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Abstract 

This work describes a family of homomorphisms that contract natural deductions into typed 
^-expressions, with the property that a convergence proof for an untyped program for function / is 
contracted to a typed program for /. The main novelties, compared to previous works on extracting 
algorithms from proofs, are the reading of deductions themselves as programs, and that instead of a 
constructive reading of 3, we use a Leibnitzian view of objects as sets of properties. The method is based 
on the observation that object-level components of natural deductions can be ignored computationally. It 
is applicable to every formalism in which there are no axioms or rules for objects in general, only for 
properties. Formalisms of this type include Peano's first order axiomatization of arithmetic (in its 
original fonn, with a primitive predicate identifier AO. second and higher order logic (in which data types, 
like the natural numbers, can be defined explicitly), and various variants of fixpoint extensions of first 
order logic. 

Among the technical offshoots of the method are very simple and transparent proofs of Guard's Theorem, 
that the provaWy recursive functions of second order arithmetic are all representaUe in the second order 
X-calculus, and of GOdel's "Dialectica" Theorem, that the provaMy recursive functions of first order 
arithmetic are all computable using primitive recursion in all finite types. 
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Introduct ion 

Most techniques for extracting the algorithmic contents of proofs fall into three methods. 
The interpretational method maps a formula ^ to a formula yc that renders the constructive 
contents of <p. One shows that if <p is provable constructively, then y>c is true. This is the 
method underlying Kleene's realizability interpretations, Godel's "Dialectica" interpretation, and 
Kreisel-Goodman's Theory of Constructions. 

The proof normalization method is based on the special form taken by normal proofs in 
semantic directed calculi for constructive theories, such as natural deductions for Intuitionistic 
(Heyting's) First Order Arithmetic. The key property used is existential instantiation: a normal 
proof of a formula 3x.<p must have, as premise of its last inference, y>[t/x] for some term r. 

The proof combinatorics method attempts to interpret a natural deduction proof as compris­
ing an algorithm. The method is motivated by Curry and Howard's "formula as type" isomor­
phism [CF58,How80,Lau70,deB70], and underlies the programming language of Per Martin-L6f 
[Mar79], the family of PRL systems [Con86], and Coquand and Huet's Calculus of Constructions 
[CH88, Coq]. 

Our method is a variant, originating in [Lei83], of the proof combinatorics method. It is 
based on the observation that object-level components of natural deductions can be ignored 
computationally, leading to a homomorphism from proofs to typed programs, that extracts the 
computational contents of deductions. The underlying rationale goes back to Leibnitz: in a 
general setting where objects have a priori no special property, reasoning and computing are 
with respect to objects' properties, rather than over the objects themselves. The fact that an 
object x has property P will be reflected in the combinatorics of (potential) proofs of P{x). For 
instance, if N is a suitable rendition of the property of being a natural number, then a proof of 
N(x) will have a structure that reflects the construction of x. 

This approach is applicable to every formalism in which there are no axioms or rules for 
objects in general, only for properties. Formalisms of this type include Peano's first order 
axiomatization of arithmetic (in its original form, with a primitive predicate identifier N), second 
and higher order logic (in which data types, like the natural numbers, can be defined explicitly), 
and various variants of fixpoint extensions of first order logic. 

Our approach differs in important respects from previous works on proofs as programs, such 
as Martin-Lfif's Type Theory (MLTT). We disregard abstraction over individual objects, whereas 
object abstraction is at the core of the MLTT style. The constructive contents of proofs rests, for 
us, in the combinatorics of abstraction and application within proofs, in contrast to MLTT, where 
the constructive contents lies mainly in a constructive interpretation of existential quantification. 
Our approach is committed to a "semantic" view of typing (types as properties) as opposed to 
the "ontological" view of (most variants of) MLTT, where objects come equipped with their 
type. Finally, our method is particularly suited for reasoning about functions that are partial 
with respect to data types. 



Among the technical offshoots of the method are very simple and transparent proofs of 
Girard's Theorem, that the provably recursive functions of second order arithmetic are all rep-
resentable in the second order A-calculus, and Godel's "Dialectica" Theorem, that the provably 
recursive functions of first order arithmetic are all computable using primitive recursion in all 

. finite types. 

We outline the use of our contraction homomorphisms for three types of calculi. In §§1-4 we 
present the method and some of its ramifications and applications for pure second order logic, 
which is mapped to Girard-Reynolds's pure second order A-calculus. We start with this instance 
of the method because the target formalism is a pure A calculus. In §5 we exhibit the method for 
a variant of Peano's Arithmetic and similar "generative axiomatizations" of inductively generated 
data types. §6 outlines applications to "inductive axiomatizations", based on first order inductive 
definitions. Finally, §7 touches on the contraction of second order proofs with restricted forms of 
comprehension, to second order typed A-expressions with restrictions on type arguments. Since 
we deal here with functions provable in second order logic, restricting comprehension leads to 
computational classes well below the provably recursive functions of first order arithmetic, such 
as the primitive recursive functions, the elementary, and the super-elementary functions [Lei89, 
Leia, Lei/3, Lei7]. A number of technical elaborations are factored out into appendices, to avoid 
distraction from the main development. 

The main results of §§1-3 were reported in [Lei83]. They were rediscovered by Krivine and 
Parigot [Kri86, KP87]. Closely related results are described in [Gir89] (see discussion following 
Theorem V below). The main results of §§4,5 are contained in §2 of [Lei84], and were reported 
in December 1983 at the Workshop on Logic in Computer Science at Brooklyn College of 
CUNY. 

Acknowledgements. I am grateful to Phokion Kolaitis, Georg Kreisel, Michel Parigot, Jonathan 
Seldin, and Paul Taylor for comments on a preliminary version of this work. Research partially 
supported by ONR grant N00014-84-K-0415 and by DARPA grant F33615-87-C-1499, ARPA 
Order 4976, Amendment 20. 

2 



1. A contraction homomorphism from second order deductions to A-programs 

1.1. Natural deductions for minimal second order logic 

We use a Gentzen-Prawitz style natural deduction calculus [Gen34, Pra65], M2L, for minimal 
second order logic, with implication and universal quantification as the only logical constants. 
The inference rules are: 

•I: . . . (occurrences xl of x are closed) —*E: 

x -> V 

x - » V X 

tp Vx. <p 
VI: (x not free in assumptions) VE: 

Vxv> rft/x] 

V 2!: (R not free in assumptions) N^E 
Vi?. v

 r <p[\u.il;/R] 

Derivations are defined as usual. When appropriate, we use numbered lists of formulas as 
concrete syntax for derivations. 

We consider computability in the equational style of Herbrand-Godel (see Appendix I below). 
For the rest of this paper, a program is a finite set of defining equations for function identifiers, 
possibly by (simultaneous) recursion. Given a program V% M2L + V will denote the extension 
of M2L with the rule: 

V: ——— f = / / o r r / = f i s a substitution instance of an equation in V 

1.2. A homomorphism from deductions to A-expressions 

Curry and Howard's isomorphism has formulas correspond to types and deductions to A-
expressions. In defining the isomorphism for quantifiers, Howard was led to defining richer 
type structures, with dependent type operations. These were discovered independently by de 
Bruijn for the AUTOMATH project [deB70], and further developed by Martin-L6f, lending evi­
dence to their naturalness and utility. 
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We pursue a dual approach: rather than enriching the type structure to match logic, we 
impoverish logic to match the type structure. The co-domain of our homomorphism is Girard-
Reynolds' second order (polymorphic) typed A calculus, 2A [Gir72, Rey74] (see expositions in 
[See] or [FL083]). We write E : r for "£ is of type r." We use the same identifiers for relational 
variables of M2L and for type variables of 2A. 

For a formula tp9 let the type <£ be obtained by deleting from <p the first order compo­
nents: R(t) =Df R\ 0 —» x =zy ^ —• X} V*-*/7 =D/ ip} V/?>^ -of For example, if 
ip = V/?(Vz(/?(z) —• /?(sz)) /?(0) /?(r)) (stating that t denotes a natural number), then 
(£_ = VR.((R - » # ) - * ( / ? - • /?)), i.e. the Fortune-O'Donnell type of the natural numbers [FL083]. 

By straightforward induction on formulas we have: 

L e m m a 1..1 If<p = tp[Xx.x /K\> ihen <p = ±[x/Rl H 

Next we define a mapping K that assigns to each derivation II of M2L+V deriving a formula 
ip (where V is a program), an expression KU of 2A, of type <£. 
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n = ¥>' (open assumption <p labeled by 0 KII -of xf (variable of type <£) 

n = /\ KII =Df Xxf.nA 

x-*<p 

A & 
„ ib — • tp ib 
n = - — - — - KIT =DF (KA)(KQ) 

A 

Vx.tb 
tb 

n = ——- nil =of KA 

A 
ix.tj. 

0[0C] 
n = i r l , KII =of KA 

1 1 S ( b y ? ) KlI=DfKA 

A 

# = TTTTT an =Df AR.KA 

A 

By a straightforward induction on derivations we have 
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Lemma 1..2 If II derives <p from the open assumptions ib\x... ib%, then nil is of type <£_, with 
free variables x^ .. .x?1, of types ^ . . . T^, respectively. 

The induction step for the case of second order V elimination uses Lemma 1..1. The induction 
step for second order V introduction uses, for the syntactic correctness of «i7, the condition on 
II that R is not free in open assumptions. 

K can be extended to the remaining logical constants, using their definition in terms of 
implication and universal quantification [Pra65]. For example, <p A ib = VR°((<,(? —• ib —• R) -* 
R), so a proof U of <p A ib is obtained from a proof A of <p and a proof & of ib by two uses 
of —• elimination and a use of V introduction, yielding «i7 = AR. \U.U(KA)(K&) (where 
a : <£ —• T/> —• /?)• 

13 . K commutes with reductions 

Prawitz's reductions for M2L, take the following forms [Pra65]: 

Implication: n = 

m 
A 

lb -KJ> 

e 
ib 

reduces to W = 

Q 
m 

A 

Object V: n = 

Relation V: n = 

A 

VR.<p 

reduces to W — 

reduces to W = 

A[t/x] 
<p[t/x] 

A[\u.X/R] 
<p[\*.X/K\ 

Lemma 1.3 (Homomorphism) Let J7 be an M2L derivation. If n reduces tc JQ by an 
application of one ofPramtz's rules above, then KII ^-converts (in 1\) to KU . ^nseaue^y, 
if II reduces (by successive reductions) to Q, then KJI ^reduces to KQ, and ifnll is ^-normal, 
then II is normal. 
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CONVERSELY, IF E = KII 0-REDUCES TO E', THEN E' = KII1 FOR SOME II' SUCH THAT II PRAWITZ-
REDUCES TO 11'. CONSEQUENTLY, IF II IS NORMAL, THEN KII IS ft-NORMAL H 

For a comment on 77-reductions see Appendix 9.1. 

1.4. Extension of K to conjunction 

Let [2A+ pairing] be the extension of 2A with pairing: types are generated also using the product 
construct, r x <7, and expressions are generated also using pairing and projections: if E : r and 
F : cr, then (E,F) : R x CR\ and if E : RX x r 2, then j ,£ : RT (I = 1,2). An additional reduction 
rule is: £ 2 ) reduces to £, (1 = 1,2). 

K has an obvious extension to K : M2L + conjunction —* 2A + pairing. Let the mapping 
<P <£ be extended by the clause ^ A \ =T>F (3/̂  x)- E x t e n c * the definition of K by the clauses 

N = 

^ 1 

Y>2 Ki7 = D / ( / C ^ I , « ^ 2 > 

77 = « i l =£)/ j i *^ 

Lemma 1..3 applies then to the extended *. 

Alternatively, conjunction can be considered, within M2L, as a defined connective [Pra65]: 
V A %L) = VQ((y? —• V? Q) Q). From this definition and from the M2L derivations of the 
conjunction rules for it we obtain: 

r i x r 2 =D/ VG((n -> r 2 -+ Q) -> Q) 

j i i ^ x < 7 =0/ £r(A*r;y* 
ja*™' =z>/ E*(\XRY.Y) 

1.5. Extension of * to first order 3 

Although 3 is definable in M2L in terms of -> and V [Pra65], it can be included, at no cost, in 
M2L and in the definition of /c, by the following clauses. 
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n = 

A 

Sx.RP 
KII -OF KA 

A 0 

n = —f- Kn =Df (K0)[KA/xf] 

Prawitz's reduction for Gentzen's natural deduction rules for 3 is mapped under «into identity, 
exactly as for the V reduction: 

A [ V 1 
A 

V TTI 

Object 3: i l = - - — reduces to U = [ XB'[t/x] ] 
0[t/x] 

We have KW = «i7. Similarly, the PERMUTATIVE for 3 elimination [Pra65] are idempotent under 
K. 

The clause of K for 3-elimination is most transparent for a formulation of 3-elimination as 
an instantiation rule. See Appendix 9.2. 
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2. Convergence proofs as polymorphic A-programs 

2.1. A second order statement of convergence 

Let N(x) =Df V/?. Wu (R(u) -> R(s(u)) -+ R(0) -+ R(x). N defines a copy of the natural numbers 
in every structure S that satisfies Peano's Third and Fourth Axioms, Vx,y. sx = sy —• x=y, and 
Vx. sx^O, which guarantee that the denotations of the numerals, h =Df s [ n l 0 = s(s(- • • s(0) • • •)), 
are all distinct. 

If V is a program, we also write V for the conjunction of the universal closures of the 
equations in V. The totality of the numeric function / computed by V is expressed by the 
formula Vx3y T(e-p, x,y), where ep is a Godel number for V (under some canonical coding), and 
T is Kleene's computabiliry predicate: T(e,x,y) holds if y codes a completed computation of the 
program coded by e on input x [Kle52]. The following is a variant of Dedekind's century old 
observation that the standard structure of the natural numbers is characterized by second order 
quantification. For a function identifier f of arity r, let NL(F) =Df Vz.iV(z) -> zV(fz), where 
z = (z i . . . zr) and N(z) =ix N(zx) A • • • A N(zr). 

THEOREM I Let V be a program, with target f, that computes the function f. The following 
are equivalent: 

1. / is total over LJ: V yields an output for every input 

2. V ^ Afl(f), with respect to standard models: every standard second order structure in 
which V is true, satisfies NL(F). 

Proof. Assume, without loss of generality, that f is unary. 

Assume (1). Then, for every numeral X, there is a completed symbolic computation C of 
V for input x, with the final equation of the form f(x) = z, for some numeral z. C preserves 
equality in any model of the formula V. Therefore, in every such model, if x is the denotation 
of a numeral, then fx is the denotation of a numeral. Since in a standard second order structure 
every element satisfying N is the denotation of a/numeral, this establishes (2). 

Conversely, assume (2). Consider the structure 5 with universe \S\ = u U {JL} of the 
natural numbers augmented with an object i . , and where for each function identifier g occurring 
in V, 

ifcx = (y tfpyicldsg(iix^^y 
8 ' * \ ± otherwise (including if some x, is J.) 

Then, by (2), S f= Vx.iV(x) —> N((x). In 5 , N is satisfied exactly by the elements of so Is maps 
natural numbers to natural numbers. By the definition of Is this implies that V has a completed 
computation for any numeral as input. H 
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The second condition cannot be extended to all Henkin models of some formal calculus for 
second order logic, because that would make (2) equivalent to formal provability, an r.e. property. 

2.2. Provably recursive functions of second order logic 

The equivalence stated in Theorem I leads to an equivalence between provability conditions in 
second order arithmetic (analysis) and in second order logic, respectively. 

Let C2L, I2L M2L be classical, intuitionistic, land minimal second order logic, respectively. 
Let C2A, I2A, and M2A, be the classical, intuitionistic and minimal variants of second order 
arithmetic. See e.g. [Schu77] for a detailed description of these formalisms. 

We say that a program V is standardized if it contains recursion equations for the predecessor 
function, pred(O) = 0, pred(sx) = x. It is easy to see that every model of a standardized program 
satisfies Peano's Third Axiom, and the Fourth Axiom formulated as Vx.sx = 0 —» Vx.x = £>/0. 
We restrict attention to standardized programs to gain simplicity without sacrificing generality 
(any program can be trivially expended to a standardized one with no change of semantics), 
though the restriction can probably be bypassed. 

THEOREM II Let V be a standardized program, with target f. The following are equivalent. 

1. V is provably total in classical second order arithmetic: hc2A VJc3y T(l?,x,y). 

2. V is provably total in 12A. 

3. V is provably total in I2L: V H U L Nl(f). 

4. V is provably total in M2L. 

5. V is provably total in C2L. 

Proof. For simplicity, say / is unary. The implication from (1) to (2) is well known. It 
falls out from any one of the double negation translations of classical into intuitionistic second 
order arithmetic (see e.g. [Tro73]), combined with the closure of the latter under Markov's Rule 
[Gir72,§6.2.1]. 

Assume (2), towards proving (3). Let Dfn[T] and Dfn[U] be defining clauses for Kleene's 
T predicate and for the graph U of Kleene's result extraction function [Kle52]. Since V is 
standardized, (2) implies 

V,Dfn[T? hnL N(x) -> 3y.N(y)/\T(ev,x,y), 

10 



where Dfn[Tf is Dfn[T] with universal quantifiers restricted to N. Since Dfn[T] implies 
Dfn[T]N trivially, 

V,Dfn[T] H K L N(x)->3y.N(y)AT(ev,x,y). 

Similarly, 
V,Dfn[U] H I 2 L N(y) 3r. JV(r) A £/(Y,r), 

and 

V,Dfn[T\,Dfn[U] H I 2 L tf(x) - T(ev,x,y) - N(y) -> tf(y, r) -> fe « r. 

Combining these, we get 

V,Dfn[T],Dfn[U] H I 2 L IV(x) - JV(fe). 
The second order existential closures of D/n[7] and D/n[C/] are both provable in I 2 L . So the 
last statement simplifies to 

V H U L N(x) -> N{tx), 

proving (3). 

(3) implies (4), since falsehood, JL, is definable in M 2 L by V/?./?. 

(4) implies (5) trivially. 

Assume (5), towards proving (1). For second order formulas <p, with function identifiers 
from V9 we define an interpretation of <p in second order arithmetic. For an arithmetic 
term f, let t ~ z abbreviate the first order formula "z is the numeric value of t with respect 
to V'\ as in [Kle69]. Let $ arise from <p by replacing each atomic subformula Q(t\.. .r*) by 
3wi • • (fi ~ wi A • • • A tk ~ Uk A . . . Uk)). By induction on derivations, if V Hc2L 0 
then hc2A V>» proving (1). H 

Note that the theorem provides a method of reasoning about computable function convergence 
without reference to existential quantifiers, and without coding mechanisms. 

2.3. L A M B D A REPRESENTATION OF NUMBERS AND FUNCTIONS 

Consider the numeral 2 = ssO. If II is the direct proof of iV(2), then KII is easily seen to be 
AR.\sPm**.\z?.s(s(z)). More generally, 

T H E O R E M I I I LetJc = S w 0 . There is a unique normal M 2 L deduction IIK of the formula N(k), 
for which *IIK = AR \sR~*RzR. s[k](z). (This is the Fortune-O'Donnell k'th numeral [FL083], of 
which the untyped form is Church's k'th numeral [Chu33].) 

More generally, if t is a closed term over 0,S as well as the identifiers of V> and II is a 
f3-normal derivation in M 2 L + V of N(t), then V derives t - x for some x, and KII is the 
Fortune-O'Donnell numeral for x. 
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Proof. A normal derivation of N(t) must end with three introductions (possibly interleaved 
with instances of V), whose premise derivation © derives Rif) from the assumptions R(0) and 
Vz.R(z) —• /?(sz), where R is a relational variable, and V h i = r. An induction on such 
derivations 6> shows that KQ = $ w z , where P derives £ = = f, s is a variable of type R R 
(corresponding to the assumption Vz./?(z) —• /?(sz)), and z is a variable of type R (corresponding 
to the assumption /?(())). H 

THEOREM IV (Numeric Function Representation) Let V be a program, with target f, that 
computes the function/. If II is an M2L + V derivation ofNx(f), then KII ft-represents f in 
2A. Hence, if E is a 2A expression such that E =0F) KII, then E ftr)-represents f in 2A. 

Proof. For simplicity, say / is unary. For every k > 0 the derivation 

n 
Ni(f) nk 

N(k) ^ N(fk) N(k)  
A k = N(tk) 

reduces to a normal derivation A'k of N(fk). So we have 

( « I 7 ) I K = (KlI)(KlIk) 

=p KA'k by Lemma 1..3 
=0 nll/k by Theorem HI 

fk =0 

Combining Theorem IV with Theorem II we have 

THEOREM V (GIRARD [Gir72]) All the provably total computable functions of classical second 
order arithmetic are representable in 2A. H 

Developments similar to this are reported in [Kri86, KP87] and [Gir89, Chapter 15]. In the 
latter, Girard treats proofs in I2A (= H A 2 ) of formulas of the form Vx.iV(x) -* 3y.N(y)AT(e,x,y). 
In that setting, the presence of Peano's Third and Fourth Axioms requires additional non-trivial 
considerations (whereas in our setting the problem is eliminated trivially by considering stan­
dardized programs). 

The converse of Theorem V was obtained by Girard as a consequence of his proof that 2A 
has the normalization property. A corollary of Theorem V is: 
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THEOREM VI (Girard) The normalization property of 2X is not provable in second order 
arithmetic. 

Proof. Let T =D/ V/?.(/? —•/?)—•(/?—• R). Fix a canonical (primitive recursive) enumeration, 
E\, £2? • • •» of the 2A-expressions of type * —• 1. Let f(n,m) = 0 / value(Enm). Suppose the 
normalization property of 2A were provable in C2A; then / were provably total in C2A, and 
therefore representable in 2A, by Theorem V. Then g(x) = 0 / 1 +/(*,*) were also representable, 
by Ek say, yielding value(Ekk) = g(k) = 1 + f(k, k) = 1 + value(Ekk), a contradiction. H 

2.4. Examples of function representations 

1. Successor. 
A straightforward derivation of N(x) —• A/(sx) shows that, for a unary relation R containing 
0 and closed under s, x 6 R and therefore sx 6 R (see Appendix 10.1). This yields the 
A-expression XrtARXsP^z*. s{nRsz\ where T = 0 / V/?. (/?—•#)—• (/?—•/?). The untyped 
form is AnAjz. ,s(n.yz), which is Church's representation of the successor function in the 
untyped A-calculus. 

An alternative derivation of N(x) —• N(sx) instantiates N(x) to the predicate Xu.R(S u). This 
derivation is mapped under K to the A-expression XncARXsR"RzR. nRs(sz), from which the 
untyped form XnXsz. ns(sz) falls out. The combinatory form of this representation of the 
successor function, BW(BB\ was discovered by Kearns [Kea70] (see [CHS72], p. 213, 
fn.6). 

2. Addition. 

Given a(x,0) = x; a(x,sy) » sa(x,)0* the formula iV(a(x,y)) can be derived from N(x) 
and #00 as follows. N(y) instantiates to Vz (/?(a(x, z)) rt(a(jc, sz))) -> fl(a(jc,0)) 
/?(a(x,y)). The premise of this formula follows from the program, yielding by detachment 
/?(a(x, 0)) J?(a(x, y)). From NQc) and a(x, 0) = JC obtain /?(a(jc, 0)), hence /?(a(x, y)). This 
derivation is mapped under K to 
XrtntARXtf*l?.mR(Xi/'.su)(nRsz\ which 77-reduces to An^yl /JA^^^.m/J^^w). The 
untyped form is Church's representation of addition, XnmXsz. ms(nsz). 

An alternative derivation 27 of N(a(x,y)) from N(x) and N(y) is detailed in Appendix 
10.2. We get KII = Xrtnt.ML(XuiARXsR~*RzR.s(uRsz))n. Here U instantiates a relational 
variable to a second order formula, so KII contains the quantified type 1 as the argument of 
a type application. The untyped form is Xnm.m(Xusz.s(usz))n, which too contains higher 
abstraction, in that the first argument of m is an abstraction term. 

3. Multiplication. 

Given a program for m, denoting multiplication, a deduction II of iV(m(x, y)) from N(x) and 
N(y) is detailed in Appendix 10.3. We have nil = XrtntARXsR-*RzR. n/?(Av*.m/?(Az/.M)v))z, 
which 77-reduces to XttntARXsR^RzR. nR(mRs)z. The untyped form is XnmXsz. n(ms)z, 
again the standard A-representation of multiplication. 
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4. Exponentiation and super-exponentiation. 
We leave the construction of these examples to the reader. The interesting point is that 
the representation obtained for exponentiation contains a type argument with — a n d 
that the representation obtained for super-exponentiation contains a type argument with 
V. These are essential: the former because exponentiation is not representable in the 
simply typed calculus (with fixed types for input and output) [Schw76, Sta79], and the 
latter because super-exponentiation is not representable in the simply typed calculus even 
allowing change of type from input to output [FL083], 

5. Ackermanris Function. 
Let it be defined by k(0, JC, y) = sx, k(sq, 0, y) = y, k(sq, sx, y) = k(<7, k(sq, x, y), y). From 
a straightforward derivation II of N(k(q,x,y) from N(q), N(x) and N(y) we get 

KII = Xfrirri.qZ (Xu*(tbi.ai(Xc>.ubc)b) (Xde\AR.XsR-*RzR.s(dRsz))mnJ 

where f = 0 / T —> (1 —• C). Note that KII contains type arguments with negative type 
quantification. This is essential, for otherwise Ackermann's function would have been 
primitive recursive, by [Lei89]. KII 77-converts to 

Xcfrirri. qi {Xu^atb1 atub)b)(Xde>ARXsR-RzR.s(dRsz))mn 

of which the untyped form is 

Xqnm. q (\uab.aubb)(\de\sz.s(dsz))mn. 

6. Predecessor, 
Given pO = 0, p(suc) = x, a deduction II of N(x) N(P(x)) is given in Appendix 10.4. 
We have, for nil in 2A+ pairing, 

KU = \rtAR\?-R£. ji(n(/? x R)(XuRXR.{J2^s(j2u))(z,z))). 

The untyped form is XnARXsz. ji(n(Au.(j2a,^(J2M))(z,z)), i.e. Kleene's representation of 

the predecessor. 

2.5- Higher order representations 

The Function Representation Theorem lifts, without change of proof, to higher order logic For 
2 < k < w, let MkL be minimal Jfc-th order logic, i.e. the generalization of M2L to *-th order 
relations and quantification over them, and let kA be the Jfc-th order fragment of GiranTs system 
Fu,, restricted to —• and V. The homomorphism K is extended to « : MkL —• kA by setting 
VX.y? =pf VX.<£, for X of any order > 2, and defining K for a derivation U ending with a V of 
order > 2 similarly to the definition for order 2. 

THEOREM IV' Let V be a program, with target t, that computes the Junction f. Let k > 2. 
If II is a derivation in MkL + V ofNl(T), then KII represents f in kA. 
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3. Programs over data systems 

We generalize the representation of natural numbers and numeric functions to representation 
of objects and functions in systems of inductively generated data types. 

3.1. Inductive data types 

The (pure applicative) types are generated by the clauses: o is a type; if a and r are types 
then so is a —> r. The orders of types are defined by order(o) =o/ 0; orderij —• a) =Df 
max(l +ordertr), order(cr)). 

Let L be a functional vocabulary, i.e. a set of identifiers, the primitives, each associated a 
type. A computation space B = B(L) is the set of canonical expressions, i.e. the closed terms 
of type o in the initial algebra over L. B is non-trivial if L has at least one identifier of type o 
and one identifier of order 1. For L = {0,s} , B(L) is the set of numerals, and is the simplest 
non-trivial computation space. L is of order k if the types of its identifiers arc all of order < k. 

Suppose L = {c i , . . . , c*} is of order 1. In a structure whose vocabulary contains L, the 
denotation of canonical expressions is defined by the formula 

DL(x) = Vfl(Ci -> C 2 • Ck -+ Rx), where 
C, = Vzi . . .z„.*(zi)-* •i?(z r)-^/?(ci(z 1)---(z r)). 

(and typeiCi) = or-+o = o^--+o-+o) 

3.2. Canonical representation in the A-calculus 

THEOREM VII (Object representation) LetL be of order 1, t € B(L). There is a unique nor­
mal M2L deduction II of the formula D^t). Thus, KII can be used as a canonical representation 
rep(t) of t in 2A. 

Moreover, if t is a closed term over the primitives ofL and the identifiers of program V, and 
II is a 0-normal derivation in M2L + V ofDiif), then V derives t -xfor some x e B(L), and 
KII = reptx). 

The representation in 2A obtained here for canonical expressions is identical to the represen­
tation defined, more directly, in [BB85], 

Examples. 

1. Booleans: L = {T :o,± :o}. Bool(x) = DL{x) = VR.R± -+ RT -> Rx. 
From the proofs of Bool(J) and Bool(±) we obtain rep(J) = ARXtf. r, and rep(±) = 
ARXtf.f. The untyped forms are Church's representations of the booleans [Bar81]. A 
similar representation is obtained for any L of order 0. 
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2. Words over a finite alphabet E can be viewed as "generalized numerals" obtained using 
the elements of E as distinct successor functions. Suppose E = {0,1}. 
Let L = {e : o, 0 : o —• o, 1 : o -> o). 

W(x) = DLQc) = ViJ. Vz.(/?(z) — /?(0z)) -+ Vz.(/?(z) fl(lz)) *(e) -+ R(x). 

If r = Si • • • s„e (s,- 6 {0,1}), and iT is the normal proof of W(t\ then 
rep(t) = «i7 = AR \s$~*R sf~*R zR. sSl • • • Ss„z. 

3. Binary trees: L = {0 : o, p : (o —• o -+ o)}. We have 

BT(x) = DL(x) = V/?. Vav.(/?(u)^/?(v)^/?(pmO) — *(*) — R(x). 

The A-representation for the canonical expressions, obtained via K, is 
rep(t) = AR\pR~*R'^ReR.~t, where 7 is r with € replaced by e and p by p. 

4. Data binary trees. One A-representation of binary trees over an alphabet E is obtained 
by taking L = {e : o, a : 0 — > o (a 6 £ ) } . For instance, a three node tree with a at 
the root, and b and c at the leaves, is represented by a(bc€)(ccc), which is mapped to the 
A-expression i l / ? A a / i ^ ^ Z / w ^ c / i ^ w ? . . . eR.a(bee)(cee). 

3.3. Representation of data types of higher order 

If L is of order > 1, then terms are generated possibly via function-denoting terms. The explicit 
definition of Di is then expressed using quantifiers over functions. 

Let M2L / be an extension of M2L with quantifiers over functions of all types, but with no 
new existence axioms (such as comprehension or definition by recursion). The only inference 
rules for quantifiers over functions are the trivial ones: 

<p VJCT. (fi 
V rI: — — (JC not free in assumptions) V TE: ( t : r) 

Clearly, M 2 l / is a conservative extension of M2L. 

For a type r, a relational variable R9 and a term t: r, define the formula R[r](t) by 

R[0](t) = R(t) 

For example, 

R[(°-o)-+o](a) = Vu°-*°.<yv°(R(v)-+R(uv))-+ R(au)). 

Given L = {ci : r u . . . , CK : r*}, we can now define 
DL(x) = V/?./? [ T l l(ci) - > * [ T 4 l(c*) - *(*)• 
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THEOREM VIII (Higher type object representation) Let t € fi(L). There is a unique normal 
M2lf deduction II t ofDL(t). Thus, Kllt is a unique representation oft in 2A. H 

Example. Words over an infinite alphabet may be generated from an infinite collection of 
unary functions. Such collection is obtained from a primitive g of type (o-+o)-+(o-+o): with 
L = {g : (o—>o)—*(o-+o), s : 0-+0, e : o}r the expressions g [ < 1s, of type 0-+0, can be used as 
distinct successor functions. We have 

DL(x) = V i ? . ( V ^ ( V a ° . ( R ( i i ) V u ° . (R(u) -+ R(gzu))) 
-+ Vu* (R(U) -> R(su)) 

Every t € B(JL) is of the form s„i • • • s„,€, where s. = g M s . If II is the normal proof of DiXf\ 
then 

rep(t) = *II=AR A ^ - « - « - V . (^[nl1^) • • • (« [ N R L 5)z. 

The representation of trees over finite alphabet can be adapted to infinite alphabets in a similar 
fashion. 

3.4. Data systems 

A data system is the setting in which inductively generated data types are used most often in 
programming, i.e. a finite collection A of data types D\. defined by (possibly) simultaneous 
induction, that is, by a finite set of clauses of the form 

Dxih) - - Dk(zk) -> D.(0, 

where each z, is a tuple of variables, and t is a term over L U z\ U . . . u Z*. The data types may 
include, for instance, natural numbers, booleans, even numbers, lists of numbers, alphanumeric 
words, finite data types, and grammatical notions. A data system A is well-parsed if, for each 
D 6 A and each t € B(L)9 D(t) can be derived by at most one sequence of closure conditions. 
For example, { Even(0); Even(x) —> Odd(sx); Odd(x) —• Even(sx) } is well-parsed, but adding 
the clause Even(x) —• Even(ssx) would yield a non-well-parsed system. 

In a well-parsed data system, if Di(t) is true then it has a unique derivation from the closure 
conditions. A data type D4- of A can be defined explicidy by 

conjunction of all defining clauses (universally quantified) 

for A (with R* replacing D t ) 

- iMx). 

The uniqueness of the direct derivation of D4(r) implies: 

17 



Proposition 3..1 Suppose A = { D j , is a well-parsed data system. For each i and t € D 4 there 
is a unique normal deduction of MIL ofD&t). 

As for data types, this proposition yields canonical representations in 2A for canonical expres­
sions. These representations are dependent on the defining clauses, and are relative to each partic­
ular data type. For example, if A is {N(0); N(x)-+N(sx)); Even(0)\ Even(x) —>Even(ssx) }, then 
ssO is represented by ARQ\sR^RzRfi^QwQ. ssz as element of N, and by ARQXsR^RzRfi^QwQ. tw 
as an element of Even. 

3.5. Representing type inheritance 

In general, type containment is not a decidable property (see Appendix IE). However, when an 
inclusion D0 C D\ is provable by a proof 77 of M2L, then «77 is a A-expression CDQ-*DX that 
converts the representation of t 6 Do with respect to Do to the representation of t with respect 
to D\: if F represents t with respect to Do then CD0—DXF represents t with respect to D\. In 
programming parlance, the expression CDQ-+D\ represents a coercion of one data type in another. 

3.6. Function Representation 

THEOREM IX (Function Representation) Let V be a program over a data system A, with 
target f, that computes f :or —• o. If II is an M2L + V derivation of 

Vri . . . * . ( Dx(xx) - • • • Dr(xr) - D0(K*))), 
then «77 represents in 2A the restriction off to D\ x • • • x Dr: ifEi: D± X-represents a, 6 D„ 
modulo the canonical X-representation of D, (i = 1 , . . . , r), then (KII)E\ • • • Er X-represents 
fa\...ar 6 Do, modulo the canonical X-representation of Do. 

Proof. Similar to Theorem IV. H 

Examples 

1. Negation. Let V be the program n e g ( T ) = ±;neg(±) = T . Then a normal II deriv­
ing Bool(x) —• Bool(neg(x)) uses instantiation of the relational quantifier in Bool(x) to 
Xu.R(neg(u)). We obtain r*p(neg) = *77 = Xx? ARXfif .xRfu where 0 = V/?.tf -> R -+ 
R. 

2. Conjunction. Let V be the program conj(T)Oc) = x\ conj(±)(x) = ± . A straightforward 
normal deduction 77 of Bool(x) -* Booliy) -> Soo/(conj(x)(y)) yields 
*77 = XxpypARXtRfR. xR(yRtf)f. Note that this cannot be obtained if the program for 
conj consists of the four equations c o n j ( T ) ( T ) = T ; conj ( T ) ( J_ ) = ±; conj ( JL ) ( T ) = 
± ; conj(X)(J.) = ± . The straightforward normal deduction 77 of Bool(x) —• Booliy) 
5oo/(conjU)(y)) using the latter program yields «77 = XxPfARXfif.xRiyRtftiyRff). 
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3. Concatenation. Consider the representation in §3.2 of words over the alphabet {0,1}. 
Define the concatenation function by cat(e.y) = y, cat(0x,y) = 0(cat(x, y)), cat(Lc,y) = 
l(cat(x, y)). If 27 is the straightforward proof of W(x) W(y) -> W(c*t(x, y)), then *27 
gives the representation \xTyTARXuR-RvR-ReR. xRuv(yRuve), where r =Df (/?—•/?)—• 
(/?—•/?)—•/?—•/?. This expression is the standard A-representation of the pairing function. 
Note the similarity to the representation of addition for the numerals. 

3.7, Generic types and functions 

A data type can be parameterized by an unspecified base type, as in pairs of Q's, which is 
defined by 

PairQ(x) = V2?.Vu,v.(2(w) -+ Q(v) - R(puv)) -> R{x). 

There can be no closed proof of a formula Pg(r), but there is a trivial derivation 27 of PcCpr^) 
from the open assumptions Q(t\) and Q(h). We have «27 = AR.XcQ~~*Q'-Rcxi?x$, where X\ and 
x2 are free variables, corresponding to the assumptions Q(t\) and Q(h). Note that neither 27 nor 
/c27 can be closed with respect to Q, because they have free variables of type Q. 

Similarly, the type of lists of Q's is defined by 

ListQ{x) = Vfl.Vw, v.(Q(u) R(v) -> R(puv)) -+ R(e) R(x). 

Let 27 be the straightforward derivation of ListQ((t\... tn)) from the open assumptions Q{t\),..., Q(f„) 
(where (t\...tn) = pri(p (pr„£)• • •)). Then /c27 = A/?.Ac c ^^V.cx?(ctf(• • • cx£e), where 
x\...xi are free variables. 

THEOREM IX* Let V be a program over a data system A , with target f, that computes 
f: or -> o. Suppose U is an M2L + V derivation of 

Vxx...xr.Dx(xx)-+--Dr(xr) - Doffl)), 

where some of the Di's above are parameterized by relational variables, say by Q. Then KU is 
an expression of IX, with Q a free type variable, such that, for any data type D, ifEt: D&D/Q] 
X-represents a, € Di[D/Q], modulo the canonical X-representation ofDi[D/Q] (i = l , . . . , r ) , 
then (KII)ID/Q]E\ - Er X-represents fax...ar 6 DQ[D/Q], modulo the canonical A-
representation of DQ[D/Q]. 

Example. For ListQ define the function cat by cat(e, z) = z, cat(p(;t, y), z) = p(x, cat(y, z)). 
If 27 is the straightforward proof of ListQ(x) -> ListQiy) -* Ltog(cat(x,)0)t then nil gives 
the representation XxTyrARXuQ^R^ReR.xR(XvQwR.uvw)(yRue) for the generic concatenation 
function, where r =Df V/?. (Q —• /? —• i?) —• /? —• R. 
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4. Representa t ion of recurs ive order 2 funct ionals 

4.1. Recursive functionals 

We refer to Kleene's recursive functionals [Kle59]. Kechris and Moschovakis [KM77] gave 
an equivalent definition, less dependent on coding. Their approach was developed by Kolaitis 
[Kol85], who eliminated coding altogether, showing that Kleene's notion is equivalent to a purely 
applicative notion of recursive functionals. This is summarized in Appendix I below. 

We consider functionals of types whose order is < 2, and focus on the simplest type of order 
2, o. Let JV*(F) =of V*. Nl(g) - N(Fg). 

THEOREM X Let V be an order 2 program, with target F. The following are equivalent: 

1. V is total for total arguments: if g is a total numeric function, then V converges on input 

2. V |s N^F) with respect to standard second order quantification. 

Proof. The proof is similar to the proof of Theorem I. H 

4.2. Provably recursive functionals 

For a formalism S, let be S augmented with the trivial rules of §3.3 for function quantification. 
Let P be Kleene's T predicate, modified to code computation with partial functions as input: 
T* (e, 8>y) asserts that y codes a completed computation of the program coded by e, where the 
input function variable is evaluated as g. P is primitive recursive in its arguments. 

THEOREM XI Let V be a standardized order 2 program, with target F, that computes the 
numeric functional F, say of type (o-> o)-> o. The following are equivalent. 

1. The program V is provably total in C2AF: 

2. 

3. 

4. 

V is provably total in 12PJ. 

V is provably total in L2LF : 

V is provably total in M 2 l / 

V\-l2l/NHF). 
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5. V is provably total in C2Lf. 

Proof. Similar to the proof of Theorem II. H 

4.3. Functional representation theorem 

We refer to a strong notion of functional representability in A calculi. To keep notation unclut­
tered, we give the definition for numeric functionals of type (o —• o) —• o. 

Let g be a partial function from numbers to numbers, x a fixed A-variable of type I —• T. 
Define a notion of A-computability with oracle g, as follows. For 2A expressions £,£' , we write 
E E! if, for some n for which g is defined, £' comes from replacing in £ a subexpression 
of the form xn by Jn (m is the m'th Fortune-O'Donnell numeral). The relation =^ t ^/ x j is the 
joint reflexive, symmetric and transitive closure of /?-reductions and ^ / x i -

An expression Ax*~*\£* represents the numeric functional F : (o -» o) —• 0, if for every 
partial function g from numbers to numbers, F(g) = z iff £ =/?t[^/x] z. In particular, if G : 1 -* i 
A-represents the function g, then (AJC.£)G F ( g ) . 

THEOREM XII (Numeric Functional Representation) Let V be an order 2 program, with 
target F, that computes the functional F of type (o —• o) —» o. If II is an M2L + V derivation 
(9/A^(F), then nil represents F in 2A. 

Proof. The proof is similar to the proof of Theorem IV, using Theorem XI. H 

Combining this with Theorem XI we have 

THEOREM XIH All the provably total computable functionals of classical second order arith­
metic are representable in 2A. 

As for functions of order 1, Theorem XII can be used to derive A representations of various 
functionals. Also, the discussion of generic functions can be generalized to generic functionals of 
any finite order. Generic functionals of order 2 play an important role in functional programming; 
an example is the functional map satisfying map(/\(JCI . . .x r )) = (fx\...fxr). I.e., map is 
defined by the program map(/\ e) = c; map(/, cons(x,y)) = consifx, map(/*,y)). 
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5. Contraction to programs for generative axiomatizations 

In this section we apply our main method to generative axiomatizations of data types, such 
as Peano's formalism for the natural numbers. Here the co-domain of the proof-to-program 
homomorphism is no longer a pure A-calculus. However, proofs and programs are far shorter 
and more readable than the analogous proofs and programs in pure second order logic and pure 
A-calculi. 

5*1. Generative axiomatizations of the natural numbers 

The generative style is the simplest and most easy-to-use formalization style for reasoning 
about inductively generated data types. It is illustrated by Peano's original axiomatization of 
Arithmetic, using a primitive constant N. This consists of two main groups. 

1. The generative axioms, N(0) and Vx.N(x)—>N(sx); 

2. The principle of Induction: Vx.N(x) VR.Closed[R] -» R(x), where Closed[R] 
/?(0) A Vx.R(x) —• R(sx). In the absence of set quantification, the induction axiom is 
replaced by the induction schema (for C), Vx.N(x) —• Closed{\x.y] —• <p[x], where 9 
ranges over a class C of formulas. 

The two closure conditions for N guarantee that N contains the denotation of all numerals. 
Induction forces the extension of N to be the minimal set closed under these conditions, at least 
with respect to definable sets. (Peano's third and fourth axioms enforce inequality between all 
numerals; we return to this in the next subsection.) 

The second order generative axiomatization of N, M2LP (P for Peano), differs from (Minimal) 
Second Order Arithmetic in using N explicitly (variables are intended to range over possibly 
non-numeric objects), and in not having Peano's third and fourth axioms. A first order variant 
M1LP of M2LP is obtained by replacing the Induction Axiom by the induction schema for all 
first order formulas in the language. C2LP and C1LP are the classical variants of M2LP and 
M1LP. 

THEOREM IT Let V be a standardized program, with target t, that computes a numeric 
function/. The conditions of Theorem II are also equivalent to: 

6. NL(T) is provable in M2LP + V. 

7. NL(F) is provable in C2LP + V. 

THEOREM XIV Let V and % be as above. The following conditions are equivalent: 

(i) V is provably total in Peano Arithmetic based on Minimal Logic. 
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(ii) V is provably total in (classical) Peano Arithmetic. 

(iii) V is provably total in the classical variant C1LP o/MILP, i.e., V H C 2 L P Nl(f). 

(iv) V is provably total in M1LP. 

Proof. Analogous to the proof of Theorem II. H 

5.2. Generative axiomatizations in general 

The paradigm of Peano's axiomatization applies to any data system A. Relational identifiers are 
used to denote the data types, and two groups of axioms define them implicitly: 

1. The generative axioms, consisting of the data type's closure conditions formulated for the 
data identifiers; 

2. For each data type, an induction principle. For instance, if the data types are D\ and D 2 , 
both unary say, with closure condition ClosedlDi^Dz], then the induction axiom for D\ is 
\/RuR2.Closed[RuR2] — Vx.Dx[x] — Rx(x). 

We write M2LD and MILD for the extensions of M2L and MIL as above (the induction axioms 
being formulated as schemas in MILD). 

One may add a third group of separation axioms, modeled after Peano's Third and Fourth 
Axioms, and implying that all canonical expressions have distinct values (or they all have 
identical value, if the Fourth Axiom is formulated as Vx.(sx = 0 —» s0 = 0), or as Vx.(sx = 
0 —• VXJC = 0)). In §2.2 we observed that these axioms may be replaced by the definition 
of the predecessor function. For arbitrary B = B(L), the third group can be dispensed with in 
the presence of equations for destructor functions for the function primitives: for each c € L 
define functions i, (1 = 1 . . . arity(c)) by t,-(c(xi,... ,xr)) = x„ ii(cf(z)) = d(z) (c7 ^ c, arity(z) = 
arity(cf)). This suffices if there is at most one c G L of arity 0. Otherwise, we add defining 
equations also for a discriminator function i, for each constant primitive c € L: 6(c, x) = c, 
i ( c , ( z ) , x ) ) = x f o r c / € L , c , ^ c . 

Generative axiomatizations are of interest even for trivial data types, such as the booleans: 
for L = {J., T } (arity(±) = arity(T) = 0), the generative axioms are B(±) and B(T), and the 
induction principle is VR.R(±) -+ R(T) Vx.5(x) -> R(x). 

S3. Reductions and normalization for generative axiomatizations 

Prawitz [Pra65,Pra71] defined induction-reductions on natural deductions for first order arith­
metic, which reduce the complexity of the eigen-term of induction, if that term is 0 or a successor 
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term. Using the abbreviation CS[y>] =Df Vz.y[z] y>[sz], the reductions are: 

Induction 
N(0) - + CS[<p] -* tp[0] - » y?[0] N(0) 

CS[<p] - VP[0] -» V [ 0 ] 
6>, 

C 5 [ y ] 

V[0] - *>[0] 
02 

<p[0] A

 & i reduces to 
<p[0] <f[0] 

and 

Induction 
N(st) - » CS[y] - » y [ 0 ] - > y [ s f ] 

Vz. Af(z) W(sz) @3  

iV(0 -> JV(s?) W) 
N(st) 

CS[<p] - V [ 0 ] - rtsr] 1  

CS[<p] 

V[0] - v?[sr] 

V[sr] 

&2 

¥>[0] 

reduces to 

Induction @3 
J V ( » - C 5 M - > v > [ 0 1 - > y M iV(g) 

v>[0] - > y[r]  
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The definition of similar reductions for arbitrary data types is straightforward. Also, the proofs 
in [Pra65,Pra71] readily generalize to establish: 

THEOREM XV For each data type D, the calculi M2LD MILD have the strong normalization 
property (with respect to the reductions of MIL plus the ones stipulated above for these calculi). 

H 

5.4. The deduct ion-as-program homomorphism for generative proofs 

We wish to extend the homomorphism K of §1 to a mapping from derivations of M2LP to 
expressions of an extended A-calculus. Let 2AP be 2A modified as follows. 

1. The type structure is augmented with a type constant N. 

2. The formation rules for expressions are supplemented with three constant expressions: 0, 
of type s, of type N W; and R, of type N -> WR.(R -+ R) R R. (The latter is a 
polymorphic recursor operator). 

3. The reduction operations are augmented with the reductions 

R0rE r""TF r reduces to F 
R ( s G / v ) r ^ r F r reduces to E(RGTEF) 

The mapping <p £ is extended by the clause N(t) =/>/ N. K is extended to 
K : M2LP -> 2AP, as follows. 

• If II is the derivation consisting of the single axiom N(0), then KJJ = D F 0; 

• If II consists of the single axiom Vx.#(x) —• *V(sx), then nil =D/ S; 

• If II consists of the Induction Axiom, 

VxiV(x) V/?(Vw.(/?(u)-^/?(su)) R(0) -+ R(x)), 

then KII =/y R. 

One easily verifies that this extended mapping * maps induction reductions in M2LP to recursion 
reductions in 2AP. 

1AP is defined like 2AP, except that, in place of R, there is for each type r a constant RT, 
of type N -* (r —• r) —• r —• r, and the reductions are augmented with 

R T 0 E T ^ r F r reduces to F 
R T ( sG A / )£ r ^ r F r reduces to E(RRGEF) 
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A mapping K : M1LP — • 1AP is now defined as for the second order formalisms M2LP and 
2AP above, except that an instance of induction, with eigen-formula 9 , is mapped to the recursor 
operator R v . The Function Representation Theorem between these formalisms is derived as for 

the pairs [M2L / 2A] and [M2LP / 2AP]. 

More generally, let 2AD be 2A modified as follows. 

1. The type structure is extended with a type constant D. 

2. The formation rules for expressions are supplemented with constant expressions c, of 
type D —• D —• • • • —• D (r,- + 1 occurrences), for i = 1 . . . k, and a constant R, of type 
D-»\/R.R\ —• • • • Rk-+R, where R< =Df / ? — • / ? - • • - • / ? (n? + 1 occurrences). 

3. The reduction operations are supplemented with k reduction rules, of which the Vth recurse 
over expressions c , £ i . . . E n . 

IAD is defined analogously to 1AP. The homomorphism K is extended as before, 
to K : M2LD -> 2XD and K : MILD -> IAD. 

5.5. Generative proofs as programs 

The object representation obtained from the extended mappings K is trivial: for a numeral 
k = s w 0 , the unique normal proof of the formula N(k) is obtained by k applications of Peano's 
Second Axiom, \fz.N(z) —• N(sz)9 suitably instantiated, to the axiom N(0). K maps this derivation 
simply to the expression s w 0 itself! Similarly, the representation of a canonical expression t of 
any functional vocabulary is t itself. 

The Function Representation Theorem holds as for M2L and 2A, and it leads to representations 
in 2AP which use the recursor operator R extensively, permitting substantial economy in the 
size of the typed programs obtained, and in their computation time requirements. For instance, 
the function minOc.y) can be defined by recursion of type 2 so that the execution time is the size 
of the smaller argument [ C 0 I 8 8 ] . The reformulation of * for generative axiomatizations of data 
types has also the advantage of being applicable to first order formalisms. 

The functions defined in the A-calculus expanded with 0, s and R r (for all r) , are the functions 
defined by primitive recursion in all finite types [G6d58]. The Function Representation Theorem 
for K : M1LP — • 1AP therefore implies: 

THEOREM XVI (Godel [G6d58]) Every provably recursive function of Peano Arithmetic is 
defined by primitive recursion in finite types. 

Proof. Suppose a program V for / is provably total in Peano Arithmetic. By Theorem XIV there 
is a derivation 77 of Nl(t) in M1LP + V. Then KII is an expression of 1AP, which represents 
/ . That is, / is primitive recursive in finite type. H 
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The converse of the theorem above also holds [G6d58]. One proof uses the provability in 
Peano's Arithmetic, for each bound b9 of the normalization theorem for terms of 1AP of types 
of order < b. 

In addition to its simplicity, the proof above of Godel's Theorem permits us to view the 
deduction of totality of/, in a natural formalism, as itself being an annotated primitive recursive 
program for / . Also, the proof permits an immediate generalization of the theorem. Taking in 
place of the natural numbers an arbitrary data type D, we obtain 

THEOREM XVII Let D be a data type. The functions provably total in C1LD are precisely 
the functions definable in IAD, i.e. the D-primitive recursive functions in all finite types. H 
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6 . I N D U C T I V E A X I O M A T I Z A T I O N S 

6.1. Inductive definitions 

A master method for generating sets predicatively is first order positive inductive definitions (see 
e.g. [Mos74, Acz77]). Suppose $ is a positive first order operator: $R = \u.<f[R](u), where 
arity(R) = arity(u), and <p is first order, with no negative occurrences of R. Then $ is monotone: 
R C Q implies <?/? C $Q. The chain & =of ^ ( U ^ ^ 7 1 ) (f an ordinal) is non-decreasing, since 
# is monotone, and therefore reaches a fixpoint, denoted =' iiR.\u.y>. The monotonicity 
also easily implies that the resulting fixpoint is minimal, i.e. contained in every fixpoint of 
The fixpoint fiR.$ is explicitly defined by 

VR.($RCR ->/?(*)), 

where 
(&RCR) = Vu.<p[R]-* R{u): 

We say that <p is well-parsed if for every tuple 1 of closed terms (with arity(t) = arity(R)\ 
there is at most one normal M2L deduction (up to renaming of variables) of (jiR.$)(t\. 

For a well-parsed inductive definition, we obtain a canonical representation of in 2A: 
if 11} is a proof of (jjLR.$){t]9 then /ci7? will represent r as an element of nR.$. Given this object 
representation, one obtains function representations as for generative definitions. 

In particular, this implies an alternative representation of inductively generated data types, 
and — more generally — of data systems. Suppose a data system {D,}^...* is generated by 
closure conditions Ca . . . (i = 1 . . . it). The data types are then the minimal solutions of a set 
of simultaneous equivalences of the form 

Di(x) = condi\ V • • • V condirn 

where, if say Q = Dx(u) A D2(y) D,(f(K, v)), then condij = 3u, v. Dx(u) A £>2(v) A x = f(w, v). 

Lemma 6 - 1 If a data system is well-parsed (in the sense of §3.4), then its inductive definition 

is well-parsed. H 

In particular, the set of the natural numbers can be defined as the inductive closure of 

x = 0 V 3y. (R(y) A x = sy). 

Using Prawitz's definition of the existential quantifier in terms of -+ and V [Pra65], we have 

JC = 0 V 3 Y . (R(y)Ax = sy) «-> 3y. (R(y)Ax = sy. V x = 0 ) 

~ VQ(Vy. ((R(y) A x = sy V = 0 ) - + Q(x)) -> Q(x)) 
~ V(2(Vy. (/?(y) -* Q(sy)) -> (2(0) -> Q(x)) 
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An explicit inductive definition of the natural numbers is therefore 

M(x) = V/?(Vu(VQ(Vy. (R(y) -> Q(sy)) - 2(0) -> Q(u)) - /?(*)) -> /?(*)). 

Lemma 6..2 For natural numbers k, there is a unique normal M2L derivation II k ofM(k). 

The k'th pure inductive numeral, k, fall out as the image under K of 77*. Explicidy, 

0 = 0 / Afl.Af.O*,, : V/?.<r[/?]/? 

* T l =£>/ yy?.A.7.(*-hl)^ : V/?.*[/?]-> /?, 

where 

= D / ( V G . ( / ? ^ G ) - G ^ 0 - / ? 
0*,< - iy ^(yiQ.A^CzG.z) : /? 

Pure inductive numerals, and similar representations of data types, can be used as basis for 
function representation, but they do not seem to have, in and by themselves, any advantage over 
the more direct representation of data types. However, when inductive definitions are used as 
a basis for axiomatization of data types, useful forms of object and function representations do 
emerge. 

6.2. Inductive Axiomatizations 

The salient properties of D s IJLR.$ are the closure property, $D C D, and the minimality 
property: for every relation R of the proper arity, if $R C RY then DCR. 

Converting generative axiomatizations into inductive axiomatizations is a trivial change of 
notation. However, the combinatorics of proofs changes, resulting in different A-representations. 
For the same reason, distinctions between logically equivalent forms of closure and minimality 
are also of interest. 

Closure can be stated either as an axiom, 

Closure(D): $D C D, 
i.e., VJc^[D](Jc) - D(x\ 
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or as an inference rule, 

DO) 

A straightforward induction axiom is 

Induction^): VR.&RCR -> D C / ? , 
i.e., VR.((\u.v[R] C R) -> Vx.D(Jc) *(*))). 

A first order Induction Schema for D is defined similarly. 

The minimality of D can be proved from Induction(D) using the monotonicity of A 
statement of induction with a built-in monotonicity condition, akin to the one in [Mcn87], is 

M-Induction(D): VX. (V7. (Y C X - <P7 C X) — • D C X). 

The converse of the closure principle is derivable from either form of induction. However, it is 
also useful to consider that converse separately, as a Co-Closure Rule: 

This rule is strictly weaker than the induction axioms above, since it is consistent with the 
interpretation of D as any fixpoint of not necessarily the minimal one. 

Let M2LI (I for "inductive") be the extension of M2L with the FI operator for positive 
formulas in the language, with the Closure Axiom (or Closure Rule), and with the M-Induction 
Axiom, for all fixpoints D. M2LJ is the variant of M2LI using Induction rather than M-
Induction. M1LJ is like M2LJ, but with the Induction Schema rather than the Induction 
Induction. 
Axiom A x i o m . 

Let M2L/J be like M2LI, but with the Co-Closure Rule in place of induction. The variant of 
M2L/x based on classical logic is similar to the "first order programming logic" of Cartwright 
[Car84], who reports his experience that most of the interesting facts about recursive programs 
are provable therein, that is, without the full power of induction! 

63. Reductions and normalization 

Since closure for D and induction for D can be viewed as D-introduction and D-elimination 
rules, it is natural to define closure-reductions that eliminate instances of Closure followed by 
M-Induction or Induction. Let v?, # and R be as above. 

Given 
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© 2 

0\ <?£>(?) 

N = D - X D ( T ) 

where x abbreviates A « . x , and 

M-Induction Q\ 
n> - V/?.(/? C x - » ^ C X ) -> D QX VR.(R C X - » C x ) _ _ 

the Closure Reduction for M2LI maps i7 to 

VR.(R Q X 

DQX -

<?D C x 

+ c x ) 

$D C x 

x f l 

© 2 

$D(T) 

Closure Reductions for M2LJ are defined as follows. Recall that # = Au.< [̂/?] is positive in 
R. Let E*[Q, S] be the straightforward derivation of $Q C $ 5 from QQS, defined by induction 
on <P. The least trivial case of that induction is for TP of the form NP.IP[R, P]. By induction 
assumption, there is a derivation leading from the assumption Q C S to IP[Q,(IP.RJ>[S,P]] C 
t/>[5, (IP.RL>[S, P]]. By Closure the latter is C NP.IP[S, P]. By Induction this implies FIPMQ, P] Q 
NP.RI>[S,P). 

Vtf(*fl C R - D C R) 0 i 

$ x £ x — DQX $ x Q X 

Now, given 

N = 

where 

0 ; = 
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we let II reduce to 

D C X 

xCil 

Closure Reductions for M2L/i are defined trivially. 

THEOREM XVIII The calculi M2LI, M2LJ, M1LJ, and M2L^ all have the strong normal­
ization property with respect to the reductions <?/M2L and the corresponding variants of Closure 
Reduction. H 

A proof can be modeled after [Men87], where a strong normalization theorem for a A-calculus 
analogous to M2LJ is proved, using Girard's method [Gir72]. (The argument is also outlined 
in [Kri87].) 

6.4. The contraction homomorphism for inductive formalisms 

We now adapt the homomorphism « to the formalisms above for positive inductive definitions. 

6.4.1. A-expressions for M2LI 

Let 2AI be 2A modified as follows. (The system 2AI is akin to the fixpoint formalism of 

[Men87].) 

1. The type structure is extended with a fixpoint operator if r is a type where type variable 
R has no free negative occurrences, then IMR.T is a type. We write r[cr] for r[<r/R]; in 
particular, r[R] = r. 

2. The formation rules for expressions are supplemented with constants: For each type 6 = 
HR.T[R], a closure constant C*, of type r[6] 6, and an induction constant I*, of type 
Vfi.(W.(CK -> Q) -> r[R] -+Q)-+6-+Q). 

3. The reductions are supplemented with Closure Reduction: for arbitrary type <T, and 
expressions E : VR.((R - X J ) - * T[R] -> <r\ and F : r[S]9 

heE(CF) reduces to E6(h<rE)F 
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The definition of <p >-+ <p is augmented by the clause iiR.Xu.p =Df pR-tp. A homomorphism 
K : M2LI —• 2AI, extending the homomorphism K : M2L —> 2A, is defined by assigning 
to the closure axiom for D = nR.Xu.v, and IM/?.<, to the M-Induction axiom for ZX 

Lemma 6..3 * maps closure reductions o/M2LI to closure reductions of 2XL H 

6.4.2. A-expressions for M2LJ 

The formalism 2AJ is defined like 2AI, with two changes. First, for each 6 = fiR.r, in place 
of a constant I* we have a constant J$, of type VR.((R —• r[R]) —• S —• R). Then, the closure 
reductions of 2AJ are modified accordingly. We need expressions X*,^, that correspond to 
the derivations E*[Q,S] used in §6.3 to formulate closure reductions for M2LJ, Le. such that 
KE<P[A,B] = XQA,B. We define these expressions explicitly. Fix a type variable R. For n in 
which R occurs only positively, we define X ^ Q ^ of type (a - • /? )—• n[a/R] —• n[0/R). To 
proceed inductively, we define these expressions together with dual expressions X^p* of type 
(a —• /?) —•!/[/?] -» ^[a], for i/ in which R occurs only negatively. 

= 0 / \X*~0.X 

Xp,a,0 — Xp,a,0 = 0 / Xx**0/. y (P other than R) 

Xv—*,a,0 = 0 / 

X*—u,a,0 = 0 / \jf-0y*V^WZ

lrM.Xv,a,0X(y<X*,a,0XZ)) 

Xvr.*,a,0 -Of AP.X^cp 

XvP.v,a,0 =Df AP. %v,a,0 
=Df 

X»P.i>Vif],Cij3 'Of ^Jf—PyJ>.v[0f] 

Closure reductions for M2LJ are now defined as follows. For type a, and expressions E : 
r[cr] -» a and F : r[£], let 

JsaE(!CsF) reduce to E(XT4,„(JT<7E)F). 

A homomorphism « : M2LJ - • 2AJ is defined as for M2LI and 2AI. 

Lemma 6..4 K maps closure reductions of M2LJ to closure reductions oflXJ. H 

6.4.3. Closure-free A-expressions 

The meaning of 6 = HR.T is conveyed in the calculi above partly by the type-changing constant 
CT. One can instead consider the types 6 and T[6] as interchangeable, and dispense with C*. 
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Let 2A/i be 2A modified as follows. 

1. The type structure is extended with a fixpoint operator, as for 2AI. 

2. The type-correctness of functional application is liberalized: Let the relation =M between 
types be the symmetric and transitive closure of substituting r[6] for 6 in types (where 
6 = fj,R.r). If E : a —• p, and F : a\ where a =M a', then £F is a correctly typed expression, 
of type p. 

A homomorphism K : M2L^ —• 2A^, is defined by extending K : M2L —• 2A. Here, if J7 
is a derivation of <p, then KII is of a type =M <£. The additional clause is: if U is IIQ extended 
with an instance of the Closure Rule or the Co-Closure rule, then KII =D/ * # O -

Let 2AI~ be the following extension of 2A^. 

1. For each 6 = fj,R.r there is an induction constant Is, as for 2AI (no closure constants). 

2. The reductions are supplemented with Closure Reductions: for arbitrary type o, expression 
£, of type V/?.((/? —> cr) —• r[R] - * <J), and expression F, of type r[£] =M 6, 

IscrEF reduces to £<5(I*cr£)F. 

(I.e., the reductions of 2AI, but with the constant C$ dropped.) 

2AI~ differs from 2AI in that the Closure constant is no longer needed once each type r[S] 
(where 6 = /i/?.r) is identified with 6. The calculus 2AJ~ is a similar modification of 2 A J. 

A homomorphism «, from derivations of M2LI (formulated with the Closure Rule) to ex­
pressions of 2AI", is defined by extending K : M2L -> 2A. The two additional clauses are: 
IhRap is assigned to the M-Induction axiom for D; and if i l is iTo extended with an instance of 
the Closure Rule, then KII =jy KIIQ. A homomorphism * : M2LJ 2AJ~ is defined similarly. 

Lemma 6..5 K maps closure reductions of M2LI to closure reductions of 2AI", and closure 
reductions of M2LJ are mapped to closure reductions of 2AJ". H 

6.5. Representation of numerals 

Given the inductive definition of N in §6.1, the Closure Axiom for N, Closure(N), is 

VQ(Vy. (N(y) - Q(sy)) — (2(0) -> Q(x)) - N(x). 

Lemma 6..6 For natural numbers k, dure is a unique normal derivation II* ofN(k) in M2LI 
and in M2LJ. IIk is in fact a derivation in M2L + Closure(N) (i.e. no induction axiom is used). 
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(Note that the derivation IIK here is different from the derivation IIK of Lemma 6..2.) 

We now define the k'th inductive numerals, as the image under « : M2L^ 2Ajx of II\ (we 
use the same notation as for the pure inductive numerals above, but we have no further use for 
the latter). 

0 = D / AQXsN-QzQ.z, 

Disregarding types, these are 

0 =o/ \sz. z 
k + 1 =o/ Xsz. sk 

Again we have function representation theorems, with respect to inductive numerals, for each 
one of the homomorphisms /c : M2L/i -* 2A/i, K : M2LI" —• 2AI", and /c : M2LJ" —• 
2AJ-. 

THEOREM XIX The functions representable in 2X1" and 2AJ", with respect to the inductive 
numerals, are precisely the provably recursive functions of second order arithmetic. 

The functions representable in 2A/i are precisely the functions provably recursive in Second 
Order Arithmetic, with Induction replaced by the weaker axiom Vx.(x = 0 V 3y.x • sy). 

The inductive numerals were discovered by Michel Parigot [Par88,Par89]. Their major advan­
tage is that they enable a representation of the predecessor function, AJC^.X/V/0, where / =*>/ XiF.u, 
which is computable, by ^-reductions, in constant time. This expression is the image, under 
K : M2L^ —• 2Aji, of the derivation 

[NQc)] [N(z)] [*<0)] 
VG.(Vz(N(z) - G(sz)) - (2(0) - Q(x)) <V(psz) *(P°> 
Vz(Af(z) - Njpsz)) -+ Q(pO) -+ Q(px)) Vz.(iV(z) -+ JV(psz)) / ? ( 0 ) ~> R ^ 0 ) 

N(pO) - N(px) V*-CV(z) - *(sz)) -> *(0) - *(pO) 
iV(pO) 

N(px) 
N(x)^N(px) 

This ease of representing the predecessor is due to the "cumulative" nature of the inductive 
numerals, in the sense that they contain all previous numerals as (easily extractable) subex­
pressions. This is similar to von Neumann's numerals in Set Theory (a numeral is the set of 
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smaller numerals), and to Scott's numerals in the A-calculus, for which the existence of an easy 
representation of the predecessor is well known [Sco63,Bar81,§6.2.9]. Scott's numerals can be 
typed by recursive types, like the inductive numerals. 

Inductive numerals can be alternatively perceived as the fixpoint of an attempt to define 
numerals stronger than Church's, to permit an easy representation of the predecessor function. 
Proving N(x) —* N(px) for the predecessor function p is easily reduced to proving Vz.N(pz) —• 
N(psz). Since for z G N the implication is trivial, one is tempted to define 

N0(x) =Df VR.Vz.MZ) - * («) ) -> *(0) -> R(x). 

(No is equivalent in M2L to N.) The proof of NQ(Z) —• N(pz) is easy, so one would like to have 
No = N, leading to the fixpoint definition for N (in its second order form!). 

6.6. Inductive representation of data types and of destructors 

Not surprisingly, the development above for natural numbers generalizes straightforwardly to 
arbitrary data types and data systems. An inductive representation rep(t) of data objects t € B(L) 
is obtained analogously to the inductive numerals, i.e. rep(t) contains as subexpressions the 
representation of the subexpressions of t. 

From this one readily obtains representations of the destructor and discriminator functions 
for B(L) (cf. §5.2), each of which is computable in a constant number of steps. 
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7 . CONTROLLED ABSTRACTION 

The functions whose representation is obtained from the homomorphism K : M2L —• 2A 
constitute a vast class, the provably recursive functions of second order arithmetic. We survey 
in this section restricted forms of M2L and of 2A, to which correspond more restricted classes 
of computable functions. §§7.1 and 7.2 deal with restrictions whose effect fails to be drastic. In 
§7.3 we consider predicative variants of these formalisms, for which the corresponding classes 
of functions are far more feasibly computable. 

7.1. Restricted nesting of quantification 

Quantifier alternation underlies several important descriptive hierarchies, such as the arithmetical, 
analytic, and first order query hierarchies [Kle55,CH82]. In M2L and 2A, existential quantifica­
tion is replaced by negative occurrences of universal quantification. We thus define the following 
classes of 2A types. EQ and IIQ consist of the quantifier free types. If a € EM and TT e iT„, then 
(a - > TT) 6 IIn; (TT - + a) 6 EN\ <J,TT € n and Q/R.a) G i7„+i. A formula <p is EM 

(respectively, i7„) if the type <£ is EH (respectively, i7„). 

Let M2L* be M2L with comprehension restricted to Ilk relations, and similarly for C2L. 
Let 2A* be 2A where type arguments are restricted to be in il*. Then K maps proofs of M2L* 
to expressions of 2A*. This classification of second order formulas has a simple relation to the 
analytical hierarchy: every II\ relation is expressible as \/R3x. (N(x) A Vy.N(y) —• xj;[x, y]), 
where 0 is a first order formula of arithmetic (two number quantifiers are needed because the 
second order variable is relational). The latter formula is in More generally, every U\ 
relation is expressible by a IIM formula of pure second order logic. 

THEOREM XX Let V be a program, with target f, that computes a numeric function f. If II 
is an M2L*+'P derivation ofNl(T), then nil represents f in 2A*+i, Hence, every provably total 
computable functions <?/C2A* is representable in 2\k+\-

Proof. Similar to the proof of Theorem IV. H 

7.2. Closed comprehension and stationary types 

Among the difficulties of implementing programming languages with a full type quantification 
discipline is the potential proliferation of types, preventing effective predication of types at 
compile time1. This problem can be bypassed by restricting the allowable type arguments. 
Call a A expression stationary if all type arguments therein are type variables or closed type 

1 In some programming languages, such as ALPHARD [WLS76], the restriction is to explicitly disallow procedure 
definitions that would not permit prediction at compile time of all potential types in execution. 
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expressions. If £ is stationary, then no expression to which E reduces contains a type argument 

not in E [FL083]. 
For a formalism S, let Se be S denote the restriction of S where Comprehension and Induction 

(where present) are allowed only for eigen formulas without free relational variables. 

Lemma 7..1 [Fri81] Let <p be a formula of first order arithmetic. If<p is a theorem of C2 A, 

then <p is a theorem of C2AC. 

From this we obtain: 

THEOREM XXI [Lei81] Every function f provably total in C2A is representable in the sta­
tionary fragment of IX. Hence, the normalization property of the stationary fragment of IX is 
not provable in Second Order Arithmetic. 

Proof. Suppose Hc2A Vx3yT(2?,jc,y). By Lemma 7:. 1 this implies Hc2A* Vx3y.T(2p,x,y). As 
in the proof of Theorem n, we obtain I~M2Ac Vr3y.r(2?,x,y) t from which also t-mu+v # ! (0« 
If II is an M2U+V derivation of .Vl(f), then /ciT is a stationary expression of 2A that represents 

7.3. Predicative second order calculi 

The impredicative nature of comprehension is bypassed in stratified higher order logic, where 
relations are classified into levels. Fixing an ordinal Q, the levels are the ordinals -< 0. For 
each level a there are relational variables of level a. The level of a formula <p is the largest of 
leveliR) for R free in <p and 1 + level(R) for R bound in <p. &-Ramified Minimal Second Order 
Logic, 0-RM2L, has the same rules and axioms as M2L, except that relational V elimination is 

restricted: 
where /*ve/(0) < level(R). 

<p[X0.tJ;/R] 

Analogously, the Q-stratified polymorphic X-calculus, 0-R2A, is like 2A, except that ordinals 
-< & are used as levels into which the type variables are classified The level of a type r is the 
largest of level(R) for type variable R free in r and 1 + level(R) for R bound in r. Expressions 
E are defined as for 2A, except that if £ is an expression of type V/J.r, then Ecr is a legal 
expression of type r[a/t] only under the proviso that level(a) < level(R). 

The idea of stratifying abstraction into levels goes back to RusseFs Ramified Type Theory, 
whose purpose was to circumvent the semantic antinomies. It was revived in the 1950's (e.g. 
[Rrc60, Wan54, Wan62]) in relation to Predicative Analysis, a semi-constructive foundation of 
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Mathematics. Stratification of type abstraction in the polymorphic A-calculus, and related typed 
programming languages, was first considered by Statman [Sta81]. 

The definition of a homomorphism K : (9-RM2L -* (9-R2A is identical to 
K : M2L -> 2A. 

For the stratified formalisms above we now have the analog of Theorem IV? 

THEOREM XXII Let V be a program, with target (t that computes the numeric function/. 1/ 
II is a derivation in (9-RM2L + V o/Nl(f), then KII represents / in (9-R2A. 

The computational significance of this result arises from the relation between the functions 
representable in (9-R2A, for various <9's, and subrecursive classes. In [Lei89] we showed that 
for 0 = u these functions are exacdy the super-elementary ones (Grzegorczyk's class £ 4 ) , for 
& = they are the primitive recursive functions, and for & = t0 they are the provably recursive 
functions of Peano's Arithmetic. 

A subrecursive class smaller yet is obtained when comprehension is further restricted, for 
the formalisms [M2L+ conjunction] and [2A+ pairing]. Let M2L° be [M2L+ conjunction], 
modified as follows. The relational variables are labeled as being of level 0 or level 1. A 
formula <p is said to be of level 0 if it contains no V nor — a n d of level 1 if it contains 
no V binding a variable of level 1. Comprehension is restricted, allowing xl>[\u.x/R] to be 
derived from V/?,t/> only if levelix) < level(R). Let 2A0 be a similar modification of 2A. The 
homomorphism K : [M2L+ conjunction]-*[2A+ pairing], defined in §1, maps M2L° to 2A°. A 
proof of N(x) —• Nx(f) in M2L° + V, where V, with target f, computes the function / , contracts 
under K into a representation of / in 2A°. The computational significance of this is that the 
functions representable in 2A° are precisely the elementary functions, i.e. Grzegorczyk's class 
£ 3 [Lei 7 ] . 
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8. A p p e n d i x L H e r b r a n d - G d d e l Computab i l i ty 

8.1. Programs 

As in §3.1, *a functional vocabulary is a set of identifiers, the primitives, each assigned a type. 
The types are assigned orders: order(o) =o/ 0, orderij A ) =D/ mdx(l+order(T)yorder(AR)). 
A computation space B = B(L) is the set of canonical expressions, i.e. the closed terms of type 
o in the initial algebra generated by L. B is non-trivial if L has at least one identifier of type o 
and one identifier of order 1. L is of order k if the types of its identifiers are all of order < k 

Let V be an infinite denumerable set of identifiers, the program variables, each associated 
a type. Let / be a set of identifiers, the input identifiers, each associated a type of order 1. 
(Note that only functions are used as input (oracles).) We assume that L, V and / are pairwise 
disjoint The set Term(L,I) of terms built on top of L is defined inductively like B(L), except 
that identifiers from V and / are used. A term in which no program variable applies to a term 
is simple. Thus, if € / and f^*, g^°^° E V, then sx, sO and jx are simple, but fO, s(fl» 

and g(j) are not 
A statement over L, / is an equation of the form ft = s, where f € V, t is simple, and 

fr, s E B(L) are of the same type. A program over L is a tuple V » (V0, F, j i , . . . , j , ) , where 
j i , . . . , jr are distinct input identifiers, of respective types <7\.. . A R say, F is a variable of type 
ai <T> —• 0 * —> o for some A: > 0, and Po is finite set of statements overLU { j i , . . . , j , } . 
F is the target of the program. The order of the program is the largest among the orders of types 
of variables in V. Note that a program of order 1 must have an empty list of input identifiers. 

8.2. Operational semantics 

For r of order < 2, the set FnctF of functionals of type r is defined by induction on r. 
Fnctf » B(L). Fnctl^ consists of the partial mappings F from FnctP to FnctP that are 
monotone: iffyg € Fnctl', fCg, then Ff C Fg. 

A valuation of / in B is an assignment 77 that yields for each identifier j E I of type r a type 

r functional over S. 

A program CPo, F, j i , . . . , j f ) induces the inference rule V of §2, which, for the special case 

where the formulas are equations, reads: 
<P . - <FIFLA w h c r c T _ JT o r F - 1 i s a substitution instance of an equation in P 

Note that, in general, the terms r and f7 may be of higher type. 

We also stipulate a rule of substitution: 



s[t/x] = q[t/x] 

(This is a derived rule in presence of universal quantification rules.) 

Finally, a valuation rj induces the rule 

Here s/ (qf) iss (respectively, q) with possibly some subterm j(r), where j 6 /and te B, replaced 
by fojXf). 

We write VQ + T) for the deductive equational calculus induced by V and rj as above. (Po 
provides the computation rules, and rj is the input functions). 

Let CP, F r , j i , . . . , jr) be a program, 77 a valuation for / = { j ; , . . . , j r } . Define a relation [V, rj] 
over B = B(L) by 

(*i...f f) \P,ri\ t0 &Df /Po + r)\-F(ji,...,jr,tl...tk) = t0. 

A functional F of order < 2 is computed by CP, F, j i , . . . , j r ) if [V, rj] is the graph of F. 

THEOREM XXni Over any non-trivial computation space, the functionals of order 2 com­
putable by programs of order 2 are precisely the recursive functionals in the sense of Kolaitis 
[Kol85], 

Over the space of numerals, the functionals of order 2 computed by programs of order 2 are 
precisely the recursive functionals in the sense ofKleene. 

Proof Outline. It is straightforward to verify that all clauses in Kolaitis's definition of a func­
tional in canonical form are legal statements of order 2. Kolaitis shows that every recursive 
functional is the inductive closure of a functional in canonical form. The inductive closure 
can be simulated by equations, over a non-trivial B, as in Kleene's simulation of the numeric 
minimalization operation /i by equations [Kle52]. 

The second part follows from the first by [Kol85]. H 

8 3 . Coherence 

The relation [V, 77] need not be a function. If it is, for all valuations 77, then we say that 
V is coherent. The problem of determining program coherence is, of course, undecidable. 
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However, it is easy to give a set of obviously coherent programs which contains a program for 
every computable function. First, we give a variant of Kleene's proof [Kle52] that computable 
functions over natural numbers have coherent programs. 

Lemma 8..1 (Coherence for numeric functions) There is a (linear time) decidable collection 
P of coherent programs which is complete for the computable numeric functions: every program 
V can be converted into a program in P which is denotationally equivalent toV ifV is coherent. 

Proof. Every computable numeric function / is definable as f(x) = \xy. g(x, y) « 0, where 
g is primitive recursive and therefore defined by a coherent system of recursion equations. / 
is then defined by supplementing the system for g with the following equations (with fresh 
function identifiers). a(u, sv) = u; b(x, 0) = g(x, 0), b(x, su) = a(g(*, su), b(x, u)); c(u, 0) = u; 
f(x) = c(u, b(x, u)). Note that b(*, y) is the same as g(Jc, y) for values of y up to and including the 
first zero of the function, and is undefined for larger values of y. H 

Lemma 8..2 For any language L, there is a (linear time) decidable collection of coherent 
programs which is complete for the computable functions of order 1 over fi(L). 

Proof. The case where L does not have at least one constant primitive and one primitive of 
order 1 is trivial, since there are then a finite number of canonical expressions. The case where 
L has at least one constant identifier e, and one function identifier q, say of type o -* o 0 , is 
reduced to coherence of numeric functions by a GSdel coding, as follows. A program V over 
B(L) is mapped into a program V over the natural numbers, that simulates V for codes of B(L) 
in u. V1 is mapped into a cohencrect program V'\ equivalent to V if V is coherent V11 can 
be formulated for an embedding of the natural numbers in B(L), e.g. by letting 0 = 0 / « and 
s =o/ Axqxe. For any of the standard codings of L in u;, the decoding is primitive recursive 
in B(L). Thus / is computed by the coherent program V° over L obtained as the union (with 
sets of function variables suitably disjoint) of a coherent program that maps the input into a 
numerically coded form (simulated as above in B(L)), the coherent program V'\ and a coherent 
program that decodes the "numeric" output. The coherence of V° follows from the coherence 
and disjointncss of its constituents. H 

Lemma 9.3 (Coherence) For each L, there is a (linear time) decidable collection of coherent 
programs which is complete for the computable functions of order < 2 over B(L). 

Proof Outline. Repeat the proofs of Lemmas 8..1 and 8..3, but with function input, and using 

Kleene's [Kle59] definition of type 2 functionals. H 
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9 . A P P E N D I X I I . EXTENSIONS OF K IN M 2 L 

9.1. RJ-reductions 

Consider 77-reductions of A-expressions: \x.Ex reduces to E. Some ^-reductions might be 
described as the image under K of an additional reduction rule for derivations, say 

A 

II = V reduces to W = 
t/> —• <p 0 <p 

However, a derivation II can be normal with respect to reductions of the kind above, and 
yet KII would not be RJ-normal. For instance, the derivation 

[Vxt>] 

IP[t/x] RP[t/x] 

n = * 

is normal, yet KII can be 77-reduced. 

9.2. Existential instantiation 

The clauses of K for 3 rules are completely analogous to the definition for V rules, if existential 
elimination is formulated as an existential instantiation rule, dual to V introduction. An 3 
instantiation rule for intuitionistic and for minimal logics, defined in [Lei73], is: if 3x.(p is 
derived from assumptions 6 J \ then infer <p[&-{r=*p} / * ] • Here e is variable binding descriptor 
operator, akin to Hilbert's t notation, with the sequent T =^ <p as argument The corresponding 
reduction is simply: 

A 
Object3: J7 = ^[t/x] 

3JC. <p 
v[CX.{r => V}/X] 

(The reduction alters the derived formula, but this alteration is of no consequence in proofs of 
6-free formulas; see [Lei73].) 

For a deductive calculus based on existential instantiation, the corresponding clause in the 
definition K is then obviously 

A 
reduces to W = 

<pl*/X] 
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A 

for n = 3x.v 
let 
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10. Appendix HI. Natural deductions for totality of numeric function 

10.1. Successor, first derivation 

1. Vz(*(z) - R(sz)) assumption s 
2. R(x) -> R(sx) 1, z<-> X s 
3. N(x) assumption n 
4. Vz(/?(z) — R(sz)) -» R(0) -> R(x) 3, V elimination nR 
5. R(0) -> R(x) 1,4 nRs 
6. R(0) assumption z 
7. RQc) 5,6 nRsz 
8. R(sx) 2,7 s(nRsz) 
9. R(0) -* R(sx) 8, close 6 \z.s(nRsz) 
10. Vz(/?(z) -» fl(sz)) -»/?(0) (sx) 9, close 1 Xsz.s(nRsz) 
11. Vfl.Vz(/?(z) -> /?(sz)) — fl(0) — R(sx) 10 AR.Xnz.s(nRsz) 

N(sx) same as 11 

10.2. Addition, second derivation 

1. N(y) assumption m 
2. V«(tf(a(x,*))->tf(aCx,tt))) 

^ N(*(x,0)) ^ N(*Qc,y)) 1, R >-* Xz.R(*(x, z)) mi 
3. Vz(/?(z) - tf(sz)) assumption s 
4. /?(a(;c,z))-+tf(saCc,z))) 3 s 
5. tf(a(x,*)) assumption u 
6. Vz(K(z) - R(sz)) - *(0) - tf(a(x, z)) 5 uR 
7. tf(0)^K(a<x,z)) 6,3 uRs 

00
 

*(0) assumption z 
9. tf(a(x,z)) 7,8 uRsz 
10. tf(sa(x,z)) 4,9 s(uRsz) 
11. *(a(x,sz)) 10, equation s(uRsz) 
12. /?(0)-/?(a(x,sz)) 11, close 8 Xz.s(uRsz) 
13. Vz(/?(z) — R(sz)) - tf(0) - /?(a(x, sz)) 12, close 3 Xsz.s(uRsz) 

W(a(;c,sz)) same as 13 
14. iV(a(jc,z))^iV(a(x,sz)) 13, close 5 Xusz.s(uRsz) 
15. VzJV(a(x,z))-N(a(x,sr)) 14 Xusz.siuRsz) 
16. tf(a(x,0))-+;V(aOc,;y)) 2,15 mi(Xusz.s(uRsz)) 
17. assumption n 
18. tf(a(x,0)) 17, equation n 
19. iV(a(x,y)) 16,18 nu(Xusz.s(uRsz))n 
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10.3. Multiplication 

1. 
2. 

3. 
4. 

5. 
6. 
'7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 

Vz(*(mCx,z))->a(mCx,«))) 
-»*(mCx,0))-i?(inCx,y)) 

V«(*(a(m(x, z),«)) - R(a(m(x, z), su))) 
-»i?(a(m(x, z), 0)) - i?(a<m(x, z), x)) 

Vz(/?(z) * (« ) ) 
/?(a(m(jc, z), u)) -> fl(sa(m(x, z), u)) 
fl(a(m(x, z),«)) 
/?(sa(m(x, z), u)) 
/?(a(m(;t, z), SM)) 
/?(a(m(;c, z), u)) -»ft(a(m(x, z), su)) 
VuJ?(a(ni(x, z), u)) -»A(a(m(x, z), SII)) 
rt(a(m(x, z), 0)) - *(a(m(x, z), *)) 
*(m(x, z)) 
/J(a(mOc,z),0)) 
fl(a(m(x,z),x)) 
/?(m(jc, sz)) 
A(m(x,z))-» A(m(x,sz)) 
VrJ?(m(x, z)) -+ R(m(x, sz)) 
i?(mOc,0))-.i?(mOc,y)) 
*(0) 
K(m(x,0) 
i?(m(x,y)) 
*(0)->J?(mCx,y)) 
Vz(K(z) - fl(sz)) - t f ( 0 ) - f l (m(x ,y ) ) 
V/?.Vz(/?(z) -» fl(sz)) *(0) R(m(x, 
Mm(jc,y)) 

assumption 
1, /?H-> 

Xz.R(m(x, z)) 
assumption 

assumption 
5 
assumption 
6,7 
8,equation 
9, close 7 
10 
U.4 
assumption 
13, equation 
12,14 
15, equation 
16, close 13 
17 
2,18 
assumption 
20, equation 
19,21 
22, close 20 
23, close 5 

y)) 24 
same as 23 

n 

nR 
m 

mR 
s 
s 
u 
su 
su 

Xu.su  
Xu.su 

mR(Xu.su) 

mR(Xu.su)v 
mR(Xu.su)v 

Xv.mR(Xu.su)v 
Xv.mR(Xu.su)v 

nR(Xv.mR(Xu.su)v) 

nR(Xv.mR(Xu.su)v)z 
Xz.nR(Xv.mR(Xu.su)v)z 
Xsz.nR(Xv.mR(Xu.su)v)z 

AR.Xsz.nR(Xv.mR(Xu.su)v)z 
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10.4. The predecessor function 

Let <p[z] abbreviate R(p(z)) A R(z). 

1. N(X) assumption n 
2. Vz(tf(z) - *(sz)) assumption s 
3. *(0) assumption z 
4. Vz(^[z] - *[«]) - ^[0] -> 1 n{R x R) 
5. <P[z] assumption u 
6. R(z) 5 J 2 " 
7. rt(psz) 6, equation J2« 
8. R(sz) 2,6 S}2U 

9. v?[sz] 7,8 {J2",^J2«> 
10. Vz.<^[z] 9, close 5 ^"• (J2" ,^J2«) 
11. v > [ 0 ] - 4,10 n(R x R)\u.(j2u, s'}2u) 
12. *(p0) 3, equation z 
13. <P{0] 3, 12 <*.*> 
14. 11,13 n(R x R)\u.(}2u, sj2u)(z, z) 
15. R(px) 14 jl(rt(/? x R)Xu.(j2u,sj2u)(z,z)) 
16. R(0)^ *(px) 15, close 3 \z.ii(n(R x R)\u.(j2u,s'j2u)(z,z)) 
17. Vz(/?(z) -»*(«)) - R(Q) -> *(p*) 15, close 3 \sz.ji(n(R x R)\u.(j2u,s'}2u){z,z)) 
18. N(px) 17 /\R.\sz.}i(n(R x ^)Aw.(J2U, (z,z)) 
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11. Appendix IV. Type Containment 

Proposition 11..1 It is not decidable for data systems A, and Do,Dx e A, whether D0Q Dx. 

Proof. Consider two context free grammars Go, G\. Let L have the terminals of G 0 and G\ as 
primitives of type o9 plus additional primitives J- of type o, and p of type o —• o —• o. 

For words w of Go, define tw by: tt = 0 / JLF FXW =Df pxtw. (I.e., tw is w turned into a list.) 
Define A to have L as a set of primitives, and two data types, Do,I>I, where D, has, for each 
production x =» w of G,-, the closure condition D,-(x) —• Di(tw). Then Do C Di iff Go C G\. Since 
the inclusion problem for context free grammars is not effectively decidable (see e.g. [HU79]), 
it follows that neither is the inclusion of data types in a data system. H 
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