K B E N C H
2-3

It did not have the necessary process management facilities to take advantage of mul
tiprocessor architectures. Accent was largely architecture dependent, running on a net
work of 150 P E R Q workstations.2 Portability to other architectures would have required
extensive modifications to the Accent kernel. Finally, Accent's slow " U N I X compatibility"
package was ineffective in absorbing the ever-burgeoning body of UNIX-developed
software.

2.2 A UNIX-Compatible Distributed Multiprocessor Operating System

A major reason that Accent never achieved widespread acceptance was its lack of
true U N I X compatibility. For Mach to survive, U N I X compatibility was essential. To insure
U N I X compatibility, we evolved Mach directly from the 4.2 BSD U N I X kernel. As we
developed Mach features, we replaced existing U N I X features with our Mach implemen
tations. This strategy had several advantages. It allowed us to maintain a working ker
nel throughout the Mach development process. It simplified the debugging of new ker
nel features. It also allowed us to incorporate into Mach new U N I X features developed
outside CMU, such as the 4.3 BSD U N I X distribution and MIT's X window manager.

Our Mach design combines several low-level kernel abstractions with unique ap
proaches in virtual memory implementation and interprocess communication. After
presenting an overview of the current Mach operating system, we will discuss the
building-block abstractions that form the basis of the MaGh kernel design. We will then
discuss Mach's virtual memory and interprocess communication facilities, both
separately and as they together provide such Mach features as copy-on-write message
passing and flexible memory sharing.

2.2.1 Mach system overview

Mach currently runs on a variety of architectures, including the entire V A X family of
uniprocessors and multiprocessors, the IBM RT PC, the Sun 3, the Encore MultiMax,
and the Sequent Balance 21000. Mach provides key functionality for parallel system
software development, including

• Ability to allocate and manage large, sparse virtual memories
• A parallel multiprocessor scheduler with the ability to spawn new control

threads cheaply within an address space
• Mechanisms for flexible memory-sharing among multiprocessor tasks
• Support for fine granularity synchronization

• Transparent communication between tasks running on both tightly- and
loosely-coupled processor nodes

Our long-term goal is to have user-state server programs that reside outside the Mach

2 P E R Q is a trademark of P E R Q System Corporation.

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

2-4 S U P E R C O M P U T E R W O R K B E N C H

kernel perform traditional operating system functions. During this contract period, we
set the foundation for such an implementation. Our approach results in increased
modularity and protective isolation among unrelated operating system functions. It also
provides for a natural function decomposition in a multiprocessor system.

2.2.2 Building-block abstractions

The primary purpose of the Mach kernel is to provide an execution environment for
user tasks and an interprocess communication (IPC) facility that allows user tasks to
share data and resources. Our kernel design provides a minimal system abstraction
set, extended from Accent, that forms the basic building blocks for a distributed mul
tiprocessor computing environment:

• A message is a typed collection of data objects and consists of a fixed size
header and a variable length body. Messages may be any size and may
contain typed pointers to data outside the contiguous portion of the mes
sage body.

• A port is a kernel-protected queue for messages. At any given time, the
maximum length of a port is fixed, although that fixed length can be
changed. Tasks refer to ports through port capabilities. There are three
kinds of port capabilities: send access, receive access, and ownership.
Tasks obtain capabilities to ports only by receiving such capabilities in mes
sages.

• A task represents the basic resource allocation unit, comprising a paged
address space and access to system resources. A task may contain a
single thread or multiple threads executing in parallel.

• A thread is the basic unit of computation, executing within a task. Threads
may send and receive messages according to their access rights. When
creating a thread, the kernel also creates a port, the thread port, to
represent the thread. Messages sent to a thread port can alter the as
sociated thread's state.

• A process is a thread operating within a task context. A standard U N I X
process is equivalent to a Mach task with a single control thread.

• A memory object is a kernel-managed data repository. Memory objects
can be created, destroyed, read or written. Backing storage for a memory
object is determined by its type: permanent disk, temporary disk, physical
memory, or port. Permanent disk memory objects are used to manage
files. Temporary disk objects are used to back newly created virtual
storage on disk and to shadow copy-on-write data. Physical memory ob
jects are used to manage devices that operate on physical memory. Port
memory objects provide copy-on-reference network access to data and any
other on-demand creation or control of information.

A thread executes in the context of exactly one task; however, any number of threads
may execute within a single task. Theoretically, all threads execute in parallel. This
ability to execute multiple threads simultaneously within a task is the key feature in

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S U P E R C O M P U T E R W O R K B E N C H 2-5

MacfVs multiprocessor capability. Our multiprocessor scheduler and parallel thread ex
ecution capabilities allow Mach to take full advantage of the computing capacity of mul
tiprocessor architectures.

The Mach kernel can be viewed as a task with its own 2 3 2 byte paged virtual address
space and port access rights. The Mach network operating system is implemented as a
collection of tasks running above the Mach kernel using the Mach IPC facility to com
municate. Port capabilities are used to represent task-provided services, resources and
data structures. As such, port capabilities serve a role in Mach similar to object
capabilities in systems such as Hydra or StarOS. Interprocess interfaces in Mach are
defined using MatchMaker, an object-oriented interface definition language developed
for Accent [Jones and Rashid 86]. These interfaces are compiled into remote proce
dure call (RPC) stubs that use the Mach message passing primitives for communication
and control.

2.2.3 A portable virtual memory management system

Proliferating hardware memory structures, with their varying requirements for virtual
memory management, have hindered operating system portability. U N I X systems tradi
tionally address the problem of virtual memory management portability by restricting the
facilities provided and basing implementations for new memory management architec
tures on versions already done for previous systems. As a result, existing versions of
U N I X , such as Berkeley 4.3 BSD, offer little in the way of virtual memory management
other than simple paging support. Versions of Berkely U N I X on non-VAX hardware, such
as SunOS on the Sun 3 and A C I S 4.2 on the IBM RT PC, actually simulate internally the
V A X memory mapping architecture—in effect treating it as a machine-independent
memory management specification.

Our goal was to implement a memory management system that would be readily port
able to multiprocessor computing engines as well as to traditional uniprocessors. We
designed our system by dividing Mach's virtual memory management code into
machine dependent and machine independent sections [Rashid et al. 87]. Machine de
pendent code implements only those operations necessary to create, update and
manage the hardware required for data structure mapping. All important virtual memory
information is maintained by machine independent code. By clearly defining and or
ganizing the machine dependent portion of the kernel, we greatly decrease the amount
of time and effort required to port Mach to other architectures.

2.2.4 Interprocess communication

U N I X interprocess communication has never been flexible enough to easily build dis
tributed systems. While advanced versions of U N I X , such as 4.3 BSD, continue to add
communication mechanisms, the problems that distributed systems must address are
glossed over. For example, internet domain sockets use a global machine-specific
naming convention based on IP address, with a lack of location-independence and
protection.

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

2-6 S U P E R C O M P U T E R W O R K B E N C H

To address the problems associated with building distributed systems, we designed
Mach to provide a flexible interprocess communication facility through:

• A capability-based interprocess communication paradigm
• Typed message data
• Transparent extension of local communication into a network through mes

sage servers
• An interface language, Matchmaker, that generates client/server interfaces
• Integration with virtual memory management for efficient transfer of large

messages

The Mach kernel itself has no knowledge of networks. The kernel doesn't have to dis
tinguish between messages passed between tasks on the same host and messages
passed over a network. Network message servers transparently extend communication
over a network. A message sent to a port on a remote machine actually is sent to a
network server on the sending host which then forwards the message over the network.
The forwarding operation is transparent (and undetectible) to both the sender and the
receiver.

In addition to simply extending the IPC paradigm to the network, network servers may
participate in data type conversion and provide secure network transmission. By provid
ing this functionality outside the kernel, Mach allows a host more flexibility in choosing
data type representations, the amount or type of security to be used on a network and
even the protocols to use for network transmission.

Matchmaker, our interprocess specification language, handles details of interprocess
communication between different machine architectures and languages [Jones and
Rashid 86]. Developed for Accent, Matchmaker enables a program to specify an inter
face between a client and server. Matchmaker allows a programmer to create a dis
tributed program without worrying about the details of sending messages or type con
version between different machines.

Finally, the IPC mechanism makes use of the virtual memory system to make virtual,
rather than physical, copies of large messages. This mechanism allows large amounts
of data to be sent copy-on-write. Data is not copied from its original location unless a
task writes to it. Our IPC facility is an especially important feature since a task usually
only reads data, making data copying unnecessary.

2.2.5 Integrating memory and communication

Mach combines virtual memory management and interprocess communication so that
data may be transferred by memory mapping rather than data copying. Initially
employed by Accent, by-value data transfer semantics are obtained by transferring
message data with copy-on-write memory mapping, allowing multiple processes to ac
cess the same area of memory. Memory is not physically copied unless a process at
tempts to write to that memory space. Copy-on-write memory mapping saves the com-

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S U P E R C O M P U T E R W O R K B E N C H 2-7

putational expense of making a physical copy of a memory region every time that region
is accessed.

Figure 2-1 details schematically a copy-on-write data transfer between two Mach
processes. At time to process A sends a message containing a large amount of data
(for example, an eight Mbyte pixel array gathered by a video camera) to communication
port P1. When A sends the message, Mach marks corresponding memory areas in the
address spaces of both A and the kernel (indicated by cross-hatched areas in their
memory maps) "copy-on-write". At time t1, process B retrieves the message and Mach
then moves the image data, again copy-on-write, into Bs address space. At no time is
the data actually copied during these operations. A page-by-page copy would be per
formed only if A or B attempted to change parts of the transferred image.

Time to Time t1

Figure 2-1: Transferring data copy-on-write in Mach

By using copy-on-write mapping to transfer large data objects, Mach provides:

C A R N E G I E M E L L O N U N I V E R S I T Y F I N A L R E P O R T 1983-

2-8 S U P E R C O M P U T E R W O R K B E N C H

• Ability to transfer data objects in their natural size, up to and including the
size of a process address space (as much as 2 3 1 bytes), unhindered by ar
tificial message size limits

• Simple, mapped access to data such as files by making data objects
directly addressable as regions of process address space, as in traditional
P - M A P style file mapping

• Better utilization of both physical memory and backing storage through
greater sharing between processes.

In addition to the ease of sharing memory, the integration of interprocess communica
tion and virtual memory management provides another key Mach feature. Passing data
by value in messages, Mach gains the advantages of simple communication semantics,
including the ability to transparently extend communication in a large multiprocessor or
onto a network with an absence of unintended side effects.

2.2.6 Sharing memory

Mach's memory sharing, through the copy-on-write message sharing provided by the
IPC facility, works well for communicating tasks that require the protection of by-value
message passing. It is also appropriate for applications with components intended for
distribution over a local area network or loosely-coupled multiprocessor. On large,
shared-memory multiprocessors, however, Mach provides two ways that processes can
communicate more directly and efficiently:

• Many threads may directly share a single task address space
• A task may specify regions of its virtual address space as read/write in

heritable to tasks it creates.

The ability to share memory between tasks allows for the sharing of global data struc
tures at a page (4-8 Kbyte) level without incurring large performance penalties. It also
provides access to the parallelism of memory access between tasks that require
separate protection domains for other reasons. By including constructs for message
passing, structured memory sharing between tasks and unrestricted sharing between
threads, Mach can accommodate a range of multiprocessor architectures from loosely-
coupled multiprocessors and networks to tightly-coupled machines with low latency
memory access.

Associated with each region of memory in a task's address space are a current and
maximum protection. The current protection specifies what rights a task has to that
memory in the form of a combination of read, write, and execute rights. The maximum
protection describes the greatest set of protection rights a task may have. When a
region of memory is allocated, a task has a maximum and current protection allowing all
privileges. A task's current protection rights may be changed up to those specified by
its maximum protection, or its maximum protection rights may be decreased. Separat
ing maximum protection from current protection enables a parent task to provide
protected (e.g. read-only) access to a portion of its memory.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S U P E R C O M P U T E R W O R K B E N C H
2-9

2.2.7 Extending the kernel

Mach forms a single-machine operating system kernel, with all of its operations ex
ecuting on a single processor or a single, shared-memory multiprocessor. The kernel's
IPC facility, for example, supports only communication between tasks on the same
machine. Our strategy for extending Mach to serve as a network operating system ker
nel was to design its abstractions, IPC facility, and virtual memory support to be trans
parently extensible by user-state tasks. This strategy permits server tasks, which are
typically easier to prototype and develop than an operating system kernel, to provide
traditional operating system functions.

Several examples illustrate the flexibility of Mach's primitives in providing traditional
operating system functions. Rather than provide kernel support for network com
munication, we have implemented network server tasks that transparently extend
Mach's IPC facilities between machines. We have developed an experimental file sys
tem that relies only on the kernel's memory object facilities for support. A file server
task builds user file abstractions, such as directories, on top of the memory object. The
file system server also uses network-transparent IPC to cooperate with other file servers
in providing network-transparent remote file access. Finally, CMU's Camelot distributed
transaction processing system is based on Mach's network interprocess communication
facilities.

2.3 A Multiprocessor Programming Environment

2.3.1 Programming multiprocessors for performance

Historically, programming a parallel processor application has required a detailed
knowledge of multiprocessor architecture and operating systems. The programmer had
only rudimentary tools for creating parallel applications. Moreover, creating a correct
parallel program has not been the end of the task. Often the only reason for developing
a parallel program is for real-time performance. The difficult task of performance
debugging and interpreting feedback in the context of a rudimentary program environ
ment required an even more specialized and highly knowledgeable programmer.

A key element in a parallel debugging environment is an ability to collect data, through
instrumentation support, on both the parallel hardware utilization (e.g., caches, buses,
memories) and on system and application software performance (e.g., scheduling,
resource management, virtual memory). In previous parallel programming research,
such as the Cm* project, we found extensive instrumentation support critical to both the
programming itself and to producing reliable, supportable, and maintainable software.
There are two important reasons to integrate instrumentation with a parallel program
ming environment:

• In a distributed parallel system, it is absolutely essential to assure target
performance levels. System developers therefore need a programming en
vironment that can support them in making performance-related decisions

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1983 -1988

2 - 1 0 S U P E R C O M P U T E R W O R K B E N C H

regarding program structure. Such support involves obtaining estimated
performance data at program development time. An environment that
provides this capability to program for performance must build on an in
strumented base, that is, on a highly observable virtual machine
(hardware+OS).

• Debugging a distributed or parallel program is far more complex than
debugging a sequential program. The parallel application developer faces
numerous hurdles, including a need to comprehend in detail the mul
tiprocessor architecture and operating system, as well as a need to
manually map intricate parallel algorithms onto parallel machines.

During the contract period we developed hardware instrumentation facilities for
shared-bus, shared-memory multiprocessors, such as the Encore MultiMax and Se
quent Balance. The facilities include several special-purpose hardware monitors under
program control. These mechanisms provide the hardware monitoring basis for P I E , our
Programming and Instrumentation Environment, and allow us to improve parallel
program performance through detailed analysis of their CPU, cache, bus, and memory
requirements.

2.3.2 A Programming and instrumentation environment

Our research in generating efficient parallel programs emphasizes two strategies,
both embodied in our programming and instrumentation environment. The first ap
proach involves avoiding performance bottlenecks through combining a coding
methodology and performance prediction models to detect potential problems before
undertaking extensive coding. The second approach, performance debugging, applies
the concept of programming-for-observability.

During the contract period we continued to develop a programming and instrumen
tation environment (PIE) specifically tailored to parallel programming needs [Segall and
Rudolph 85]. Our environment includes tools for constructing, instrumenting, and
measuring parallel programs, P I E comprises a multilevel program development environ
ment that assists the user in organizing, writing, and managing efficient parallel software
and a tool set geared toward instrumenting such software for performance debugging.

The P I E environment consists of the following set of tools:
• MPC—a multiprocessor C language: MPC is a C preprocessor that con

verts special language constructs into C program systems. MPC resolves
data consistency problems and handles physical synchronization and com
munication demands of multiprocessor code.

• P I E M A C S is a syntax and semantics-based editor that automatically extracts
the development time data about the target program and assists in in
strumenting it for the run-time monitoring process.

• P I E M O N (the P I E monitor) supports collection and storage of run-time event
data via hardware instrumentation sensors.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S U P E R C O M P U T E R W O R K B E N C H 2 - 1 1

• P I E M A N (P I E manager) is a relational database which intelligently integrates
development-time with run-time information.

• P I E S C O P E is a graphical user interface which allows the programmer to view
the development and execution of an MPC program.

P I E addresses the issues of performance debugging and programming for obser
vability. The P I E environment tools aid the parallel programmer in both generating ef
ficient multiprocessor programs and observing the execution of those programs for
debugging and improvement of program efficiency. Additionally, P I E allows the
programmer to write parallel programs without having to worry about the details of low-
level process synchronization and communication. The P I E environment is designed to
take the burden of these details off the user. The user can then concentrate on algo
rithm design and implementation to a greater degree than previously possible.

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

2 - 1 2 S U P E R C O M P U T E R W O R K B E N C H

2.4 Bibliography
[Baron et al. 85] Baron, R., R. Rashid, E. Siegel, A. Tevanian, and M. Young.

Mach 1 : an operating system environment for large scale mul
tiprocessor applications.

IEEE Software Special Issue, July, 1985.

[Fitzgerald and Rashid 85]
Fitzgerald, R. and R. Rashid.
The integration of virtual memory management and interprocess

communication in Accent.
Technical Report CMU-CSD-85-164, Computer Science Department,

Carnegie Mellon University,
September, 1985.

The integration of virtual memory management and interprocess
communication in the Accent network operating system
kernel is examined. The design and implementation of the
Accent memory management system Is discussed and its
performance, both on a series of message-oriented
benchmarks and in normal operation, is analyzed in detail.

[Gregoretti and Segali 86]
Gregoretti, F. and Z. Segali.
Programming for observability support in a parallel programming en

vironment.
In 14th Annual Computer Science Conference, ACM, February,

1986.
The programming for observability concept for

performance/correctness debugging in a parallel program
ming environment is introduced. The design, first im
plementation, and evaluation of the required language and
system support is presented. A two dimensional, mul
tilevel, Integrated monitoring system is described. Distinc
tion is made between the monitoring mechanism, monitor
ing policies and their implementation tradeoffs.
PIEMON-1, an initial implementation of the presented
design is outlined and evaluated.

[Jones and Rashid 86]
Jones, M. and R. Rashid.
Mach and Matchmaker: kernel and language support for object-

oriented distributed systems.
In 1st Annual OOPSLA Conference, ACM, October, 1986.

Mach, a multiprocessor operating system kernel providing
capability-based interprocess communication, and
Matchmaker, a language for specifying and automating the
generation of multi-lingual interprocess communication in
terfaces, are presented. Their usage together providing a
heterogeneous, distributed, object-oriented programming
environment is described. Performance and usage statis-

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S U P E R C O M P U T E R W O R K B E N C H 2 - 1 3

[Rashid 86a]

[Rashid 86b]

tics are presented. Comparisons are made between the
Mach/Matchmaker environment and other systems. Pos
sible future directions are examined.

Rashid, R.
From RIG to Accent to Mach: the evolution of a network operating

system.
In Proceedings of the Fall Joint Computer Conference, ACM/IEEE,

November, 1986.
This paper describes experiences gained during the design, im

plementation and use of the CMU Accent Network Operat
ing System, its predecessor, the University of Rochester
RIG system and its successor CMU's Mach multiprocessor
operating system. It outlines the major design decisions
on which the Accent kernel was based, how those deci
sions evolved from the RIG experiences and how they had
to be modified to properly handle general purpose mul
tiprocessors in Mach. Also discussed are some of the
major issues in the implementation of message-based sys
tems, the usage patterns observed with Accent over a
three year period of extensive use at CMU and a timing
analysis of various Accent functions.

Rashid, R.
Threads of a new system.
Unix Review4(8):37-49, 1986.

The Department of Defense, anxious for better multithreaded
application support, has funded the development of Mach,
a multiprocessor operating system for U N I X applications.

[Rashid et al. 87] Rashid, R.F., A. Tevanian, M. Young, D. Golub, R. Baron, D. Black,
W. Bolosky, and J. Chew.
Machine independent virtual memory management for paged

uniprocessor and multiprocessor architectures.
In Proceedings of the Conference on Architectural Support for Pro

gramming Languages and Operating Systems, ACM, February,
1987.

Also appeared as tech-report CMU-CSD-87-140.
This paper describes the design and implementation of virtual

memory management within the CMU Mach Operating
System and the experiences gained by the Mach kernel
group in porting that system to a variety of architectures.
As of this writing, Mach runs on more than half a dozen
uniprocessors and multiprocessors including the VAX
family of uniprocessors and multiprocessors, the IBM RT
PC, the SUN 3, the Encore Multimax, the Sequent Balance
21000 and several experimental computers. Although
these systems vary considerably in the kind of hardware
support for memory management they provide, the
machine-dependent portion of Mach virtual memory con-

C A R N E G I E M E L L O N U N I V E R S I T Y F I N A L R E P O R T 1983 -1988

2 - 1 4 S U P E R C O M P U T E R W O R K B E N C H

sists of a single code module and its related header file.
This separation of software memory management from
hardware support has been accomplished without sacrific
ing system performance. In addition to improving por
tability, it makes possible a relatively unbiased examination
of the pros and cons of various hardware memory
management schemes, especially as they apply to the
support of multiprocessors.

[Segall and Rudolph 85]
Segall, Z. and L. Rudolph.
PIE- a programming and instrumentation environment for parallel

processing.
Technical Report CMU-CSD-85-128, Computer Science Department,

Carnegie Mellon University,
April, 1985.

The issues of efficient development of performance efficient
parallel programs is explored. Programming and In
strumentation Environment (PIE) for Parallel Processing
system's concepts, designs, and preliminary implemen
tation results are presented. The key goal in PIE is semi
automatic generation of performance efficient parallel
programs. In PIE, a system intensive rather that a
programmer intensive programming environment is
promoted for supporting users with different experience in
parallel programming. Three levels of such support are
provided, namely the Modular Programming Metalan
guage, the Program Constructor, and the Implementation
Assistant. In order to facilitate the task of parallel program
ming, each component employs a set of new concepts and
approaches to integrate functionality with performance
concerns. This paper presents the results of PIE 1, the
first of a three phase project.

[Tevanian and Rashid 87]
Tevanian Jr., A. and R.F. Rashid.
Mach: A basis for future UNIX development
Technical Report CMU-CS-87-139, Computer Science Department,

Carnegie Mellon University,
June, 1987.

Computing in the future will be supported by distributed comput
ing environments. These environments will consist of a
wide range of hardware architectures in both the
uniprocessor and multiprocessor domain. This paper dis
cusses Mach, an operating system under development at
Carnegie Mellon University, that has been designed with
the intent to integrate both distributed and multiprocessor
functionality. In addition, Mach provides the foundation
upon which future U N I X development may take place in
these new environments.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S U P E R C O M P U T E R W O R K B E N C H 2 - 1 5

[Tevanian et al. 87a]
Tevanian Jr., A., R. Rashid, M.W. Young, D.B. Golub, M.R.
Thompson, W. Bolosky, and R. Sanzi.
A Unix interface for shared memory and memory mapped filed under

Mach.
In Proceedings of the Summer USENIX Technical Exhibition,

USENIX, June, 1987.
This paper describes an approach to U N I X shared memory and

memory mapped files currently in use at CMU under the
Mach operating system. It describes the rationale for
Mach's memory sharing and file mapping primitives as well
as their impact on other system components and on overall
performance.

[Tevanian et al. 87b]
Tevanian Jr., A., R.F. Rashid, D.B. Golub, D.L Black, E. Cooper,
and M.W. Young.
Mach threads and the Unix Kernel: the battle for control.
In Proceedings of the Summer USENIX Technical Exhibition,

USENIX, June, 1987.
This paper examines a kernel implemented lightweight process

mechanism built for the Mach operating system. The pros
and cons of such a mechanism are discussed along with
the problems encountered during its implementation.

[Young et al. 87] Young, M., A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew,
W. Bolosky, D. Black, and R. Baron.
The duality of memory and communication in the implementation of a

multiprocessor operating system.
In Proceedings of the 11th Symposium on Operating System

Principles, ACM, November, 1987.
Mach is a multiprocessor operating system being implemented

at Carnegie Mellon University. An important component of
the Mach design is the use of memory objects which can
be managed either by the kernel or by user programs
through a message interface. This feature allows applica
tions such as transaction management systems to par
ticipate in decisions regarding secondary storage manage
ment and page replacement.

This paper explores the goals, design and implementation of
Mach and its external memory management facility. The
relationship between memory and communication in Mach
is examined as it relates to overall performance, ap
plicability of Mach to new multiprocessor architectures, and
the structure of application programs.

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1983 -1988

2 . 1 6 S U P E R C O M P U T E R W O R K B E N C H

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S Y S T O L I C A R R A Y M A C H I N E
3-1

3. SYSTOLIC ARRAY MACHINE

Our objective in the Systolic Array Machine (S A M) project has been to demonstrate
that we can build a useful supercomputer within both a short time period and a modest
budget. In meeting this goal, we have developed the Warp machine [Annaratone et al.
87a]. Warp incorporates a systolic array of powerful, programmable cells, each capable
of a 10 M F L O P S peak computing rate. In a typical configuration, the array comprises ten
cells, thus offering a 100 M F L O P S aggregate computational bandwidth.

Warp's effectiveness results from a synergetic research strategy that simultaneously
considers architecture, software, and applications. The Warp array's simple, linear
topology supports several useful program partitioning models. In addition, each cell is
highly programmable and has a large local memory. Together these features eliminate
a need for the higher-dimensional connections that simpler systolic processors must
employ to achieve equivalent power. With powerful cells, we need fewer of them to
realize our performance goal. Warp complements its high cellular computation rate with
correspondingly fast communication. The array's design provides high inter-cell
bandwidths, while the host system provides high-speed external I/O. To deliver Warp's
power into the programmer's hands, we developed a high-level language (W2) that
provides detailed control down to cell-level parallelism, and an optimizing compiler that
maps programs directly from W2 code to efficient machine instructions. Finally, we
have facilitated user access to Warp's power by integrating the machine within U N I X as
an attached processor, implementing a sizable application library that supports vision
systems research, and developing general methods for mapping application problems
onto the Warp array.

Our research has demonstrated the practicality of designing and building versatile,
high-performance, systolic array computers. Warp's powerful array cells, fast com
munication, and user-accessible parallelism have extended its application domain sub
stantially beyond that of previous designs. Programmability requires merely a physically
larger machine and, given appropriate architectural support, does not degrade perfor
mance. We have, in fact, programmed Warp to execute well-known systolic
algorithms—including matrix multiplication and convolution—as fast as special-purpose
arrays employing comparable technology. Warp has also demonstrated high perfor
mance in diverse application areas, including low-level vision, signal processing, and
scientific computing. As currently produced by our industrial partner, General Electric
Corporation, Warp provides considerably more power and programmability than other
machines of comparable cost.

3.0.1 System components

The Warp system, illustrated in Figure 3-1, has three major subsystems: processor
array, interface unit, and host. The processor array performs the computation-intensive
routines such as low-level vision routines or matrix operations. The interface unit (IU)
handles input/output between array and host, and can generate memory addresses and
control signals for the array. The host supplies data to and receives results from the

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1983 -1988

3-2 S Y S T O L I C A R R A Y M A C H I N E

array. In addition, it executes those parts of the application programs that are not
mapped onto the Warp array.

Host

Adr ik.
Interface

Unit

)

Cell
1

Cell Cell
n-1

Warp Processor Array

Cell

Figure 3-1 : Warp system overview

The processor array is a linear systolic structure of identical Warp cells. Data flow
through the cells on two communication channels (X and Y), and each cell's I/O
bandwidth totals 20 Mword/s. The Y channel's direction is statically configurable, thus
allowing bidirectional data flow. lU-generated control signals and local memory ad
dresses propagate down the Adr channel.

Each cell is implemented as a programmable, horizontal micro-engine, with its own
microsequencer and program memory for 8K 272-bit instructions. The cell data path,
shown in Figure 3-2, includes a 32-bit floating-point multiplier (Mpy), a 32-bit floating
point adder (Add), two local memory banks for resident and temporary data (Mem), a
queue for each inter-cell communication channel (XQ, YQ, and AdrQ), and a register file
to buffer data for each floating-point unit (AReg and MReg). All these components are
connected through a crossbar switch. Addresses for memory access can be computed
locally by the address generation unit (AGU), or taken from the address queue (AdrQ).

The Warp host system, detailed in Figure 3-3, comprises a standard Sun-3
workstation that serves as master system controller and a VME-based external host
multiprocessor, so named because it lies outside the workstation. The workstation
provides a U N I X environment for application programs. The external host controls
peripherals and provides a large memory for data the Warp array will process. It also
transfers data to and from the Warp array and can perform certain data operations —
corner-turning or scaling, for example— without the higher overhead that a complete
operating system would entail.

Both the Warp cell and IU use off-the-shelf, TTL-compatible parts, and are each im-

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

SYSTOUC ARRAY MACHINE
3-3

XQ
512x32

YQ
512x32

Mem
32K x 32

Control
Path

Data
Cross
Bar

AdrQ
512x32

Address
Cross
Bar

AReg
31 x32

A *

Add

Mem
2Kx32

MReg
31 x32 Mpy

AGU

Figure 3-2: Warp cell data path

plemented on a 15"x17" board. The entire Warp machine, with the exception of the
Sun-3, is housed in a single 19" rack, which also contains power supplies and cooling
fans. The machine typically consumes about 1800W.

3.0.2 Chronology

We completed a two-cell Warp system at CMU in June, 1985, and then contracted
two industrial partners to construct identical, 10-cell, wire-wrapped prototypes. GE
delivered the first machine in February, 1986, and the Honeywell prototype arrived in
June of that year. We next revised the design and reimplemented it with printed circuit
(PC) technology to allow faster and more efficient production. Our revision also incor
porated several architectural improvements. GE developed the PC version as a com
mercial product and delivered the first PC Warp machine to CMU in April, 1987. Design
work for a single-chip Warp cell implementation began in 1986 with the collaboration of
Intel Corporation.

CARNEGIE MELLON UNIVERSITY FINAL REPORT 1983-1988

3-4 S Y S T O U C A R R A Y M A C H I N E

Workstation Camera & monitor

Cluster 1 VSB

S M M M P

CT I I I T
VSB Cluster 2

External host

Interface Unit

± 5 .

P: Processor
M: Memory
S: Switch
I: Graphics input
O: Graphics output

Warp Processor Array

Figure 3-3: The Warp machine host system

3.0.3 Evaluation

We have evaluated Warp's architecture and compiler extensively, measuring several
overall system performance factors and comparing them to other machines [Lam
87, Annaratone et al. 87a]. For applications in robot navigation, signal processing,
scientific computation, and computer vision research, Warp is typically several hundred
times faster than a VAX -1 1/780 class computer.

In the typical case with unidirectional data flow, the array's composite computational
rate is roughly the cell count times each cell's throughput. For balanced computations,
where the compiler can fully occupy both adders and multipliers, we can thus expect
100 M F L O P S total. However, because each Warp cell has multiple parallel functional
units, an underutilized resource will degrade bandwidth, and so a cell's actual perfor
mance will depend upon the program's operation mix. For instance, in a computation
containing only additions and no multiplications, the maximum achievable performance
falls to 50 M F L O P S . Our studies of scheduling efficiency have shown that the compiler
exploits the parallel and pipelined functional units quite effectively. In a sample of 72

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S Y S T O L I C A R R A Y M A C H I N E
3-5

programs, Warp achieved a mean computational speed of 28 M F L O P S with an 18
M F L O P S standard deviation.

3.1 Developing the Architecture

The Warp machine represents Carnegie Mellon's second-generation effort in systolic
systems. We designed its predecessor, the programmable systolic chip (PSC), as a
single-chip microprocessor building block for constructing large systolic arrays. While
the PSC successfully demonstrated the idea's feasibility, we soon recognized its limita
tions: It was difficult to program, slow compared to special-purpose arrays, and capable
of only integer arithmetic. Fortunately, a major advance in commercial chip technology
occurred just as we commenced work on Warp. Weitek's floating-point chips, first of
their kind, significantly eased the task of building systolic systems with truly powerful
cells.

Running as an attached processor, Warp forms the high-performance heart of an in
tegrated, general-purpose system. Warp offers parallelism both across the processor
array and within individual cells. Each array is a VLIW (very long instruction word)
machine with multiple pipelined functional units, all independently controllable. Users
can access array-level parallelism directly, and through the W2 compiler, can exploit
cell-level parallelism. This flexibile control represents a key to Warp's power.

3.1.1 Powerful systolic cells

Previous systolic systems have typically employed numerous small cells. For Warp,
we chose to pursue a design that uses a few, powerful cells in a simple linear array.
Our work demonstrates the concept's feasibility: Warp efficiently supports several types
of parallel computation.
Coarse- and fine-grain parallelism

Warp's powerful cells support coarse-grain parallelism efficiently. With its own
program memory, program sequencer, and data memory, each cell can operate in
dependently. The data memories (4K words in the prototype and 32K words in the PC
version) are relatively large for systolic array designs. Big data memories allow in
dividual cells to sustain high computing rates without imposing increased demand on
available I/O bandwidth [Kung 86].

Fast communication between cells also makes Warp efficient for the fine-grain paral
lelism typically found in systolic processing. At 20 Mword/s, Warp's inter-cell I/O
bandwidth exceeds that of other processors offering similar computational power and al
lows neighboring cells to exchange large volumes of intermediate data.
Local and global operations

Systolic arrays are known to be effective for local operations, where each output
depends only on a small corresponding area of the input. Warp's large memory and
high I/O bandwidth also enable it to perform global operations, where each output may

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1983 -1988

3-6 S Y S T O L I C A R R A Y M A C H I N E

depend on a large portion of the input [Kung and Webb 85a]. Computations involving
such global operations include FFTs, component labeling, Hough transforms, image
warping, and computations such as matrix multiplication or singular value decomposi
tion. Warp's ability to perform global operations significantly extends its computational
domain.

3.1.2 Systolic communication support
In systolic computing, unlike other forms of interprocessor cooperation, data passes

directly from one cell's data path to its neighbor's, without going through memory. Such
communication, transferring individual words, is inherently fine-grained and must be fast
and inexpensive. When we began the Warp project, architectural support for this kind
of communication was not well understood. Our goal was to provide an efficient com
munication mechanism suitable for a programmable, general-purpose machine.

One of our initial objectives was a machine that could implement existing systolic al
gorithms. We began by studying previous designs and identifying the dataflow
mechanisms they employ. Many such algorithms use programmable delays to
synchronize data streams, and we considered adopting this strategy. A high-
performance, programmable processor, however, requires more flexible buffering and,
even before building our two-cell prototype, we shifted to a queue-based mechanism.

We implemented the prototype's queues with compile-time flow control. For a sub
stantial set of problems in our application domain, this strategy serves adequately. Ap
plications that permit compile-time flow control include both homogeneous and
heterogeneous programs, but not those incorporating W H I L E or F O R loops with dynamic
bounds. Runtime flow control, while more versatile, can be difficult to design, imple
ment, and debug, so we postponed that refinement. Our redesign for the PC Warp
provides run-time flow control and supports the full range of dynamic control flow re
quirements.

In our first, two-cell machine, receiving cells controlled data latching into the queues.
The strategy required close cooperation between sender and receiver and the tight cou
pling resulted in tremendously increased code size. We improved the situation in the
ten-cell prototype. There the sender signals the receiver's queue to latch the incoming
datum.

We implemented the prototypes' queues with R A M chips, intending to support both
F I F O and random access disciplines. However, there was only a single pair of hardware
pointers associated with each queue, and the pointers could not be read under program
control. Because the pointers had to be changed when the queue was accessed ran
domly, it was impossible to use the buffer both for communication and as a local
storage element. To improve the array's efficiency, we employed F I F O chips for the PC
Warp's queues. The change permits larger queues and relaxes execution coupling be
tween communicating cells by allowing them to send and receive data in larger bursts
and at different times.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S Y S T O U C A R R A Y M A C H I N E 3-7

3.1.3 Inter-cell control coupling

Localized control
Warp's long (272-bit) instructions make it awkward to broadcast instructions to all

cells or to propagate them between cells. Moreover, even if cells execute the same
program, their computations must often be skewed to delay each cell with respect to its
predecessor. To resolve these problems, we chose a M I M D strategy, where each
processor has its own control path. Independent control supports both homogeneous
computing, the prototypes' computational model, and heterogeneous computing
[Annaratone et al. 87a].

The local sequencer also supports conditional branching efficiently, S I M D machines
achieve branching by masking, and execution time is the sum of times for branch's
T H E N and E L S E clauses. With Warp's local program control, an individual cell's data can
determine which branch to follow and a conditional statement's execution time reduces
to that for the clause selected.
Address generation

For the prototypes, we lacked the VLSI address-generating units (AGUs) that later be
came available. Thus we chose to generate all common code, including addresses, on
the IU and to produce data-dependent code on-cell using the floating-point arithmetic
units. This strategy allowed us to handle homogeneous programs—with some
restrictions—by paying an execution-time price.

Each PC Warp cell, however, contains an AGU that enables it to support more
diverse applications [Annaratone et al. 87b]. With its own AGU, each cell gains both
independence and efficiency. Hardware flow control of queues and independent func
tional units allows individual cells to execute different programs with arbitrary, data-
dependent control flow.

3.1.4 Gaining programmability without sacrificing efficiency

One goal in designing the Warp processor was to make the achievable bandwidth as
near the Weitek 10 M F L O P S peak as possible. Our strategy was to support direct
user/compiler access to datapath parallelism and to make this parallelism easy to ex
ploit [Annaratone et al. 87a]. Warp's wide instruction format provides the key link be
tween the architectural level and datapath parallelism. A dedicated instruction field con
trols each datapath component and all functional units can be programmed to execute
in parallel. Such orthogonal structure in the microinstruction word facilitates scheduling,
since schedules for different components do not interfere.

In designing the data path, we ensured that scheduling a resource depends only on
the functional unit's availability, and not on other resource schedules. Our approach
was threefold. We first provided sufficient internal data bandwidth by connecting all
functional units through a crossbar. This approach simplifies scheduling since, unlike a
bus-based system, the process need not await an available shared channel. Secondly,

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1983 -1988

3-8 S Y S T O U C A R R A Y M A C H I N E

we incorporated internal storage to support the two floating-point processors. These
high-speed units can consume up to four data items and generate two results per cycle.
Our design uses a five-port, 32-word register file to buffer operands and intermediate
results for each processor. Finally, we provided three main datapath sources and
drains —two queues and a local memory— and a large backup memory for the register
files. When functional units can operate directly on data arriving at the queues, the
main drains/sources together offer a data flow rate that matches datapath processing.
The register backup increases memory bandwidth and improves throughput for those
programs operating mainly on local data.

3.1.5 An integrated, general-purpose host
The Warp array can consume up to five million words each second and generate an

equivalent output volume. Designing a host system whose capabilities match Warp's
I/O bandwidth posed a significant challenge. We also wanted an open system that we
could easily extend as better technology became commercially available.

Two design features contribute to high-speed performance in our host/Warp interface:
• Two clusters within the external host system, as Figure 3-3 illustrates,

handle Warp's input and output [Annaratone et al. 87a]. One supplies data
to Warp and the other receives results. Each cluster consists of a Motorola
68020 microprocessor and a large local memory. In the PC Warp machine,
each cluster also has direct memory access (DMA) capability. For sequen
tial data transfer, DMA permits a transfer in less than 500 ns/word. With
block transfer mode, transfer time reduces to about 350 ns/word. Non
sequential transfer speed depends on the complexity of the address com
putation. For simple address patterns, one 32-bit word is transferred in
about 900 ns.

• Data packing and unpacking reduce the host/IU bandwidth requirement by
a factor of two to four. In signal, image, and low-level vision applications,
input and output data are usually 16- or 8-bit integers. These data can be
packed into 32-bit words before transferral to the IU, which then unpacks
the data into two or four 32-bit floating-point numbers and sends them on to
the Warp array. The reverse operation takes place with the array's floating
point outputs.

We have achieved an open system design by using industry standard VME/VSB
protocols. This strategy enables us to employ off-the-shelf components for all external
host boards except the crossbar switch. Using standard boards allows us to take ad
vantage of commercial processors, I/O boards, memory, and software. Moreover, stan
dard boards provide a growth path for future system improvements with a minimal in
vestment of time and resources. During the transition from prototype to production
machine, for example, we introduced faster processor boards (16 vs. 12 MHz) and
larger memories and incorporated both into the host with minimal effort.

Our standard-parts approach to building the host produced two other benefits. It al-

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S Y S T O U C A R R A Y M A C H I N E 3-9

lowed us to concentrate on the array's architecture and sped our implementation of the
prototype. Having a prototype early aided development by giving system designers
realistic feedback about constraints in the hardware implementation and provided a
base for software and application developers to test out their ideas.

3.2 Software system

Although we originally intended to provide only minimal software support for Warp, it
quickly became obvious that we needed a high-level language and compiler to make
the machine truly usable. In addition to increasing the Warp machine's utility, our work
on Warp's W2 language and compiler provided a critical tool for evaluating alternative
design strategies and significantly influenced Warp's architectural evolution. Designing
and implementing a compiler requires a thorough study of the target machine's
functionality. The systematic analysis we undertook in developing W2 allowed us to un
cover problems that might have otherwise gone undetected.

3.2.1 Language design

To achieve both generality and efficiency, the user must retain control of how a com
putation maps across the array. At the cellular level, however, automatic tools can do
better. Parallelism available within Warp cells makes hand coding impractical.

We set out to develop a general systolic language (W2) that would allow the user to
specify each cell's actions individually while still permitting access to array-level paral
lelism. Since the user may sometimes need to restructure a sequential algorithm to ex
ploit systolic cells, we also wanted to provide appropriate high-level constructs [Lam 87].
Previous systolic array notations were unsuitable because they typically assumed a
simple, repetitive problem domain and dedicated, custom hardware. Our design goals
for W2 were:

• Generality sufficient to enable a user to express all programs that the
flexible, programmable hardware can support, such as those employing
general and data-dependent control flow

• A language design allowing us to build a complier that can generate ef
ficient execution code.

For communication between cells, W2 employs an asynchronous communication
model. We chose this strategy because it offers programmability and allows compiler
optimization. With appropriate techniques, we can compile unidirectional systolic array
programs that use asynchronous communication into highly efficient code. The high-
level semantics of asynchronous communication permit "code motion" whereby the
compiler can redistribute instructions among basic code blocks and more effectively util
ize Warp's intra-cell parallelism [Lam 88a]. W2's asynchronous communication model
is even applicable in simple implementations, such as the Warp prototype machines,
that have no dynamic flow control hardware. This flexibility derives from W2's efficient
compile-time control flow algorithm [Gross and Lam 86].

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1983 -1988

3-10 SYSTOUC ARRAY MACHINE

3.2.2 An optimizing compiler

Code optimization
To exploit the parallelism a VLIW machine offers, "global scheduling" techniques are

essential. These techniques, which overlap operations from different basic code blocks,
are vital for heavily pipelined and horizontal processors because the basic block struc
ture alone offers very little parallelism. Global scheduling, in turn, relies on accurate
global data dependency information. In developing Warp's programming language, we
have addressed both data dependency issues and methods for scheduling VLIW
machines.

We have implemented a sophisticated global flow analyzer that generates flow infor
mation accurate up to the level of individual array elements. It analyzes data depen
dencies between array accesses throughout a program, within basic blocks and dif
ferent iterations of a single loop, and across different loops. Labeled arcs in the flow
graph capture the derived information, which is then readily available for various code
optimizations.

For global scheduling, we concentrated on two techniques: software pipelining and
hierarchical reduction [Lam 88b, Lam 87]. Software pipelining exploits the repetitive na
ture of innermost loops to generate highly efficient code for processors with parallel,
pipelined functional units. We showed that software pipelining is a practical, efficient,
and general technique for scheduling the parallelism in a VLIW machine. We have ex
tended previous software pipelining work in two ways. First, we demonstrated that,
using scheduling heuristics, we can obtain near-optimal results for all loops. We have
improved and extended previous heuristics and introduced a new optimization tech
nique, "modulo variable expansion." Our approach has part of the functionality of the
specialized hardware proposed for the polycyclic machine, and thus allows us to ach
ieve similar performance.

Our hierarchical reduction scheme allows us to reduce an entire control construct to
an object resembling an operation within a basic block. Previously, software pipelining
has been applied only to loops whose bodies are straight-line code segments. Heirar
chical reduction allows us to apply software pipelining to arbitrarily complex loops. The
significance is threefold: All innermost loops, including those containing conditional
statements, can be pipelined. Secondly, if the number of iterations in the innermost
loop is small, we can pipeline the second level loop as well. Lastly, hierarchical reduc
tion diminishes the start-up cost penalty for short vectors.
Multiple code generators

Since Warp cell computations are tightly coupled, the compiler must extract data ad
dress computation and host communication from the user's program and implement
them on the IU and the host. Our design achieves this parallelism by decomposing a
program's flow graph into three subgraphs for the cell, IU, and cluster code generators.
From the cell code, the compiler extracts timing and sequencing information for the in
put to and output from the array (including addresses on the address queue). The IU
and the host code generators then use this information [Gross and Lam 86].

FINAL REPORT 1983-1988 CARNEGIE MELLON UNIVERSITY

S Y S T O L I C A R R A Y M A C H I N E
3 - 1 1

Retargetability
We have structured the W2 compiler so that we can easily retarget it to handle ar

chitectural revisions [Gross and Lam 86]. The compiler was first built for the
wirewrapped Warp prototypes, but has since been retargeted for both the PC Warp and
iWarp. Many compiler parts can be reused without modification on different architec
tures. The flow graph representation, for example, is machine-independent, as are the
modules that operate on the flow graph: the parser and the local and global dataflow
analyzers. The Warp machine's simple, orthogonal instruction set also makes backend
modules reusable: scheduler, register allocator, and code emission units in the cell code
generator.

3.2.3 Programming environment

The primary objective of the Warp Programming Environment (WPE) is to simplify the
use of the Warp machine. Our design provides a uniform environment to edit, compile,
debug, and execute W2 programs, supports efficient multiple user access, allows users
to access multiple Warp machines, and provides network transparency [Bruegge et al.
87].

The WPE achieves efficiency and convenience by supporting two modes of accessing
Warp. Users may opt for convenience by using the Warp shell, a command interpreter
that interfaces the user to the components to the WPE. Or he may choose efficiency by
programming the machine in "standalone" mode, calling run-time system procedures
directly.

The runtime system supports multi-user access through two kinds of server
processes. The Warp server manages machine access through functions that lock and
unlock Warp for different users. Multiple user servers provide the primary location for
variables an individual user creates in his own Warp shell. Memory is copied back and
forth between user server and Warp machine each time a user accesses the machine.
This feature aids the efficient use of the machine by permitting the environment to main
tain user-specific state information across several locks/unlocks of the Warp machine
and by making it possible to initialize shell variables without monopolizing the Warp ar-

3.2.4 Debugger

We have also developed a symbolic debugger for W2 programs that allows the user
to set source line breakpoints and inspect symbolic variables [Bruegge et al. 87]. The
prototype provided only a post-mortem debugging mode because the machine's
hardware pipelines made restarting impossible. The PC Warp has better support for in
teractive debugging and can resume execution after the user inspects the machine's in
ternal state.

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

3 - 1 2 S Y S T O U C A R R A Y M A C H I N E

3.3 Applications
Applications played a multifaceted role throughout the system development process.

A systolic array with genuinely powerful cells represents a new machine organization
and, as we developed applications, we also evolved a set of general machine models.
Our initial study of potential applications provided critical guidance on system require
ments, such as memory size and I/O bandwidth. We chose the vision domain because
CMU researchers have both interest and expertise there and because its tasks require
intensive computation. By focusing on one area, we enhanced the chances that Warp
could actually provide a useful resource for real research problems. The continuing, in
dependent pursuit of Warp applications also provided feedback for system develop
ment. With real users we could more rapidly locate problem areas and bottlenecks and
make appropriate improvements. Finally, application software provided valuable
benchmark performance data. The following sections describe work in several applica
tion areas and the general algorithm mapping methods we developed.

3.3.1 Application areas
Warp machines have proven useful in several task areas [Gross et al. 85, Kung and

Webb 86, Annaratone et al 86] [Annaratone et al. 87c, Annaratone et al. 87d] [Clune et
al. 87]:

• General image processing—-We have implemented an extensive sub
routine library for image processing. With this resource, researchers are
now using the Warp machine in vision work as well as more applied
domains. Other investigators are seeking ways to exploit Warp for
processing medical images, particularly nuclear magnetic resonance
(NMR) data.

• Image processing for robot navigation—Algorithms and systems im
plemented include road following, obstacle avoidance using stereo vision,
and obstacle avoidance using the Environmental Research Institute of
Michigan (ERIM) laser range scanner.

• Signal processing—We have developed several different algorithms in this
area, including singular value decomposition (SVD) for adaptive beam
forming.

• Scientific computing—Algorithms include successive over-relaxation (SOR)
for solution of systems of partial differential equations.

In addition, CMU has been providing help to several D A R P A contractors in their ap
plications of Warp, including Martin Marietta Corporation in Autonomous Land Vehicles
and Hughes Aircraft Corporation in image analysis.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S Y S T O L I C A R R A Y M A C H I N E 3 - 1 3

3.3.2 Program partitioning methods

We have identified three general program partitioning methods: input partitioning,
output partitioning, and pipelining [Annaratone et al. 87d, Kung and Webb 86].
Input partitioning

Input partitioning is useful, for example, in image processing where the result at each
point of the output image depends only on a small neighborhood of the corresponding
point of the input image. In this model, the input data are partitioned among the Warp
cells. Each cell computes on its portion of the input data to produce a corresponding
portion of the output data.

This model provides a simple and powerful method for exploiting parallelism—most
parallel machines support it in one form or another. Many Warp algorithms use it, in
cluding most of the low-level vision programs, the discrete cosine transform (DCT), sin
gular value decomposition [Annaratone et al 86], connected component labeling [Kung
and Webb 86], border following, and the convex hull procedure.
Output partitioning

Output partitioning is useful when the input to output mapping is not regular, or when
any input can influence any output. Histogram and image warping are examples of
such computations. This model usually requires extensive memory because either the
required input data set must be stored and then processed later, or the output must be
stored in memory while the input is processed. For output partitioning, each Warp cell
processes the entire input data set or a large part of it, but produces only part of the
output. Each cell has 32K words of local memory to support efficient use of this model.
Pipelining

For some algorithms, pipelining represents the only possible means to parallel com
putation. In this model, typical of systolic computation, the algorithm is partitioned
among the cells in the array and each cell performs one stage of the processing.
Warp's high inter-cell communication bandwidth and its effectiveness in handling fine-
grain parallelism make pipelining possible.

A simple example is the solution of elliptic partial differential equations using succes
sive over-relaxation. Each cell is responsible for one relaxation. In raster order, each
cell receives inputs from the preceding cell, performs its relaxation step, and outputs the
results to the next cell. While a cell is performing the /c*h relaxation step on row /', the
preceding and subsequent cells perform the k-lst and k+lst relaxation steps on rows i+2
and J -2 , respectively. Thus, in one pass of the u values through the 10-cell Warp array,
the relaxation steps are performed ten times. This process is repeated, under control of
the external host, until convergence is achieved.

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

3-14 S Y S T O U C A R R A Y M A C H I N E

3.4 Bibliography
[Annaratone et al 86]

Annaratone, M., E. Arnould, H.T. Kung, and O. Menzilcioglu.
Using Warp as a supercomputer in signal processing.
In Proceedings oflCASSP, Pages 2895-2898. IEEE, April, 1986.

Warp is a programmable systolic array machine designed by
CMU and built together with its industrial partners, GE and
Honeywell. The first large scale version of the machine
with an array of 10 linearly connected cells will become
operational in January 1986. Each cell in the array is
capable of performing 10 million 32-bit floating-point opera
tions per second (10 MFLOPS). The 10-cell array can
achieve a performance of 50 to 100 MFLOPS for a large
variety of signal processing operations such as digital filter
ing, image compression, and spectral decomposition. The
machine, augmented by a boundary processor, is par
ticularly effective for computationally expensive matrix al
gorithms such" as solution of linear systems, QR-
decomposition and singular value decomposition, that are
crucial to many real-time signal processing tasks. This
paper outlines the Warp implementation of the 2-
dimensional Discrete Cosine Transform and singular value
decomposition.

[Annaratone et al. 85]
Annaratone, M., E. Arnould, P.K. Hsiung, and H.T. Kung.
Extending the CMU warp machine with a boundary processor.
In Proceedings of the international Society for Optical Engineers,

SPIE, January, 1985.
A high-performance systolic array computer called Warp has

been designed by CMU and is currently under construc
tion. The full scale machine has a systolic array of 10 or
more linearly connected cells, each of which is a
programmable processor capable of performing 10 million
floating-point operations per second (10 MFLOPS). By the
end of 1985 the first full scale machine will be operational.
Low-level vision processing for robots and autonomous
vehicles are among the first applications of the machine.

This paper describes a new boundary processor \o be attached
to an end of the linear systolic array in Warp. Extending
Warp with this boundary processor will substantially en
hance the performance and applicability of the machine.
The extended machine will be efficient for new application
areas such as solution of linear systems of equations and
adaptive signal processing.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S Y S T O L I C A R R A Y M A C H I N E
3 - 1 5

[Annaratone et al. 86]
Annaratone, M., E. Arnould, T. Gross, H.T. Kung, M.S. Lam,
O. Menzilcioglu, K. Sarocky, and J.A. Webb.
Warp architecture and implementation.
In 13th Annual International Symposium on Computer Architecture,

IEEE, June, 1986.
A high-performance systolic array computer called Warp has

been designed and constructed. The machine has a sys
tolic array of 10 or more linearly connected cells, each of
which is a programmable processor capable of performing
10 million floating-point operations per second (10
MFLOPS). A 10-cell machine therefore has a peak perfor
mance of 100 MFLOPS. Warp is integrated into a U N I X
host system. Program development is supported by a
compiler.

The first 10-cell machine became operational in 1986. Low-
level vision processing for robot vehicles is one of the first
applications of the machine.

This paper describes the architecture and implementation of the
Warp machine, and justifies and evaluates some of the ar
chitectural features with the system, software and applica
tions considerations.

[Annaratone et al. 87a]
Annaratone, M., E. Arnould, T. Gross, H.T. Kung, M. Lam,
O. Menzilcioglu, and J.A. Webb.
The Warp computer: architecture, implementation, and performance.
IEEE Transactions on Computers C-36(12), December, 1987.
Also appeared as tech report CMU-CS-87-166.

The Warp machine is a systolic array computer of linearly con
nected cells, each of which is a programmable processor
capable of performing 10 million floating-point operations
per second (10 MFLOPS). A typical Warp array comprises
10 cells, thus having a peak computation rate of 100
MFLOPS. Warp is integrated as an attached processor
into a U N I X host system. Programs for Warp are written in
a high-level language supported by an optimizing compiler.

The first 10-cell machine became operational in February 1986.
Five machines have been built as of June 1987, and more
are under construction. Warp has been demonstrated to
be effective in the application domain of low-level vision
processing for robot navigation, as well as other fields such
as signal processing, scientific computation, and texture
image analysis. The average performance of Warp for a
large sample of programs in these application areas is 28
MFLOPS.

This paper describes the architecture, implementation and per
formance of the Warp machine. Each major architectural
decision is discussed and evaluated with system, software,

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

3 - 1 6 S Y S T O U C A R R A Y M A C H I N E

and application considerations. This paper also describes
the programming model and support developed to allow us
to use the machine effectively. The paper concludes with
performance data measured for a large number of applica
tions.

[Annaratone et al. 87b]
Annaratone, M., E. Arnould, R. Cohn, T. Gross, H.T. Kung, M. Lam,
O. Menzilcioglu, K. Sarocky, J. Senko, and J.Webb.
Warp architecture: from prototype to production.
In Proceedings of the 1987 National Computer Conference, June,

1987.
The Warp machine is a high-performance systolic array com

puter with a linear array of 10 or more cells, each of which
is a programmable processor capable of performing 10 mil
lion floating-point operations per second (10 MFLOPS).
Warp is integrated into a U N I X host system, and program
development is supported by a compiler.

Two copies of a 10-cell prototype of the Warp machine became
operational in 1986 and are in use at Carnegie Mellon for a
wide range of applications, including low-level vision
processing for robot vehicle navigation and signal process
ing. The success of the prototypes led to the development
of a production version of the Warp machine that is im
plemented with printed circuit boards. At least eight copies
of this machine are being built by General Electric in 1987.
The first copy was delivered to Carnegie Mellon in April
1987. This paper describes the architecture of the produc
tion Warp machine and explains the changes that turned
the prototype system into a mature high-performance com
puting engine.

[Annaratone et al. 87c]
Annaratone, M., F. Bitz, E. Clune, H.T. Kung, P. Maulik, H. Ribas,
P. Tseng; and J. Webb.
Applications and algorithm partitioning on Warp.
In Proceedings ofCompcon Spring '87, IEEE, February, 1987.

The prototype Warp machines at Carnegie Mellon have been
used in a diverse range of applications, including robot
vehicle control, scientific computing, and medical image
processing, and as a tool for vision research. A small
number of algorithm partitioning methods have allowed ef
ficient use of the Warp machine in all of these areas.
Large applications that use Warp as part of a system are
efficiently supported by Warp's flexible host.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S Y S T O U C A R R A Y M A C H I N E 3 - 1 7

[Annaratone et al. 87d]
Annaratone, M., F. Bitz, J. Deutch, H.T. Kung, L Harney, P. Maulik,
P. Tseng, and J. Webb.
Applications experience on Warp.
In Proceedings of the 1987 National Computer Conference, Pages

149-158. AFIPS, June, 1987.
Also appeared in Proceedings ofCompcon Spring 1987.

The prototype Warp machine at Carnegie Mellon is being used
to develop new applications in magnetic resonance image
processing, as a research tool in image texture analysis,
and for scientific computing. In these areas, orders of
magnitude speedup over conventional computers are be
ing observed. These new applications build on our use of
Warp for low level vision, which is the area for which the
machine was originally designed.

Experience with the prototype Warp machine has led to rules
that programmers should follow to achieve best perfor
mance in their application. These rules concern all levels
of the Warp system, from input and output ordering to pro
gramming each individual Warp cell to memory use in
Warp's host. The new printed circuit board version of
Warp incorporates several architectural improvements,
which lead to better support of a wider class of applica
tions.

An ambitious design for implementation of Warp in custom VLSI
is underway, which promises an increase of at least ten in
cost-performance over the current version of Warp,
together with the opportunity to build much more powerful
systolic arrays delivering GigaFLOPS performance.

[Annaratone et al. 87e]
Annaratone, M., E. Arnould, R. Cohn, T. Gross, H.T. Kung, M. Lam,
O. Menzilcioglu, K. Sarocky, J. Senko, and J. Webb.
Architecture of Warp.
In Proceedings ofCompcon Spring '87, IEEE Computer Society,

February, 1987.
Warp is a high-performance systolic array computer. A linear

array of cells is connected to a host computer operating
under the U N I X operating system. Each cell of the array is
a programmable processor capable of performing 10 mil
lion floating-point operations per second. To date, two 10-
cell prototype systems have been built and are in use;
eight more systems are under construction.

This paper describes the architecture and implementation of the
Warp cells, the array configuration, and the organization of
the host system.

C A R N E G I E M E L L O N U N I V E R S I T Y F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

3 - 1 8 S Y S T O U C A R R A Y M A C H I N E

[Arnould et al. 85] Arnould, E., H.T. Kung, O. Menzilcioglu, and K. Sarocky.
A systolic array computer.
In Proceedings of the International Conference On Acoustics,

Speech, and Signal Processing, IEEE, March, 1985.
A high-performance systolic array computer has been designed

at CMU and is currently under construction. The first copy
of the machine, to be built by CMU together with its in
dustrial partners before the end of 1985, will incorporate a
programmable systolic array of ten linearly connected
cells. Each cell in the systolic array is capable of perform
ing 10 million floating-point operations per second (10
MFLOPS), giving the total machine a peak performance of
100 MFLOPS, or higher if additional cells are used. This
particular systolic array computer is called Warp, suggest
ing that it can perform computations at a very high speed.
The 10-cell systolic array, with one cell implemented on
one board, can process 1024-point complex FFTs at a rate
of one FFT every 600 |is. Under program control, the
same array can perform many other primitive computations
in signal, image, and vision processing, including two-
dimensional convolution, dynamic programming, and real
or complex matrix multiplication, at a rate of 100 million
floating-point operations per second. Users may view the
systolic array as an array of conventional "array
processors," which can efficiently implement not only sys
tolic algorithms where communication between intensive
cells is intensive, but also non-systolic algorithms where
each cell operates on its own cell data independently from
the rest. This paper describes the hardware organization
of the Warp machine.

[Bruegge et al. 87]Bruegge, B., C. Chang, R. Cohn, T. Gross, M. Lam, P. Lieu,
A. Noaman, and D. Yam.
The Warp programming environment.
In Proceedings of the 1987 National Computer Conference, AFIPS,

June, 1987.
This paper describes the environment for developing and ex

ecuting Warp programs. The center of the program
development environment is a customized shell that ties
together a compiler for the Warp array, the Warp run-rime
system, and a debugger. The compiler translates high-
level language programs to microcode for the Warp
machine. It achieves a high utilization of the computation
power of the processor. The run-time system supports
remote execution of Warp programs across a network and
makes the Warp machine available as a sharable
resource. The debugger permits symbolic debugging of
Warp programs. The Warp programming environment
makes the Warp machine an easily programmable and ac
cessible attached processor in a U N I X environment.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S Y S T O L I C A R R A Y M A C H I N E 3 - 1 9

[Clune et al. 87] Clune, E., J.D. Crisman, G.J. Klinker, and J.A. Webb.
Implementation and performance of a complex vision system on a

systolic array machine.
Technical Report CMU-RI-TR-87-16, The Robotics Institute, Car

negie Mellon University,
June, 1987.

Complex vision systems are usually quite slow, requiring tens of
seconds or minutes of computer time for each image. As
the complexity and experimental nature of the system in
creases, the speed is especially low, since all components
of the system must be optimized if the system is to show
good performance. The FIDO system, a stereo vision sys
tem for controlling a robot vehicle, has existed for a num
ber of years and has been implemented on a number of
different computers. These computers have ranged from a
D E C KL10 to the current implementation on the Warp
machine, a 100 Million Floating Point Operations Per
Second (MFLOPS) systolic array machine. FIDO has
shown enormous range in speed; its ancestor took 15
minutes per step, while the Warp implementation takes
less than 5 seconds per step. Moreover, while early ver
sions of FIDO moved in slow, start-and-stop steps, FIDO
now runs continuously at 100 mm/second. We review the
history of the FIDO system, discuss its implementation on
different computers, and concentrate on its current Warp
implementation.

[Deutch et. al. 87] Deutch, J., P.C. Maulik, R. Mosur, H. Printz, H. Ribas, J. Senko, P.S.
Tseng, J.A. Webb, and I.C. Wu.
Performance of Warp on the DARPA architecture benchmarks.
Technical Report 87-148, Computer Science Department, Carnegie

Mellon University,
September, 1987.

Warp was a participant in the D A R P A Architecture Workshop
Benchmark Study, which compared performance of a
variety of architectures for image processing on image
processing tasks from low-level and mild-level vision. We
present algorithms and performance figures resulting from
this study. These algorithms and performance numbers
can be used as a guide to Warp programming at the time
of this study. Based on these performance figures, we can
evaluate the architectural decisions made in the Warp
design.

[Fisher et al. 84] Fisher, A.L, H.T. Kung, and K. Sarocky.
Experience with the CMU programmable systolic chip.
In Proceedings ofSPIE Symposium, Vol. 495, Real-Time Signal

Processing VII, Society of Photo-Optical Instrumentation En
gineers, August, 1984.

C A R N E G I E M E L L O N U N I V E R S I T Y F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

3 - 2 0 S Y S T O U C A R R A Y M A C H I N E

The CMU programmable systolic chip (PSC) is an experimental,
microprogrammable chip designed for the efficient im
plementation of a variety of systolic arrays. The PSC has
been designed, fabricated, and tested. The chip has about
25,000 transistors, uses 74 pins, and was fabricated
through MOSIS, the D A R P A silicon broker, using a 4 micron
nMOS process. A modest demonstration system involving
nine PSCs is currently running. Larger demonstrations are
ready to be brought up when additional working chips are
acquired.

The development of the PSC, from initial concept to a silicon
layout, took slightly less than a year, but testing, fabrica
tion, and system demonstration took an additional year.
This paper reviews the PSC, describes the PSC
demonstration system, and discusses some of the lessons
learned from the PSC project.

[Gross and Lam 86]
Gross, T. and M.S. Lam.
Compilation for a high-performance systolic array.
In Proceedings of the SIGPLAN 86 Symposium on Compiler

Construction, ACM SigPlan, June, 1986.
We report on a compiler for Warp, a high-performance systolic

array developed at Carnegie Mellon. This compiler en
hances the usefulness of Warp significantly and allows ap
plication programmers to code substantial algorithms.

The compiler combines a novel programming model, which is
based on a model of skewed computation for the array,
with powerful optimization techniques. Programming in
W2(the language accepted by the compiler) is orders of
magnitude easier than coding in microcode, the only alter
native available previously.

[Gross et al. 85] Gross, T„ H.T. Kung, M. Lam, and J. Webb.
Warp as a machine for low-level vision .
In Proceedings of the International Conference on Robotics and

Automation, IEEE, March, 1985.
Warp is a programmable systolic array processor. One of its

objectives is to support computer vision research. This
paper shows how the Warp architecture can be used to ful
fill the computational needs of low-level vision.

We study the characteristics of low-level vision algorithms and
show they lead to requirements for computer architecture.
The requirements are met by Warp. We then describe
how the Warp system can be used. Warp programs can
be classified in two ways: chained versus severed, and
heterogeneous versus homogeneous. Chained and
severed characterize the degree of interprocessor depen
dency, while heterogeneous and homogeneous charac-

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S Y S T O L I C A R R A Y M A C H I N E 3 -21

terize the degree of similarity between programs on in
dividual processors. Taken in combination, these classes
give four user models. Sophisticated programming tools
are needed to support these user models.

[Hsu et al. 85] Hsu, F.H., H.T. Kung, T. Nishizawa, and A. Sussman.
Architecture of the link and interconnection chip.
In Proceedings of the 1985 Chapel Hill Conference on VLSI, Com

puter Science Press, 1985.
The link and interconnection chip (LINC) is a custom chip

whose function it is to serve an efficient link between sys
tem functional modules, such as arithmetic units, register
files and I/O ports. This paper describes the architecture
of LINC, and justifies it with several application examples.

LINC has 4-bit datapaths consisting of an 8x8 crossbar inter
connection, a FIFO or programmable delay for each of its
inputs, and a pipeline register file for each of its outputs.
Using pre-stored control patterns LINC can configure an in
terconnection and delays on-the-fly. Therefore the usual
functions of busses and register files can be realized with
this single chip.

LINC can be used in a bit-sliced fashion to form interconnec
tions with datapaths wider than 4 bits. Moreover, by tri-
stating the proper data output pins, multiple copies of LINC
can be used for crossbar interconnections larger than 8x8.

Operating at the target cycle time of 100ns, LINC makes it pos
sible to implement a variety of high-performance process
ing elements with much reduced package counts.

[Kanade and Webb 87]
Kanade, T., and J.A. Webb.
End of year report for parallel vision algorithm design and

implementation.
Technical Report CMU-RI-TR-87-15, The Robotics Institute, Car

negie Mellon University,
June, 1987.

The parallel vision algorithm design and implementation project
was established to facilitate vision programming on parallel
architectures, particularly low-level vision and robot vehicle
control algorithms on the Carnegie Mellon Warp machine.
To this end, we have (1) demonstrated the use of the Warp
machine in several different algorithms; (2) developed a
specialized programming language, called Apply, for low-
level vision programming on parallel architectures in
general, and Warp in particular; (3) used Warp as a
research tool in vision, as opposed to using it only for
research in parallel vision; (4) developed a significant
library of low-level vision programs for use on Warp.

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

3 - 2 2 S Y S T O L I C A R R A Y M A C H I N E

[Kung 86] Kung, H.T.
Memory requirements for balanced computer architectures.
In 13th Annual International Symposium on Computer Architecture,

IEEE, June, 1986.
Also appeared in Journal of Complexity, Vol. 1, No. 1., 1985.

A processing element (PE) can be characterized by its com
putational bandwidth, I/O bandwidth, and the size of its lo
cal bandwidth. In carrying out a computation, a PE is said
to be balanced if the computational time equals the I/O
time. Consider a balanced PE for some computation.
Suppose that the computational bandwidth of the PE is in
creased by a factor of a relative to its I/O bandwidth. Then
when carrying out the same computation the PE will be im-
balanced; i.e. it will have to wait for I/O. A standard
method for avoiding this I/O bottleneck is to reduce the
overall I/O requirements of the PE by increasing the size of
its local memory. This paper addresses the question of by
how much the PE's local memory must be enlarged in or
der to restore balance.

The following results are shown: For matrix computations such
as matrix multiplication and Gaussian elimination, the size
of the local memory must be increased by a factor of a 2 .
For computations such as relaxation on a cklimensional
grid, the local memory must be increased by a factor of ad.
For some other computations such as fast Fourier trans
form and sorting, the increase is exponential; i.e., the size
of the new memory must be the same as the old memory
to the a-th power. All these results indicate that the size of
a PE's local memory should be increased much more
rapidly that the PE's computational bandwidth. This
phenomenon seems to be common for many computations
where an output may depend on a large subset of the in
puts.

Implications of these results for some parallel computer ar
chitectures are discussed. One particular result is that to
balance an array of p linearly connected PEs for perform
ing matrix computations such as matrix multiplication and
matrix triangularization, the size of each PE's local memory
must grow linearly with p. Thus, the larger the array is, the
larger each PE's local memory must be.

[Kung and Lam 84]
Kung, H.T. and M.S. Lam.
Wafer-scale integration and two-level pipelined implementations of

systolic arrays.
Journal of Parallel and Distributed Computing! :32-63,1984.
A preliminary version appears in Proc. Conference on Advanced

Research in VLSI, MIT, January 1984.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S Y S T O L I C A R R A Y M A C H I N E
3 -23

[Kung and Webb 85a]
Kung, HT. and J.A. Webb.
Global operations on the CMU Warp machine.
In Proc. 1985 AIAA Computers in Aerospace V Conference, Pages

209-218. American Institute of Aeronautics and Astronautics, Oc
tober, 1985.

CMU is developing a high-performance machine, called Warp,
for image and signal processing. The machine has a
programmable systolic array of linearly connected cells,
each capable of performing 10 million floating-point opera
tions per second. It is not surprising that the array can ef
ficiently perform local operations, in which each output
depends on a small corresponding area of the input, since
the connections between the cells are neighbor connec
tions. However, Warp is also suited to global image opera
tions, in which each output can depend on any or a large
portion of the inputs. In this paper we show this, and dis
cuss the reasons why.

As example global operations we take the fast Fourier transform
(FFT), component labeling, Hough transform, and image
warping. The FFT is am important computation in signal
processing. Component labeling is a basic operation in im
age processing, often the last operation done before sym
bolic processing takes over. Hough transform, a technique
used to match curve templates in images, is finding wide
use in image processing these days, because of its robust
performance in the presence of noise. Image warping is
used to correct for lens distortions or to normalize images
to make later processing easier. It is a time-consuming
step not readily implementable on most parallel machines.

We describe how Warp can efficiently implement these global
operations. In particular, an efficient parallel algorithm for
component labeling is proposed.

[Kung and Webb 85b]
Kung, H.T. and J.A. Webb.
Global operations on a systolic array machine.
In Proceedings of the International Conference on Computer Design:

VLSI in Computer, IEEE, October, 1985.
CMU is developing a high-performance machine, called Warp,

for image and signal processing. The machine has a
programmable systolic array of linearly connected cells,
each capable of performing 10 million floating-point opera
tions per second. It is not surprising that the array can ef
ficiently perform local operations, in which each output
depends on a small corresponding area of the input, since
the connections between the cells are neighbor connec
tions. However, Warp is also suited to global image opera
tions, in which each output can depend on any or a large

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

3 -24 S Y S T O L I C A R R A Y M A C H I N E

portions of the inputs. In this paper we show this, and dis
cuss the reasons why.

As example global operations we take the fast Fourier transform
(FFT), component labeling, and Hough transform. The
FFT is an important computation on signal processing.
Component labeling is a basic operation in image process
ing, often the last operation done before symbolic process
ing takes over. Hough transform, a technique used to
match curve templates in images, is finding wide use in im
age processing these days, because of its robust perfor
mance in the presence of noise.

We describe how Warp can efficiently implement these global
operations. In particular, a component labeling algorithm
suitable for Warp is proposed. This algorithm appears to
be simpler and faster than previously known algorithms,
even for a conventional sequential machine.

[Kung and Webb 86]
Kung, H.T. and J.A. Webb.
Mapping image processing operations onto a linear systolic machine.
Distributed Computing 1 (4):246-257,1986.

A high-performance systolic machine, called Warp, is opera
tional at Carnegie Mellon. The machine has a programm
able systolic array of linearly connected cells, each
capable of performing 10 million floating point operations
per second. Many image processing operations have
been programmed on the machine. This programming ex
perience has yielded new insights in the mapping of image
processing operations onto a parallel computer. This
paper identifies three major mapping methods that are par
ticularly suited to a Warp-like parallel machine using a
linear array of processing elements. These mapping
methods correspond to partitioning of input dataset, par
titioning of output dataset, and partitioning of computation
along the time domain (pipelining). Parallel implemen
tations of several important image processing operations
are presented to illustrate the mapping methods. These
operations include the Fast Fourier Transform (FFT), con
nected component labeling, Hough transform, image warp
ing, and relaxation.

[Lam 87] Lam, M.
An optimizing systolic array compiler.
PhD thesis, Computer Science Department, Carnegie Mellon Univer

sity, May, 1987.
The Warp machine is a linear array of ten programmable

processors and is capable of executing 100 million floating
point operations per second (100 MFLOPS). The in
dividual processors, or cells, derive their performance from

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S Y S T O L I C A R R A Y M A C H I N E 3 -25

a wide instruction set and a high degree of internal pipelin
ing and parallelism.

My thesis is that systolic arrays of high-performance cells can
be programmed effectively using a high-level language.
The solution has two components: a machine abstraction
and compiler optimizations for systolic arrays, and code
scheduling techniques for horizontally microcoded or VLIW
processors.

In the proposed machine abstraction, individual cells are
programmed in a high-level programming language; inter-
cell communication is explicitly specified by asynchronous
primitives: receive and send operations. This machine
abstraction offers both efficiency and generality. Unidirec
tional systolic array programs can be compiled into highly
efficient code by compiler optimizations that exploit the
high-level semantics of asynchronous communication.
This abstraction is applicable even for simple implemen
tations with no dynamic flow control hardware by using an
efficient com pile-time contFol flow algorithm.

This thesis shows that software pipelining is a practical and ef
ficient code scheduling technique for highly parallel and
pipelined processors. We have extended the previous
scheduling algorithm and introduced a new optimization
called modulo variable expansion. We show that near-
optimal results can be obtained using software heuristics.
This thesis also proposes a unified approach to scheduling
both within and across basic blocks called hierarchical
reduction. This technique makes software pipelining ap
plicable to all innermost loops, including those containing
conditional statements. A consistent performance im
provement can thus be obtained for all programs.

[Lam 88a] Lam, M.
Compiler optimizations for asynchronous systolic array programs.
In Proc. Fifteenth Annual ACM Symposium on Principles of Program-

ming Languages, Jan., 1988.
A programmable systolic array of high-performance cells is an

attractive computation engine if it attains the same utiliza
tion of dedicated arrays of simple cells. However, typical
implementation techniques used in high-performance
processors, such as pipelining and parallel functional units,
further complicate the already difficult task of systolic algo
rithm design. This paper shows that high-performance
systolic arrays can be used effectively by presenting the
machine to the user as an array of conventional proces
sors communicating asynchronously. This abstraction al
lows the user to focus on the higher level problem of par
titioning a computation across cells in the array. Efficient
fine-grain parallelism can be achieved by code motion of

C A R N E G I E M E L L O N U N I V E R S I T Y F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

3 - 2 6 S Y S T O U C A R R A Y M A C H I N E

communication operations made possible by the
asynchronous communication model. This asynchronous
communication model is recommended even for program
ming algorithms on systolic arrays without dynamic flow
control between cells.

The ideas presented in the paper have been validated in the
compiler for the Warp machine. The compiler has been in
use in various application areas including robot navigation,
low-level vision, signal processing and scientific program
ming. Near-optimal code has been generated for many
published systolic algorithms.

[Lam 88b] Lam, M.
Software pipelining: an effective scheduling technique for VLIW

machines.
In Conference on Programming Language Design and

Implementation., ACM Sigplan, June, 1988.
This paper shows that software pipelining is an effective and vi

able scheduling technique for VLIW processors. In
software pipelining, iterations of a loop in the source
program are continuously initiated at constant intervals, be
fore the preceding iterations complete. The advantage of
software pipelining is that optimal performance can be ach
ieved with compact object code.

This paper extends previous results of software pipelining in two
ways: First, this paper shows that by using an improved
algorithm, near-optimal performance can be obtained with
out specialized hardware. Second, we propose a
hierarchical reduction scheme whereby entire control con
structs are reduced to an object similar to an operation in a
basic block. With this scheme, all innermost loops, includ
ing those containing conditional statements, can be
software pipelined. It also diminishes the start-up cost of
loops with small number of iterations. Hierarchical reduc
tion complements the software pipelining technique, per
mitting a consistent performance improvement be ob
tained.

The techniques proposed have been validated by an implemen
tation of a compiler for Warp, a systolic array consisting of
10 VLIW processors. This compiler has been used for
developing a large number of applications in the areas of
image, signal and scientific processing.

[Siegell and Gross 87]
Siegell, B. and T. Gross.
Program-specific and architecture-specific simulators.
In Proceedings of the 8th International Symposium on Computer

Hardware Description Languages and their Applications, April,
1987.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

S Y S T O L I C A R R A Y M A C H I N E 3 - 2 7

The use of compilation techniques makes it possible to
automatically produce efficient functional simulators from a
given machine description. A compiler produces an
architecture-specific simulator by binding various
parameters like the word size, unit of memory access, etc.,
which are otherwise repetitively evaluated at runtime by a
generic interpretative simulator. This idea of early binding
can be extended to include the program that is run on the
simulator. The result is a program-specific simulator that
simulates the target architecture for exactly one program.

We have implemented PAST, a compiler tool to generate
program- and architecture-specific simulators from I S P S
descriptions. Simulators compiled with PAST are an order
of magnitude faster than running the I S P S interpreter. A
program-specific simulator offers an additional two-fold im
provement over the architecture-specific simulator. These
improvements are obtained at the expense of increased
simulator preparation times, and the paper discusses the
tradeoffs between the different approaches.

[Sun 86] Sun,Y.
Verification of systolic arrays: a FP functional approach.
Technical Report CMU-CS-86-135, Computer Science Department,

Carnegie Mellon University,
April, 1986.

There has been much interest in the use of formal techniques
for the design and analysis of systolic arrays. One impor
tant aspect of the analysis of systolic arrays is the correct
ness problem.

A few attempts at the verification of systolic arrays have ap
peared in the literature. The deficiency is that all of these
methods lack a straight- forward way of proving correct
ness. They require either proposing a solution, then apply
ing inductive techniques or showing that the array satisfies
three types of properties: safety, liveness, and termination.

In this paper, an FP functional approach is proposed. The goal
is to verify that a given systolic design computes the func
tion for which it was intended instead of the generation of a
systolic architecture. The method generates a system of
recursive functional equations which describes the algo
rithm executed by the architecture. This representation
consists of several equations describing connections be
tween cells, functions representing data streams, and func
tions describing the relation between the structure of input
and output data and the systolic array structure. The min
imum solution of the system of recursive functional equa
tions is the function computed by the systolic architecture.

The main advantage of this approach is that it allows us to de
velop an algebra of functional programs. We have

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1983 -1988

3 - 2 8 S Y S T O L I C A R R A Y M A C H I N E

developed various methods to deal with different kinds of
systems of functional recursive equations. By solving the
system of recursive functional equations, we can get the
least solution directly. This provides a straightforward way
for proving correctness.

An example is given. A typical system of recursive functional
equations is generated. An algebra method is developed
showing how to solve this problem, because most systolic
designs can be represented by it.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T 4-1

4. THE PRODUCTION SYSTEM MACHINE PROJECT

4.1 Introduction

Production systems embody a form of program organization used for many applied Al
systems, especially knowledge-intensive expert systems comprising large if-then rule
sets, also called rule-based systems. This organizational form is especially suited to
tasks that draw on well-defined bodies of expertise. The development of production
systems has played a leading role in the recent, dramatic rise of Al expert systems to
the point of industrial and commercial application. Their sudden ascendance, in turn,
reflects the current belief that knowledge-based systems will be a central feature of
tomorrow's computers.

The need for special machines to process production systems arises from the specific
computational problem of finding the appropriate rules within a large (ultimately huge)
collection in the knowledge base. Moreover, this search-and-recognize process must
proceed continually and virtually instantaneously as the working situation changes, so
that newly relevant knowledge can be immediately applied to the current task. This
computational task must be addressed efficiently if the current style of expert systems
continues to mature and if this style is to transform into substantially more capable sys
tems.

Researchers have been exploring many alternative ways for speeding up the execu
tion of production systems. While some of our efforts have focused on high-
performance uniprocessor implementations, our efforts under the contract have con
centrated on parallel implementations because of a production system's potential for ex
ploiting large amounts of parallelism. We now describe this potential for parallelism in
production systems in general and the Rete algorithm in particular.

4.1.1 Sources of parallelism in production systems

A production system divides easily at several levels for parallel processing. For ex
ample, a production system interpreter might exploit parallelism within each of the steps
it takes to fire a rule. These steps, called the recognize-act cycle, are as follows:

• Match: Match condition elements of the left-hand sides (or "if" part) of all
productions against working memory contents. It is during this step that the
knowledge of the intelligent agent (the expert system) is applied to the cur
rent problem state. The result is a conflict set that consists of instantiations
of all satisfied productions.

• Conflict Resolution: Choose one of the production instantiations in the con
flict set for execution. Halt if no productions are satisfied.

• Act Execute the selected production. These actions may change the con
tents of working memory. Return to the match phase.

The system may overlap processing of each step to achieve more speedup.

C A R N E G I E M E L L O N U N I V E R S I T Y F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

4 - 2 T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T

Match, the most time-consuming step, offers additional sources for parallelism. Even
with specialized algorithms, match constitutes around 90% of the interpretation time.
We therefore focused on speeding up match using parallelism. We began by im
plementing the highly efficient Rete match algorithm used by non-parallel OPS5 im
plementations.
The Rete algorithm

Rete compiles a data flow graph from the left-hand sides of productions. Data objects
called tokens flow between graph nodes and consist of a list of working memory ele
ments plus a tag. The working memory elements correspond to those elements that the
system is trying to match or has already matched against condition elements in the left
hand side. The tag ("+" or"-") indicates whether that list of elements has been added or
removed from working memory. A token's arrival at one input of a two-input node
activates that node: that is, it gives the node new data for processing. The system
processes the activation by comparing the new token to each token stored at the op
posite input. The processor sends token pairs that have consistent variable bindings to
the two-input node's successor.

Rete exploits two production system features that make it an efficient match algo
rithm: (1) the fact that only a small fraction of working memory changes every cycle and
(2) the similarity between a production's condition elements. It stores results of match
from previous cycles and uses them in subsequent cycles, and it performs tests on
common condition elements only once. The algorithm thus only processes changes
made during the most recent production firing and avoids repeating identical tests un
necessarily.
Exploiting parallelism to speed up match

To speed the matching process, we isolated three match-phase execution levels that
could benefit from parallelism: production-, action-, and node-level execution.
Production-level parallelism is the most obvious source of better match speed. To ach
ieve it, the programmer divides the program into groups of productions [Oflazer 84].
The system can then match each group in parallel. The extreme case for production-
level parallelism occurs when the number of groups equals the number of productions in
the program, so that the match for each production in the program is performed in paral
lel. Action-level parallelism involves processing working memory changes in parallel, in
stead of sequentially. The Rete algorithm itself adds another dimension to the potential
speedups from parallelism by allowing a finer grain of parallelism than these other two
levels: It permits the system to process different two-input node activations of the same
or different productions in parallel.

4.1.2 Research goals and considerations

Our goal during the contract was to exploit a production system's potential for parallel
processing, with special emphasis on speeding up the match process. Our strategy
was to design, implement, and evaluate a parallel interpreter.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T 4-3

The PSM project concentrated on two production systems, OPS5 and the OPS5-based
Soar architecture. We selected OPS5 for this study because a number of substantial
OPS5 application programs were available to serve as machine benchmarks, including
the largest production systems in existence at the time. Soar, on the other hand, is a
new production system architecture developed at Carnegie Mellon University to perform
research in problem solving, expert systems, and learning. It is an attempt to provide
expert systems with general reasoning power and the ability to learn. Soar programs
integrate learning into performance systems more generally and more completely than
any other programs at this time. Currently, OPS-Soar is built on top of OPS5, and its syn
tax is similar to that of OPS5.

4.2 Designing a Parallel Interpreter

Our first step in designing a parallel interpreter was to evaluate possible sources for
parallelism. Based on our findings, we proposed general requirements for the inter
preter architecture.

4.2.1 Evaluating opportunities for parallelism

Our goal was to design a parallel interpreter that efficiently exploited the parallelism
inherent in a production system. Since the match operation is the most expensive part
of the cycle, we examined production-, action-, and node-level parallelism more closely
than other potential sources.

Previous analysis of parallelism in production systems had used very simple models
capable of exploring only production-level parallelism. Those models, however, failed to
consider the variation in the cost of processing the production activations. To be able to
test a finer grain of parallelism, we needed a simulator that could trace node-level ac
tivations and their cost. The simulator would rely on an accurate cost model to deter
mine system execution time, reflecting the effects of algorithms and data structures
used to process node activations, code used to push/pop node activations from the task
scheduler, multiprocessor structure, etc.

We solved this problem by building an event-driven simulator. The simulator's main
input consisted of a detailed trace of node activations in the Rete network correspond
ing to a production system run. Other input sources were the cost model and a
specification of the parallel computational model on which the trace was to be executed.
The trace contained information about the dependencies between the node activations,
and the simulator understood which node activations could or could not be processed in
parallel. The trace also contained other information necessary to determine the cost of
a given node activation. The simulator's output consisted of statistics for the overall run
and the individual cycles in the run, including such information as obtainable speedup or
number and average cost of node activations.

Our traces came from six OPS5 production systems: X C O N (or R1), an expert system

C A R N E G I E M E L L O N U N I V E R S I T Y F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

4-4 THE PRODUCTION SYSTEM MACHINE PROJECT

for configuring computers; X S E L , an expert system to assist computer sales engineers;
P T R A N S , an expert system for factory management; Haunt, an interactive computer
game; DAA, an expert system to design digital systems; and M U D , a system for diag
nosing problems with drilling fluids. In addition, we measured the following tasks run
ning in Soar: a part of R1, a part of X S E L , and the eight queens problem [Gupta 84].

We had four goals in performing our simulations:
• Measure the amount of speedup achievable from each source of paral

lelism individually, and enable comparing the extra speedup from a source
against the overheads of using that source

• Identify bottlenecks in obtaining speedup from parallelism and propose
means of eliminating them

• Determine the effect of different activation cost models on the amount of
speedup obtainable from parallelism

• Evaluate the effect of architecture (shared memory vs. non-shared
memory) on the speedup

Because of the way activity spreads throughout the network, offering opportunities for
parallel processing at each node, we expected parallelism to increase system speed on
the order of 100- to 1000-fold. Our simulation results showed, however, that it is pos
sible to speed the match phase by up to only six-fold using production-level parallelism,
up to eight-fold using node-level parallelism, and up to 14-fold using a combination of
node-level and action parallelism. While the speedups obtained from parallelism were
significant, they were much below our initial expectations. The main reasons for the
limited speedup were (1) the small number of affected productions for each change to
working memory (2) the large variance in the processing requirements of the production
activations, and (3) the fact that successive changes to working memory affect almost
the same set of productions [Gupta et al. 86].

While the first and third bottlenecks listed above are beyond the direct control of the
person implementing the interpreter, we did develop a solution to the problem of
variance in production-level processing requirements [Gupta 86]. To obtain more
speedup, it is essential to decompose larger tasks into smaller tasks, each of which can
be processed in parallel. This is exactly what node-level parallelism does: instead of
evaluating one or more productions at a time, it evaluates several parts—in this case
condition elements—of one or more productions at a time. Decomposing large tasks in
this manner furthermore increases the "logical parallelism"—that is, the number of tasks
that can be processed in parallel.

Even node-level parallelism, however, can leave periods of low parallel activity. We
have discovered two causes for these periods of low concurrency: (1) Two-input nodes
may require much more time to finish than other nodes in the network. This happens
when a node has an unusually large number of stored tokens to examine. (2) A long
chain of two-input nodes may have to be processed. This occurs when a token arrives
at a two-input node and causes it to send out one or more tokens that pass through

FINAL REPORT 1983-1988 CARNEGIE MELLON UNIVERSITY

T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T 4-5

many nodes below the originating one. Since each node in the chain has to perform a
substantial amount of processing before its successor can be activated, the amount of
parallelism that is possible in processing one of these chains is limited.

A solution to node-level slowdown is intra-node parallelism, that is, processing mul
tiple activations of the same node in parallel. This is an even finer grain than node-level
parallelism. Our strategy restricted this kind of parallel processing to tokens arriving at
the same input of the two-input node, as simultaneously processing tokens from both
inputs would greatly complicate the code. Exploiting this kind of parallelism carries
even further the goal of reducing variance in processing productions. Based on our
simulation results, we determined that a production system machine could divide the
match process into a large number of small tasks, as we did by moving from processing
whole productions, to processing parts of those productions at the node level, to
processing activations of the same node in parallel.

4.2.2 Bounding parallel architecture alternatives

Based on the results of the simulation measurements, we proposed some general
characteristics for a production system machine architecture. These included processor
design and number, as well as memory and scheduling requirements.
Evaluating instruction set architectures

Our first goal was to identify the type of processor that could run the production sys
tem most quickly. Code sequences used to execute production-system programs do
not include complex instructions. The instructions used most often are simple loads,
compares, and branches without any complex addressing modes [Quinlan 86]. Be
cause of the simple code sequences, we concluded that a machine for executing
production systems should have a simple instruction set and execute instructions in as
few clock cycles as possible. We calculated the time that several processors required
to execute the code sequences of the Rete data-flow graphs. We estimated that a com
plex instruction set machine requires four to eight cycles per instruction. A reduced in
struction set (RISC) machine, on the other hand, could execute most instructions in two
machine cycles. The simple RISC machine thus promised to be two to four times faster
than the more complex machine, making it the better processor choice [Quinlan 86].

We also explored the feasibility of gallium arsenide (GaAs) technology as a means of
increasing production system execution speed. We designed a GaAs implementation
as one of our simulated instruction set architectures [Lehr and Wedig 87]. Simulation
results showed that a GaAs Rise machine could perform a machine cycle in about one
tenth the time of a standard Rise machine. While current technology makes the actual
implementation of such a system impractical, our investigation of a customized GaAs
processor design allowed us to approximate an upper bound execution speed for a
single processor using OPS5 or other production system languages.

C A R N E G I E M E L L O N U N I V E R S I T Y F I N A L R E P O R T 1983 -1988

4-6 T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T

Establishing an appropriate number of processors
Our measurements show that in both OPS5 and Soar production system programs the

average size of the affect-set (i.e., the set of productions affected by a change to the
working memory) is quite small, about 32 productions. Furthermore, our studies in
dicate that the average size of the affect-set is almost independent of the number of
productions in the program. This result seems reasonable when we consider that
programmers recursively divide problems into subproblems, and that at any given time
the program execution corresponds to solving only one of these subproblems. The size
of the subproblems is independent of the size of the original problem and primarily
depends on the complexity of the subproblem and the complexity that the individual can
deal with at the same time.

Since the majority of the match time is taken by the productions in the affect-set, the
maximum speed-up that we can expect from production-level parallelism is a factor of
approximately 32. This implies that if there is a separate processor performing match
for each production in the program, only 32 processors will be performing useful work
and the rest will have no work to do. There are a few production systems that can use
up to 64 processors, so we concluded that 32 to 64 processors were the optimum num
ber to use [Gupta 86].
Determining memory requirements

To achieve a high degree of speedup from parallelism, Rete exploits parallelism at a
very fine grain. For example, multiple activations of the same node may be evaluated in
parallel, requiring that multiple processors have access to the state corresponding to
that node. It is not possible to replicate the state, since keeping all copies of the state
up to date is extremely expensive. This situation strongly suggests a shared memory
architecture. Another important reason for using a shared memory architecture relates
to the load distribution problem. In case processors do not share memory, the system
must decide on which processor to evaluate the activations of a given node at the time
the network is loaded into the parallel machine. Since the number of node activations is
much smaller than the total number of nodes in the Rete network, the system must as
sign several nodes in the network to a single processor. Partitioning nodes among the
processors presents a difficult challenge. A shared memory architecture bypasses the
partitioning problem since any processor can process any node activation, and the sys
tem can assign processors to node activations at runtime.

In shared memory architectures, the switch bandwidth between the processors and
the main memory is always a concern. In order to reduce the needed bandwidth, each
processor in the machine should have a cache and a small private memory. The cache
has the usual function of reducing the amount of processor to memory traffic by holding
copies of frequently-accessed words from main memory. The private memories further
reduce the traffic by holding the parts of the data that can be replicated without intro
ducing too much overhead. A production system machine can replicate working
memory elements quite easily. Since working memory elements change only at well-
defined points in the recognize-act cycle, it is not difficult to insure that all element
copies remain consistent.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T 4-7

Using a special node scheduler
A single node may have several activations (that is, arrivals of new tokens) that it

must process. It is not possible simply to assign each activation to a separate proces
sor, since changes that one token causes to a node's saved state may conflict with
changes that another token makes. Our goal was therefore to find a way to process in
parallel those activations that did not conflict with each other. Our strategy was to de
velop a centralized task scheduler, where all node activations requiring processing may
be placed and subsequently extracted by idle processors. Such a scheduler could be
implemented as a very fast piece of special hardware. Hardware task schedulers are
not flexible, however, in that they are not easy to change as algorithms evolve.
Software task schedulers, on the other hand, offer flexibility, allowing for changes as we
improve the system. To simplify experimentation, we chose a software strategy for our
implementation [Forgy and Gupta 86].

4.2.3 Building a preliminary system
After establishing the general characteristics of our production system machine, be

built a prototype system. We found four major issues in developing a parallel interpreter
using the Rete algorithm: scheduling tasks, storing tokens before processing, locking
hash tables, and considering how to achieve language-related system speedups.
Building the software task scheduler

In building our software task scheduler, we had to decide whether to make it active or
passive. An active scheduler corresponds to an independent process to which mes
sages for pushing and popping tasks may be sent. Once the processor has issued the
request, it may proceed with what it was doing earlier. The requesting processor does
not have to wait while its request is being processed. Active schedulers present a num
ber of overheads, however. For example, scheduling a task involves sending a mes
sage to the active scheduler and then processing this request. Furthermore, when the
processor sends a message to an active scheduler, the scheduler process may not be
running and must be swapped in before the message can be processed. We needed a
scheduler with fewer overheads. A passive scheduler, preferably a task queue, cor
responds to an abstract data structure where node activations may be stored or
retrieved using predefined operations like push-task and pop-task. Scheduling with a
software task queue presents fewer overheads than an active scheduler, so we im
plemented the software task queue. If a task scheduler is not to be a bottleneck,
however, it must be able to schedule a task within the period of about one instruction.
Because it is not feasible to expect such performance out of a single software task
scheduler, we used multiple software task queues to achieve reasonable
performance [Gupta 86].
Storing tokens before processing

A second issue we faced in building the parallel implementation of a production sys
tem was how best to store tokens before processing. Existing OPS5 and Soar inter
preters stored the contents of the memory nodes as a linear list of tokens. Thus when a
token with a "-" tag arrived at a memory node, a corresponding token had to be found

C A R N E G I E M E L L O N U N I V E R S I T Y F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

4-8 T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T

and deleted from the memory node. Finding the corresponding token with a linear
search would require, on average, a look up of half of the tokens in that memory node.
Similarly, for an activation of a two-input node, the system must look up all tokens in the
opposite input's memory to find the set of matching tokens.

Our goal was to store and retrieve tokens more efficiently. Making the cost of deleting
a token from a memory node a constant, for instance, instead of being proportional to
half the number of tokens in that node would make nodes with long lists of tokens as
quick to process as nodes with short lists. Making the cost of finding matching tokens
proportional to the number of successful matches instead of to the number of tokens in
the opposite input's memory would likewise reduce processing time at each node. We
solved the problem of token storage by implementing a hash table instead of a linear
list. Using a hash table made the cost of deleting a token from a memory node a con
stant, and it made the cost of finding matching tokens in the opposite memory propor
tional to the number of successful matches. A hash table furthermore cut down the
variance in the processing time required by the various memory node and two-input
node activations, which is especially important for parallel implementations. The main
disadvantage of using hashing is the overhead of computing the value of the hash func
tion for each node activation. However, because hashing reduces the processing time
variance, hash table-based memory nodes are best for parallel implementations [Forgy
and Gupta 86].
Locking hash tables

Many resources in a parallel system have to be protected with mutual-exclusion locks:
task queues, the active token count, the conflict set, etc. Most of these are relatively
straightforward to protect (and a simple variation of standard spin locks is used), with
the exception of locks used to handle hash tables for storing tokens in memory nodes.
The problem here is that the system performs several kinds of operations on the hash
tables: searching for matching tokens, adding and removing tokens, and adding and
removing conjugate tokens (token pairs with identical working memory element pointers
and opposite tag signs). Because of the importance of the hash tables to the perfor
mance of the system, we implemented and tested several locking schemes in order to
develop one best suited for a wide variety of production system programs [Gupta et al.
87]. We describe two of these schemes here.

In the first scheme we gave each line in the hash table a flag to control its use (we
define a "line" as a pair of corresponding buckets from the left and right hash tables
along with their associated conjugate token lists). The flag takes on two values: "Free"
and "Taken." When a process has to work with the hash table, it examines the flag for
the line it needs, and if it finds the flag set to "Taken" it takes a different token from the
task queue. This scheme works, but it becomes a bottleneck when several tokens ar
rive at about the same time for processing, all of which require access to the same hash
table line.

The second, more complex, scheme permits several tokens to be processed in the
same line at the same time, though some serialization of the processing is necessary

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T 4-9

when destructive modifications to the lists of tokens are performed. This scheme re
quires two locks, a flag, and a counter for each line in the hash table. The flag takes on
three values: "Unused," "Left," and "Right," to indicate respectively that the line is not
currently being processed or that it is being used to process tokens arriving from the left
or right. The counter indicates how many processes are using that line in the hash
table; it is needed only so that the last process to finish using the line can set the flag
back to "Unused." The first lock insures that only one process at a time can access the
flag and the counter, so that tokens from two different inputs are not processed at the
same time. The other lock insures that only one process at a time can modify the token
lists. We expected the complex locks to benefit those programs that (1) generate mul
tiple activations of the same.two-input node from the same input, all requiring concur
rent processing, and (2) have long lists of tokens in hash table buckets, where the com
plex locks help by allowing multiple processes to read the opposite input's memory at
the same time. However, programs for which the above two conditions are not true may
slow down because of the extra overhead caused by complex locks.

We implemented and tested both designs. The results are discussed in Section
4.3.1.
Language-based considerations in achieving speedup

Most production system interpreters at the time of our study were Lisp-based im
plementations. These tended to be slow: The FranzLisp implementation of the Rete in
terpreter for OPS5, for example, runs on a VAX -1 1/780 uniprocessor at around eight
working memory element changes per second, while a Bliss-based implementation runs
at around forty changes per second [Gupta et al. 87]. Part of the system slowness is
due to the nature of the Lisp language. The system also lost a significant amount of
speed because of node interpretation overheads. Our goal was to speed up the system
by using a language better suited for our envisioned production system implementation
and by reducing the node interpretation overhead level.

The computer language C is a faster language than Lisp. We solved the problem of
the slow Lisp implementation by using a highly-optimized C-based implementation of
OPS5 for the run-time interpreter. To handle the node interpretation overhead, we com
piled the network directly into machine code, thus completely avoiding the interpretation
problem. While it is possible to escape to the interpreter for complex operations during
match or for setting up the initial conditions for the match, the majority of match is done
without an intervening interpretation level [Gupta et al. 87].

4.3 Parallel Interpreter Implementations

After designing and building our parallel interpreter, we implemented two versions of
it: One used our highly-optimized C-based OPS5 system, and the other added a Soar
process to the first version.

C A R N E G I E M E L L O N U N I V E R S I T Y F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

4 - 1 0 T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T

4.3.1 Testing the OPS5 parallel interpreter

Because few good multiprocessor debugging tools exist, we began the debugging
procedure on a uniprocessor, moved briefly to a small multiprocessor, and finally im
plemented the interpreter on our system of choice, the Encore Multimax, when it be
came available. We tested the parallel execution of the following three production-
system programs:

• Weaver, a VLSI routing program with about 600 rules.
• Rubik, a program that solves the Rubik's cube with about 80 rules.
• Tourney, a program that assigns match schedules for a tournament with

about 25 rules.
We chose Weaver because it represents a fairly large program and it demonstrates that
our parallel OPS5 can handle real systems. Rubik is a smaller program that
demonstrates some of the strengths of our parallel implementation, and the Tourney
program demonstrates some of the weaknesses of our parallel implementation.
Initial uni- and multi-processor versions

We first used a MicroVAX-ll uniprocessor to implement our highly-optimized, C-based
version of OPS5. The speedup of this version compared to the FranzLisp-based OPS5
implementation was significant: almost 13 times faster for Weaver, 12 times for Rubik,
and over 24 times for Tourney. We also used the MicroVAX to test differences in list-
based and hash-based memories and found the time-saving effects of hash-based
memories were substantial: approximately 15% for Weaver, 58% for Rubik, and 7 1 %
for Tourney over list-based memories [Gupta et al. 87].

Our final goal on the MicroVAX was to implement a task queue and get a rough idea of
its overhead cost. A task queue is not necessary for a uniprocessor implementation
and constitutes an overhead not offset by the parallelism possible with a multiprocessor
implementation. After implementing the task queue, we concentrated on debugging
rather than look for new speedups.

Before the Encore Multimax became available, we moved our parallel interpreter to a
multiprocessor, the VAX -1 1/784 (four VAX -1 1/780 processors connected to shared
memory). We implemented a parallel C-based version of OPS5 on this machine, but we
did not test it extensively since it had only four processors, compared to sixteen on the
Encore. We could thus compare results for far fewer parallel processes on the 11/784
and could not get as good a picture of the ultimate processing capability of our design.
Instead we took this opportunity to further debug our parallel interpreter, on an actual
multiprocessor instead of a uniprocessor.
Testing the Encore Multimax implementation

Finally, we ported the interpreter to the Encore Multimax. The version of the Encore
Multimax available to us at CMU has 16 processors, each connected to the shared
memory through a high-performance bus. The shared memory is equally accessible to
all of the processors. The Multimax holds 32 Mbytes of memory and runs the Mach
operating system. We tested several variations of the parallel OPS5 implementation on

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T 4 - 1 1

the Encore. The variations were in the number of task queues that we used and in the
locking structures used for hash table buckets. We ran each version using from one to
thirteen match processes.

System speedup was disappointing when we implemented a single task queue and
simple locks (allowing processing of only one token from the same hash table line at a
time): When using only a single match process at a time, Weaver demonstrated a
speedup of 1.02-fold, Rubik of 1.00-fold, and Tourney of 1.10-fold. When using thirteen
match processes at a time, Weaver showed only a 3.90-fold increase, Rubik a 6.30-fold
increase, and Tourney a 2.41-fold increase [Gupta et al. 87]. Possible reasons for the
lack of speedup were contention for access to the single task queue and contention for
access to the hash table buckets.

Our second and third versions explored the effects of removing these bottlenecks by
using multiple task queues and a more complex hash table locking scheme. Using mul
tiple task queues while retaining simple hash table locks increased system speed by
removing some of the sequentiality imposed by the single task queue. The speedup
was slight, however, for: Tourney, although significant for Rubik and Weaver: Using thir
teen match processes, Rubik showed a speedup of 11.42-fold as opposed to 6.30-fold
in the single queue implementation [Gupta et al. 87]. Because our studies of dif
ferences in contention for task queues showed that Rubik had the largest such conten
tion, increasing the number of task queues helped this bottleneck, causing Rubik's
speedup.

Because Tourney's long lists of tokens in hash table buckets produce a large conten
tion for hash table locks, we expected the program to benefit from our more complex
locking scheme because the scheme allows simultaneous processing of several tokens
from the same line in the hash table,- thus potentially increasing system speed. We did
not expect this scheme to help the other programs significantly since they do not
produce the same contention for hash table locks. Our results showed that, while this
scheme did reduce lock contention in all three programs, it provided only small speedup
in the three programs. Weaver's and Rubik's small gains were not surprising, since
they were not suffering from severe lock contention. However, Tourney's slight
speedup (only 2.67-fold running thirteen processes, as compared to 2.30-fold with the
simpler lock scheme) indicates that a complex locking scheme does not sufficiently
reduce lock contention.

Our results therefore demonstrated that although task scheduling can be a bottleneck
and must be handled by solutions such as multiple task queues, match-level exploita
tion of parallelism can provide significant speedups in production system execution.

4.3.2 Implementing a parallel Soar interpreter

Soar differs from OPS5 in that it uses a learning mechanism to add new productions to
its knowledge base. These new productions, called chunks, later fire in appropriate
situations, thus providing a learning-transfer mechanism. Large and complex systems

C A R N E G I E M E L L O N U N I V E R S I T Y F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

4-12 T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T

built in Soar execute their productions slowly, slowing down research and limiting such
a system's utility. The dominating factor in this slowdown is the matching procedure:
As chunking adds new productions, the demands on the matching procedure increase.
It is thus important to speed up match as much as possible.

Results of our OPS5 implementation on the Encore (hereafter referred to as "PSM-E")
suggested that Soar could benefit from using parallelism in match. However, Soar's
chunking mechanism provides a new dimension in match parallelism that non-learning
systems do not encounter. Chunking requires the ability to add productions at run time,
but cheaply, since all the gains of a highly optimized system such as the PSM-E could
be nullified by such overheads. [Tambe et al. 88]. Our goal was to adapt our parallel
interpreter for use with Soar. To do this we had to enable the system to add produc
tions at run time with very low computational cost.
Run time production addition

Adding a new production at run time on the PSM-E is a significant problem that re
quires the production's direct compilation into machine code. The major problem is how
to keep code generation itself efficient so that encoding the new production does not
become a serial bottleneck. Another important consideration in run time production ad
dition is exploiting network sharing. The Rete network shares common tests and nodes
among different productions to save work at run time. Sharing is especially important in
Soar, since chunks are generated from the existing set of productions. To exploit the
benefits of sharing, the system must therefore integrate the new code into the existing
network instead of compiling the chunk as a separate piece of code.

Our strategy to increase chunk compilation speed and exploit the shared network was
to employ two mechanisms, a tree data structure and a jump table. The tree data struc
ture allows easy location of the points where sharing is possible in the network. The
jump table maintains the link between any two sections of code where the code for a
new node could in principle be inserted. The process of integration of the new code then
reduces to changing entries in the jump table. We included this strategy as part of the
run time system, providing a speedup of 20% in one of the test programs and 30% in
another [Tambe et al. 88].
Run time update of state

A second overhead in adding productions at runtime stems from the fact that Rete is
a state-saving algorithm: that is, it saves the partial results of match in various memory
nodes in the network. When the system adds chunks at run time, the unshared memory
nodes of the chunks are empty. The system must update the empty memories using
tokens representing partial matches of working memory contents with the new produc
tion. The procedure updating the unshared memory nodes of the newly added chunk
has to ensure that no duplicate state is added to memory nodes already containing the
required tokens. The update procedure must not become a serial bottleneck by being
very complex.

A simple method of updating the node memories for the new production would be to
pass the contents of working memory back through the network and permit only those

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T 4 - 1 3

node tasks associated with the new production to execute. In this way, the benefits due
to parallelism in match could also be used to speed up the state updating process.
However, some of the nodes associated with the new production are shared with the
existing network, adding duplicate states to those nodes. To avoid adding duplicate
states to memory nodes we confined the updating process to unshared nodes. Iden
tification of unshared nodes is facilitated by the fact that the Rete net is linear, i.e. once
one node in the production loses sharing, all its descendents remain unshared. There
fore, we used a simple node ID scheme to allow identification of the nodes to be up
dated: Nodes in the network all have incrementally-assigned unique ID numbers and a
newly added node is always assigned an ID greater than any other existing node in the
network. Thus identifying the IDs for the last shared node and the first new node allows
the determination of all nodes that the system must update.

Results showed that exploiting a shared network using the node ID strategy reduced
the update phase workload and produced an update phase speedup of about 20% for
one test program and 25% for another. More importantly, update phase network shar
ing also benefited from parallelism. Using eleven match processes, all three test
programs showed an update phase speedup'of about three to five times over using a
single processor.
Implementation and performance results

The Soar/PSM-E implementation of Soar on the Encore consists of one Soar process
that maintains all its usual functionality except the matching capability, a PSM-E control
process, and one or more PSM-E match processes. The number of match processes
remains fixed for the duration of a particular run.

The Soar process is coded in Lisp, while PSM-E is C-based. The reason for running
Soar as a Lisp process is that it has many man years worth of effort invested in coding,
and an effort to convert Soar into C would have caused us to divert from our primary
goal of investigating parallelism in the match. But since Lisp and C processes cannot
share memory on the Encore, this arrangement causes some data structures to be
duplicated in Soar and PSM-E. Further, the communication has to occur through U N I X
pipes provided by the operating system.

Thus this Soar implementation uses PSM-E as a matching engine. Both Soar and
PSM-E keep a copy of working memory. When Soar adds or deletes working memory
elements, a message is sent to PSM-E to repeat those operations on its working
memory elements. If this results in instantiations into the conflict set maintained on the
PSM-E side, then PSM-E passes the instantiations on to Soar. Both Soar and PSM-E
then fire these instantiations, updating their copies of working memory and repeating
match. If new chunks are created, Soar passes them over to PSM-E at the end of the
elaboration cycle.

We used three Soar programs to examine the various aspects of the implementation
and the results of parallelism:

• Cypress-Soar, an algorithm design system with 196 productions. We
chose a run that derives the quick-sort algorithm.

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

4 - 1 4 T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T

• Eight-puzzle-Soar, a system that solves the eight-puzzle mini task with 71
productions.

• Strips-Soar, a system that plans in the domain of robot control with 105
productions.

We tested the Soar implementation before and after chunking. Before chunking, the
learning mechanism is not turned on, so that the system performs like any production
system. During chunking, the learning mechanism is turned on, so that the system is in
the process of learning and creating new chunks. After chunking, the same program is
run again after having created chunks with that input. It should run faster since it knows
more about possible solutions to the problem now than it did on the first run.

When we ran the programs before chunking, we found low speedups. The best
speedups for Cypress and Strips were with seven match processes: Cypress ran 3.51
times faster, while Strips ran 2.15 times faster. Eight-puzzle ran fastest with five match
processes, but only increased speed 1.70-fold [Tambe et al. 88]. The causes of the low
speedups were the slow execution rate of working memory changes by the PSM-E con
trol process and the spurious overheads of paging and other system-related activities.
The PSM-E control process is responsible for all working memory element changes in
an elaboration cycle. However, since the control process has to simultaneously com
municate with Soar, its rate of execution of working memory changes is reduced, and
this reduces the available parallelism. We compensated for this factor by changing the
behavior of the system to start match after the PSM-E control process completes the
working memory element changes in each cycle. The low overheads of the operating
system become significant because the total run time of the match processes is some
times reduced by parallelism to about 10 seconds. After taking these factors (the low
rate of working memory element changes and the system time) into account, we found
that parallelism increased in all three programs by a factor of about two to three.

Running the programs after chunking also demonstrated system speedup. Using
eleven processes, Cypress ran 6.78 times faster than using a single process, Strips ran
7.28 times faster, and Eight-puzzle ran 8.96 times faster [Tambe et al. 88].

Our results thus demonstrated that exploiting match-level parallelism can provide very
good speedup in a system capable of learning.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T 4 - 1 5

4.4 Bibliography
[Forgy and Gupta 86]

Forgy, C. and A. Gupta.
Preliminary architecture of the CMU production system machine.
In Proceedings of Hawaii International Conference on System

Sciences, University of Hawaii, January, 1986.
PSM, the Carnegie Mellon University Production System

Machine, is being designed to execute rule-based produc
tion systems as efficiently as possible. It is planned that
the machine will contain 32 to 64 relatively powerful
processors, a large shared memory, and a hardware
device to perform run-time scheduling of tasks for execu
tion. The machine will run a parallel variant of the Rete al
gorithm, which is currently used in most sequential im
plementations of production systems. This paper
describes the architecture of the machine in detail and dis
cusses how the Rete algorithm has been adapted for
parallel execution. * •

[Gupta 84] Gupta, A.
Parallelism in production systems: the sources and the expected

speed-up.
Technical Report CMU-CS-84-169, Computer Science Department,

Carnegie Mellon University,
December, 1984.

Production systems (or rule-based systems) are widely used in
Artificial Intelligence for modeling intelligent behavior and
building expert systems. On the surface production sys
tems appear to be capable of using large amounts of
parallelism-it is possible to perform match for each produc
tion in parallel. Initial measurements and simulations,
however, show that the speed-up available from such use
of parallelism is quite small. The limited speed-up available
from the obvious sources has led us to explore other
sources of parallelism. This paper represents an initial at
tempt to identify the various sources of parallelism in
production system programs and to characterize them, that
is, to determine the potential speed-up offered by each
source and the overheads associated with it. The paper
also addresses some implementation issues related to
using the various sources of parallelism.

[Gupta 86] Gupta, A.
Parallelism in production systems.
Technical Report CMU-CS-86-122, Computer Science Department,

Carnegie Mellon University,
March, 1986.

Production systems (or rule-based systems) are widely used in

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1983 -1988

4 - 1 6 T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T

Artificial Intelligence for modeling intelligent behavior and
building expert systems. Most production system
programs, however, are extremely computation intensive
and run quite slowly. The slow speed of execution has
prohibited the use of production systems in domains re
quiring high performance and real-time response. This
thesis explores the role of parallelism in the high-speed ex
ecution of production systems.

On the surface, production system programs appear to be
capable of using large amounts of parallelism - it is pos
sible to perform match for each production in a program in
parallel. The thesis shows that in practice, however, the
speed-up obtainable from parallelism is quite limited,
around 10-fold as compared to initial expectations of 100-
fold to 1000-fold. Since the number of productions af
fected and the number of working-memory changes per
recognize-act cycle are not controlled by the implementor
of the production system interpreter, the solution to the
problem of limited speed-up is to some how decrease the
variation in the processing cost of affected productions.
The thesis proposes a parallel version of the Rete algo
rithm which exploits parallelism at a very fine grain to
reduce the variation. It further suggests that to exploit the
fine-grained parallelism, a shared-memory multiprocessor
with 32-64 high performance processors is desirable. For
scheduling the fine-grained tasks consisting of about
50-100 instructions, a hardware task scheduler is
proposed.

The thesis presents simulation results for a large set of produc
tion systems exploiting different sources of parallelism.
The thesis points out the features of existing programs that
limit the speed-up obtainable from parallelism and sug
gests solutions for some of the bottlenecks.

[Gupta et al. 86] Gupta, A., C. Forgy, A. Newell, and R. Wedig.
Parallel algorithms and architectures for rule-based systems.
In Proceedings of the 13th International Symposium on Computer Ar

chitecture , June, 1986.
Rule-based systems, on the surface, appear to be capable of

exploiting large amounts of parallelism^ it is possible to
match each rule to the data memory in parallel. In prac
tice, however, we show that the speed-up from parallelism
is quite limited, less than 10-fold. The reasons for the
small speed-up are: (1) the small number of rules relevant
to each change to data memory; (2) the large variation in
the processing required by the relevant rules; and (3) the
small number of changes made to data memory between
synchronization steps. Furthermore, we observe that to
obtain this limited factor of 10-fold speed-up, it is neces-

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T 4 - 1 7

sary to exploit parallelism at a very fine granularity. We
propose that a suitable architecture to exploit such fine-
grain parallelism is a bus-based shared-memory mul
tiprocessor with 32-64 processors. Using such a mul
tiprocessor (with individual processors working at 2 MIPS),
it is possible to obtain execution speeds of about 3800
rule-firings/sec. This speed is significantly higher than that
obtained by other proposed parallel implementations of
rule-based systems.

[Gupta et al. 87] Gupta, A., C.L Forgy, D. Kalp, A. Newell, and M. Tambe.
Results of parallel implementation of OPS5 on the Encore

multiprocessor.
Technical Report CMU-CS-87-146, Computer Science Department,

Carnegie Mellon University,
August, 1987.
Anoop Gupta is now a member of the Computer Science Depart

ment, Stanford University.
Until now, most results reported for parallelism in production

systems (rule-based systems) have been simulation
results - very few real parallel implementations exist. In
this paper, we present results from our parallel implemen
tation of OPS5 on an Encore multiprocessor with 16 CPUs.
The implementation exploits very fine-grained parallelism
to achieve significant speed-up. Our implementation is dis
tinct from other parallel implementations in that we attempt
to parallelize a highly optimized C-based implementation of
OPS5. This is in contrast to other efforts where slow lisp-
based implementations are being parallelized. The paper
discusses both the overall structure and the low-level
issues involved in the parallel implementation and presents
the performance numbers that we have obtained.

[Lehr 86] Lehr, T.F.
The implementation of a production system machine.
In Proceedings of the Nineteenth Annual Hawaii International Con

ference on System Sciences, University of Hawaii, January,
1986.

Also available as technical report CMU-CS-85-126.
The increasing use of production systems has drawn attention

to their performance drawbacks. This paper discusses the
architecture and implementation of a uniprocessor O P S
production system machine. A brief tutorial on the O P S
production system and its Rete algorithm introduces salient
issues that temper the selection of a uniprocessor architec
ture and implementation. It is argued that general features
of Reduced Instruction Set Computer (RISC) architectures
favorably address these issues. The architecture and a
RTL description is presented for a pipelined RISC proces-

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

4 - 1 8 T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T

sor designed specifically to execute O P S . The processor
has a static branch prediction strategy, a large register file
and separate instruction and data fetch units.

[Lehr and Wedig 87]
Lehr, T.F. and R.G. Wedig.
Toward a GaAs realization of a production system machine.
Computer, April, 1987.

In this article, we attempt to demonstrate the issues involved in
realizing a gallium arsenide (GaAs) processor designed for
efficient execution of the OPS5 production system lan
guage. We review the state of GaAs D-MESFET technol
ogy, which is a mature technology, and discuss how its
capacities can be exploited by a reduced instruction set
computer (RISC). Our work is to investigate the issues in
volved in realizing a RISC processor in GaAs to obtain es
timates of parameters like the cycle time and the basic sys
tem requirements of such a processor. Ours was a
feasibility study, and the design has not been im
plemented; however, through this work, we have been bet
ter able to determine the feasibility of GaAs as a system-
realization technology, and we have helped to push back
the limits of the execution speed of production-system
programs.

[Oflazer 84] Oflazer, K.
Partitioning in Parallel Processing of Production Systems.
In Keller, R., Editor, Proceedings of the International Conference on

Parallel Processing, ACM, IEEE, and Department of Computer
and Information Science, Ohio State University at Columbus,
August, 1984.

The results of an analysis of production level parallelism in
OPS5 production system programs is presented. The
results indicate that contrary to most expectations, the ef
fective production level parallelism in this class of produc
tion systems considered is very low compared to the num
ber of productions in these systems. Hence, significant
speed-ups in executing such systems would be obtained
by combining the limited parallelism with fast hardware and
overlapped processing; rather than by massively parallel
approaches employing simple processors. Later, the
problem of partitioning productions in a production system
to a small number of processors in a parallel processing
system is presented. The goal of partitioning is to improve
the speed-up provided by the limited parallelism by finding
assignments of productions to processors that achieve a
more balanced load for each processor.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T 4 - 1 9

[Quinlan 86] Quinlan, J.
A comparative analysis of computer architectures for production sys

tem machines.
In Proceedings of the Nineteenth Annual Conference on System

Sciences, ACM and IEEE, January, 1986.
This paper reports the results of research concerning the effect

of a uniprocessor's architecture on the performance of
production systems. A number of uniprocessors, both ex
isting and proposed, are analyzed with respect to their ex
ecution of a production system interpreter known as OPS5.
By using measured run-time statistics of existing produc
tion systems, the performance of each uniprocessor is cal
culated and analyzed. The results show that the perfor
mance gains of a specialized architecture over a conven
tional architecture can be significant.

[Tambe and Newell 88]
Tambe,M., and A. Newell.
Why some chunks are expensive.
Technical Report CMU-CS-88-103, Computer Science Department,

Carnegie Mellon University,
January, 1988.

Soar is an attempt to realize a set of hypothesis on the nature of
general intelligence within a single system. One central
hypothesis is that chunking, a simple experience-based
learning mechanism, can form the basis for a general
learning mechanism. It is already well established that the
addition of chunks improves the performance in Soar a
great deal, when viewed in terms of subproblems required
and number of steps within a subproblem. But this high
level view does not take into account potential offsetting
costs that arise from various computational effects. This
paper is an investigation into the computational effect of
expensive chunks. These chunks add significantly to the
time per step by being individually expensive. We decom
pose the causes of expensive chunks into three com
ponents and identify the features of the task environment
that give rise to them. We then discuss the implications of
the existence of expensive chunks for a complete im
plementation of Soar.

[Tambe et al. 88] Tambe, M., D. Kalp, A. Gupta, C.L Forgy, B. Milnes, A. Newell.
Soar/PSM-E: investigating match parallelism in a learning production

system.
In Proceedings of Parallel Programming Environments: Applications,

Languages, and Systems (PPEALS), July, 1988.
Soar is an attempt to realize a set of hypotheses on the nature

of general intelligence within a single system. Soar uses a
production system (rule based system) to encode its

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

4 - 2 0 T H E P R O D U C T I O N S Y S T E M M A C H I N E P R O J E C T

knowledge base. Its learning mechanism, chunking, adds
productions continuously to the production system. The
process of searching for relevant knowledge, matching, is
known to be a performance bottleneck in production sys
tems. PSM-E is a C-based implementation of the OPS5
production system on the Encore Multimax that has ach
ieved almost linear speedups in matching. In this paper
we describe our implementation, Soar/PSM-E, of Soar on
the Encore Multimax that is built on top of PSM-E. We first
describe the extensions and modifications required to
PSM-E in order to support Soar, especially the capability of
adding productions at run time as required by chunking.
We then present speedups achieved in the match on the
Soar/PSM-E and discuss some effects of chunking on
parallelism. Finally, we point out the factors that limit
parallelism on Soar/PSM-E and discuss the work in
progress to deal with some of them.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E CAT E X P E R T S Y S T E M P R O J E C T
5-1

5. THE CAT EXPERT SYSTEM PROJECT

Our goal for the C A T (Command Action Team) project was to develop an expert sys
tem to monitor and assess potential threats against a carrier group and to recommend
possible actions for countering those threats. For a system to carry out these tasks it
must have a certain amount of basic knowledge about situations and objects it might
encounter. It also has to accept new information and make inferences about the situa
tion based on that information and on the knowledge it already has. Finally, it must in
teract with a human user in order to communicate its knowledge and to expand its
knowledge about situations it might encounter.

Our research during the contract built on a preliminary working prototype that could
make inferences using incoming information and its own knowledge base. The
prototype could also interact on a limited basis with a human user, sending simple warn
ing messages and responding to a user's requests for summaries and explanations.
Because the C A T system could ultimately contain thousands of rules and would have to
process incoming information in real time, however, our goal in this period was to sig
nificantly improve its efficiency at handling new information and making inferences. Fur
thermore, because the system was to cooperate with a human expert, we wanted to
make interaction with the system more flexible and expressive than in the prototype.

Our work focused on three areas:
• CAT 'S internal machinery, specifically emphasizing speed and efficiency of

knowledge-base maintenance

• CAT 'S external interface, emphasizing flexible alert and knowledge acquisi
tion systems

• System-testing tools, including a smaller version of the system and
scenarios to simulate real-life situations

5.1 Developing the Internal System

C A T uses its basic knowledge about objects and situations it might encounter to as
sess new information it receives from the outside world. We first briefly describe the
mechanisms the original system used to perform these tasks, then address the issues
we faced in improving these mechanisms: increasing the mechanisms' speed and ef
ficiency by controlling the size and expansion of the inference network.

5.1.1 Structure and maintenance of C A T ' S knowledge base

C A T is a production system containing a permanent memory of productions (heuristic
condition-action rules) and a working memory composed of currently active assertions
supported by reasons and evidence. An assertion contains one piece of information
about an object or event in the current tactical situation: One assertion might give a
ship's length, for instance, while another might give the ship's type or its name, C A T

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

5-2 T H E CAT E X P E R T S Y S T E M P R O J E C T

builds a dependency structure called the inference net among assertions, reasons, and
evidence. It does this by firing productions from its knowledge base called tactical in
ference rules. A tactical inference rule contains condition elements in the form of asser
tions on its left hand side. The system attempts to match these condition elements with
inference net assertions. When all the condition elements are successfully matched,
the rule can fire, creating a new assertion and the reason and evidence elements that
support it.

The inference engine controls the system. It contains the code that accepts and
transforms incoming information from a data communication link into report elements. It
then transforms report elements into assertion elements and inserts these assertions as
well as consequent assertions created by tactical inference rules into the inference net.

5.1.2 Improvement of inference net maintenance rules

C A T must monitor numerous objects: surface ships, submarines, aircraft, land bases,
satellites, etc. For each object, updates of position, movement, and activity may come
frequently, perhaps 10 per second. After the system handles the reports, extracts their
knowledge, and updates C A T ' S world picture, an even greater task lies in propagating
the effects of these updates throughout the inference net. Any new piece of information
may have far-reaching implications that affect the interpretation of current system intel
ligence.

We observed that the system spent an exceptionally long time updating the inference
network on the basis of incoming reports, a problem we called "choking." Handling new
information and propagating its effects were such severe bottlenecks that we devoted
substantial attention to obtaining significant decreases in the amount of computation
demanded by these tasks in order to speed up the system.

A major function of inference net maintenance rules is pruning outdated or unneces
sary assertions. If this is not done, the size of working memory grows monotonically
with time, severely degrading system performance and eventually exceeding resource
limitations. We therefore concentrated on alleviating choking via three different
mechanisms:

• Pruning outdated information
• Pruning repetitious reports
• Matching only on reports closely related in time

Pruning outdated information
In deciding how much old data to discard, we first pinpointed three situations where

we could safely discard information. These situations were:
• The subject of the assertion is no longer of interest
• The assertion has been superseded by a more recent assertion from the

same source
• The information in an assertion is so old that it can no longer be trusted

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E CAT E X P E R T S Y S T E M P R O J E C T
5-3

We furthermore had to keep in mind that certain information changes constantly,
potentially causing constant slowdowns as the system updates the inference net. Con
stant reports of a ship's new position, for example, could slow the system down, yet
changes in a ship's position can be useful in inferring a ship's tactics. We therefore did
not want to remove too many of these assertions.

Our concerns in discarding old data were to achieve the greatest improvement in sys
tem speed with the least degradation of system performance. To determine the course
of a ship, it is necessary to have at least three descriptions of position. To determine
the speed of a ship, three such descriptions are also useful. Because three seemed to
be the necessary number in these cases, we proposed keeping only three assertions of
a particular type at a time. Experimental results using this strategy showed a significant
gain in system speed while demonstrating the same accuracy as the original system.
We therefore implemented this design in our system.
Pruning similar reports

The system receives frequent updates about objects and events. Some of this infor
mation does not change significantly over time.. For example, a ship's length remains
the same from one update to the next. If it is moving very slowly, its position likewise
will not change significantly. Incorporating such repetitious information into the in
ference net slows the system down unnecessarily. Our goal was to control the un
necessary slowdown caused by this repetitious information. To do this, we developed a
method of ignoring superfluous information about an object by evaluating report ele
ments and deleting those that resemble information already established in an assertion.
For example, if a new report element described a ship's position, C A T checked that
ship's current position assertion. If the new information was the same or very close to
the older information, C A T deleted the new report element. We tested this strategy, and
because it significantly increased the system's efficiency, we implemented it in the sys
tem.

A problem with this strategy is that deleting repetitious information can prevent a weak
assertion from becoming stronger. That is, some assertions are less certain than others
and can be strengthened with new information. When the system creates an assertion,
it assigns it a confidence factor which determines how reliable that assertion is. The
system computes the confidence factor based on the confidence factors of previous
assertions upon which the assertion is built. If an assertion is based on a weak in
ference, it receives a low confidence factor and must be corroborated by subsequent
updates to become more certain. For example, a ship may be thought to be of a certain
nationality simply because it is near another one whose nationality has been es
tablished. This is therefore a weak inference that could become stronger with more in
formation. Our strategy did not distinguish between weak and strong inferences when it
deleted new information. This meant that information that could raise a weak
assertion's confidence factor would be deleted if it was similar to information that had
already been reported. Future research into deleting similar reports might address this
problem. A possible solution is to use a lower threshold on confidence factors to deter
mine which assertions receive updates. If an assertion already has a high confidence

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

5-4 THE CAT EXPERT SYSTEM PROJECT

factor, so that any update of that assertion will not increase its certainty, then that up
date should not be made, since it would be a waste of system resources. If, on the
other hand, the assertion is less certain (has a low confidence factor), it should continue
to receive updates to increase its certainty.
Making the best time matches

The system constantly receives information updates, each with a new observation
time. Since an update can cause a rule to fire as the update satisfies a condition ele
ment, the same rule could fire repeatedly with every update. Repeated rule firings are
not necessarily a problem: As the system acquires more information about an object or
event it should be able to demonstrate its increased knowledge and confidence about
that object or event. An unnecessary system slowdown occurs, however, when a rule
fires because two assertions that are not the best time matches fulfill the rule's con
ditions.

Condition A Condition B
(time)

Best Time Matches ^ — —
Reasonable Time Matches

Figure 5-1: Possible time matches

For example, conditions A and B, shown in Figure 5-1, receive updating reports at the
times indicated in the figure. The best time matches are at (0, 1), (4, 5), or (8, 9). The
system also allowed, however, the reasonable time matches at (4,1) or (8, 5). Our goal
was to allow the system to make only the best time matches, ignoring the other possible
matches.

We added code that performed an extra test on condition elements so that the system
accepted only the best time matches. We then tested the design. Since the system ran
about five times faster using this method, we implemented this design.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E CAT E X P E R T S Y S T E M P R O J E C T
5-5

5.1.3 Studying alternative data representations

The large number of assertion working memory elements created during execution of
the C A T system (one for each assertion) is taxing on the matching process. The match
ing process is further slowed by the need to check that all assertions being tested refer
to the same object. Our goal was to devise an alternative data representation that
reduced the number of working memory elements the system had to handle. Our
strategy was to store assertions about a single object within a single working memory
element. This significantly reduced working memory clutter, thus potentially reducing
matching time overhead. Furthermore, this strategy saved system resources, since the
system did not have to test that all assertions belong to the same object. We called our
new system O B J C A T .

Working memory elements of type object and reason compose O B J C A T ' S inference
net, in contrast with the original system's assertion, reason, and evidence elements.
Assertions, no longer represented by an individual working memory element, are kept in
an array within the object element to reduce the amount of searching the system has to
perform. Slots in the array are not reserved for particular attributes. Assertions are as
signed to array elements as they arrive. A set of access functions extracts values, as
signs values, and tests for matches using the object elements.

We built and tested O B J C A T . The actual time needed to run the scenario was about
40% less than that of C A T . The new data representation had a dramatic impact on the
size of working memory, reducing the mean number of working memory elements by 19
times. The mean size of the conflict set, conflict resolution time, and rule fire time were
also all significantly reduced.

While the new data representation succeeded in significantly speeding up the system,
we discovered two issues that warrant further investigation. The issues stemmed from
deficiencies in O P S 8 3 , not from the design strategy of multiple assertions within a single
object element. For each attribute in an object element, O B J C A T stores the last three
assertions and matches assertions with condition elements using an O P S 8 3 function call
that can find only the most recent assertion. The original C A T system uses a temporal
sequence of assertions to determine the speed of a ship, for instance, or to upgrade a
confidence factor. Further research could design a way to prevent wasting the two ear
lier assertions in O B J C A T by letting the system use all reasonable assertion matches, in
stead of only the most recent.

O B J C A T ' S other area for potential improvement was match speed. Matching condition
elements and assertions took longer than in the original system because the matching
functions had to look down an array of assertions. Future implementations of the sys
tem could use hashing functions instead of searching through the array, or each object
element could contain lists of all attribute names and slots to store the values of those
attributes instead of simply assigning assertions to array elements as they arrive, as in
the current O B J C A T system.

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

5-6 T H E CAT E X P E R T S Y S T E M P R O J E C T

5.2 Developing the External System
Efficient interaction between a human user and C A T is essential: The user must

quickly receive important information such as potential threats to the carrier group. The
expert must furthermore be able to transmit his knowledge about a tactical situation to
the system. To achieve these goals, we improved the existing alert system and created
a knowledge acquisition system, facing issues of flexibility and ease of interaction.

5.2.1 Developing the alert facility
A major function of the C A T system is to warn the user of possible threats to the car

rier group. To be effective, the system should allow the user to define the conditions
under which to deliver a warning. It must also dispatch timely warnings about a wide
variety of situations.

Our prototype featured an alert-generating module whose function was twofold: It al
lowed the user to request a warning when the system made an assertion containing a
single value, that is, one condition element, that he specified, and it warned the user
when the system made that assertion. For example, the user could tell the system that
he wanted a warning when a Soviet ship was in the area, and each time the system
inferred that that was the case, the alert facility warned the user by writing that assertion
to the screen.

Our goal was to achieve a much more flexible and efficient alert system. We
designed a system that met this goal in several ways. First, we made it capable of ac
cepting assertions with more than one condition. Instead of receiving a warning only
about a Soviet ship, for example, the user was able to ask for notification of a Soviet
ship with a range of less than four miles, thus increasing system flexibility. We made
the alert mechanism more efficient by enabling it to determine whether it was making an
assertion about an alert situation for the first time or whether it was updating an earlier
alert situation, thus reducing potential confusion for the user. We further increased the
efficiency of the alert system by allowing the user to store the specifications he gives the
system for receiving a warning, thus saving time on future runs because this information
does not have to be re-entered. Subsequent users could, however, adapt these "built-
in" alert specifications if necessary.

We implemented these design changes in our alert system and verified its operation.
We then shipped it to our colleagues at N O S C , who implemented it with only minor ad
justments.

5.2.2 Developing an automatic knowledge acquisition system
The reasoning power that C A T demonstrates is not a simple by-product of raw com

puter power, but instead derives from the knowledge-based approach that characterizes
production systems. Knowledge is represented as a set of rules that embody the
knowledge of human experts. Construction of the C A T expert system depended criti-

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E CAT E X P E R T S Y S T E M P R O J E C T
5-7

cally on extracting this often implicit knowledge from expert informants, formalizing this
knowledge insofar as possible, and then expressing the knowledge as production
rules—a process called knowledge engineering.

Once we had stabilized C A T ' S design, we were ready to address the goal of facilitating
the knowledge engineering process, an important goal because knowledge engineers
are in short supply. A second goal was to develop an efficient way of readjusting the
tactical inference rule knowledge base so that the system could still use it after each
improvement to the C A T inference engine. To achieve these goals we developed a sys
tem knowledgeable about its surroundings. It used that knowledge to help the expert
enter new information. Our system furthermore kept the new information in a form that
could be easily transformed as we made changes to the inference engine.
Acquiring knowledge intelligently

Our knowledge-acquisition system, S K A T (Smart Knowledge Acquisition Tool), allows
a user to enter his situation knowledge in the form of tactical inference rules, editing ex
isting rules or creating new ones. When the user invokes the "teach" program, S K A T

interviews him with the goal of defining a new rule. The user specifies the conditions
and conclusion of a rule in a formal command language that is an English-language
subset. The user can later invoke the "generate" operation to translate the rule into a
form that the current C A T inference engine can actually use.
S K A T ' S knowledge base

Before the user begins editing or creating a rule, S K A T loads a file that gives it domain
knowledge about objects the carrier group might encounter. This file describes and
categorizes objects, establishing their conceptual relationships using three kinds of
nodes. Concept nodes represent several levels of object categorization. Categories at
the most general concept level include platform and weather. A "platform" node, in turn,
may connect with more specific concepts "aircraft," "ship," and "submarine," all of which
specify types of platforms. The network contains its most specific information in the ob
ject nodes, each of which represents an individual physical object type. For example,
the concept node "aircraft" connects with object nodes "bomber," "fighter," "helicopter,"
"reconnaissance," and "tanker."

Predicate nodes may also connect with concept nodes. A predicate is a way of
describing a concept: For example, a ship may have a length or size or type, SKAT 'S
domain knowledge file shows the connections between a concept and the predicates
that describe it, thus establishing what kinds of predicates may be associated with cer
tain concepts. For example, the three types of platforms (aircraft, ship, and submarine)
may be described in terms of the predicates position, speed, course, maximum range,
etc. They may not be described in terms of start time or end time, though, which are
predicates applied to weather. An object inherits predicate attributes of those concepts
above it in the object hierarchy: thus, if an object node represents a bomber, the bomb
er may be described in terms of the predicates position, speed, etc. without having to
establish direct connections between the object node "bomber" and the predicate node
"speed." Thus the domain knowledge file presents a network of relationships among
categories of objects and their properties.

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1 9 8 3 - 1 9 8 8

5-8 T H E CAT E X P E R T S Y S T E M P R O J E C T

Easing user effort
The more S K A T knows about the situation the expert is describing, the more S K A T can

aid the expert in formulating the new rule. Our goal was thus to make SKAT 'S interview
ing process knowledgeable about situations the expert would then make new rules
about. We made S K A T capable of exploiting different sources of information, including
knowledge about:

• The current C A T system architecture
• The domain, using information contained in the domain knowledge file
• Constraints implied by already-specified parts of the rule being written (for

example, if the rule concerns an airplane, both user and S K A T will know that
the rule may not contain any assertions about its depth).

In an early version of S K A T , the domain knowledge file could not easily be altered be
cause doing so required checking by hand the many possible relationships between ob
jects, making sure the proper links among concepts, objects, and predicates were main
tained. The highly interrelated nature of the contents of this file therefore made it dif
ficult for us to add to it and expand the system's knowledge about the world. Our goal
was to allow S K A T to accept new domain information easily, without the time-consuming
task of checking all the interrelationships among the objects. To achieve this goal, we
adapted the code so that S K A T drew upon its knowledge of the domain to establish
automatically the proper connections between newly-established nodes and the ap
propriate concept and predicate nodes. For example, if the user wanted to add a new
kind of airplane to the domain knowledge file, S K A T made certain that the new object
node connected with the aircraft node, which, in turn, connected with the related predi
cate nodes. Establishing the proper relationships in this way also aided the expert
when he wrote a rule concerning the new object. Because the relationships had been
established, the system could appropriately prompt the expert as he entered the new
rule. This method of automatically updating relationships as new objects were entered
thus made it easier to use S K A T than in the preliminary version.
Restructuring tactical inference rules

As we improved the C A T system, changing the way the inference net maintenance
rules functioned in an effort to speed up the system, we had to ensure that the
knowledge contained in the tactical inference rules remained usable. Each change in
the inference engine code could affect the way the system processed tactical inference
rules. For example, differences in data representation between C A T and O B J C A T mean
the programmer must alter the way tactical inference rules' condition elements are
matched with assertions. Changing each tactical inference rule by hand to reflect the
changes in the inference engine code would be a tedious and error-prone process.
Thus, our goal was to allow rapid restructuring of CAT 'S knowledge base to adjust to the
changes in the inference engine. We designed S K A T SO that it not only allows the user
to enter and store tactical inference rules in an implementation-independent fashion, but
it also allows automatic restructuring of these rules. Instead of requiring a knowledge
engineer to change each rule, the only change that needs to be made is to the portion
of S K A T that transforms the implementation-independent representation of the rules into

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

T H E CAT E X P E R T S Y S T E M P R O J E C T 5-9

O P S 5 or O P S 8 3 target rules. This feature of S K A T proved useful as we made changes to
the inference engine.

5.3 Developing System-Testing Tools

5.3.1 Developing demonstration scenarios

Development of CAT 'S knowledge base created a need for a way to test it in a real-life
situation. We could not use the actual carrier group for testing the system because of
the group's remote location and because we didn't have access to the classified
knowledge base that N O S C actually implemented. To simulate a real-life situation for
testing C A T , we created a scenario consisting of lengthy and complex report sequences
describing relevant objects and actions such objects might take. We adapted unclass
ified information supplied by N O S C to create this scenario. After building the scenario
we used it in testing the changes we made to the system.

A single scenario used only a limited amount of C A T S knowledge base, so we
developed additional test scenarios. In implementing these scenarios, we improved
CAT'S performance because we used more of the rule base than we had before and
therefore were able to find and debug more problematic rules.

5.3.2 L E A N C A T

As we improved the C A T system, we needed to test the changes we made before ac
tually implementing them. Testing the changes using the complete system, which con
sisted of close to a thousand rules, proved time-consuming. Our answer to this problem
was to reduce by half the number of rules in the system. We called this smaller testing
version Of C A T " L E A N C A T . "

Our goal in creating L E A N C A T was to remove the features that slowed the system
down. We did this by taking out inference rules unnecessary for the current scenario.
We also deleted some features, like the briefing module, or simplified others, like the
alert facility. A third method for trimming the system was to remove some of the code
for computing confidence factors.

We built and tested L E A N C A T , demonstrating a significant speedup in rule firing time
for the new system over the larger version of C A T . This speedup was caused almost
exclusively by fewer rules firing. We used L E A N C A T for much of our subsequent ef
ficiency testing, since we were able to test the new designs more quickly using L E A N C A T
than using the original system.

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1983 -1988

5 - 1 0
T H E CAT E X P E R T S Y S T E M P R O J E C T

5.4 Cooperation with NOSC

A critical aspect of our research was the close cooperation it demanded between
researchers at CMU and the Naval Ocean Systems Center (N O S C) . N O S C ' S role in the
project included:

• Installing the C A T software on the USS Carl Vinson.
• Integrating the C A T system with other software (Computer Corporation of

America's SDMS System).
• Responding to the needs of the Vinson leadership.
• Acquiring and integrating domain knowledge, often of a classified nature,

into the C A T system.
In addition, N O S C sent members of its C A T team to Carnegie Mellon to work for ex
tended periods of time on the C A T project. We intended that, while their personnel
would benefit from working in an advanced research laboratory, they could in turn
provide for us useful work, ideas, and domain knowledge.

At appropriate times, we shipped our work on C A T to N O S C . This occurred at the
beginning of N O S C ' S involvement with C A T and about twice per year thereafter, N O S C

modified the CMU systems extensively. Their major contributions to C A T functionality
included the development of a remote user interface for a Sun workstation and work
with the Vinson's carrier group on tactical situation analysis. In addition, N O S C ' S alert
mechanism served as the basis for the alert mechanism we ultimately developed.
Finally, N O S C personnel augmented CAT 'S knowledge base by writing additional tactical
inference rules. The N O S C version of C A T was, in turn, stripped of classified material
and delivered to Carnegie Mellon University about twice per year.

While both sides thus benefited from the exchange of expertise during the contract
period, we experienced some communication difficulties that similar cooperative efforts
would do well to address at the start. Our goal was to develop an expert system with a
deeper level of intelligence than any other system at the time. To develop a more intel
ligent system we had to know as much as possible about the domain knowledge the
system would be working with. Because much of the actual domain knowledge was
classified, however, we had to build the system using false data whose similarity to the
real data we could only guess.

While we had no interest in obtaining security clearance in order to have access to the
real data, we would, however, have found understanding more about the structure of
the actual domain knowledge useful in exploring representational problems, even if the
content remained secret. The project could have benefited had both sides developed a
level of communication such that we could get the information we needed to make a
more intelligent system without breaching N O S C ' S security restrictions. Future par
ticipants in similar cooperative projects could improve such a situation with coaching on
how to ask the kinds of questions and how to give the kinds of answers necessary to
satisfy the needs of both sides.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

G L O S S A R Y
1-1

I. GLOSSARY

act The step in a recognize-act cycle where the production selected
during conflict resolution is "fired," potentially changing working
memory contents.

A memory location, or a numerical range that specifies a memory
location.

A working memory element in the C A T expert system. An assertion
contains one piece of information about an object or event in the
current tactical situation.

A sequence of instructions that are always executed together. A
basic block has no alternate entry or exit points: Control may enter
only through its first instruction and leave only via its last instruction.
New productions added in a Soar system as a result of learning.
The step in a recognize-act cycle where one of the satisfied produc
tions from the conflict set is selected for firing.
The set of all productions whose condition elements have been suc
cessfully matched against working memory elements.
A Mach feature in which an address space is physically copied to a
separate memory location only if a process writes to that address
space.

function decomposition
The means by which a computing task is divided for execution on a
multiprocessor system.

heterogeneous programs
A variety of systolic processing in which individual cells may ex
ecute different programs.

homogeneous programs
A variety of systolic processing in which all array cells execute a
copy of the same cell program.

C A T system control mechanism containing code that accepts and
transforms incoming data and inserts new assertions into the in
ference net.

address space

assertion

basic code block

chunks

conflict resolution

conflict set

copy-on-write

inference engine

inference net Network in the C A T system representing dependencies among
assertions, evidence, and reasons.

interprocess communication (IPC)
The means by which processes exchange data or messages, either
on a single host or over a network.

intra-node parallel processing
Processing multiple activations of the same node concurrently.

iWarp The next-generation Warp cell, a single-chip, VLSI implementation
begun in 1986.

C A R N E G I E M E L L O N U N I V E R S I T Y
F I N A L R E P O R T 1983 -1988

1-2 G L O S S A R Y

left-hand side

Mach

match

memory object

message

The "if" part of a production representing the conditions necessary
to evoke a group of relevant actions.
A distributed multiprocessor operating system developed at CMU-
CSD.
The step in a recognize-act cycle where the system matches a
production's condition elements against working memory contents.
A kernel-managed data repository: a port, physical memory, or disk
space.
A typed collection of data objects used for interprocess communica
tion.
An interface language that allows processes to communicate
across a distributed network regardless of the architecture or lan
guage of the sending and receiving machines.
Arrival of new data (a token) at a node for processing.

node-level parallel processing
Processing activations of two or more nodes concurrently.
A copy of an address space which is passed by copying that ad
dress space into the address space of the receiving process.
A kernel-protected message queue.
Any activity executed by the CPU. Under Mach, a process com
prises a thread operating within the context of a task.
Programmable Systolic Chip: A high-performance, special-purpose,
single-chip microprocessor intended to be used in groups of tens or
hundreds for the efficient implementation of a broad variety of sys
tolic arrays in several application areas.

recognize-act cycle The three steps involved in firing a production system rule: match,
conflict resolution, and act.
An algorithm used in production systems for exploiting two sources
of redundant computation: slow change of working memory and
repeated condition elements. The Rete network represents the cur
rent contents of working memory and their relations to the produc
tions of program memory.

Matchmaker

node activation

physical copy

port
process

PSC

Rete

right-hand side

Soar

systolic array

The "then" part of a production representing the action produced
when the condition elements of the left-hand side are met.
A production system with general reasoning power and the ability to
learn.
A structure of interconnected processing elements that together
achieve a high computational throughput without increasing
input/output bandwidth with the outside world. Within the array,
data "pulses" directly from one cell to the next, without passing
through memory.

F I N A L R E P O R T 1 9 8 3 - 1 9 8 8 C A R N E G I E M E L L O N U N I V E R S I T Y

GLOSSARY 1-3

task

thread
token

two-input node

tactical inference rules
C A T system knowledge base consisting of productions concerning a
tactical situation.
Mach's basic resource allocation unit, comprising a paged address
space and access to system resources.
Mach's basic unit of computation, executing within a task.
Production system data objects that flow between Rete graph
nodes. Tokens consist of a tag ("+" or "-") and a list of working
memory elements that the system is trying to match or has already
matched against condition elements in the production's left-hand
side.
A node in a Rete graph that tests for joint satisfaction of condition
elements in the left-hand side of a production. When a token ar
rives at one input of a two-input node, it is compared to each token
stored in the memory node connected to the opposite input. All
token pairs that have consistent variable bindings are sent to the
successors of the two-input node.
A copy of an address space's contents that is passed via a pointer
to the location of that address space. No data is physically moved.
A technique that expands the apparent amount of system memory
by supplementing hardware memory with disk space for temporary
storage.
A high-level language, and corresponding compiler, for the Warp
systolic array machine. W2 allows a user to specify each cell's ac
tions individually while retaining access to array-level parallelism.
The Warp Programming Environment, which provides a uniform en
vironment for editing, compiling, debugging, and executing W2
programs.

virtual copy

virtual memory

W2

WPE

CARNEGIE MELLON UNIVERSITY FINAL REPORT 1983-1988

