
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Contracting Proofs to Programs

Daniel Leivant
July 25,1989

CMU-CS-89-170

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

To appear in
Piergiorgio Odifreddi (Editor), Logic and Computer Science, Academic Press.

Abstract

This work describes a family of homomorphisms that contract natural deductions into typed
^-expressions, with the property that a convergence proof for an untyped program for function / is
contracted to a typed program for /. The main novelties, compared to previous works on extracting
algorithms from proofs, are the reading of deductions themselves as programs, and that instead of a
constructive reading of 3, we use a Leibnitzian view of objects as sets of properties. The method is based
on the observation that object-level components of natural deductions can be ignored computationally. It
is applicable to every formalism in which there are no axioms or rules for objects in general, only for
properties. Formalisms of this type include Peano's first order axiomatization of arithmetic (in its
original fonn, with a primitive predicate identifier AO. second and higher order logic (in which data types,
like the natural numbers, can be defined explicitly), and various variants of fixpoint extensions of first
order logic.

Among the technical offshoots of the method are very simple and transparent proofs of Guard's Theorem,
that the provaWy recursive functions of second order arithmetic are all representaUe in the second order
X-calculus, and of GOdel's "Dialectica" Theorem, that the provaMy recursive functions of first order
arithmetic are all computable using primitive recursion in all finite types.

This research was partially supported by ONR Grant N00014-844C-0415, and in part by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 4976, Amendment 20, under Contract Number F33615-87-
C-1499, monitored by the Avionics Laboratory, Air Force Wright Aeronautical Laboratories, Aeronautical Systems
Division (AFCS), Wright-Patterson AFB, Ohio 45433-6543.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of ONR, DARPA, or the U.S. Government

Introduct ion

Most techniques for extracting the algorithmic contents of proofs fall into three methods.
The interpretational method maps a formula ^ to a formula yc that renders the constructive
contents of <p. One shows that if <p is provable constructively, then y>c is true. This is the
method underlying Kleene's realizability interpretations, Godel's "Dialectica" interpretation, and
Kreisel-Goodman's Theory of Constructions.

The proof normalization method is based on the special form taken by normal proofs in
semantic directed calculi for constructive theories, such as natural deductions for Intuitionistic
(Heyting's) First Order Arithmetic. The key property used is existential instantiation: a normal
proof of a formula 3x.<p must have, as premise of its last inference, y>[t/x] for some term r.

The proof combinatorics method attempts to interpret a natural deduction proof as compris­
ing an algorithm. The method is motivated by Curry and Howard's "formula as type" isomor­
phism [CF58,How80,Lau70,deB70], and underlies the programming language of Per Martin-L6f
[Mar79], the family of PRL systems [Con86], and Coquand and Huet's Calculus of Constructions
[CH88, Coq].

Our method is a variant, originating in [Lei83], of the proof combinatorics method. It is
based on the observation that object-level components of natural deductions can be ignored
computationally, leading to a homomorphism from proofs to typed programs, that extracts the
computational contents of deductions. The underlying rationale goes back to Leibnitz: in a
general setting where objects have a priori no special property, reasoning and computing are
with respect to objects' properties, rather than over the objects themselves. The fact that an
object x has property P will be reflected in the combinatorics of (potential) proofs of P{x). For
instance, if N is a suitable rendition of the property of being a natural number, then a proof of
N(x) will have a structure that reflects the construction of x.

This approach is applicable to every formalism in which there are no axioms or rules for
objects in general, only for properties. Formalisms of this type include Peano's first order
axiomatization of arithmetic (in its original form, with a primitive predicate identifier N), second
and higher order logic (in which data types, like the natural numbers, can be defined explicitly),
and various variants of fixpoint extensions of first order logic.

Our approach differs in important respects from previous works on proofs as programs, such
as Martin-Lfif's Type Theory (MLTT). We disregard abstraction over individual objects, whereas
object abstraction is at the core of the MLTT style. The constructive contents of proofs rests, for
us, in the combinatorics of abstraction and application within proofs, in contrast to MLTT, where
the constructive contents lies mainly in a constructive interpretation of existential quantification.
Our approach is committed to a "semantic" view of typing (types as properties) as opposed to
the "ontological" view of (most variants of) MLTT, where objects come equipped with their
type. Finally, our method is particularly suited for reasoning about functions that are partial
with respect to data types.

Among the technical offshoots of the method are very simple and transparent proofs of
Girard's Theorem, that the provably recursive functions of second order arithmetic are all rep-
resentable in the second order A-calculus, and Godel's "Dialectica" Theorem, that the provably
recursive functions of first order arithmetic are all computable using primitive recursion in all

. finite types.

We outline the use of our contraction homomorphisms for three types of calculi. In §§1-4 we
present the method and some of its ramifications and applications for pure second order logic,
which is mapped to Girard-Reynolds's pure second order A-calculus. We start with this instance
of the method because the target formalism is a pure A calculus. In §5 we exhibit the method for
a variant of Peano's Arithmetic and similar "generative axiomatizations" of inductively generated
data types. §6 outlines applications to "inductive axiomatizations", based on first order inductive
definitions. Finally, §7 touches on the contraction of second order proofs with restricted forms of
comprehension, to second order typed A-expressions with restrictions on type arguments. Since
we deal here with functions provable in second order logic, restricting comprehension leads to
computational classes well below the provably recursive functions of first order arithmetic, such
as the primitive recursive functions, the elementary, and the super-elementary functions [Lei89,
Leia, Lei/3, Lei7]. A number of technical elaborations are factored out into appendices, to avoid
distraction from the main development.

The main results of §§1-3 were reported in [Lei83]. They were rediscovered by Krivine and
Parigot [Kri86, KP87]. Closely related results are described in [Gir89] (see discussion following
Theorem V below). The main results of §§4,5 are contained in §2 of [Lei84], and were reported
in December 1983 at the Workshop on Logic in Computer Science at Brooklyn College of
CUNY.

Acknowledgements. I am grateful to Phokion Kolaitis, Georg Kreisel, Michel Parigot, Jonathan
Seldin, and Paul Taylor for comments on a preliminary version of this work. Research partially
supported by ONR grant N00014-84-K-0415 and by DARPA grant F33615-87-C-1499, ARPA
Order 4976, Amendment 20.

2

1. A contraction homomorphism from second order deductions to A-programs

1.1. Natural deductions for minimal second order logic

We use a Gentzen-Prawitz style natural deduction calculus [Gen34, Pra65], M2L, for minimal
second order logic, with implication and universal quantification as the only logical constants.
The inference rules are:

•I: . . . (occurrences xl of x are closed) —*E:

x -> V

x - » V X

tp Vx. <p
VI: (x not free in assumptions) VE:

Vxv> rft/x]

V 2!: (R not free in assumptions) N^E
Vi?. v

 r <p[\u.il;/R]

Derivations are defined as usual. When appropriate, we use numbered lists of formulas as
concrete syntax for derivations.

We consider computability in the equational style of Herbrand-Godel (see Appendix I below).
For the rest of this paper, a program is a finite set of defining equations for function identifiers,
possibly by (simultaneous) recursion. Given a program V% M2L + V will denote the extension
of M2L with the rule:

V: ——— f = / / o r r / = f i s a substitution instance of an equation in V

1.2. A homomorphism from deductions to A-expressions

Curry and Howard's isomorphism has formulas correspond to types and deductions to A-
expressions. In defining the isomorphism for quantifiers, Howard was led to defining richer
type structures, with dependent type operations. These were discovered independently by de
Bruijn for the AUTOMATH project [deB70], and further developed by Martin-L6f, lending evi­
dence to their naturalness and utility.

3

We pursue a dual approach: rather than enriching the type structure to match logic, we
impoverish logic to match the type structure. The co-domain of our homomorphism is Girard-
Reynolds' second order (polymorphic) typed A calculus, 2A [Gir72, Rey74] (see expositions in
[See] or [FL083]). We write E : r for "£ is of type r." We use the same identifiers for relational
variables of M2L and for type variables of 2A.

For a formula tp9 let the type <£ be obtained by deleting from <p the first order compo­
nents: R(t) =Df R\ 0 —» x =zy ^ —• X} V*-*/7 =D/ ip} V/?>^ -of For example, if
ip = V/?(Vz(/?(z) —• /?(sz)) /?(0) /?(r)) (stating that t denotes a natural number), then
(£_ = VR.((R - » #) - * (/ ? - • /?)), i.e. the Fortune-O'Donnell type of the natural numbers [FL083].

By straightforward induction on formulas we have:

L e m m a 1..1 If<p = tp[Xx.x /K\> ihen <p = ±[x/Rl H

Next we define a mapping K that assigns to each derivation II of M2L+V deriving a formula
ip (where V is a program), an expression KU of 2A, of type <£.

4

n = ¥>' (open assumption <p labeled by 0 KII -of xf (variable of type <£)

n = /\ KII =Df Xxf.nA

x-*<p

A &
„ ib — • tp ib
n = - — - — - KIT =DF (KA)(KQ)

A

Vx.tb
tb

n = ——- nil =of KA

A
ix.tj.

0[0C]
n = i r l , KII =of KA

1 1 S (b y ?) KlI=DfKA

A

= TTTTT an =Df AR.KA

A

By a straightforward induction on derivations we have

5

Lemma 1..2 If II derives <p from the open assumptions ib\x... ib%, then nil is of type <£_, with
free variables x^ .. .x?1, of types ^ . . . T^, respectively.

The induction step for the case of second order V elimination uses Lemma 1..1. The induction
step for second order V introduction uses, for the syntactic correctness of «i7, the condition on
II that R is not free in open assumptions.

K can be extended to the remaining logical constants, using their definition in terms of
implication and universal quantification [Pra65]. For example, <p A ib = VR°((<,(? —• ib —• R) -*
R), so a proof U of <p A ib is obtained from a proof A of <p and a proof & of ib by two uses
of —• elimination and a use of V introduction, yielding «i7 = AR. \U.U(KA)(K&) (where
a : <£ —• T/> —• /?)•

13 . K commutes with reductions

Prawitz's reductions for M2L, take the following forms [Pra65]:

Implication: n =

m
A

lb -KJ>

e
ib

reduces to W =

Q
m

A

Object V: n =

Relation V: n =

A

VR.<p

reduces to W —

reduces to W =

A[t/x]
<p[t/x]

A[\u.X/R]
<p[*.X/K\

Lemma 1.3 (Homomorphism) Let J7 be an M2L derivation. If n reduces tc JQ by an
application of one ofPramtz's rules above, then KII ^-converts (in 1\) to KU . ^nseaue^y,
if II reduces (by successive reductions) to Q, then KJI ^reduces to KQ, and ifnll is ^-normal,
then II is normal.

6

CONVERSELY, IF E = KII 0-REDUCES TO E', THEN E' = KII1 FOR SOME II' SUCH THAT II PRAWITZ-
REDUCES TO 11'. CONSEQUENTLY, IF II IS NORMAL, THEN KII IS ft-NORMAL H

For a comment on 77-reductions see Appendix 9.1.

1.4. Extension of K to conjunction

Let [2A+ pairing] be the extension of 2A with pairing: types are generated also using the product
construct, r x <7, and expressions are generated also using pairing and projections: if E : r and
F : cr, then (E,F) : R x CR\ and if E : RX x r 2, then j ,£ : RT (I = 1,2). An additional reduction
rule is: £ 2) reduces to £, (1 = 1,2).

K has an obvious extension to K : M2L + conjunction —* 2A + pairing. Let the mapping
<P <£ be extended by the clause ^ A \ =T>F (3/̂ x)- E x t e n c * the definition of K by the clauses

N =

^ 1

Y>2 Ki7 = D / (/ C ^ I , « ^ 2 >

77 = « i l =£)/ j i *^

Lemma 1..3 applies then to the extended *.

Alternatively, conjunction can be considered, within M2L, as a defined connective [Pra65]:
V A %L) = VQ((y? —• V? Q) Q). From this definition and from the M2L derivations of the
conjunction rules for it we obtain:

r i x r 2 =D/ VG((n -> r 2 -+ Q) -> Q)

j i i ^ x < 7 =0/ £r(A*r;y*
ja*™' =z>/ E*(\XRY.Y)

1.5. Extension of * to first order 3

Although 3 is definable in M2L in terms of -> and V [Pra65], it can be included, at no cost, in
M2L and in the definition of /c, by the following clauses.

7

n =

A

Sx.RP
KII -OF KA

A 0

n = —f- Kn =Df (K0)[KA/xf]

Prawitz's reduction for Gentzen's natural deduction rules for 3 is mapped under «into identity,
exactly as for the V reduction:

A [V 1
A

V TTI

Object 3: i l = - - — reduces to U = [XB'[t/x]]
0[t/x]

We have KW = «i7. Similarly, the PERMUTATIVE for 3 elimination [Pra65] are idempotent under
K.

The clause of K for 3-elimination is most transparent for a formulation of 3-elimination as
an instantiation rule. See Appendix 9.2.

8

2. Convergence proofs as polymorphic A-programs

2.1. A second order statement of convergence

Let N(x) =Df V/?. Wu (R(u) -> R(s(u)) -+ R(0) -+ R(x). N defines a copy of the natural numbers
in every structure S that satisfies Peano's Third and Fourth Axioms, Vx,y. sx = sy —• x=y, and
Vx. sx^O, which guarantee that the denotations of the numerals, h =Df s [n l 0 = s(s(- • • s(0) • • •)),
are all distinct.

If V is a program, we also write V for the conjunction of the universal closures of the
equations in V. The totality of the numeric function / computed by V is expressed by the
formula Vx3y T(e-p, x,y), where ep is a Godel number for V (under some canonical coding), and
T is Kleene's computabiliry predicate: T(e,x,y) holds if y codes a completed computation of the
program coded by e on input x [Kle52]. The following is a variant of Dedekind's century old
observation that the standard structure of the natural numbers is characterized by second order
quantification. For a function identifier f of arity r, let NL(F) =Df Vz.iV(z) -> zV(fz), where
z = (z i . . . zr) and N(z) =ix N(zx) A • • • A N(zr).

THEOREM I Let V be a program, with target f, that computes the function f. The following
are equivalent:

1. / is total over LJ: V yields an output for every input

2. V ^ Afl(f), with respect to standard models: every standard second order structure in
which V is true, satisfies NL(F).

Proof. Assume, without loss of generality, that f is unary.

Assume (1). Then, for every numeral X, there is a completed symbolic computation C of
V for input x, with the final equation of the form f(x) = z, for some numeral z. C preserves
equality in any model of the formula V. Therefore, in every such model, if x is the denotation
of a numeral, then fx is the denotation of a numeral. Since in a standard second order structure
every element satisfying N is the denotation of a/numeral, this establishes (2).

Conversely, assume (2). Consider the structure 5 with universe \S\ = u U {JL} of the
natural numbers augmented with an object i . , and where for each function identifier g occurring
in V,

ifcx = (y tfpyicldsg(iix^^y
8 ' * \ ± otherwise (including if some x, is J.)

Then, by (2), S f= Vx.iV(x) —> N((x). In 5 , N is satisfied exactly by the elements of so Is maps
natural numbers to natural numbers. By the definition of Is this implies that V has a completed
computation for any numeral as input. H

9

The second condition cannot be extended to all Henkin models of some formal calculus for
second order logic, because that would make (2) equivalent to formal provability, an r.e. property.

2.2. Provably recursive functions of second order logic

The equivalence stated in Theorem I leads to an equivalence between provability conditions in
second order arithmetic (analysis) and in second order logic, respectively.

Let C2L, I2L M2L be classical, intuitionistic, land minimal second order logic, respectively.
Let C2A, I2A, and M2A, be the classical, intuitionistic and minimal variants of second order
arithmetic. See e.g. [Schu77] for a detailed description of these formalisms.

We say that a program V is standardized if it contains recursion equations for the predecessor
function, pred(O) = 0, pred(sx) = x. It is easy to see that every model of a standardized program
satisfies Peano's Third Axiom, and the Fourth Axiom formulated as Vx.sx = 0 —» Vx.x = £>/0.
We restrict attention to standardized programs to gain simplicity without sacrificing generality
(any program can be trivially expended to a standardized one with no change of semantics),
though the restriction can probably be bypassed.

THEOREM II Let V be a standardized program, with target f. The following are equivalent.

1. V is provably total in classical second order arithmetic: hc2A VJc3y T(l?,x,y).

2. V is provably total in 12A.

3. V is provably total in I2L: V H U L Nl(f).

4. V is provably total in M2L.

5. V is provably total in C2L.

Proof. For simplicity, say / is unary. The implication from (1) to (2) is well known. It
falls out from any one of the double negation translations of classical into intuitionistic second
order arithmetic (see e.g. [Tro73]), combined with the closure of the latter under Markov's Rule
[Gir72,§6.2.1].

Assume (2), towards proving (3). Let Dfn[T] and Dfn[U] be defining clauses for Kleene's
T predicate and for the graph U of Kleene's result extraction function [Kle52]. Since V is
standardized, (2) implies

V,Dfn[T? hnL N(x) -> 3y.N(y)/\T(ev,x,y),

10

where Dfn[Tf is Dfn[T] with universal quantifiers restricted to N. Since Dfn[T] implies
Dfn[T]N trivially,

V,Dfn[T] H K L N(x)->3y.N(y)AT(ev,x,y).

Similarly,
V,Dfn[U] H I 2 L N(y) 3r. JV(r) A £/(Y,r),

and

V,Dfn[T\,Dfn[U] H I 2 L tf(x) - T(ev,x,y) - N(y) -> tf(y, r) -> fe « r.

Combining these, we get

V,Dfn[T],Dfn[U] H I 2 L IV(x) - JV(fe).
The second order existential closures of D/n[7] and D/n[C/] are both provable in I 2 L . So the
last statement simplifies to

V H U L N(x) -> N{tx),

proving (3).

(3) implies (4), since falsehood, JL, is definable in M 2 L by V/?./?.

(4) implies (5) trivially.

Assume (5), towards proving (1). For second order formulas <p, with function identifiers
from V9 we define an interpretation of <p in second order arithmetic. For an arithmetic
term f, let t ~ z abbreviate the first order formula "z is the numeric value of t with respect
to V'\ as in [Kle69]. Let $ arise from <p by replacing each atomic subformula Q(t\.. .r*) by
3wi • • (fi ~ wi A • • • A tk ~ Uk A . . . Uk)). By induction on derivations, if V Hc2L 0
then hc2A V>» proving (1). H

Note that the theorem provides a method of reasoning about computable function convergence
without reference to existential quantifiers, and without coding mechanisms.

2.3. L A M B D A REPRESENTATION OF NUMBERS AND FUNCTIONS

Consider the numeral 2 = ssO. If II is the direct proof of iV(2), then KII is easily seen to be
AR.\sPm**.\z?.s(s(z)). More generally,

T H E O R E M I I I LetJc = S w 0 . There is a unique normal M 2 L deduction IIK of the formula N(k),
for which *IIK = AR \sR~*RzR. s[k](z). (This is the Fortune-O'Donnell k'th numeral [FL083], of
which the untyped form is Church's k'th numeral [Chu33].)

More generally, if t is a closed term over 0,S as well as the identifiers of V> and II is a
f3-normal derivation in M 2 L + V of N(t), then V derives t - x for some x, and KII is the
Fortune-O'Donnell numeral for x.

11

Proof. A normal derivation of N(t) must end with three introductions (possibly interleaved
with instances of V), whose premise derivation © derives Rif) from the assumptions R(0) and
Vz.R(z) —• /?(sz), where R is a relational variable, and V h i = r. An induction on such
derivations 6> shows that KQ = $ w z , where P derives £ = = f, s is a variable of type R R
(corresponding to the assumption Vz./?(z) —• /?(sz)), and z is a variable of type R (corresponding
to the assumption /?(())). H

THEOREM IV (Numeric Function Representation) Let V be a program, with target f, that
computes the function/. If II is an M2L + V derivation ofNx(f), then KII ft-represents f in
2A. Hence, if E is a 2A expression such that E =0F) KII, then E ftr)-represents f in 2A.

Proof. For simplicity, say / is unary. For every k > 0 the derivation

n
Ni(f) nk

N(k) ^ N(fk) N(k)
A k = N(tk)

reduces to a normal derivation A'k of N(fk). So we have

(« I 7) I K = (KlI)(KlIk)

=p KA'k by Lemma 1..3
=0 nll/k by Theorem HI

fk =0

Combining Theorem IV with Theorem II we have

THEOREM V (GIRARD [Gir72]) All the provably total computable functions of classical second
order arithmetic are representable in 2A. H

Developments similar to this are reported in [Kri86, KP87] and [Gir89, Chapter 15]. In the
latter, Girard treats proofs in I2A (= H A 2) of formulas of the form Vx.iV(x) -* 3y.N(y)AT(e,x,y).
In that setting, the presence of Peano's Third and Fourth Axioms requires additional non-trivial
considerations (whereas in our setting the problem is eliminated trivially by considering stan­
dardized programs).

The converse of Theorem V was obtained by Girard as a consequence of his proof that 2A
has the normalization property. A corollary of Theorem V is:

12

THEOREM VI (Girard) The normalization property of 2X is not provable in second order
arithmetic.

Proof. Let T =D/ V/?.(/? —•/?)—•(/?—• R). Fix a canonical (primitive recursive) enumeration,
E\, £2? • • •» of the 2A-expressions of type * —• 1. Let f(n,m) = 0 / value(Enm). Suppose the
normalization property of 2A were provable in C2A; then / were provably total in C2A, and
therefore representable in 2A, by Theorem V. Then g(x) = 0 / 1 +/(*,*) were also representable,
by Ek say, yielding value(Ekk) = g(k) = 1 + f(k, k) = 1 + value(Ekk), a contradiction. H

2.4. Examples of function representations

1. Successor.
A straightforward derivation of N(x) —• A/(sx) shows that, for a unary relation R containing
0 and closed under s, x 6 R and therefore sx 6 R (see Appendix 10.1). This yields the
A-expression XrtARXsP^z*. s{nRsz\ where T = 0 / V/?. (/?—•#)—• (/?—•/?). The untyped
form is AnAjz. ,s(n.yz), which is Church's representation of the successor function in the
untyped A-calculus.

An alternative derivation of N(x) —• N(sx) instantiates N(x) to the predicate Xu.R(S u). This
derivation is mapped under K to the A-expression XncARXsR"RzR. nRs(sz), from which the
untyped form XnXsz. ns(sz) falls out. The combinatory form of this representation of the
successor function, BW(BB\ was discovered by Kearns [Kea70] (see [CHS72], p. 213,
fn.6).

2. Addition.

Given a(x,0) = x; a(x,sy) » sa(x,)0* the formula iV(a(x,y)) can be derived from N(x)
and #00 as follows. N(y) instantiates to Vz (/?(a(x, z)) rt(a(jc, sz))) -> fl(a(jc,0))
/?(a(x,y)). The premise of this formula follows from the program, yielding by detachment
/?(a(x, 0)) J?(a(x, y)). From NQc) and a(x, 0) = JC obtain /?(a(jc, 0)), hence /?(a(x, y)). This
derivation is mapped under K to
XrtntARXtf*l?.mR(Xi/'.su)(nRsz\ which 77-reduces to An^yl /JA^^^.m/J^^w). The
untyped form is Church's representation of addition, XnmXsz. ms(nsz).

An alternative derivation 27 of N(a(x,y)) from N(x) and N(y) is detailed in Appendix
10.2. We get KII = Xrtnt.ML(XuiARXsR~*RzR.s(uRsz))n. Here U instantiates a relational
variable to a second order formula, so KII contains the quantified type 1 as the argument of
a type application. The untyped form is Xnm.m(Xusz.s(usz))n, which too contains higher
abstraction, in that the first argument of m is an abstraction term.

3. Multiplication.

Given a program for m, denoting multiplication, a deduction II of iV(m(x, y)) from N(x) and
N(y) is detailed in Appendix 10.3. We have nil = XrtntARXsR-*RzR. n/?(Av*.m/?(Az/.M)v))z,
which 77-reduces to XttntARXsR^RzR. nR(mRs)z. The untyped form is XnmXsz. n(ms)z,
again the standard A-representation of multiplication.

13

4. Exponentiation and super-exponentiation.
We leave the construction of these examples to the reader. The interesting point is that
the representation obtained for exponentiation contains a type argument with — a n d
that the representation obtained for super-exponentiation contains a type argument with
V. These are essential: the former because exponentiation is not representable in the
simply typed calculus (with fixed types for input and output) [Schw76, Sta79], and the
latter because super-exponentiation is not representable in the simply typed calculus even
allowing change of type from input to output [FL083],

5. Ackermanris Function.
Let it be defined by k(0, JC, y) = sx, k(sq, 0, y) = y, k(sq, sx, y) = k(<7, k(sq, x, y), y). From
a straightforward derivation II of N(k(q,x,y) from N(q), N(x) and N(y) we get

KII = Xfrirri.qZ (Xu*(tbi.ai(Xc>.ubc)b) (Xde\AR.XsR-*RzR.s(dRsz))mnJ

where f = 0 / T —> (1 —• C). Note that KII contains type arguments with negative type
quantification. This is essential, for otherwise Ackermann's function would have been
primitive recursive, by [Lei89]. KII 77-converts to

Xcfrirri. qi {Xu^atb1 atub)b)(Xde>ARXsR-RzR.s(dRsz))mn

of which the untyped form is

Xqnm. q (\uab.aubb)(\de\sz.s(dsz))mn.

6. Predecessor,
Given pO = 0, p(suc) = x, a deduction II of N(x) N(P(x)) is given in Appendix 10.4.
We have, for nil in 2A+ pairing,

KU = \rtAR\?-R£. ji(n(/? x R)(XuRXR.{J2^s(j2u))(z,z))).

The untyped form is XnARXsz. ji(n(Au.(j2a,^(J2M))(z,z)), i.e. Kleene's representation of

the predecessor.

2.5- Higher order representations

The Function Representation Theorem lifts, without change of proof, to higher order logic For
2 < k < w, let MkL be minimal Jfc-th order logic, i.e. the generalization of M2L to *-th order
relations and quantification over them, and let kA be the Jfc-th order fragment of GiranTs system
Fu,, restricted to —• and V. The homomorphism K is extended to « : MkL —• kA by setting
VX.y? =pf VX.<£, for X of any order > 2, and defining K for a derivation U ending with a V of
order > 2 similarly to the definition for order 2.

THEOREM IV' Let V be a program, with target t, that computes the Junction f. Let k > 2.
If II is a derivation in MkL + V ofNl(T), then KII represents f in kA.

14

3. Programs over data systems

We generalize the representation of natural numbers and numeric functions to representation
of objects and functions in systems of inductively generated data types.

3.1. Inductive data types

The (pure applicative) types are generated by the clauses: o is a type; if a and r are types
then so is a —> r. The orders of types are defined by order(o) =o/ 0; orderij —• a) =Df
max(l +ordertr), order(cr)).

Let L be a functional vocabulary, i.e. a set of identifiers, the primitives, each associated a
type. A computation space B = B(L) is the set of canonical expressions, i.e. the closed terms
of type o in the initial algebra over L. B is non-trivial if L has at least one identifier of type o
and one identifier of order 1. For L = {0,s} , B(L) is the set of numerals, and is the simplest
non-trivial computation space. L is of order k if the types of its identifiers arc all of order < k.

Suppose L = {c i , . . . , c*} is of order 1. In a structure whose vocabulary contains L, the
denotation of canonical expressions is defined by the formula

DL(x) = Vfl(Ci -> C 2 • Ck -+ Rx), where
C, = Vzi . . .z„.*(zi)-* •i?(z r)-^/?(ci(z 1)---(z r)).

(and typeiCi) = or-+o = o^--+o-+o)

3.2. Canonical representation in the A-calculus

THEOREM VII (Object representation) LetL be of order 1, t € B(L). There is a unique nor­
mal M2L deduction II of the formula D^t). Thus, KII can be used as a canonical representation
rep(t) of t in 2A.

Moreover, if t is a closed term over the primitives ofL and the identifiers of program V, and
II is a 0-normal derivation in M2L + V ofDiif), then V derives t -xfor some x e B(L), and
KII = reptx).

The representation in 2A obtained here for canonical expressions is identical to the represen­
tation defined, more directly, in [BB85],

Examples.

1. Booleans: L = {T :o,± :o}. Bool(x) = DL{x) = VR.R± -+ RT -> Rx.
From the proofs of Bool(J) and Bool(±) we obtain rep(J) = ARXtf. r, and rep(±) =
ARXtf.f. The untyped forms are Church's representations of the booleans [Bar81]. A
similar representation is obtained for any L of order 0.

15

2. Words over a finite alphabet E can be viewed as "generalized numerals" obtained using
the elements of E as distinct successor functions. Suppose E = {0,1}.
Let L = {e : o, 0 : o —• o, 1 : o -> o).

W(x) = DLQc) = ViJ. Vz.(/?(z) — /?(0z)) -+ Vz.(/?(z) fl(lz)) *(e) -+ R(x).

If r = Si • • • s„e (s,- 6 {0,1}), and iT is the normal proof of W(t\ then
rep(t) = «i7 = AR \s$~*R sf~*R zR. sSl • • • Ss„z.

3. Binary trees: L = {0 : o, p : (o —• o -+ o)}. We have

BT(x) = DL(x) = V/?. Vav.(/?(u)^/?(v)^/?(pmO) — *(*) — R(x).

The A-representation for the canonical expressions, obtained via K, is
rep(t) = AR\pR~*R'^ReR.~t, where 7 is r with € replaced by e and p by p.

4. Data binary trees. One A-representation of binary trees over an alphabet E is obtained
by taking L = {e : o, a : 0 — > o (a 6 £) } . For instance, a three node tree with a at
the root, and b and c at the leaves, is represented by a(bc€)(ccc), which is mapped to the
A-expression i l / ? A a / i ^ ^ Z / w ^ c / i ^ w ? . . . eR.a(bee)(cee).

3.3. Representation of data types of higher order

If L is of order > 1, then terms are generated possibly via function-denoting terms. The explicit
definition of Di is then expressed using quantifiers over functions.

Let M2L / be an extension of M2L with quantifiers over functions of all types, but with no
new existence axioms (such as comprehension or definition by recursion). The only inference
rules for quantifiers over functions are the trivial ones:

<p VJCT. (fi
V rI: — — (JC not free in assumptions) V TE: (t : r)

Clearly, M 2 l / is a conservative extension of M2L.

For a type r, a relational variable R9 and a term t: r, define the formula R[r](t) by

R[0](t) = R(t)

For example,

R[(°-o)-+o](a) = Vu°-*°.<yv°(R(v)-+R(uv))-+ R(au)).

Given L = {ci : r u . . . , CK : r*}, we can now define
DL(x) = V/?./? [T l l(ci) - > * [T 4 l(c*) - *(*)•

16

THEOREM VIII (Higher type object representation) Let t € fi(L). There is a unique normal
M2lf deduction II t ofDL(t). Thus, Kllt is a unique representation oft in 2A. H

Example. Words over an infinite alphabet may be generated from an infinite collection of
unary functions. Such collection is obtained from a primitive g of type (o-+o)-+(o-+o): with
L = {g : (o—>o)—*(o-+o), s : 0-+0, e : o}r the expressions g [< 1s, of type 0-+0, can be used as
distinct successor functions. We have

DL(x) = V i ? . (V ^ (V a ° . (R (i i) V u ° . (R(u) -+ R(gzu)))
-+ Vu* (R(U) -> R(su))

Every t € B(JL) is of the form s„i • • • s„,€, where s. = g M s . If II is the normal proof of DiXf\
then

rep(t) = *II=AR A ^ - « - « - V . (^[nl1^) • • • (« [N R L 5)z.

The representation of trees over finite alphabet can be adapted to infinite alphabets in a similar
fashion.

3.4. Data systems

A data system is the setting in which inductively generated data types are used most often in
programming, i.e. a finite collection A of data types D\. defined by (possibly) simultaneous
induction, that is, by a finite set of clauses of the form

Dxih) - - Dk(zk) -> D.(0,

where each z, is a tuple of variables, and t is a term over L U z\ U . . . u Z*. The data types may
include, for instance, natural numbers, booleans, even numbers, lists of numbers, alphanumeric
words, finite data types, and grammatical notions. A data system A is well-parsed if, for each
D 6 A and each t € B(L)9 D(t) can be derived by at most one sequence of closure conditions.
For example, { Even(0); Even(x) —> Odd(sx); Odd(x) —• Even(sx) } is well-parsed, but adding
the clause Even(x) —• Even(ssx) would yield a non-well-parsed system.

In a well-parsed data system, if Di(t) is true then it has a unique derivation from the closure
conditions. A data type D4- of A can be defined explicidy by

conjunction of all defining clauses (universally quantified)

for A (with R* replacing D t)

- iMx).

The uniqueness of the direct derivation of D4(r) implies:

17

Proposition 3..1 Suppose A = { D j , is a well-parsed data system. For each i and t € D 4 there
is a unique normal deduction of MIL ofD&t).

As for data types, this proposition yields canonical representations in 2A for canonical expres­
sions. These representations are dependent on the defining clauses, and are relative to each partic­
ular data type. For example, if A is {N(0); N(x)-+N(sx)); Even(0)\ Even(x) —>Even(ssx) }, then
ssO is represented by ARQ\sR^RzRfi^QwQ. ssz as element of N, and by ARQXsR^RzRfi^QwQ. tw
as an element of Even.

3.5. Representing type inheritance

In general, type containment is not a decidable property (see Appendix IE). However, when an
inclusion D0 C D\ is provable by a proof 77 of M2L, then «77 is a A-expression CDQ-*DX that
converts the representation of t 6 Do with respect to Do to the representation of t with respect
to D\: if F represents t with respect to Do then CD0—DXF represents t with respect to D\. In
programming parlance, the expression CDQ-+D\ represents a coercion of one data type in another.

3.6. Function Representation

THEOREM IX (Function Representation) Let V be a program over a data system A, with
target f, that computes f :or —• o. If II is an M2L + V derivation of

Vri . . . * . (Dx(xx) - • • • Dr(xr) - D0(K*))),
then «77 represents in 2A the restriction off to D\ x • • • x Dr: ifEi: D± X-represents a, 6 D„
modulo the canonical X-representation of D, (i = 1 , . . . , r), then (KII)E\ • • • Er X-represents
fa\...ar 6 Do, modulo the canonical X-representation of Do.

Proof. Similar to Theorem IV. H

Examples

1. Negation. Let V be the program n e g (T) = ±;neg(±) = T . Then a normal II deriv­
ing Bool(x) —• Bool(neg(x)) uses instantiation of the relational quantifier in Bool(x) to
Xu.R(neg(u)). We obtain r*p(neg) = *77 = Xx? ARXfif .xRfu where 0 = V/?.tf -> R -+
R.

2. Conjunction. Let V be the program conj(T)Oc) = x\ conj(±)(x) = ± . A straightforward
normal deduction 77 of Bool(x) -* Booliy) -> Soo/(conj(x)(y)) yields
*77 = XxpypARXtRfR. xR(yRtf)f. Note that this cannot be obtained if the program for
conj consists of the four equations c o n j (T) (T) = T ; conj (T) (J_) = ±; conj (JL) (T) =
± ; conj(X)(J.) = ± . The straightforward normal deduction 77 of Bool(x) —• Booliy)
5oo/(conjU)(y)) using the latter program yields «77 = XxPfARXfif.xRiyRtftiyRff).

18

3. Concatenation. Consider the representation in §3.2 of words over the alphabet {0,1}.
Define the concatenation function by cat(e.y) = y, cat(0x,y) = 0(cat(x, y)), cat(Lc,y) =
l(cat(x, y)). If 27 is the straightforward proof of W(x) W(y) -> W(c*t(x, y)), then *27
gives the representation \xTyTARXuR-RvR-ReR. xRuv(yRuve), where r =Df (/?—•/?)—•
(/?—•/?)—•/?—•/?. This expression is the standard A-representation of the pairing function.
Note the similarity to the representation of addition for the numerals.

3.7, Generic types and functions

A data type can be parameterized by an unspecified base type, as in pairs of Q's, which is
defined by

PairQ(x) = V2?.Vu,v.(2(w) -+ Q(v) - R(puv)) -> R{x).

There can be no closed proof of a formula Pg(r), but there is a trivial derivation 27 of PcCpr^)
from the open assumptions Q(t\) and Q(h). We have «27 = AR.XcQ~~*Q'-Rcxi?x$, where X\ and
x2 are free variables, corresponding to the assumptions Q(t\) and Q(h). Note that neither 27 nor
/c27 can be closed with respect to Q, because they have free variables of type Q.

Similarly, the type of lists of Q's is defined by

ListQ{x) = Vfl.Vw, v.(Q(u) R(v) -> R(puv)) -+ R(e) R(x).

Let 27 be the straightforward derivation of ListQ((t\... tn)) from the open assumptions Q{t\),..., Q(f„)
(where (t\...tn) = pri(p (pr„£)• • •)). Then /c27 = A/?.Ac c ^^V.cx?(ctf(• • • cx£e), where
x\...xi are free variables.

THEOREM IX* Let V be a program over a data system A , with target f, that computes
f: or -> o. Suppose U is an M2L + V derivation of

Vxx...xr.Dx(xx)-+--Dr(xr) - Doffl)),

where some of the Di's above are parameterized by relational variables, say by Q. Then KU is
an expression of IX, with Q a free type variable, such that, for any data type D, ifEt: D&D/Q]
X-represents a, € Di[D/Q], modulo the canonical X-representation ofDi[D/Q] (i = l , . . . , r) ,
then (KII)ID/Q]E\ - Er X-represents fax...ar 6 DQ[D/Q], modulo the canonical A-
representation of DQ[D/Q].

Example. For ListQ define the function cat by cat(e, z) = z, cat(p(;t, y), z) = p(x, cat(y, z)).
If 27 is the straightforward proof of ListQ(x) -> ListQiy) -* Ltog(cat(x,)0)t then nil gives
the representation XxTyrARXuQ^R^ReR.xR(XvQwR.uvw)(yRue) for the generic concatenation
function, where r =Df V/?. (Q —• /? —• i?) —• /? —• R.

19

4. Representa t ion of recurs ive order 2 funct ionals

4.1. Recursive functionals

We refer to Kleene's recursive functionals [Kle59]. Kechris and Moschovakis [KM77] gave
an equivalent definition, less dependent on coding. Their approach was developed by Kolaitis
[Kol85], who eliminated coding altogether, showing that Kleene's notion is equivalent to a purely
applicative notion of recursive functionals. This is summarized in Appendix I below.

We consider functionals of types whose order is < 2, and focus on the simplest type of order
2, o. Let JV*(F) =of V*. Nl(g) - N(Fg).

THEOREM X Let V be an order 2 program, with target F. The following are equivalent:

1. V is total for total arguments: if g is a total numeric function, then V converges on input

2. V |s N^F) with respect to standard second order quantification.

Proof. The proof is similar to the proof of Theorem I. H

4.2. Provably recursive functionals

For a formalism S, let be S augmented with the trivial rules of §3.3 for function quantification.
Let P be Kleene's T predicate, modified to code computation with partial functions as input:
T* (e, 8>y) asserts that y codes a completed computation of the program coded by e, where the
input function variable is evaluated as g. P is primitive recursive in its arguments.

THEOREM XI Let V be a standardized order 2 program, with target F, that computes the
numeric functional F, say of type (o-> o)-> o. The following are equivalent.

1. The program V is provably total in C2AF:

2.

3.

4.

V is provably total in 12PJ.

V is provably total in L2LF :

V is provably total in M 2 l /

V\-l2l/NHF).

20

5. V is provably total in C2Lf.

Proof. Similar to the proof of Theorem II. H

4.3. Functional representation theorem

We refer to a strong notion of functional representability in A calculi. To keep notation unclut­
tered, we give the definition for numeric functionals of type (o —• o) —• o.

Let g be a partial function from numbers to numbers, x a fixed A-variable of type I —• T.
Define a notion of A-computability with oracle g, as follows. For 2A expressions £,£' , we write
E E! if, for some n for which g is defined, £' comes from replacing in £ a subexpression
of the form xn by Jn (m is the m'th Fortune-O'Donnell numeral). The relation =^ t ^/ x j is the
joint reflexive, symmetric and transitive closure of /?-reductions and ^ / x i -

An expression Ax*~*\£* represents the numeric functional F : (o -» o) —• 0, if for every
partial function g from numbers to numbers, F(g) = z iff £ =/?t[^/x] z. In particular, if G : 1 -* i
A-represents the function g, then (AJC.£)G F (g) .

THEOREM XII (Numeric Functional Representation) Let V be an order 2 program, with
target F, that computes the functional F of type (o —• o) —» o. If II is an M2L + V derivation
(9/A^(F), then nil represents F in 2A.

Proof. The proof is similar to the proof of Theorem IV, using Theorem XI. H

Combining this with Theorem XI we have

THEOREM XIH All the provably total computable functionals of classical second order arith­
metic are representable in 2A.

As for functions of order 1, Theorem XII can be used to derive A representations of various
functionals. Also, the discussion of generic functions can be generalized to generic functionals of
any finite order. Generic functionals of order 2 play an important role in functional programming;
an example is the functional map satisfying map(/\(JCI . . .x r)) = (fx\...fxr). I.e., map is
defined by the program map(/\ e) = c; map(/, cons(x,y)) = consifx, map(/*,y)).

21

5. Contraction to programs for generative axiomatizations

In this section we apply our main method to generative axiomatizations of data types, such
as Peano's formalism for the natural numbers. Here the co-domain of the proof-to-program
homomorphism is no longer a pure A-calculus. However, proofs and programs are far shorter
and more readable than the analogous proofs and programs in pure second order logic and pure
A-calculi.

5*1. Generative axiomatizations of the natural numbers

The generative style is the simplest and most easy-to-use formalization style for reasoning
about inductively generated data types. It is illustrated by Peano's original axiomatization of
Arithmetic, using a primitive constant N. This consists of two main groups.

1. The generative axioms, N(0) and Vx.N(x)—>N(sx);

2. The principle of Induction: Vx.N(x) VR.Closed[R] -» R(x), where Closed[R]
/?(0) A Vx.R(x) —• R(sx). In the absence of set quantification, the induction axiom is
replaced by the induction schema (for C), Vx.N(x) —• Closed{\x.y] —• <p[x], where 9
ranges over a class C of formulas.

The two closure conditions for N guarantee that N contains the denotation of all numerals.
Induction forces the extension of N to be the minimal set closed under these conditions, at least
with respect to definable sets. (Peano's third and fourth axioms enforce inequality between all
numerals; we return to this in the next subsection.)

The second order generative axiomatization of N, M2LP (P for Peano), differs from (Minimal)
Second Order Arithmetic in using N explicitly (variables are intended to range over possibly
non-numeric objects), and in not having Peano's third and fourth axioms. A first order variant
M1LP of M2LP is obtained by replacing the Induction Axiom by the induction schema for all
first order formulas in the language. C2LP and C1LP are the classical variants of M2LP and
M1LP.

THEOREM IT Let V be a standardized program, with target t, that computes a numeric
function/. The conditions of Theorem II are also equivalent to:

6. NL(T) is provable in M2LP + V.

7. NL(F) is provable in C2LP + V.

THEOREM XIV Let V and % be as above. The following conditions are equivalent:

(i) V is provably total in Peano Arithmetic based on Minimal Logic.

22

(ii) V is provably total in (classical) Peano Arithmetic.

(iii) V is provably total in the classical variant C1LP o/MILP, i.e., V H C 2 L P Nl(f).

(iv) V is provably total in M1LP.

Proof. Analogous to the proof of Theorem II. H

5.2. Generative axiomatizations in general

The paradigm of Peano's axiomatization applies to any data system A. Relational identifiers are
used to denote the data types, and two groups of axioms define them implicitly:

1. The generative axioms, consisting of the data type's closure conditions formulated for the
data identifiers;

2. For each data type, an induction principle. For instance, if the data types are D\ and D 2 ,
both unary say, with closure condition ClosedlDi^Dz], then the induction axiom for D\ is
\/RuR2.Closed[RuR2] — Vx.Dx[x] — Rx(x).

We write M2LD and MILD for the extensions of M2L and MIL as above (the induction axioms
being formulated as schemas in MILD).

One may add a third group of separation axioms, modeled after Peano's Third and Fourth
Axioms, and implying that all canonical expressions have distinct values (or they all have
identical value, if the Fourth Axiom is formulated as Vx.(sx = 0 —» s0 = 0), or as Vx.(sx =
0 —• VXJC = 0)). In §2.2 we observed that these axioms may be replaced by the definition
of the predecessor function. For arbitrary B = B(L), the third group can be dispensed with in
the presence of equations for destructor functions for the function primitives: for each c € L
define functions i, (1 = 1 . . . arity(c)) by t,-(c(xi,... ,xr)) = x„ ii(cf(z)) = d(z) (c7 ^ c, arity(z) =
arity(cf)). This suffices if there is at most one c G L of arity 0. Otherwise, we add defining
equations also for a discriminator function i, for each constant primitive c € L: 6(c, x) = c,
i (c , (z) , x)) = x f o r c / € L , c , ^ c .

Generative axiomatizations are of interest even for trivial data types, such as the booleans:
for L = {J., T } (arity(±) = arity(T) = 0), the generative axioms are B(±) and B(T), and the
induction principle is VR.R(±) -+ R(T) Vx.5(x) -> R(x).

S3. Reductions and normalization for generative axiomatizations

Prawitz [Pra65,Pra71] defined induction-reductions on natural deductions for first order arith­
metic, which reduce the complexity of the eigen-term of induction, if that term is 0 or a successor

23

term. Using the abbreviation CS[y>] =Df Vz.y[z] y>[sz], the reductions are:

Induction
N(0) - + CS[<p] -* tp[0] - » y?[0] N(0)

CS[<p] - VP[0] -» V [0]
6>,

C 5 [y]

V[0] - *>[0]
02

<p[0] A

 & i reduces to
<p[0] <f[0]

and

Induction
N(st) - » CS[y] - » y [0] - > y [s f]

Vz. Af(z) W(sz) @3

iV(0 -> JV(s?) W)
N(st)

CS[<p] - V [0] - rtsr] 1

CS[<p]

V[0] - v?[sr]

V[sr]

&2

¥>[0]

reduces to

Induction @3
J V (» - C 5 M - > v > [0 1 - > y M iV(g)

v>[0] - > y[r]

24

The definition of similar reductions for arbitrary data types is straightforward. Also, the proofs
in [Pra65,Pra71] readily generalize to establish:

THEOREM XV For each data type D, the calculi M2LD MILD have the strong normalization
property (with respect to the reductions of MIL plus the ones stipulated above for these calculi).

H

5.4. The deduct ion-as-program homomorphism for generative proofs

We wish to extend the homomorphism K of §1 to a mapping from derivations of M2LP to
expressions of an extended A-calculus. Let 2AP be 2A modified as follows.

1. The type structure is augmented with a type constant N.

2. The formation rules for expressions are supplemented with three constant expressions: 0,
of type s, of type N W; and R, of type N -> WR.(R -+ R) R R. (The latter is a
polymorphic recursor operator).

3. The reduction operations are augmented with the reductions

R0rE r""TF r reduces to F
R (s G / v) r ^ r F r reduces to E(RGTEF)

The mapping <p £ is extended by the clause N(t) =/>/ N. K is extended to
K : M2LP -> 2AP, as follows.

• If II is the derivation consisting of the single axiom N(0), then KJJ = D F 0;

• If II consists of the single axiom Vx.#(x) —• *V(sx), then nil =D/ S;

• If II consists of the Induction Axiom,

VxiV(x) V/?(Vw.(/?(u)-^/?(su)) R(0) -+ R(x)),

then KII =/y R.

One easily verifies that this extended mapping * maps induction reductions in M2LP to recursion
reductions in 2AP.

1AP is defined like 2AP, except that, in place of R, there is for each type r a constant RT,
of type N -* (r —• r) —• r —• r, and the reductions are augmented with

R T 0 E T ^ r F r reduces to F
R T (sG A /)£ r ^ r F r reduces to E(RRGEF)

25

A mapping K : M1LP — • 1AP is now defined as for the second order formalisms M2LP and
2AP above, except that an instance of induction, with eigen-formula 9 , is mapped to the recursor
operator R v . The Function Representation Theorem between these formalisms is derived as for

the pairs [M2L / 2A] and [M2LP / 2AP].

More generally, let 2AD be 2A modified as follows.

1. The type structure is extended with a type constant D.

2. The formation rules for expressions are supplemented with constant expressions c, of
type D —• D —• • • • —• D (r,- + 1 occurrences), for i = 1 . . . k, and a constant R, of type
D-»\/R.R\ —• • • • Rk-+R, where R< =Df / ? — • / ? - • • - • / ? (n? + 1 occurrences).

3. The reduction operations are supplemented with k reduction rules, of which the Vth recurse
over expressions c , £ i . . . E n .

IAD is defined analogously to 1AP. The homomorphism K is extended as before,
to K : M2LD -> 2XD and K : MILD -> IAD.

5.5. Generative proofs as programs

The object representation obtained from the extended mappings K is trivial: for a numeral
k = s w 0 , the unique normal proof of the formula N(k) is obtained by k applications of Peano's
Second Axiom, \fz.N(z) —• N(sz)9 suitably instantiated, to the axiom N(0). K maps this derivation
simply to the expression s w 0 itself! Similarly, the representation of a canonical expression t of
any functional vocabulary is t itself.

The Function Representation Theorem holds as for M2L and 2A, and it leads to representations
in 2AP which use the recursor operator R extensively, permitting substantial economy in the
size of the typed programs obtained, and in their computation time requirements. For instance,
the function minOc.y) can be defined by recursion of type 2 so that the execution time is the size
of the smaller argument [C 0 I 8 8] . The reformulation of * for generative axiomatizations of data
types has also the advantage of being applicable to first order formalisms.

The functions defined in the A-calculus expanded with 0, s and R r (for all r) , are the functions
defined by primitive recursion in all finite types [G6d58]. The Function Representation Theorem
for K : M1LP — • 1AP therefore implies:

THEOREM XVI (Godel [G6d58]) Every provably recursive function of Peano Arithmetic is
defined by primitive recursion in finite types.

Proof. Suppose a program V for / is provably total in Peano Arithmetic. By Theorem XIV there
is a derivation 77 of Nl(t) in M1LP + V. Then KII is an expression of 1AP, which represents
/ . That is, / is primitive recursive in finite type. H

26

The converse of the theorem above also holds [G6d58]. One proof uses the provability in
Peano's Arithmetic, for each bound b9 of the normalization theorem for terms of 1AP of types
of order < b.

In addition to its simplicity, the proof above of Godel's Theorem permits us to view the
deduction of totality of/, in a natural formalism, as itself being an annotated primitive recursive
program for / . Also, the proof permits an immediate generalization of the theorem. Taking in
place of the natural numbers an arbitrary data type D, we obtain

THEOREM XVII Let D be a data type. The functions provably total in C1LD are precisely
the functions definable in IAD, i.e. the D-primitive recursive functions in all finite types. H

27

6 . I N D U C T I V E A X I O M A T I Z A T I O N S

6.1. Inductive definitions

A master method for generating sets predicatively is first order positive inductive definitions (see
e.g. [Mos74, Acz77]). Suppose $ is a positive first order operator: $R = \u.<f[R](u), where
arity(R) = arity(u), and <p is first order, with no negative occurrences of R. Then $ is monotone:
R C Q implies <?/? C $Q. The chain & =of ^ (U ^ ^ 7 1) (f an ordinal) is non-decreasing, since
is monotone, and therefore reaches a fixpoint, denoted =' iiR.\u.y>. The monotonicity
also easily implies that the resulting fixpoint is minimal, i.e. contained in every fixpoint of
The fixpoint fiR.$ is explicitly defined by

VR.($RCR ->/?(*)),

where
(&RCR) = Vu.<p[R]-* R{u):

We say that <p is well-parsed if for every tuple 1 of closed terms (with arity(t) = arity(R)\
there is at most one normal M2L deduction (up to renaming of variables) of (jiR.$)(t\.

For a well-parsed inductive definition, we obtain a canonical representation of in 2A:
if 11} is a proof of (jjLR.$){t]9 then /ci7? will represent r as an element of nR.$. Given this object
representation, one obtains function representations as for generative definitions.

In particular, this implies an alternative representation of inductively generated data types,
and — more generally — of data systems. Suppose a data system {D,}^...* is generated by
closure conditions Ca . . . (i = 1 . . . it). The data types are then the minimal solutions of a set
of simultaneous equivalences of the form

Di(x) = condi\ V • • • V condirn

where, if say Q = Dx(u) A D2(y) D,(f(K, v)), then condij = 3u, v. Dx(u) A £>2(v) A x = f(w, v).

Lemma 6 - 1 If a data system is well-parsed (in the sense of §3.4), then its inductive definition

is well-parsed. H

In particular, the set of the natural numbers can be defined as the inductive closure of

x = 0 V 3y. (R(y) A x = sy).

Using Prawitz's definition of the existential quantifier in terms of -+ and V [Pra65], we have

JC = 0 V 3 Y . (R(y)Ax = sy) «-> 3y. (R(y)Ax = sy. V x = 0)

~ VQ(Vy. ((R(y) A x = sy V = 0) - + Q(x)) -> Q(x))
~ V(2(Vy. (/?(y) -* Q(sy)) -> (2(0) -> Q(x))

28

An explicit inductive definition of the natural numbers is therefore

M(x) = V/?(Vu(VQ(Vy. (R(y) -> Q(sy)) - 2(0) -> Q(u)) - /?(*)) -> /?(*)).

Lemma 6..2 For natural numbers k, there is a unique normal M2L derivation II k ofM(k).

The k'th pure inductive numeral, k, fall out as the image under K of 77*. Explicidy,

0 = 0 / Afl.Af.O*,, : V/?.<r[/?]/?

* T l =£>/ yy?.A.7.(*-hl)^ : V/?.*[/?]-> /?,

where

= D / (V G . (/ ? ^ G) - G ^ 0 - / ?
0*,< - iy ^(yiQ.A^CzG.z) : /?

Pure inductive numerals, and similar representations of data types, can be used as basis for
function representation, but they do not seem to have, in and by themselves, any advantage over
the more direct representation of data types. However, when inductive definitions are used as
a basis for axiomatization of data types, useful forms of object and function representations do
emerge.

6.2. Inductive Axiomatizations

The salient properties of D s IJLR.$ are the closure property, $D C D, and the minimality
property: for every relation R of the proper arity, if $R C RY then DCR.

Converting generative axiomatizations into inductive axiomatizations is a trivial change of
notation. However, the combinatorics of proofs changes, resulting in different A-representations.
For the same reason, distinctions between logically equivalent forms of closure and minimality
are also of interest.

Closure can be stated either as an axiom,

Closure(D): $D C D,
i.e., VJc^[D](Jc) - D(x\

29

or as an inference rule,

DO)

A straightforward induction axiom is

Induction^): VR.&RCR -> D C / ? ,
i.e., VR.((\u.v[R] C R) -> Vx.D(Jc) *(*))).

A first order Induction Schema for D is defined similarly.

The minimality of D can be proved from Induction(D) using the monotonicity of A
statement of induction with a built-in monotonicity condition, akin to the one in [Mcn87], is

M-Induction(D): VX. (V7. (Y C X - <P7 C X) — • D C X).

The converse of the closure principle is derivable from either form of induction. However, it is
also useful to consider that converse separately, as a Co-Closure Rule:

This rule is strictly weaker than the induction axioms above, since it is consistent with the
interpretation of D as any fixpoint of not necessarily the minimal one.

Let M2LI (I for "inductive") be the extension of M2L with the FI operator for positive
formulas in the language, with the Closure Axiom (or Closure Rule), and with the M-Induction
Axiom, for all fixpoints D. M2LJ is the variant of M2LI using Induction rather than M-
Induction. M1LJ is like M2LJ, but with the Induction Schema rather than the Induction
Induction.
Axiom A x i o m .

Let M2L/J be like M2LI, but with the Co-Closure Rule in place of induction. The variant of
M2L/x based on classical logic is similar to the "first order programming logic" of Cartwright
[Car84], who reports his experience that most of the interesting facts about recursive programs
are provable therein, that is, without the full power of induction!

63. Reductions and normalization

Since closure for D and induction for D can be viewed as D-introduction and D-elimination
rules, it is natural to define closure-reductions that eliminate instances of Closure followed by
M-Induction or Induction. Let v?, # and R be as above.

Given
30

© 2

0\ <?£>(?)

N = D - X D (T)

where x abbreviates A « . x , and

M-Induction Q\
n> - V/?.(/? C x - » ^ C X) -> D QX VR.(R C X - » C x) _ _

the Closure Reduction for M2LI maps i7 to

VR.(R Q X

DQX -

<?D C x

+ c x)

$D C x

x f l

© 2

$D(T)

Closure Reductions for M2LJ are defined as follows. Recall that # = Au.< [̂/?] is positive in
R. Let E*[Q, S] be the straightforward derivation of $Q C $ 5 from QQS, defined by induction
on <P. The least trivial case of that induction is for TP of the form NP.IP[R, P]. By induction
assumption, there is a derivation leading from the assumption Q C S to IP[Q,(IP.RJ>[S,P]] C
t/>[5, (IP.RL>[S, P]]. By Closure the latter is C NP.IP[S, P]. By Induction this implies FIPMQ, P] Q
NP.RI>[S,P).

Vtf(*fl C R - D C R) 0 i

$ x £ x — DQX $ x Q X

Now, given

N =

where

0 ; =

31

we let II reduce to

D C X

xCil

Closure Reductions for M2L/i are defined trivially.

THEOREM XVIII The calculi M2LI, M2LJ, M1LJ, and M2L^ all have the strong normal­
ization property with respect to the reductions <?/M2L and the corresponding variants of Closure
Reduction. H

A proof can be modeled after [Men87], where a strong normalization theorem for a A-calculus
analogous to M2LJ is proved, using Girard's method [Gir72]. (The argument is also outlined
in [Kri87].)

6.4. The contraction homomorphism for inductive formalisms

We now adapt the homomorphism « to the formalisms above for positive inductive definitions.

6.4.1. A-expressions for M2LI

Let 2AI be 2A modified as follows. (The system 2AI is akin to the fixpoint formalism of

[Men87].)

1. The type structure is extended with a fixpoint operator if r is a type where type variable
R has no free negative occurrences, then IMR.T is a type. We write r[cr] for r[<r/R]; in
particular, r[R] = r.

2. The formation rules for expressions are supplemented with constants: For each type 6 =
HR.T[R], a closure constant C*, of type r[6] 6, and an induction constant I*, of type
Vfi.(W.(CK -> Q) -> r[R] -+Q)-+6-+Q).

3. The reductions are supplemented with Closure Reduction: for arbitrary type <T, and
expressions E : VR.((R - X J) - * T[R] -> <r\ and F : r[S]9

heE(CF) reduces to E6(h<rE)F

32

The definition of <p >-+ <p is augmented by the clause iiR.Xu.p =Df pR-tp. A homomorphism
K : M2LI —• 2AI, extending the homomorphism K : M2L —> 2A, is defined by assigning
to the closure axiom for D = nR.Xu.v, and IM/?.<, to the M-Induction axiom for ZX

Lemma 6..3 * maps closure reductions o/M2LI to closure reductions of 2XL H

6.4.2. A-expressions for M2LJ

The formalism 2AJ is defined like 2AI, with two changes. First, for each 6 = fiR.r, in place
of a constant I* we have a constant J$, of type VR.((R —• r[R]) —• S —• R). Then, the closure
reductions of 2AJ are modified accordingly. We need expressions X*,^, that correspond to
the derivations E*[Q,S] used in §6.3 to formulate closure reductions for M2LJ, Le. such that
KE<P[A,B] = XQA,B. We define these expressions explicitly. Fix a type variable R. For n in
which R occurs only positively, we define X ^ Q ^ of type (a - • /?)—• n[a/R] —• n[0/R). To
proceed inductively, we define these expressions together with dual expressions X^p* of type
(a —• /?) —•!/[/?] -» ^[a], for i/ in which R occurs only negatively.

= 0 / \X*~0.X

Xp,a,0 — Xp,a,0 = 0 / Xx**0/. y (P other than R)

Xv—*,a,0 = 0 /

X*—u,a,0 = 0 / \jf-0y*V^WZ

lrM.Xv,a,0X(y<X*,a,0XZ))

Xvr.*,a,0 -Of AP.X^cp

XvP.v,a,0 =Df AP. %v,a,0
=Df

X»P.i>Vif],Cij3 'Of ^Jf—PyJ>.v[0f]

Closure reductions for M2LJ are now defined as follows. For type a, and expressions E :
r[cr] -» a and F : r[£], let

JsaE(!CsF) reduce to E(XT4,„(JT<7E)F).

A homomorphism « : M2LJ - • 2AJ is defined as for M2LI and 2AI.

Lemma 6..4 K maps closure reductions of M2LJ to closure reductions oflXJ. H

6.4.3. Closure-free A-expressions

The meaning of 6 = HR.T is conveyed in the calculi above partly by the type-changing constant
CT. One can instead consider the types 6 and T[6] as interchangeable, and dispense with C*.

33

Let 2A/i be 2A modified as follows.

1. The type structure is extended with a fixpoint operator, as for 2AI.

2. The type-correctness of functional application is liberalized: Let the relation =M between
types be the symmetric and transitive closure of substituting r[6] for 6 in types (where
6 = fj,R.r). If E : a —• p, and F : a\ where a =M a', then £F is a correctly typed expression,
of type p.

A homomorphism K : M2L^ —• 2A^, is defined by extending K : M2L —• 2A. Here, if J7
is a derivation of <p, then KII is of a type =M <£. The additional clause is: if U is IIQ extended
with an instance of the Closure Rule or the Co-Closure rule, then KII =D/ * # O -

Let 2AI~ be the following extension of 2A^.

1. For each 6 = fj,R.r there is an induction constant Is, as for 2AI (no closure constants).

2. The reductions are supplemented with Closure Reductions: for arbitrary type o, expression
£, of type V/?.((/? —> cr) —• r[R] - * <J), and expression F, of type r[£] =M 6,

IscrEF reduces to £<5(I*cr£)F.

(I.e., the reductions of 2AI, but with the constant C$ dropped.)

2AI~ differs from 2AI in that the Closure constant is no longer needed once each type r[S]
(where 6 = /i/?.r) is identified with 6. The calculus 2AJ~ is a similar modification of 2 A J.

A homomorphism «, from derivations of M2LI (formulated with the Closure Rule) to ex­
pressions of 2AI", is defined by extending K : M2L -> 2A. The two additional clauses are:
IhRap is assigned to the M-Induction axiom for D; and if i l is iTo extended with an instance of
the Closure Rule, then KII =jy KIIQ. A homomorphism * : M2LJ 2AJ~ is defined similarly.

Lemma 6..5 K maps closure reductions of M2LI to closure reductions of 2AI", and closure
reductions of M2LJ are mapped to closure reductions of 2AJ". H

6.5. Representation of numerals

Given the inductive definition of N in §6.1, the Closure Axiom for N, Closure(N), is

VQ(Vy. (N(y) - Q(sy)) — (2(0) -> Q(x)) - N(x).

Lemma 6..6 For natural numbers k, dure is a unique normal derivation II* ofN(k) in M2LI
and in M2LJ. IIk is in fact a derivation in M2L + Closure(N) (i.e. no induction axiom is used).

34

(Note that the derivation IIK here is different from the derivation IIK of Lemma 6..2.)

We now define the k'th inductive numerals, as the image under « : M2L^ 2Ajx of II\ (we
use the same notation as for the pure inductive numerals above, but we have no further use for
the latter).

0 = D / AQXsN-QzQ.z,

Disregarding types, these are

0 =o/ \sz. z
k + 1 =o/ Xsz. sk

Again we have function representation theorems, with respect to inductive numerals, for each
one of the homomorphisms /c : M2L/i -* 2A/i, K : M2LI" —• 2AI", and /c : M2LJ" —•
2AJ-.

THEOREM XIX The functions representable in 2X1" and 2AJ", with respect to the inductive
numerals, are precisely the provably recursive functions of second order arithmetic.

The functions representable in 2A/i are precisely the functions provably recursive in Second
Order Arithmetic, with Induction replaced by the weaker axiom Vx.(x = 0 V 3y.x • sy).

The inductive numerals were discovered by Michel Parigot [Par88,Par89]. Their major advan­
tage is that they enable a representation of the predecessor function, AJC^.X/V/0, where / =*>/ XiF.u,
which is computable, by ^-reductions, in constant time. This expression is the image, under
K : M2L^ —• 2Aji, of the derivation

[NQc)] [N(z)] [*<0)]
VG.(Vz(N(z) - G(sz)) - (2(0) - Q(x)) <V(psz) *(P°>
Vz(Af(z) - Njpsz)) -+ Q(pO) -+ Q(px)) Vz.(iV(z) -+ JV(psz)) / ? (0) ~> R ^ 0)

N(pO) - N(px) V*-CV(z) - *(sz)) -> *(0) - *(pO)
iV(pO)

N(px)
N(x)^N(px)

This ease of representing the predecessor is due to the "cumulative" nature of the inductive
numerals, in the sense that they contain all previous numerals as (easily extractable) subex­
pressions. This is similar to von Neumann's numerals in Set Theory (a numeral is the set of

35

smaller numerals), and to Scott's numerals in the A-calculus, for which the existence of an easy
representation of the predecessor is well known [Sco63,Bar81,§6.2.9]. Scott's numerals can be
typed by recursive types, like the inductive numerals.

Inductive numerals can be alternatively perceived as the fixpoint of an attempt to define
numerals stronger than Church's, to permit an easy representation of the predecessor function.
Proving N(x) —* N(px) for the predecessor function p is easily reduced to proving Vz.N(pz) —•
N(psz). Since for z G N the implication is trivial, one is tempted to define

N0(x) =Df VR.Vz.MZ) - * («)) -> *(0) -> R(x).

(No is equivalent in M2L to N.) The proof of NQ(Z) —• N(pz) is easy, so one would like to have
No = N, leading to the fixpoint definition for N (in its second order form!).

6.6. Inductive representation of data types and of destructors

Not surprisingly, the development above for natural numbers generalizes straightforwardly to
arbitrary data types and data systems. An inductive representation rep(t) of data objects t € B(L)
is obtained analogously to the inductive numerals, i.e. rep(t) contains as subexpressions the
representation of the subexpressions of t.

From this one readily obtains representations of the destructor and discriminator functions
for B(L) (cf. §5.2), each of which is computable in a constant number of steps.

36

http://VR.Vz.mz

7 . CONTROLLED ABSTRACTION

The functions whose representation is obtained from the homomorphism K : M2L —• 2A
constitute a vast class, the provably recursive functions of second order arithmetic. We survey
in this section restricted forms of M2L and of 2A, to which correspond more restricted classes
of computable functions. §§7.1 and 7.2 deal with restrictions whose effect fails to be drastic. In
§7.3 we consider predicative variants of these formalisms, for which the corresponding classes
of functions are far more feasibly computable.

7.1. Restricted nesting of quantification

Quantifier alternation underlies several important descriptive hierarchies, such as the arithmetical,
analytic, and first order query hierarchies [Kle55,CH82]. In M2L and 2A, existential quantifica­
tion is replaced by negative occurrences of universal quantification. We thus define the following
classes of 2A types. EQ and IIQ consist of the quantifier free types. If a € EM and TT e iT„, then
(a - > TT) 6 IIn; (TT - + a) 6 EN\ <J,TT € n and Q/R.a) G i7„+i. A formula <p is EM

(respectively, i7„) if the type <£ is EH (respectively, i7„).

Let M2L* be M2L with comprehension restricted to Ilk relations, and similarly for C2L.
Let 2A* be 2A where type arguments are restricted to be in il*. Then K maps proofs of M2L*
to expressions of 2A*. This classification of second order formulas has a simple relation to the
analytical hierarchy: every II\ relation is expressible as \/R3x. (N(x) A Vy.N(y) —• xj;[x, y]),
where 0 is a first order formula of arithmetic (two number quantifiers are needed because the
second order variable is relational). The latter formula is in More generally, every U\
relation is expressible by a IIM formula of pure second order logic.

THEOREM XX Let V be a program, with target f, that computes a numeric function f. If II
is an M2L*+'P derivation ofNl(T), then nil represents f in 2A*+i, Hence, every provably total
computable functions <?/C2A* is representable in 2\k+\-

Proof. Similar to the proof of Theorem IV. H

7.2. Closed comprehension and stationary types

Among the difficulties of implementing programming languages with a full type quantification
discipline is the potential proliferation of types, preventing effective predication of types at
compile time1. This problem can be bypassed by restricting the allowable type arguments.
Call a A expression stationary if all type arguments therein are type variables or closed type

1 In some programming languages, such as ALPHARD [WLS76], the restriction is to explicitly disallow procedure
definitions that would not permit prediction at compile time of all potential types in execution.

37

expressions. If £ is stationary, then no expression to which E reduces contains a type argument

not in E [FL083].
For a formalism S, let Se be S denote the restriction of S where Comprehension and Induction

(where present) are allowed only for eigen formulas without free relational variables.

Lemma 7..1 [Fri81] Let <p be a formula of first order arithmetic. If<p is a theorem of C2 A,

then <p is a theorem of C2AC.

From this we obtain:

THEOREM XXI [Lei81] Every function f provably total in C2A is representable in the sta­
tionary fragment of IX. Hence, the normalization property of the stationary fragment of IX is
not provable in Second Order Arithmetic.

Proof. Suppose Hc2A Vx3yT(2?,jc,y). By Lemma 7:. 1 this implies Hc2A* Vx3y.T(2p,x,y). As
in the proof of Theorem n, we obtain I~M2Ac Vr3y.r(2?,x,y) t from which also t-mu+v # ! (0«
If II is an M2U+V derivation of .Vl(f), then /ciT is a stationary expression of 2A that represents

7.3. Predicative second order calculi

The impredicative nature of comprehension is bypassed in stratified higher order logic, where
relations are classified into levels. Fixing an ordinal Q, the levels are the ordinals -< 0. For
each level a there are relational variables of level a. The level of a formula <p is the largest of
leveliR) for R free in <p and 1 + level(R) for R bound in <p. &-Ramified Minimal Second Order
Logic, 0-RM2L, has the same rules and axioms as M2L, except that relational V elimination is

restricted:
where /*ve/(0) < level(R).

<p[X0.tJ;/R]

Analogously, the Q-stratified polymorphic X-calculus, 0-R2A, is like 2A, except that ordinals
-< & are used as levels into which the type variables are classified The level of a type r is the
largest of level(R) for type variable R free in r and 1 + level(R) for R bound in r. Expressions
E are defined as for 2A, except that if £ is an expression of type V/J.r, then Ecr is a legal
expression of type r[a/t] only under the proviso that level(a) < level(R).

The idea of stratifying abstraction into levels goes back to RusseFs Ramified Type Theory,
whose purpose was to circumvent the semantic antinomies. It was revived in the 1950's (e.g.
[Rrc60, Wan54, Wan62]) in relation to Predicative Analysis, a semi-constructive foundation of

38

Mathematics. Stratification of type abstraction in the polymorphic A-calculus, and related typed
programming languages, was first considered by Statman [Sta81].

The definition of a homomorphism K : (9-RM2L -* (9-R2A is identical to
K : M2L -> 2A.

For the stratified formalisms above we now have the analog of Theorem IV?

THEOREM XXII Let V be a program, with target (t that computes the numeric function/. 1/
II is a derivation in (9-RM2L + V o/Nl(f), then KII represents / in (9-R2A.

The computational significance of this result arises from the relation between the functions
representable in (9-R2A, for various <9's, and subrecursive classes. In [Lei89] we showed that
for 0 = u these functions are exacdy the super-elementary ones (Grzegorczyk's class £ 4) , for
& = they are the primitive recursive functions, and for & = t0 they are the provably recursive
functions of Peano's Arithmetic.

A subrecursive class smaller yet is obtained when comprehension is further restricted, for
the formalisms [M2L+ conjunction] and [2A+ pairing]. Let M2L° be [M2L+ conjunction],
modified as follows. The relational variables are labeled as being of level 0 or level 1. A
formula <p is said to be of level 0 if it contains no V nor — a n d of level 1 if it contains
no V binding a variable of level 1. Comprehension is restricted, allowing xl>[\u.x/R] to be
derived from V/?,t/> only if levelix) < level(R). Let 2A0 be a similar modification of 2A. The
homomorphism K : [M2L+ conjunction]-*[2A+ pairing], defined in §1, maps M2L° to 2A°. A
proof of N(x) —• Nx(f) in M2L° + V, where V, with target f, computes the function / , contracts
under K into a representation of / in 2A°. The computational significance of this is that the
functions representable in 2A° are precisely the elementary functions, i.e. Grzegorczyk's class
£ 3 [Lei 7] .

39

8. A p p e n d i x L H e r b r a n d - G d d e l Computab i l i ty

8.1. Programs

As in §3.1, *a functional vocabulary is a set of identifiers, the primitives, each assigned a type.
The types are assigned orders: order(o) =o/ 0, orderij A) =D/ mdx(l+order(T)yorder(AR)).
A computation space B = B(L) is the set of canonical expressions, i.e. the closed terms of type
o in the initial algebra generated by L. B is non-trivial if L has at least one identifier of type o
and one identifier of order 1. L is of order k if the types of its identifiers are all of order < k

Let V be an infinite denumerable set of identifiers, the program variables, each associated
a type. Let / be a set of identifiers, the input identifiers, each associated a type of order 1.
(Note that only functions are used as input (oracles).) We assume that L, V and / are pairwise
disjoint The set Term(L,I) of terms built on top of L is defined inductively like B(L), except
that identifiers from V and / are used. A term in which no program variable applies to a term
is simple. Thus, if € / and f^*, g^°^° E V, then sx, sO and jx are simple, but fO, s(fl»

and g(j) are not
A statement over L, / is an equation of the form ft = s, where f € V, t is simple, and

fr, s E B(L) are of the same type. A program over L is a tuple V » (V0, F, j i , . . . , j ,) , where
j i , . . . , jr are distinct input identifiers, of respective types <7\.. . A R say, F is a variable of type
ai <T> —• 0 * —> o for some A: > 0, and Po is finite set of statements overLU { j i , . . . , j , } .
F is the target of the program. The order of the program is the largest among the orders of types
of variables in V. Note that a program of order 1 must have an empty list of input identifiers.

8.2. Operational semantics

For r of order < 2, the set FnctF of functionals of type r is defined by induction on r.
Fnctf » B(L). Fnctl^ consists of the partial mappings F from FnctP to FnctP that are
monotone: iffyg € Fnctl', fCg, then Ff C Fg.

A valuation of / in B is an assignment 77 that yields for each identifier j E I of type r a type

r functional over S.

A program CPo, F, j i , . . . , j f) induces the inference rule V of §2, which, for the special case

where the formulas are equations, reads:
<P . - <FIFLA w h c r c T _ JT o r F - 1 i s a substitution instance of an equation in P

Note that, in general, the terms r and f7 may be of higher type.

We also stipulate a rule of substitution:

s[t/x] = q[t/x]

(This is a derived rule in presence of universal quantification rules.)

Finally, a valuation rj induces the rule

Here s/ (qf) iss (respectively, q) with possibly some subterm j(r), where j 6 /and te B, replaced
by fojXf).

We write VQ + T) for the deductive equational calculus induced by V and rj as above. (Po
provides the computation rules, and rj is the input functions).

Let CP, F r , j i , . . . , jr) be a program, 77 a valuation for / = { j ; , . . . , j r } . Define a relation [V, rj]
over B = B(L) by

(*i...f f) \P,ri\ t0 &Df /Po + r)\-F(ji,...,jr,tl...tk) = t0.

A functional F of order < 2 is computed by CP, F, j i , . . . , j r) if [V, rj] is the graph of F.

THEOREM XXni Over any non-trivial computation space, the functionals of order 2 com­
putable by programs of order 2 are precisely the recursive functionals in the sense of Kolaitis
[Kol85],

Over the space of numerals, the functionals of order 2 computed by programs of order 2 are
precisely the recursive functionals in the sense ofKleene.

Proof Outline. It is straightforward to verify that all clauses in Kolaitis's definition of a func­
tional in canonical form are legal statements of order 2. Kolaitis shows that every recursive
functional is the inductive closure of a functional in canonical form. The inductive closure
can be simulated by equations, over a non-trivial B, as in Kleene's simulation of the numeric
minimalization operation /i by equations [Kle52].

The second part follows from the first by [Kol85]. H

8 3 . Coherence

The relation [V, 77] need not be a function. If it is, for all valuations 77, then we say that
V is coherent. The problem of determining program coherence is, of course, undecidable.

41

However, it is easy to give a set of obviously coherent programs which contains a program for
every computable function. First, we give a variant of Kleene's proof [Kle52] that computable
functions over natural numbers have coherent programs.

Lemma 8..1 (Coherence for numeric functions) There is a (linear time) decidable collection
P of coherent programs which is complete for the computable numeric functions: every program
V can be converted into a program in P which is denotationally equivalent toV ifV is coherent.

Proof. Every computable numeric function / is definable as f(x) = \xy. g(x, y) « 0, where
g is primitive recursive and therefore defined by a coherent system of recursion equations. /
is then defined by supplementing the system for g with the following equations (with fresh
function identifiers). a(u, sv) = u; b(x, 0) = g(x, 0), b(x, su) = a(g(*, su), b(x, u)); c(u, 0) = u;
f(x) = c(u, b(x, u)). Note that b(*, y) is the same as g(Jc, y) for values of y up to and including the
first zero of the function, and is undefined for larger values of y. H

Lemma 8..2 For any language L, there is a (linear time) decidable collection of coherent
programs which is complete for the computable functions of order 1 over fi(L).

Proof. The case where L does not have at least one constant primitive and one primitive of
order 1 is trivial, since there are then a finite number of canonical expressions. The case where
L has at least one constant identifier e, and one function identifier q, say of type o -* o 0 , is
reduced to coherence of numeric functions by a GSdel coding, as follows. A program V over
B(L) is mapped into a program V over the natural numbers, that simulates V for codes of B(L)
in u. V1 is mapped into a cohencrect program V'\ equivalent to V if V is coherent V11 can
be formulated for an embedding of the natural numbers in B(L), e.g. by letting 0 = 0 / « and
s =o/ Axqxe. For any of the standard codings of L in u;, the decoding is primitive recursive
in B(L). Thus / is computed by the coherent program V° over L obtained as the union (with
sets of function variables suitably disjoint) of a coherent program that maps the input into a
numerically coded form (simulated as above in B(L)), the coherent program V'\ and a coherent
program that decodes the "numeric" output. The coherence of V° follows from the coherence
and disjointncss of its constituents. H

Lemma 9.3 (Coherence) For each L, there is a (linear time) decidable collection of coherent
programs which is complete for the computable functions of order < 2 over B(L).

Proof Outline. Repeat the proofs of Lemmas 8..1 and 8..3, but with function input, and using

Kleene's [Kle59] definition of type 2 functionals. H

42

9 . A P P E N D I X I I . EXTENSIONS OF K IN M 2 L

9.1. RJ-reductions

Consider 77-reductions of A-expressions: \x.Ex reduces to E. Some ^-reductions might be
described as the image under K of an additional reduction rule for derivations, say

A

II = V reduces to W =
t/> —• <p 0 <p

However, a derivation II can be normal with respect to reductions of the kind above, and
yet KII would not be RJ-normal. For instance, the derivation

[Vxt>]

IP[t/x] RP[t/x]

n = *

is normal, yet KII can be 77-reduced.

9.2. Existential instantiation

The clauses of K for 3 rules are completely analogous to the definition for V rules, if existential
elimination is formulated as an existential instantiation rule, dual to V introduction. An 3
instantiation rule for intuitionistic and for minimal logics, defined in [Lei73], is: if 3x.(p is
derived from assumptions 6 J \ then infer <p[&-{r=*p} / *] • Here e is variable binding descriptor
operator, akin to Hilbert's t notation, with the sequent T =^ <p as argument The corresponding
reduction is simply:

A
Object3: J7 = ^[t/x]

3JC. <p
v[CX.{r => V}/X]

(The reduction alters the derived formula, but this alteration is of no consequence in proofs of
6-free formulas; see [Lei73].)

For a deductive calculus based on existential instantiation, the corresponding clause in the
definition K is then obviously

A
reduces to W =

<pl*/X]

43

file:///x.Ex

A

for n = 3x.v
let

44

10. Appendix HI. Natural deductions for totality of numeric function

10.1. Successor, first derivation

1. Vz(*(z) - R(sz)) assumption s
2. R(x) -> R(sx) 1, z<-> X s
3. N(x) assumption n
4. Vz(/?(z) — R(sz)) -» R(0) -> R(x) 3, V elimination nR
5. R(0) -> R(x) 1,4 nRs
6. R(0) assumption z
7. RQc) 5,6 nRsz
8. R(sx) 2,7 s(nRsz)
9. R(0) -* R(sx) 8, close 6 \z.s(nRsz)
10. Vz(/?(z) -» fl(sz)) -»/?(0) (sx) 9, close 1 Xsz.s(nRsz)
11. Vfl.Vz(/?(z) -> /?(sz)) — fl(0) — R(sx) 10 AR.Xnz.s(nRsz)

N(sx) same as 11

10.2. Addition, second derivation

1. N(y) assumption m
2. V«(tf(a(x,*))->tf(aCx,tt)))

^ N(*(x,0)) ^ N(*Qc,y)) 1, R >-* Xz.R(*(x, z)) mi
3. Vz(/?(z) - tf(sz)) assumption s
4. /?(a(;c,z))-+tf(saCc,z))) 3 s
5. tf(a(x,*)) assumption u
6. Vz(K(z) - R(sz)) - *(0) - tf(a(x, z)) 5 uR
7. tf(0)^K(a<x,z)) 6,3 uRs

00

*(0) assumption z
9. tf(a(x,z)) 7,8 uRsz
10. tf(sa(x,z)) 4,9 s(uRsz)
11. *(a(x,sz)) 10, equation s(uRsz)
12. /?(0)-/?(a(x,sz)) 11, close 8 Xz.s(uRsz)
13. Vz(/?(z) — R(sz)) - tf(0) - /?(a(x, sz)) 12, close 3 Xsz.s(uRsz)

W(a(;c,sz)) same as 13
14. iV(a(jc,z))^iV(a(x,sz)) 13, close 5 Xusz.s(uRsz)
15. VzJV(a(x,z))-N(a(x,sr)) 14 Xusz.siuRsz)
16. tf(a(x,0))-+;V(aOc,;y)) 2,15 mi(Xusz.s(uRsz))
17. assumption n
18. tf(a(x,0)) 17, equation n
19. iV(a(x,y)) 16,18 nu(Xusz.s(uRsz))n

45

10.3. Multiplication

1.
2.

3.
4.

5.
6.
'7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

Vz(*(mCx,z))->a(mCx,«)))
-»*(mCx,0))-i?(inCx,y))

V«(*(a(m(x, z),«)) - R(a(m(x, z), su)))
-»i?(a(m(x, z), 0)) - i?(a<m(x, z), x))

Vz(/?(z) * («))
/?(a(m(jc, z), u)) -> fl(sa(m(x, z), u))
fl(a(m(x, z),«))
/?(sa(m(x, z), u))
/?(a(m(;t, z), SM))
/?(a(m(;c, z), u)) -»ft(a(m(x, z), su))
VuJ?(a(ni(x, z), u)) -»A(a(m(x, z), SII))
rt(a(m(x, z), 0)) - *(a(m(x, z), *))
*(m(x, z))
/J(a(mOc,z),0))
fl(a(m(x,z),x))
/?(m(jc, sz))
A(m(x,z))-» A(m(x,sz))
VrJ?(m(x, z)) -+ R(m(x, sz))
i?(mOc,0))-.i?(mOc,y))
*(0)
K(m(x,0)
i?(m(x,y))
*(0)->J?(mCx,y))
Vz(K(z) - fl(sz)) - t f (0) - f l (m(x ,y))
V/?.Vz(/?(z) -» fl(sz)) *(0) R(m(x,
Mm(jc,y))

assumption
1, /?H->

Xz.R(m(x, z))
assumption

assumption
5
assumption
6,7
8,equation
9, close 7
10
U.4
assumption
13, equation
12,14
15, equation
16, close 13
17
2,18
assumption
20, equation
19,21
22, close 20
23, close 5

y)) 24
same as 23

n

nR
m

mR
s
s
u
su
su

Xu.su
Xu.su

mR(Xu.su)

mR(Xu.su)v
mR(Xu.su)v

Xv.mR(Xu.su)v
Xv.mR(Xu.su)v

nR(Xv.mR(Xu.su)v)

nR(Xv.mR(Xu.su)v)z
Xz.nR(Xv.mR(Xu.su)v)z
Xsz.nR(Xv.mR(Xu.su)v)z

AR.Xsz.nR(Xv.mR(Xu.su)v)z

46

http://Xu.su
http://Xu.su

10.4. The predecessor function

Let <p[z] abbreviate R(p(z)) A R(z).

1. N(X) assumption n
2. Vz(tf(z) - *(sz)) assumption s
3. *(0) assumption z
4. Vz(^[z] - *[«]) - ^[0] -> 1 n{R x R)
5. <P[z] assumption u
6. R(z) 5 J 2 "
7. rt(psz) 6, equation J2«
8. R(sz) 2,6 S}2U

9. v?[sz] 7,8 {J2",^J2«>
10. Vz.<^[z] 9, close 5 ^"• (J2" ,^J2«)
11. v > [0] - 4,10 n(R x R)\u.(j2u, s'}2u)
12. *(p0) 3, equation z
13. <P{0] 3, 12 <*.*>
14. 11,13 n(R x R)\u.(}2u, sj2u)(z, z)
15. R(px) 14 jl(rt(/? x R)Xu.(j2u,sj2u)(z,z))
16. R(0)^ *(px) 15, close 3 \z.ii(n(R x R)\u.(j2u,s'j2u)(z,z))
17. Vz(/?(z) -»*(«)) - R(Q) -> *(p*) 15, close 3 \sz.ji(n(R x R)\u.(j2u,s'}2u){z,z))
18. N(px) 17 /\R.\sz.}i(n(R x ^)Aw.(J2U, (z,z))

47

11. Appendix IV. Type Containment

Proposition 11..1 It is not decidable for data systems A, and Do,Dx e A, whether D0Q Dx.

Proof. Consider two context free grammars Go, G\. Let L have the terminals of G 0 and G\ as
primitives of type o9 plus additional primitives J- of type o, and p of type o —• o —• o.

For words w of Go, define tw by: tt = 0 / JLF FXW =Df pxtw. (I.e., tw is w turned into a list.)
Define A to have L as a set of primitives, and two data types, Do,I>I, where D, has, for each
production x =» w of G,-, the closure condition D,-(x) —• Di(tw). Then Do C Di iff Go C G\. Since
the inclusion problem for context free grammars is not effectively decidable (see e.g. [HU79]),
it follows that neither is the inclusion of data types in a data system. H

48

References

Acz77 Peter Aczel, An introduction to inductive definitions, in Jon Barwisc (editor), Handbook
of Mathematical Logic, North-Holland, Amsterdam, 1977, pp.739-782.

Bar81 Henk Barendregt, The Lambda Calculus, North Holland, Amsterdam, 1981, xiv+615pp.

BB85 Corado B6hm & A. Berarducci, Automatic synthesis of typed X-programs on term alge­
bras, Theoretical Computer Science 39 (1985).

Car84 Robert Cartwright, Recursive programs as definitions in first order logic, SIAM Journal
of Computing 13 (1984) 374-408.

CF58 Haskell B. Curry and R. Feys, Combinatory Logic, North-Holland, Amsterdam-New
York-Oxford, 1958.

CH82 Ashok Chandra and David Harel, Structure and complexity of relational queries, Journal
of Computer and System Sciences 25 (1982) 99-128. Preliminary version in Twenty
first Symposium on Foundations of Computer Science (1980) 333-347.

CH88 Thierry Coquand & Gerard Huet, The calculus of constructions, Information and Com­
putation 76 (1988) 95-120.

CHS72 Haskell Curry, Roger Hindley and Jonathan Seldin, Combinatory Logic (Volume II),
North-Holland, Amsterdam, 1972.

Chu33 Alonzo Church, A set of postulates for the foundations of logic, Annals of Mathematics
34 (1933) 839-864.

C 0 I 8 8 Loic Colson, About primitive recursive algorithms, Manuscript, December 1988.

Con86 Robert Constable & als., Implementing Mathematics with the Nuprl Proof Develop-
ment System, Prentice Hall, Englewood Cliffs, 1986.

Coq Thierry Coquand, Mathematical investigation of a Calculus of Constructions, This Volume.

deB70 N.G. de Bruijn, The mathematical language AUTOMATH, its usage and some of its
extensions, Symposium on Automatic Demonstration, Springer-Verlag (LNM # 125),
Berlin, 1970, 29-61.

FL083 S. Fortune, D. Leivant, and M. O'Donnell, The expressiveness of simple and second
order type structures, Journal of the ACM 30 (1983) 151-185.

Fri81 Harvey Friedman, On the necessary use of abstract set theory, Advnces in Mathematics
41 (1981) 209-280.

Gen34 Gerhard Gentzen, Unterschungen iiber das logische Schlissen, Mathematische Zeitschrift
39 (1934) 176-210.

49

Gir72 J.-Y. Girard, Interpretation fonctionelle et elimination des coupures dans l'arithmetique

d'ordre superieur, Thfcse de Doctorat d'Etat, 1972, Universite Paris VH

Gir89 J.-Y. Girard, Proofs and Types (with appendices by Paul Taylor and Yves Lafont),

Cambridge University Press, Cambridge, 1989.

God58 Kurt GSdel, Ueber eine bisher noch nicht benutzte Erweiterung des finiten standpunktes,

Dialectica 12 (1958) 280-287.

HU79 J. Hopcroft & J. Ullman, Introduction to Automata Theory, Languages and Com-

putability, Addison-Wesley, Reading (Mass.), 1979.

How80 William A. Howard, The formulae-as-types notion of construction, pp. 479-490 in
[SH80].

Kea70 John Keams, Combinatory logic with discriminators, Journal of Symbolic Logic 34

(1970) 561-575.

Kle52 S.C. Kleene, Introduction to Metamathematics, Noordhoff, Groningen, 1952.
Kle55 S.C. Kleene, Hierarchies of number theoretic predicates, Bulletin of the American

Math. Soc 61 (1955) 193-213.

Kle59 S.C. Kleene, Recursive functionals and quantifiers of finite type I, Transactions of the

American Mathematical Society 91 (1959) 1-51.

Kle69 S.C. Kleene, Formalized Recursive Functions and Formalized Realizability, Memoirs

of the AMS #89 (1969).

KM77 A.S. Kechris and Y.N. Moschovakis, Recrusion in Higher type, in J. Barwise (e&),

Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, 681-737.

Kol85 P.G. Kolaitis, Canonical forms and hierarchies in Generalized Recursion Theory, in

A. Nerode and R.A. Shore (eds.), Recursion Theory, Proceedings of Symposia in Pure

Mathematics, volume 42, American Mathematical Society, Providence, 1985, 139-170.

K P 8 7 Jean-Louis Krivine and Michel Parigot, Programming with Proofs, Manuscript. Presented

at the Sixth Symposium on Computation Theory, Wendisch-Rietz, Nopvembcr 1987.

Kre60 Georg Kreisel, La Pridicativiti, Bull. Soc Math. France 8 8 (1960) 371-391.

Kri86 Jean-Louis Krivine, Programmation en arithmitique fonctionelle du second ordre, Manuscript,

1986.

Kri87 Jean-Louis Krivine, Un algorithme non typable dans le systime F, C.R. Acad. Sci.

Paris, Serie I, 304 (1987) 123-126.

50

Lau70 H. Lauchli, An abstract notion of readability for which intuitionistic predicate calculus
is complete, in A. Kino, J. Myhill, R.E. Veslcy (eds.), Intuitionism and Proof Theorey,
North-Holland, Amsterdam, 1970.

Lei73 Daniel Leivant, Existential instantiation in a system of natural deduction, Mathematisch
Centrum ZW 13-73, 1973, 1-36.

Lei81 Daniel Leivant, The complexity of parameter passing in polymorphic procedures, Thir­
teenth Annual Symposium on Theory of Computing, ACM Press, Providence, 1981,
38-45.

Lei83 Daniel Leivant, Reasoning about functional programs and complexity classes associated
with type disciplines, Twenty-fourth Annual Symposium on Foundations of Computer
Science (1983) 460-469.

Lei84 Daniel Leivant, Typing and abstraction in proofs and in programs, privately circulated,
22pp., January 1984.

Lei89 Daniel Leivant, Stratified polymorphism, Preliminary report, Fourth Annual Symposium
on Logic in Computer Science, Computer Society Press of the IEEE, Washington, 1989,
39-47. Full paper to appear.

Leia Daniel Leivant, Low abstraction and subrecursion, in S. Buss and P. Scott (eds.), Feasible
Mathematics (Proceedings of the June 1989 Workshop at Cornell), to appear.

Lei£ Daniel Leivant, Computationally based set existence principles, in Wilfried Sieg (ed.),
Logic and Computing, AMS Advances in Mathematics Series, to appear. (Preliminary
version in the Proceedings of the COLOG'88 Conference.)

Lei7 Daniel Leivant, Discrete polymorphism, Manuscript, July 1989.

Mar79 P. Martin-L5f, Constructive mathematics and computer programming, Proceedings of
the Sixth International Congress for Logic, Methodology and Philosophy of Science,
North-Holland, Amsterdam, 1979.

Men87 N.P. Mendler, Recursive types and type contraints in second-order Lambda Calculus,
Proceedings, Symposium on Logic in Computer Science, Computer Society Press of
the IEEE, Washington, 1987, 30-36.

Mos74 Yiannis Moschovalris, Elementary Induction on Abstract Structures, North-Holland,
Amsterdam, 1974.

Par88 Michel Parigot, Programming with proofs: a second order type theory, in H. Ganziger
(ed.), ESOP '88, Springer Verlag (LNCS #300), Berlin, 1988, 145-159.

Par89 Michel Parigot, Recursive programming with proofs, Manuscript, 1989.

Pra65 Dag Prawitz, Natural Deduction, Almqvist and Wiksell, Uppsala, 1965.

51

Pra71 Dag Prawitz, Ideas and results of proof theory, in IE. Fenstad (ed.), Proceedings of the
Second Scandinavian Logic Symposium, North-Holland, Amsterdam, 1971, 235-308.

Rey74 J.C. Reynolds, Towards a theory of type structures, in Programming Symposium (Col-
loque sur la Programmation Paris), Springer-Verlag (LNCS #19), Berlin, 1974,408-425.

See Andre Scedrov, A guide to polymorphic types, This volume.

Schw76 Helmut Schwichtenberg, Definierbare Funktionen im Lambda-Kalkul mit Typen, Archiv
Logik Grundlagenforsch. 17 (1976) 113-114.

Schu77 Kurt SchUtte, Proof Theory, Springer-Verlag (GMW #225), Berlin, 1977.

Sco63 Dana Scott, A system of functional abstraction, Lecture Notes, University of Claifornia
at Berkeley, 1962/63.

SH80 J.P. Seldin and J.R. Hindley (eds.), To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, Academic Press, London, 1980.

Sta79 Richard Statman, The type A calculus is not elementary recursive, Theoretical Computer
Science 9 (1979) 73-81. Preliminary version appeared as Proceedings of the Eighteenth
Conference on Foundations of Computer Science, Computer Society Press of the IEEE,
Washington, 1977, 90-.

Sta81 Richard Statman, Number theoretic functions computable by polymorphic programs,
Twenty Second Annual Symposium on Foundations of Computer Science, IEEE Com­
puter Society, Los Angeles, 1981, 279-282.

Tro73 A.S. Troelstra, Metamathematical Investigation of Intuitionistic Arithmetic and Anal­
ysis, Springer-Verlag (LNM #344), Berlin, 1973.

Wan54 Hao Wang, The formalization of mathematics, Journal of Symbolic Logic 19 (1954)

241-266.

Wan62 Hao Wang, Some formal details on predicative set theories, Chapter XXTV of A survey
of Mathematical Logic, Science Press, Peking, 1962. Republished in 1964 by North
Holland, Amsterdam. Republished in 1970 under the tide Logic, Computers, and Sets
by Chelsea, New York.

WLS76 W. Wulf, R.L. London and M. Shaw, Abstraction and verification in ALPHARD -
Introduction to language and methodology, Tech. Report, Carnegie-Mellon University,
1976.

52

