
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Network-Based Multicomputer: 
Redefining High Performance 

Computing in the 1990s 

H.T. Kung 
January 20,1989 
CMU-CS-89-138 

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, Pennsylvania 15213 

Appeared in the Proceedings of the Decennial Caltech Conference on VLSI 
edited by Charles L. Seitz, MTT Press, March 1989, pp. 49-66. (Invited Paper). 

ABSTRACT 

One of the most significant advances in computer systems over the past decade is parallel processing. This is a 
direct consequence of close interactions between system design and VLSI technology. This integrated approach has 
allowed insights in computations, systems and applications to have fundamental influences on the design of 
hardware structures, and vice versa. The cooperation will be even more crucial as we enter the next decade when 
parallel computers are expected to be not only powerful in performance but also easy to use. A key point here is to 
use the power of VLSI to implement general and very high performance networks for large-scale multicomputer. 
In this paper we briefly review current work at Carnegie Mellon in this area, and give a taxonomy to show the 
general architectural trends. It is concluded that multicomputer based on flexible, extensible and efficient network 
backplanes will be a major thrust in high performance computing in the 1990s. 

The research was supported in part by Defense Advanced Research Projects Agency (DOD) monitored by the Space 
and Naval Warfare Systems Command under Contract N00039-87-C-0251, and in part by the Office of Naval 
Research under Contracts N00014-87-K-0385 and N00014-87-K-0533. The views and conclusions contained in this 
document are those of the author and should not be interpreted as representing the official policies, either expressed 
or implied, of the Defense Advanced Research Projects Agency, the Office of Naval Research or the U.S. 
government. 



Decennial Caltech Conference on VLSI 
Pasadena, California, 20-22 March 1989 

Network-Based Multicomputer: 
Redefining High Performance 
Computing in the 1990s 
H. T. Kung 

School of Computer Science 
Carnegie Mellon University 
Pittsburgh, Pennsylvania 15213 

Invited Presentation 
One of the most significant advances in computer systems over the past 
decade is parallel processing. This is a direct consequence of close inter­
actions between system design and VLSI technology. This integrated ap­
proach has allowed insights in computations, systems and applications to 
have fundamental influences on the design of hardware structures, and 
vice versa. The cooperation will be even more crucial as we enter the next 
decade when parallel computers are expected to be not only powerful in 
performance but also easy to use. A key point here is to use the power of 
VLSI to implement general and very high performance networks for large-
scale multicomputers. In this paper we briefly review current work at 
Carnegie Mellon in this area, and give a taxonomy to show the general 
architectural trends. It is concluded that multicomputer based on 
flexible, extensible and efficient network backplanes will be a major thrust 
in high performance computing in the 1990s. 

1 Introduction 
As of 1989 there are about 350 supercomputers installed worldwide. 
However applications continue to demand more computing power. Com­
putational problems in areas such as high-speed aircraft design and medi­
cal imaging, and research in advanced structural, electronic, and optical 
materials often require computers that are at least three orders of mag­
nitude faster than the fastest computers presendy available. 

Although computing demands are increasing rapidly, the performance 
of conventional, sequential computers is approaching the point of 
diminishing return. High-performance sequential computers today are al-



ready bounded by, among other things, memory speed. Parallel com­
puters, in which a number of processors can work in parallel on a single 
application, offer the only solution capable of providing orders of mag­
nitude of improvement in computing performance without excessive costs. 

There has been substantial investment in parallel processing over the 
past twenty years. In the past five years we have seen an accelerated ef­
fort in this area. During this period, at least thirty or forty companies 
started marketing parallel computer systems. Shared memory parallel 
computers include MIMD machines such as the Alliant, Encore, Sequent, 
and Cray Y-MP. Distributed memory computers include MIMD 
machines such as the Transputer [12], Warp [1], and hypercubes [3], as 
well as SIMD machines such as the Connection Machine [21] and DAP 
[11]. Many more parallel machines of enhanced capabilities are under 

development. Successful use of these parallel computers has been 
demonstrated in a number of application areas, including scientific com­
puting, signal and image processing, and logic simulation. For some of 
these applications, the available parallelism increases as the problem size 
expands; therefore it is possible to achieve close to linear speedups on 
parallel machines. 

The next generation of parallel computers will allow easier, more ef­
ficient and more flexible use of parallelism than the present generation. 
To be scalable to a large number of processing nodes, new parallel com­
puters will be mainly distributed memory machines. However, for 
programmability these machines will support various shared memory pro­
gramming models. To achieve the next level of performance, these 
machines will allow multiple levels and forms of parallelism, and include 
heterogeneous processing nodes whenever appropriate. 

These requirements for next generation parallel computers call for 
multicomputer architectures that have general networking support and ex­
tremely low internode communication latencies. Existing message-
passing machines [3, 19] already represent a strong starting point in this 
direction. To illustrate the capabilities of the new machines, we describe 
briefly in Sections 2 and 3 the iWarp [4] and Nectar [2] systems whose 
development Carnegie Mellon is currently involved in. iWarp represents a 
multicomputer built with an embedded network, whereas Nectar 
represents a multicomputer built around a switching network. 

Every multicomputer supports a set of internode communication 
methods. It is basically the set of supported internode communication 
methods that makes one multicomputer differ from another and one 
machine generation differ from another. To aid in understanding the 

2 



design space of multicomputer, we offer in Section 4 a taxonomy of in-
ternode communication methods. Using this taxonomy, the internode 
communication methods supported by various systems are classified in 
Section 5. Using this classification system, the capabilities of the new 
systems can be clearly contrasted with those of previous ones. Section 6 
presents some concluding remarks. 

2 iWarp: Multicomputer with an Embedded 
Switching Network 

iWarp is a multicomputer architecture being developed jointly by Car­
negie Mellon and Intel Corporation. Evolved from its predecessor, 
Warp [1], iWarp is expected to support a wide range of applications in­
cluding high speed signal, image and scientific computing. 

An iWarp system is an array of identical processing nodes, called 
iWarp cells. Each iWarp cell is composed of the iWarp component and 
memory chips. As depicted in Figure 1, the iWarp component contains 
both a powerful computation agent (20 MFLOPS and 20 MIPS) and a 
high throughput (320 megabytes/sec), low latency (100-150 ns) com­
munication agent for interfacing with other iWarp cells. Because of its 
strong computation and communication capabilities, the iWarp component 
is a versatile building block for various high performance parallel systems. 

iWarp systems may range from special purpose systolic arrays to 
general-purpose distributed memory computers. They are able to support 
efficiently both fine-grain parallel and coarse-grain distributed computa­
tion models simultaneously in the same system. As in the hypercube and 
Transputer machines, a general communication network is embedded in 
the iWarp array to support a variety of communication methods (see Sec­
tion 5). 

In an iWarp cell the computation agent can carry out computations 
independently from the operations being performed by the communication 
agent. Therefore the cell may perform its computation while communica­
tion through the cell to and from other cells is taking place, without the 
cell program being involved with the communication. While separating 
the control of the two agents makes programming easy, having the two 
agents on the same chip allows them to cooperate in a tightly coupled 
manner. The tight coupling is required to implement architectural features 
such as streaming and spooling to be discussed below. 

The communication agent has four input and four output physical 

3 



Local memory 

40 megabytes/sec bus 

160 megabytes/sec 

Computation 
Agent 

20 MFLOPS 
& 20 MIPS 

Communication 
Agent 

Figure 1. iWarp component overview 

busses for connecting to other cells, as shown in Figure 1. In addition, it 
has two input and two output physical busses for connecting to the com­
putation agent. Each bus has a data bandwidth of 40 megabytes/sec. 

An important feature of these physical busses is that each can support 
a number of logical busses in the same direction. The logical busses share 
the physical bus in a time-multiplexing manner according to a round robin 
schedule on a word-level basis. The scheduler allocates cycles to active 
logical busses only; idle logical busses consume no physical bus 
bandwidth. Moreover, a flow control mechanism is implemented in 
hardware so that whenever a data word is transferred over a logical bus the 
receiver is guaranteed to have space to receive it. The logical bus ar­
chitecture and its word-level flow control mechanism, made possible by 
the VLSI implementation, are essential for the efficient implementation of 
some sophisticated communication methods, which will be discussed in 
Section 5. 

Logical busses are statically allocated to physical busses under 
software control. The hardware allows the total number of incoming logi­
cal busses in the communication agent of each cell to be as large as 20. 
For example, in a 2D array configuration, the logical busses can be evenly 
distributed among the four neighbors and the computation agent, as shown 
in Figure 2. In this case, the communication agent can be thought as a 
20x20 crossbar that links incoming logical busses to outgoing logical 
busses. 

Using the logical busses, a cell can maintain many connections simul-

4 



(a) (b) 

Figure 2. (a) Physical 2D network (b) logical busses of a cell 
taneously, including some statically allocated connections called "system 
pathways "devoted to system uses only. Figure 3 shows an example of 
three connections through cells in a 2D array. Connection 1 is from the 
computation agent of cell B to that of cell A. Connection 2 passes through 
cell A, turns a corner at cell C and then reaches the destination 
D. Finally, connection 3 passes through both cells C and D. Note that 
on the same physical bus from cell C to cell D, two connections are main­
tained at the same time using two logical busses. 

Programs can read or write data from or to a message buffer via the 
side effects of special register references. These special registers are 
called streaming gates, because they provide a "gating" or "windowing" 
function allowing a stream of data to pass, a word at a time, between the 
communication agent and the computation agent. There are two input 
gates and two output gates. These gates can be bound to different logical 
busses dynamically. A read from the gate will consume the next word of 
the associated input message; correspondingly, a write to an output gate 
will generate the next word of the associated output message. The instruc­
tion spins when reading from an empty gate or writing to a full gate. 

iWarp also provides a transparent, low-overhead mechanism for trans­
ferring data between the communication agent and the local memory. The 
transfer is done via spooling gates. Spooling has low overhead to avoid 
significant reduction of the efficiency of any ongoing computation. 
Spooling is transparent to software except for delays incurred due to either 
cycle stealing or local memory access interference from other memory 
references. 

As of the end of 1988, the architecture and logic designs for iWarp 
were completed. In the software area, the optimizing compiler developed 
for Warp [10, 16] has been retargeted to generate code for iWarp. Using 

5 



A B 

C D 
Figure 3. Multiple connections in a 2D iWarp array 

this compiler together with an architecture simulator, the iWarp architec­
ture and performance on realistic programs have been evaluated [7]. A 
prototype iWarp system is expected to be operational by the end of 1989. 
Three 1.28 GFLOPS demonstration systems, each consisting of an 8x8 
torus of iWarp cells, are scheduled to be operational in the middle of 1990. 
The same system design is extendible to a 20.48 GFLOPS, 32x32 torus. 

3 Nectar: Multicomputer around a Switching 
Network 

The Nectar (NEtwork CompuTer ARchitecture) system developed by Car­
negie Mellon consists of a Nectar-net and a set of identical CABs 
(Communication Accelerator Boards), as illustrated in Figure 4. The sys­
tem connects a number of existing (and possibly heterogeneous) systems, 
called nodes, to the Nectar-net. Therefore, unlike an iWarp system, Nec­
tar is a multicomputer built around a switching network rather than a mul­
ticomputer with an embedded network. By being able to include commer­
cially available computers and machines optimized for special applica­
tions as nodes, Nectar can take advantage of performance improvements 

6 



NODE 

NODE 

CAB I 

MJLJLI 

NODE ICAB 

HUB 

TT i l 

I CAB I 

mm 

TT 
CAB NODE 

HUH 

CAB CAB 

NODE NODE 

Figure 4. Nectar system overview 
in these systems. 

The Nectar-net is built from fiber-optic lines and one or more HUBs. 
As depicted in Figure 5, a HUB is a crossbar switch with a number of 
fiber I/O ports. Each I/O port contains circuitry for optical to electrical 
and electrical to optical conversion. From the functional viewpoint, a port 
consists of an input queue and an output register. 

i i - i i 

. ¥ T - ¥ T 
"TTU 

• 
• 
• 

• 

:•: • 

D—-

Crossbar 
Switch :•:; • 

«—o 

mm 

I/O Port 

FIBER IN 
FIBER OUT 

Figure 5. HUB overview 

The CAB is a RISC-based processor board serving three functions- it 
implements high-level network protocols; it provides the interface be­
tween the Nectar-net and the nodes; and it off-loads application tasks from 

7 



nodes when appropriate. Every CAB is connected to a HUB via two fiber 
lines carrying signals in opposite directions. 

To build large systems, multiple HUBs can be connected together. In 
such systems, some of the I/O ports on each HUB are used for inter-HUB 
fiber connections, as shown in Figure 6. The HUBs may be connected in 
any topology appropriate to the application environment. Since the I/O 
ports used for HUB-HUB and for CAB-HUB connections are identical, 
there is no a priori restriction on the number of links that can be used for 
inter-HUB connections. 

Figure 6. A 4-HUB system example, with some point-to-point and 
multicast connections shown 

A packet-level flow control mechanism for inter-HUB communication 
is implemented in hardware. When the input queue of a CAB or a HUB 
I/O port becomes available to store a new packet, the CAB or HUB will 
automatically send out an acknowledgment signal to the connecting HUB. 

A prototype Nectar system is operational at Carnegie Mellon. The 
prototype uses 16x16 HUBs, SPARC processors as RISC CPUs in CABs, 
and 100 megabits/sec fiber-optic lines. Currently a node interfaces to the 
CAB via a VME interface. Initially, the prototype Nectar system at Car­
negie Mellon has Sun-3s, Sun-4s and Warp systems as nodes. 

8 



A major goal of the Nectar architecture is to have small communica­
tion latencies. Excluding the transmission delays of the optical fibers, the 
latency for a message sent between processes on two CABs is under 30 
microseconds; the corresponding latency for processes residing in nodes is 
under 100 microseconds; and the latency to establish a connection through 
a single HUB is under 1 microsecond. 

Since the latency through the HUB is relatively small, similar process-
to-process latencies can be observed on a large Nectar system with, for 
example, 1,024 hypercube-connected HUBs. Such a system will be able 
to accommodate 6,144 nodes using the current 16x16 HUBs. The same 
configuration can have more nodes if HUBs use larger crossbars. For ex­
ample, if 32x32 HUBs are used, then the system can have up to 22,528 
nodes! 

The efficiency of Nectar is achieved with a combination of hardware 
support and carefully tailored network software. In particular, the most 
frequently used datalink protocols are implemented direcdy in hardware, 
while high-level protocols are handled by CABs using streamlined inter­
rupt mechanisms and light-weight processes. 

When the prototype has demonstrated that the Nectar architecture and 
software works well for applications, we plan to re-implement the system 
using custom or semi-custom VLSI. This will lead to larger systems with 
higher performance and lower cost. In particular, it will be possible to 
scale up the current Nectar fiber links from 100 megabits/sec to about 1 
gigabit/sec, by taking the following steps: 

• The CAB's current bandwidth of 133 megabits/sec can be in­
creased by a factor of eight to 1.062 gigabit/sec using the fol­
lowing method. (1) A factor of two can be obtained by using 
two DMA devices, one working on one memory bank for 
packet transmitting and one working on another memory bank 
for packet receiving, (2) a factor of two by doubling the 
datapath width from 32-bit to 64-bit, and (3) another factor of 
two by reducing the cycle time from 60 nanoseconds to 30 
nanoseconds. Items (1) and (2) will increase the CAB gate 
count by roughly a factor of 2, while item (3) can be ac­
complished with a 30 MHz RISC processor. 

• Suppose that the datapath of the current HUB is widened 
from 8-bit to 64-bit. Then with the current cycle time of 60 
nanoseconds, this will yield a bandwidth of 1.062 gigabit/sec 
This method requires about eight times more gates for the 

9 



HUB crossbar than the current implementation. 
Therefore by implementing the CAB and HUB in VLSI, the Nectar ar­
chitectures can be scaled to accommodate 1 gigabit/sec fiber-optic links. 

4 Taxonomy of Communication Methods 
One of the most essential properties of a multicomputer is the kind of in-
ternode communication methods the machine supports. Many com­
munication methods have been supported by multicomputers and 
proposed in the literature. This section gives a taxonomy of these methods 
so that the relations and differences between them can be precisely 
evaluated. 

Communicating nodes Connection setup 

I , I , i i i i 
Restricted Arbitrary Static Dynamic 

Circuit Packet 
switching switching 

Routing path selection Network flow control 
1 , , 1 . 1 

Deterministic Adaptive None Sge-nd- ^ Wormhole . . 

I ' 1 ' 1 

Source node Network Packet-level Word-level 

Buffering at end nodes 

I 1 ' 1 1 
Station-to- Door-to- Program-to- • • • 

station door program 

Figure 7. Taxonomy of internode communication methods 
As shown in Figure 7, our taxonomy is based on five dimensions. 

These dimensions are orthogonal to each other in the sense that selection 
of an alternative in one dimension does not restrict options in other dimen­
sions. In the following we define these dimensions and describe major 
alternatives with respect to each dimension. 

1. Communicating nodes. In an application program, a given 

10 



node may communicate directly with a number of other 
nodes. The node may communicate with either a restricted 
set of nodes (such as its neighboring nodes) or any arbitrary 
node in the system. 

2. Connection setup. A connection is a physical routing path 
on the network allocated to cany out one or more com­
munications required by the application during program ex­
ecution. A connection may be set up either statically before 
program execution or dynamically during program execu­
tion. In the dynamic case, a connection can be set up using 
circuit switching, in which transmission starts only after the 
entire connection has been set up, or using packet switching, 
in which transmission can start as soon as the connection to 
the next node has been set up. 

3. Routing path selection. To build a connection for a given 
communication between two nodes, there could be multiple 
choices for the physical routing path. The routing path 
selection can be either deterministic or adaptive. In the 
deterministic case, the route is totally determined by the 
source and destination addresses of the connection. In the 
adaptive case, the route selection can attempt to adapt to the 
network status. When setting up a connection dynamically 
during program execution, the route can be selected by the 
source node, which originates the communication, or by the 
network [5] to avoid congested nodes on-the-fly. 

4. Network flow control. During transmission a message 
packet may not be able to proceed to the next node while the 
next node is busy. Network flow control is concerned with 
methods to avoid network queue overflows and underflows 
in the presence of the possibility that messages may be 
blocked inside the network. 

Before describing some network flow control methods, we 
first point out that message blocking can be totally avoided 
by starting transmission only after the entire connection has 
been set up and the destination node has acknowledged its 

11 



readiness to accept the package. This method does not re­
quire any network flow control support, but has a relatively 
long communication latency (to set up the connection and to 
wait for acknowledgement from destination). 

A common way to implement network flow control is based 
on the store-and-forward method. When arriving at each in­
termediate node, the complete packet is first stored in the 
system memory of the node, and then sent forward to a 
selected neighboring node when the neighbor is not busy. 
Note that this method involves at most two nodes at any 
given time in transmitting a packet; therefore the implemen­
tation is relatively easy. However, the buffering of the 
packet consumes memory space and bandwidth of inter­
mediate nodes and introduces communication delays. 

A more sophisticated method, called cut-thro ugh [13], can 
avoid unnecessary buffering. When the header of a message 
packet arrives at an intermediate node whose selected output 
channel is free, the packet will be directed to the next node 
immediately (hence the name cut-through). Therefore a 
message packet is buffered at an intermediate node only 
when its selected output channel is busy. 

Alternatively, message packets can stay inside the network 
while waiting for the selected output channel to become 
available. Methods of this kind, called the wormhole 
methods [9, 8] by researchers at Caltech, totally avoid the 
overhead of buffering packets in system memories of inter­
mediate nodes. For the efficient support of these methods, 
the network must have hardware to implement low-level 
flow control. The flow control granularity can be at the 
word-level or packet-level. 

5. Buffering at end nodes. For some communication methods, 
message packets need to be buffered in the system memory 
at the sending or receiving node, or at both ends. Here we 
describe some of these buffering schemes. 

12 



Consider first the case of buffering message packets at both 
end nodes. That is, packets can be sent and received only 
from system buffers. At the sending end, packets built in the 
user space need to be copied to the system buffer before they 
can be sent. Correspondingly, at the receiving end, packets 
received into the system buffer need to be copied to the user 
space before they can be read. Therefore the network is 
responsible for transmitting messages only between system 
buffers. We call this type of communication station-
to-station communication. 

A more efficient method, which we call door-to-door com­
munication, allows packets to be sent and received from user 
spaces directly. This method has a smaller communication 
latency than station-to-station communication, because there 
is no need to copy data to and from system buffers. 

A step further in this direction is to allow the application 
program at the sending or receiving end to send or consume 
individual data items as they are computed or received, 
respectively. The sending program does not need to build a 
complete packet before sending out a single data item, nor 
does the receiving program need to receive the complete 
packet before reading a single item in the packet This 
method, which we call program-to-program communication, 
is the essence of systolic communication [4, 14]. Program-
to-program communication can have the minimum-possible 
latency, since individual data items can be sent out as soon 
as they become available at the sending end, and can be used 
as soon as they are received at the receiving end. However, 
careful coordination between sending and receiving 
programs is needed to avoid deadlocks [15]. 

The buffering schemes at the sending and receiving ends do 
not have to be the same. For example, door-to-door com­
munication may be used at the sending node, when station-
to-station communication is used at the receiving node. 

13 



5 Communication Method Examples 
The space of communication methods is the cross product of the sets of 
leaves of the trees in Figure 7. The communication methods shown in the 
table below are some interesting points in this space. These methods are 
supported by various multicomputer, which are now in existence or soon 
will be, as indicated in the table. 

Commu­
nicating 

nodes 

Connection 
setup 

Routing 
path 

selection 

Network 
flow 

control 

Buffering 
at end 
nodes 

Classical message-passing 
(e.g., first-generation hy-
percubes [3]) 

Arbitrary Dynamic Determi­
nistic 

Store-and -
forward 

Station-to-
station 

Classical systolic com­
munication 
(e.g.,Warp [1]) 

Restricted Static Determi­
nistic 

Wormhole 
(Word 
-level) 

Program-to-
program 

Efficient message-passing 
I (e.g., Ametek [20], 
iWarp [4]) 

Arbitrary Dynamic Determi­
nistic 

Wormhole 
(Word-
level) 

Station-to-
station 

Efficient message-passing 
II (e.g., Hyperswitch[18]) 

Arbitrary Dynamic 
(Circuit 
switching) 

Adaptive 
(Network) 

None Door-to-
door 

Efficient message-passing 
m (e.g., Nectar [2]) 

Arbitrary Dynamic Adaptive 
(Source 
node) 

Wormhole 
(Packet-
level) 

Door-to-
door 

Efficient message-passing 
IV (e.g., bi-directional 
Transputer ID array [17]) 

Arbitrary Static Determi­
nistic 

Store-and-
forward 

Door-to 
door 

Efficient message-passing 
V (e.g., iWarp system 
pathways [4]) 

Arbitrary Static Adaptive 
(Network) 

Wormhole 
(Word-
level) 

Station-to-
station 

Flexible systolic com­
munication I (e.g., iWarp 
[4]) 

Arbitrary Dynamic Adaptive 
(Source 
node) 

Wormhole 
(Word-
level) 

Program-to-
program 

Flexible systolic com­
munication II (e.g., recon­
figurable systolic arrays 
[6]) 

Arbitrary Static N/A Wormhole 
(Word-
level) 

Program-to-
program 

From the table we can observe two trends in the multicomputer evolu­
tion. First, message-passing systems are becoming more efficient by sup­
porting techniques such as wormhole, adaptive routing path selection by 
the network, and door-to-door communication methods. Second, systolic 
systems are becoming more flexible by allowing communication between 
arbitrary nodes, dynamic connection setup, and adaptive routing path 
selection by the source node. 

14 



It is interesting and useful to note that both making message-passing 
systems more efficient and making systolic systems more flexible have the 
same hardware requirements [4] such as those provided in iWarp (see Sec­
tion 2). This is summarized in Figure 8. More precisely, hardware sup­
ported, low-level flow control prevents network queue overflows and un­
derflows when wormhole, door-to-door and program-to-program tech­
niques are used. Through the use of logical busses, a blocking message 
inside the network does not have to block physical busses from other uses. 
To reduce message congestion, the spooling mechanism makes it possible 
to remove messages from the network easily and quickly when they reach 
destinations. Using streaming, programs can read and write messages 
directly to implement program-to-program communication. To implement 
door-to-door communication, the same streaming mechanism allows the 
programs to read quickly the header of an arriving message to determine 
its destination memory location. 

Message-
Passing 

N. a 

More 
Efficient 

More 
Flexible 

Common Requirements: 
Low-Level Flow Control, Logical 
Busses, Streaming, Spooling, etc. 

Systolic 
Communication 

Figure 8. Common requirements for efficient message-passing and 
flexible systolic communication 

6 Concluding Remarks 

We have seen in this paper the feasibility of using VLSI to implement net­
working functions very efficiently. In the case of iWarp, network delays 
are comparable to access latencies to the local memory of a cell. In the 
case of Nectar, whose network operates at the packet-level, network 
delays are typically much smaller than file access latencies on a sequential 

15 



machine. Based on these high-speed networks multicomputers can enjoy 
the communication flexibility of general networks without sacrificing per­
formance. 

As VLSI technology advances, sophisticated and well-understood 
communication methods will be supported directly by hardware. This can 
be clearly seen from the classification of communication methods given in 
the paper. The iWarp effort can be viewed as a part of this overall trend. 

Nectar represents a more general approach than iWarp. Being able to 
use existing processors as nodes, Nectar can take advantage of rapid per­
formance advances in commercial processors. Being able to include 
processors of different types, Nectar can support applications that require 
heterogeneous nodes. Moreover, the system is based on a general network 
architecture that is highly scalable. As pointed out in the paper, the sys­
tem can be scaled up to have a large number of nodes by using multiple 
HUBs and fiber-optic links, and to support high bandwidth links by im­
plementing the CAB and HUB in VLSI. Because of these advantages, we 
expect that network-based multicomputers such as Nectar will play an in­
fluential role in parallel processing in the 1990s. 

Acknowledgments 
The research was supported in part by Defense Advanced Research 
Projects Agency (DOD) monitored by the Space and Naval Warfare Sys­
tems Command under Contract N00039-87-C-0251, and in part by the Of­
fice of Naval Research under Contracts N00014-87-K-0385 and 
N00014-87-K-0533. Portions of Sections 2 and 3 are excerpted from ex­
isting articles on iWarp and Nectar [2,4]. 

References 
[1] Annaratone, M., Arnould, E., Gross, T., Kung, H. T., Lam, M., 

Menzilcioglu, O. and Webb, J. A., The Warp Computer: Architec­
ture, Implementation and Performance, IEEE Transactions on 
Computers C-36, 12 (December 1987), 1523-1538. 

[2] Arnould, E. A., Bitz, F. J., Cooper, E. C , Kung, H. T., Sansom, 
R. and Steenkiste, P. A., The Design of Nectar: A Network Back­
plane for Heterogeneous Multicomputers, Proceedings of Third In­
ternational Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS HI), ACM, (April 

16 



1989). 

[3] Athas, W. C. and Seitz, C. L., Multicomputers: Message-Passing 
Concurrent Computers, Computer 21, 8 (August 1988), 9-24. 

[4] Borkar, S., Cohn, R., Cox, G., Gleason, S., Gross, T., Kung, H. T., 
Lam, M., Moore, B., Peterson, C , Pieper, J., Rankin, L., Tseng, 
P. S., Sutton, J., Urbanski, J. and Webb, J., iWarp: An Integrated 
Solution to High-Speed Parallel Computing, pp. 330-339, Proceed­
ings of Supercomputing '88, IEEE Computer Society and ACM 
SIGARCH, (Orlando, Florida, November 1988). 

[5] Chow, E., Madan, H., Peterson, J., Grunwald, D. and Reed, D., 
Hyperswitch Network for the Hypercube Computer, pp. 90-99, 
Conference Proceedings of the 15th Annual International Sym­
posium on Computer Architecture, (June 1988). 

[6] Cohn, R., Kung, H. T., Menzilcioglu, O. and Song, S. W., A 
Highly Reconfigurable Array of Powerful Processors, pp. 336-343, 
Proceedings of SPEE Symposium, Vol. 975, Advanced Algorithms 
and Architectures for Signal Processing HI, Society of Photo-
Optical Instrumentation Engineers, (August 1988). 

[7] Cohn, R., Gross, T., Lam, M. and Tseng, P. S., Architecture and 
Compiler Tradeoffs for a Long Instruction Word Microprocessor, 
Proceedings of Third International Conference on Architectural 
Support for Programming Languages and Operating Systems 
(ASPLOS III), ACM, (April 1989). 

[8] Dally, William J„ A VLSI Architecture for Concurrent Data Struc­
tures, (Kluwer Academic Publishers, 1987). 

[9] Dally, W. J., and Seitz, C. L., The Torus Routing Chip, 
Distributed Computing 1, 4 (1986), 187-196. 

[10] Gross, T. and Lam, M., Compilation for a High-performance Sys­
tolic Array, pp. 27-38, Proceedings of the SIGPLAN 86 Sym­
posium on Compiler Construction, ACM SIGPLAN, (June 1986). 

[11] Hockney, R.W. and Jesshope C.R., Parallel Computers, (Adam 
Hilger Ltd., Bristol, U.K., 1981). 

[12] Homewood, M., et al., The IMS T800 Transputer, IEEE Micro 7, 
5 (October 1987), 10-26. 

[13] Kermani, P., and Kleinrock, L., Virtual Cut-Through: A New 
Computer Communication Switching Technique, Computer Net-

17 



works 3, 4 (1979), 267-286. 

[14] Kung, H. T., Systolic Communication, pp. 695-703, Proceedings of 
the International Conference on Systolic Arrays, (San Diego, Cali­
fornia, May 1988). 

[15] Kung, H. T., Deadlock Avoidance for Systolic Communication, 
Journal of Complexity 4, 2 (June 1988), 87-105. (A revised ver­
sion also appears in Conference Proceedings of the 15th Annual 
International Symposium on Computer Architecture, June 1988, 
pp. 252-260).. 

[16] Lam, M., A Systolic Array Optimizing Compiler, Ph.D. Thesis, 
Carnegie Mellon University (May 1987). 

[17] Manning, L. J., Dew, P. M„ and Wang, H., Design and Analysis of 
Image Processing Algorithms for Programmable VLSI Array 
Processors, in: Page, I., Ed., Parallel Architectures and Computer 
Vision, (Oxford Science Publications, 1988), pp.. 

[18] Peterson, J., Chow, E., Madan, H., A High-Speed Message-Driven 
Communication Architecture, pp. 355-366, Conference Proceed­
ings of 1988 International Conference on Supercomputing, (St. 
Malo, France, July 1988). 

[19] Seitz, C. L., The Cosmic Cube, Comm. ACM 28, 1 (January 1985), 
22-33. 

[20] Seitz, C. L., Athas, W. C , Flaig, C. M., Martin, A. J„ Seizovic, J., 
Steele, C S. and Su, W-K., The Architecture and Programming of 
the Ametek Series 2010 Multicomputer, pp. 33-36, The Third Con-
fererence on Hypercube Concurrent Computers and Applications., 
(Pasadena, California, January 1988). 

[21] Tucker, L. W., and Robertson, G. G., Architecture and Applica­
tions of the Connection Machine, Computer Magazine 27,8 
(August 1988), 26-38. 

18 


