
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Match Box Algorithm for
Parallel Production System Match

Mark W. Perlin
May 29, 1989

CMU-CS-89-163

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We introduce Match Box, a new increments matching algorithm for determining the tuple
instantiations of forward-chaining production rules. Match Box is rooted in the
mathematical interconnections between tuple and binding spaces, a framework also
applicable to other pattern matching algorithms. The idea is to precompute a rule's binding
space, and then have each binding independently monitor working memory for the
incremental formation of tuple instantiations. A key feature of Match Box is that on a
massively parallel architecture, it can perform a rule's computationally intensive incremental
join testing in constant time. It also finds application on conventional serial processors.

This work was supported in part by grant R29 LM 04707 from the National Library of Medicine.

The views and conclusions contained in this document are those of the author and should not be interpreted

as representing the official policies, either expressed or implied, of the National Library of Medicine or the

U.S. government.

Introduction

Production systems (Waterman & Hayes-Roth, 1978) are a problem solving architecture
based on the matching of rule patterns against working memory objects. On each iterative
cycle, a production system recognizes which rules are relevant, selects one or more for
execution, and then acts by executing the selected rules. Recognition entails matching all
the rules against the entire object set D, an NP-hard problem which dominates the
computational cost of the system. (A tuple of objects matches, or instantiates, a rule's
pattern when uie tuple satisfies all the pattern's conditions; such a tuple is termed an
instantiation of the rule.)

There are conjunctive matching algorithms (Forgy, 1982; Miranker, 1987) that have
improved average case behavior. They exploit the empirical observations that (1) the rule
set is virtually constant and that (2) there are few changes to the object set each cycle. This
situation allows intercycle caching of the subtuples (or partial instantiations) that have
satisfied some of the rules' conditions, thereby avoiding redundant predicate
recomputation. For each rule, this amounts to a data driven search (Tambe & Newell,
1988) of the rule's tuple space T, i.e., its set of all candidate tuples.

A different matching strategy for a rule is to explore B, the space of all possible variable
bindings for a rule. In this paper, we shall motivate, formulate, and present Match Box, a
new algorithm for production system matching based on incremental search of the binding
space. On certain parallel architectures, Match Box can use a processor-for-time tradeoff to
reduce incremental matching to constant time. Under some conditions, it can also be more
efficient on a serial processor than standard RETE-like tuple space search. Unlike the
limitations inherent in token-level parallelism (Gupta, 1986), Match Box demonstrates
effective fine-grained parallelism at the level of match operations.

Example

We begin with an extended example to motivate the Match Box. Starting from an informal
Enghsh language description of a rule, we show how its binding space B is constructed
and then used for determining instantiations.

Pittsburgh, Pennsylvaf:!'

Assume that in a simplistic two dimensional world we have robots, trucks, and boxes.

Each object has a location, which may be either Room left or Room right. Suppose that

boxes are made of only three materials: paper, lead, and glass. Further suppose that there

are only trucks corresponding to the first two materials, light-weight for paper, and heavy­

weight for lead, but no sort of truck for the fragile glass. With this background, we could

then develop rules for the robots to move boxes using the trucks. The pattern of one such

rule might be:

If there is a Robot in some room,
and there is a Truck of some weight class in the same room,
and there is a Box of the same weight class in that room,...

These conditions may be graphically depicted by the constraints (Perlin, 1989):

Robot Truck Box

To program these three conditions in the (approximate) syntax of the OPS-5 production

system language, one could write:

(p robot-moves-box

(robot A room <X>)

(truck A room <X> Capacity <Y>)

(box A room <X> Amaterial <Y>)

- > ...)

Regardless of the specification method, we end up with two variables, the common room
X, and the material Y. Note that X is restricted to the values left and right. Similarly, Y
must take values from the set {paper, lead}, which is the intersection of the value set for
box materials {paper, lead, glass}, and the truck capacity value set {paper, lead}. The set
of possible bindings for our rule is then the set product Values(X) x Values(Y) = {(left,

2

paper), (left, lead), (right, paper), (right, lead)}. This is the binding space B, formed from
the values of XxY, and shown below.

X variable

X = Left, Y = Paper X = Right, Y = Paper

X = Left. Y = Lead X = Right, Y = Lead

Paper

Lead
Y variable

The Binding Space B

When does a binding b in B have support? That is, how can we determine whether there
exists one or more instantiations (i.e., a 3-tuple containing a robot, a truck, and a box
satisfying the rule's constraints) that actually has binding b? One approach is to attach a
subspace of tuple space T, the set product Robots x Trucks x Boxes, to each binding b in
B, and observe when this subspace assumes full dimensionality (n=3, for the three
objects). We illustrate this by tracing through a sample sequence of changes to working
memory D.

Before e we begin adding and deleting objects to working memory, the rule's binding space
B is initialized to an empty state, where each binding's tuple subspace is initialized to the 0-
dimensional set product <{},{},{}>.

< { } , { } , { } > < { } , { } , { } >

< { } , { } , { } > < { } , { } , { } >

Y = Paper

Y = Lead

We first assert that Robot Fred is located outside the rooms. This has no effect on B, since
only locations Left or Right can lead to a binding of a robot with the other two objects.

We next assert that Robot Fred moves inside to the Left Room. This information can
influence all bindings b in B such that the value of X is bound to "Left". These bindings
form a subspace B' of B, with the X coordinate set to "Left", and the Y coordinate free.
We therefore broadcast the occurrence of Robot Fred to all the bindings in B' = {(X,Y) I X
= "Left"). When Fred arrives at some binding point in B', he represents a Robot object

3

contributing to the first coordinate of T\ the local subspace of tuple space T = Robots x

Trucks x Boxes. Fred is therefore deposited into the first slot of T\ augmenting b's local

tuple subspace T\ and increasing its dimensionality from 0 (empty) to 1. This has the

effect of updating the affected 3-tuple instantiations. The result of this broadcast and

updating is shown below.

< {Fred},{},{}> < { } , { } , { } >

< {Fred},{},{}> < { U U } >

Y = Paper

Y = Lead

Suppose that we now assert that there is a light-weight Paper-carrying Truck in Room Left,
called Truckl. This affects the subspace B* of binding space, where the first coordinate is
constrained by X="Left", and the second coordinate Y must equal "Paper". Therefore, B'
consists of the single point b = ("Left", "Paper"). When this Truck object arrives at b, it
affects the second coordinate of tuple space subspace T c Robots x Trucks x Boxes. The
result of Truckl Ts broadcast is therefore that the single binding space point b has its second
coordinate (Trucks) updated with the new Truckl object, as shown below.

< {Fred},{Truckl},{}> < { } . , (} >

< {Fred},{},{}> < { } , { } , (} >

Y = Paper

Y = Lead

Similarly, asserting the presence of a heavy-weight Lead-carrying Truck in the Right Room

would update the second coordinate of local T tuple subspace at the point ("Right",

"Lead") in binding space. The current state is shown below. Since no local tuple subspace

T has full dimensionality, thus far no 3-tuple instantiations have been formed.

< {Fred},{Truckl},{}> < { } , { } , (} >

< {Fred},{},{}> < {},{Truck2},{}>

Y = Paper

Y = Lead

4

Suppose we now assert that there are two Paper Boxes in the Left Room, a Red one and a
Blue one. These two objects affect the points {(X,Y) in B I X="Left", Y=MPaperM}, i.e.,
the single point b = ("Left", "Paper"). Adding Red and Blue to the third coordinate the
local tuple subspace T of Robots x Trucks x Boxes, results in the state shown below. The
dimensionality of b's tuple subspace T is now the requisite 3, and the two points of T
(<Fred, Truck-1, Red> and <Fred, Truck-1, Blue>) are the 3-tuple instantiations of
binding b. Since no other point in binding space has a T with full dimensionality, these
are the only two instantiations of the rule.

<{Fred},{Truckl},{R3}> < { } , { } , { } >

< {Fred},{},{}> < {},{Truck2}>{}>

Y = Paper

Y = Lead

Should Robot Fred now move to the Right Room without taking any boxes, we would
have the state shown below. Here, no local T tuple subspace has fall dimensionality 3 at
any point in binding space; hence the rule has no instantiations.

<{},{Truckl},{R3}> <{Fred},{},{}>

< { } , { } , { } > < {Fred},{Truck2},{}>

Y = Paper

Y = Lead

Mathematics

Conjunctive matchers impose two kinds of conditions on the objects in candidate tuples:
predicates on a single object (constant tests and comparison tests), and predicates on more
than one object (join tests). The former (called alpha tests in RETE) serve primarily as a
filter for the computationally more expensive join (or, beta) tests, and we introduce the map
a to effect the alpha filtering. (For detailed definitions and proofs, see the Appendix
"Mathematical Development".)

An instantiation of a rule R is an n-tuple of data objects in working memory D satisfying
the rule's n conditions (and possibly additional absence tests). Let Dfc = otk(D) be the

5

subset of objects in D satisfying the single object predicates of the k^ 1 condition, k € K =
{l,.. . ,n}. The k^ 1 object in any instantiation must belong to the rule's Dk, since R's k t h

condition includes both the single and multiple object predicates. Therefore, any
instantiation of R belongs to the set IlK(Dk); this set product is T, the tuple space of the

rule R.

When R has join tests, a set of variables {xj I j€ J} is implicidy introduced into the match.

Let JI be the mapping from the accessors of a tuple's object attributes onto J. The binding

of an instantiation is the assignment of each variable to its corresponding value, extracted

by applying p, to the n-tuple (comprised of objects with attributed values). This

correspondence is denoted by the function f: T -> B, which assigns a tuple its binding. Let

V be the set of possible values. Since there may be restrictions on the legal values for each

variable xj, we introduce Vj = {ve V I v is a permissible value for variable xj in rule R} .

Then any binding for rule R must be an element in FIj Vj. This set product is B, the

binding space of the rule R.

Consider the commutative diagram
P(D)

T I

4*

where 2 is the two point set {TRUE, FALSE}, a maps data objects from the power set

P(D) into tuples in T, performing all requisite unary predicate filtering. In standard

matching, the map |5 then tests candidate tuples by using f to map tuples of T into bindings

in B, and then having t perform all remaining (non-unary) predicates between objects. The

goal of any match algorithm is to search T for the instantiation subset I = p"l(TRUE).

The function f can be modified to test all the equality relations by constraint checking, (x,

then, tests only the nonequality relations.) The composition o=f°a can then be introduced,

a routes the data objects into those bindings they can possibly influence by tuple formation.

Each component map <7k = fk°otk routes objects passing otfc (the k ^ tuple coordinate filter)

into the k1*1 dimension of affected match boxes.

6

An alternative description of is f - l o T _ 1 . Therefore the instantiation set I = p-^TRUE)
= f - lo T - l (TRUE). If the set of valid bindings Bo = t - ^ T R U E) were computed in
advance, then the set I could be found by computing f"l(Bo).

The key mathematical fact is that for any binding b e B , f~*(b) is the cartesian product
FlKfk'kb) of the inverse functions {ffc"1: B-^Dk) for individual tuple components. We
call this inverse image set product the match box of b. Thus, if a routes objects into the
valid binding subset Bo, and each be Bo monitors its match box for full dimensionality, we
can then observe the formation of instantiating tuples. Therefore, the instantiations can be
formed without further testing or other expensive computation: all the necessary matching
has already been done by precomputation of the (valid) binding set Bq.

The Match Box Algorithm

The match box algorithm explicitly constructs the binding space B. Each axis of B is
formed from the (prespecified and fixed 1) values of a match variable. Working memory
objects are routed from conditions to those coordinates in B that satisfy the partial binding
constraints of the object and condition. Broadcasts to just the valid bindings in B can be
effected by suitably restricting the broadcast geometry, even with general relations between
the variables. For simpler exposition, however, we consider only equality relations, which
leads to the limiting case with each variable encoding one equality constraint, independendy
of the other variables. (That is, the function f does all the consistency checking work, and
T trivially maps into TRUE.)

The match box algorithm first constructs a binding space B for each rule. Each axis of B
uniquely corresponds to a variable, and is formed from its variable's set of possible values.
With equality, this value set is the intersection of the value sets of each attribute constrained
by the equality. For example, suppose that attribute FOO of one object, with possible
values {a, b, c} , and attribute BAR of another object, with values {a, b, d} , are
constrained by variable x; then x's axis is the vector <a, b>. If there are three such
variables x, y, z, each with value axes <a, b>, then B is the three dimensional binding
space shown below.

* The binding space axes can be dynamically augmented during incremental match.
However, as with RETE's Build operation, such actions may be expensive, since they
entail iterating over the current working memory set

7

Every cycle, a new object d is incrementally added (or deleted) to the match boxes in B.

1. The object is broadcast to the bindings a(d) in B.

2. At each binding b in O(d),

2a- Augment (subtract) the object set of each affected tuple coordinate with d.

2b- If the binding's match box f~*(b) (i.e., tuple subspace) achieves full
dimensionality, signal the match.

2c- With full dimensionality, b's instantiations are exactly the tuples in the match box.

We further detail these two steps.

In step 1, the broadcast o(d) is done by executing Gk(d) for every k in the set of tuple

indices K. Recall, Ok = fk°«k. ock performs the unary predicates on d, either returning

the object d or terminating with 1 . Let Kf be that subset of K for which ock succeeds. For

every k in K\ fk(d) then broadcasts d into the full m-dimensional subspace of B whose

coordinates are consistent with the values of d's k * coordinate's attributes. (The broadcast

need only be done when each attributed value of d is actually a member of its

corresponding axes' value set.)

For example, suppose (as above) that a rule has three variables, x, y, and z, each taking

values from the set {a, b } , and that condition k has attributes tested by variables x and y.

If an object d successfully passes ock, then |ik will map d to variables x and y. During this

mapping, the attributed values of d can be extracted and bound to their variables. So if

FOO(d)=a, and BAZ(d)=b, with x and y constraining FOO and BAZ, respectively, then we

reach the variables with x bound to a, y bound to b, and z unconstrained. Since fk(d) =

{a}x{b}xV z , this is the subspace of B to which object d is broadcast. The mapping and

the broadcast subspace are shown below.

8

(X) (Y) 0 (Z)

In step 2, object d arrives at some binding b in B, and updates the match box. The update
entails adding (deleting) d from the k1*1 coordinate set, and then performing some
bookkeeping operations. For example, a counter recording the size of the k coordinate
set may be incremented (decremented). If the counter changes from (to) 0, then a counter
recording the dimensionality of the match box may concommitantly be incremented
(decremented). When the dimensionality counter equals the full n = dim(T), a flag can then
signal the presence of instantiations. (To accommodate absence tests, the counters and
flags can be reorganized to signal empty, instead of nonempty, sets.)

There are other efficiencies in our algorithm. For example, if a tuple coordinate k is not
constrained by any relation, then there is no point in broadcasting objects from k into B,
since they will always go to every valid binding. In this case, a separate match box for the
unconstrained tuple coordinates can be maintained. This null kernel can be conjoined with
any (smaller dimensionality) flagged match box in B to form complete instantiations,
thereby reducing B's broadcasts and memory requirements.

Applications

A rule's matching computation usually entails testing the relations of all candidate tuples.
While incremental state-saving algorithms such as RETE can exploit the fixed rule set and
slow variation in WM to improve average case behavior, worst case behavior requires
formation and testing of all tuples. This corresponds to the objective of match: exploration

9

of tuple space. Thus the complexity is proportional to the size of tuple space IT!, or ID11!;

i.e., the standard match procedure is exponential in the tuple size.

The match box algorithm, on the other hand, does not explore T. Rather, tuples are
constructed indirectly, by specifying a cross product of object sets for each binding having
support (i.e., flagged as having tuples) in its match box. The worst case broadcast must
communicate with IBI bindings. At each binding in B, at most n (the tuple size) memory
updates are done, each update taking constant time. (Of course, average case behavior
costs much less than this.) These operations are done for each object inserted or deleted
from WM, so the total cost is roughly nIDIIBI. That is, the incremental complexity is
proportional to IBI, or IVilxIV2lx...xlVml, exponential in the size of the variable's value sets.

On a serial processor, we have a clear criterion for using the Match Box method over

standard matching: when a rule's binding values are known in advance, with a product set

B much smaller than the tuple space T. This situation can occur, for example, when a rule

has no optimally filtering join ordering, with large working memories. Maintaining B and

its inverse partial tuples also necessitates a large space-for-time tradeoff.

This tradeoff is translated into a processor-for-time tradeoff in a massively parallel

architecture. Consider the situation where for every rule, each binding b in B is allocated

its own processor. This processor maintains the f~*(b) tuple subspace, and all associated

bookkeeping (counters and flags) information. The number of such processors is the sum

of IBrI, for every R in the rule set. Since, for any given R, n is fixed and the cost of

incrementally updating Br is distributed across IBrI noncommunicating processors, the

incremental join match is accomplished in constant time.

We are examining possible designs for a hardware realization of Match Box. In some

production systems (e.g., OPS-2, SOAR), the set semantics restricts actions to refer to

variable bindings, and not directly to working memory objects. Therefore counters and

flags alone suffice: no memory for objects is needed for the match. The requisite hardware

thus amounts to an associative memory for self-recognition during broadcasts, coupled

with a dozen or so registers and gates. The speed and VLSI area requirements should

therefore be within an order of magnitude of current memory circuits.

(Historically, unary predicate testing and conflict resolution cost litde in the overall rule
matching scheme. With constant time massively parallel join match, these auxiliary actions

10

increase in proportionate cost. Since these actions are not inherently expensive, they can be
easily parallelized :nto less costly, or even constant time, operations.)

The following preliminary simulation suggests the efficiency of our algorithm. On a simple
rule set for the toy problem of the farmer crossing the river with his fox, goat, and
cabbage, we recorded the join tests performed for classical RETE and the Match Box. This
problem can be encoded with three rules, only one of which has a join test; this rule's
binding space has just the two points {LEFT, RIGHT}. Complete problem solution over
ae 8 cycles required 21 join tests for RETE, but only 12 routing operations Match Box, a

50% reduction. In the parallel architecture, the cost would just be the number of broadcasts
(i.e., the number of working memory changes). We are currently profiling more practical
domains.

Related Work

Matching based on bindings, rather than on tuple testing, has been used as part of standard
matching algorithms. For example, hashed RETE (Scales, 1986) performs efficient
equality testing at beta join nodes in the RETE network. Restated in our framework, RETE
partitions tuple space testing into n successive stages, each joining Tk-lxE>k into Tk, where
Tk is DixD2x...xDk, k < n. This induces a restricted family {fkh which perform equality
tests for those variables J'k that appear in tuple coordinate k and at least one additional
coordinate k' < k. Each fk maps Tk-lxDk into Bfc, where Bk is a restricted binding space
formed from the variables of J'k. The b's in Bk are created dynamically from partial
matches, and are not precomputed. Each binding b, in essence, maintains a two
dimensional match box comprised of the tuples in Tk-1 and the objects in Dk
corresponding to the partial binding b. When fk-l(b) achieves full dimensionality (i.e., an
incoming tuple detects a nonempty object set, or vice versa), the match is signaled.

Copy and constrain (Pasik, 1987) is another standard match technique employing binding
values. Here, when a rule's variable has a finite value set, the rule is split into a
corresponding set of rules, each having a fixed value in place of the variable. This is the
same as analyzing the m dimensional binding space B. finding a suitable variable xj, and
splitting B into the family { B v I v a value for variable xj}, where each B v is an m-1
dimensional subspace of B. Each new B v corresponds to the binding space of a new rule.

1 1

Interestingly, this is a binding space transformation done to improve the efficiency of

standard tuple space match.

Standard constraint propagation methods use relations to prune constant sets and arrive at

consistent solutions. This can be exploited in rule matching, as in (Bibel, 1988), where the

possible constant values of relations help in efficiendy determining instantiations. In fact,

with our binding space formalism, many other constraint propagation techniques may help

improve match.

Conclusion

Production system matching is a well-known computationally expensive problem that

requires exhaustive search of the tuples that can be formed from available data, which

satisfy a set of relations. The resulting subset of tuple space (or k-space) T is the set of

instantiations. Standard matching amounts to efficient generation and testing of (partial)

tuples to effectively explore this space.

However, this problem has a dual character: it is the bindings of tuples that actually

undergo testing, not the tuples themselves. If the data objects can be routed to the valid

bindings they can affect, then tuples need not be explicidy constructed. Instead, the partial

testing of tuples can be replaced by the partial constraint satisfaction of objects, with respect

to their affected bindings.

It is often the case that the admissible values of variables are known in advance. The Match

Box algorithm exploits this situation by explicidy constructing a cross product space B of

possible variable bindings. (When the relations are restricted to equality constraints, B is

identically the space of valid bindings.) Broadcasts through subsets (with equality alone,

subspaces) of B correctly route objects to affected bindings. By proper storage of these

data objects, each binding can track the tuple instantiations formable from the data that

would correspond to the binding. This is accomplished without actually incurring the cost

of tuple construction. More importandy, the precomputation of B eliminates any need for

actual testing of objects or tuples.

If IBI is very large, Match Box is not practical on a conventional serial processor.

However, with smaller IBI, Match Box can be useful for many rules. On a massively

1 2

parallel architecture, with one processor allocated to each binding, the processor for time
tradeoff allows matching to be executed incrementally in constant time. Further empirical
results are needed to assess the utility of Match Box for the NP-hard production system
match problem.

Acknowledgements

Jean-Marc Debaud of the Philosophy Department at Carnegie Mellon University
implemented the algorithms, ran the simulations, and was an excellent sounding board.
Jaime Carbonell provided a number of useful insights into the method. The ideas were
improved by discussions with Milind Tarn be and Brian Milnes.

References

Bibel, W. (1988). Constraint Satisfaction from a Deductive Viewpoint. Artificial
Intelligence, 35, 401-413.

Forgy, C. L. (1982). Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Artificial Intelligence. 19(1), 17-37.

Gupta, A. (1986). Parallelism in Production Systems. Ph.D. dissertation, Department of
Computer Science, Carnegie Mellon University.

Miranker, D. P. (1987). TREAT. A New and Efficient Match Algorithm. Ph.D.
dissertation, Columbia University.

Pasik, A. (1987). Improving Production System Performance on Parallel Architectures bv
Creating Constrained Copies of Culprit Rules. Department of Computer Science,
Columbia University.

Perlin, M. W. (1989). Constraint-Based Specification of Production Rules. School of
Computer Science, Carnegie Mellon University.

Scales, D. J. (1986). Efficient Matching Algorithms for the Soar/Ops5 Production System.
Master's thesis, Stanford University.

Tambe, M., & Newell, A. (1988). Some Chunks Are Expensive. Proceedings of the Fifth
International Conference on Machine Learning (pp. 451-458).

Waterman, D. A., & Hayes-Roth, F. (1978). Pattern Directed Inference Systems. New
York: Academic Press.

1 3

Appendix: Mathematical Development

We begin with a number of definitions. After setting up a commutative diagram, we shall prove some
facts about binding and tuple spaces. The key result needed for the Match Box algorithm is that an
inverse image of a binding is a subspace (i.e., a box) in tuple space.

Suppose we have a set {xj } of variables, j € J = {1, 2, ...,m}. Each variable Xj draws its values from

a corresponding (possibly restricted) value set Vj. A binding of the variables is therefore an element of

the product set V jxV-)X...xVm. The set of possible bindings, or the binding space, is B = I~Ij Vj.

A rule imposes certain relations on the variable; a binding is valid exactly when it satisfies these

relations. A single relation is an ordered pair (p-, J-), where p- e {=, <, ...} has arity > 2, and Jj c

J. For example, the relation (=, {1,3,4}) imposes the ternary equality relation x^ = X3 = X4. Let p =

{(p •, Jj)} be the set of relations for a rule. Each relation may be operationalized into a test

z{: B-> 2

b —> TRUE, if the projection Ilj- (b) satisfies p-;

FALSE, otherwise,

where 2 is the two point set {TRUE, FALSE}. The conjunction of these tests {x -} determines the test

(1) x : B - > 2

b - > TRUE, if Vi, x^b) is TRUE;

FALSE, otherwise.

A different perspective arises from examining the tuple space T formed from the data objects D. Let D
be the set of (working memory) data objects, and P(D) its power set. Our ultimate objective is to find

n-tuples of objects satisfying the binary (or greater arity) relations p, as well as the unary relations on

each component. Let K={ 1,2,... ji} be the tuple's index set, and a^: P(D) -> P(D) the filter which

performs the unary tests and maps, e.g., D into its filtered subset D^. Then tuple space T is formed a

Appendix 1

the set product DjxD2X . . .xD r r and a = is the product map.

(2) cc(D) = T,

forms all possible tuples (satisfying the unary predicates a^) from working memory D.

We now connect tuple space T with binding space B. Each tuple coordinate k € K has an associated

set of labels L^, used for accessing attributes of the k^ 1 object in the tuple. A particular rule is, in

general, only interested in a subset (or abstraction) of the accessors

A c KxL^.

Each of these accessors is mapped into a variable via the one-one onto map

|i: A J.

When each attribute in A is assigned a value, we have the rule's abstraction of a tuple. Assigning

values to j in J forms a binding. Therefore, considering sets of values tranforms |i: A-»J into a new

function f:T—»B. Then

(3) f: T -> B

t —» b, the binding corresponding to the accessors of tuple t.

Combining (1), (2), and (3), we have the diagram:

P(D)

T

2

This diagram is usually completed in production systems by introducing the map (J = T ° f:

Appendix 2

P(D)

where p represents the join tests performed on two or more object in a tuple t by executing the

composition x°f.

The objective of rule-based pattern matching is to find the set I of instantiations, where I =

P'^(TRUE). This search for I c T is sometimes termed k-space (i.e., tuple space) search (Tambe &

Newell, 1988). Our commutative diagram can be used to describe various tuple space search

strategies, such as RETE, TREAT, and variant network topologies. We next use the diagram to

introduce a new search strategy.

Let Bq = x~*(TRUE), the set of valid bindings satisfying the relation p. Since

r 1 ^) = r l o i " 1 (t r u e) ,

= p" 1 (TRUE),

= I.

Thus, another method for computing the instantiation set I is to compute T^(Bq).

To increase search efficiency, we first decrease the size of B . We do this by merging the variables of
each equality relation into a single variable, and replacing the equality test with a consistency check.

For example, (=, {1,3,4}) is executed by checking that the three attributes p."*(l), p."*(3), and p."1 (4)

are in fact equal, and then storing the consistent attribute (if it exists) into the new variable xj«;

variables x j , X3, and X4 are discarded.

This leads to a new (not necessarily one-one) map |i from A onto (a possibly smaller) J. Transforming

|i: A—»J to sets of values, we have the new function

Appendix 3

f: T -> B_l

t —> b, if the consistency checks hold,

±, otherwise,

as defined in the following paragraph. B has been lifted to Bj = B u {1}, where 1 denotes

inconsistency. We have augmented f:T-»B_L to perform all the equality tests, while T :B^->2 now

evaluates only the nonequality relations.

We more precisely define f as

f: T -> B ±

tuple t —> binding b,

where bj is defined by the operations:

l .Let A ' = ^ _ 1 (j)

= { a e A I | i (a)= j} .

(A' is nonempty, since m is onto;

hence 3 tuple coordinate k having an accessor a^ j constrained by j .)

2. Let S = n A < value[a, t],

where value[a,t] evaluates the accessor a on tuple t,
retrieving its value as a singleton set.

3. If S * 0 , then all a in A' agree, and bj equals the single value of S.

If S = 0 , though, then an inconsistency has been detected, so bj = 1.

If any bj = -L, then b = i_.

Combining the jth coordinate values, we have

f(t) = rij n K value [a,t].

Consider two limiting examples in the diagram:

Appendix 4

PCD)

y,
T • B ±

U .! U
I B 0

true

1. If p is comprised entirely of equality relations, then f does all the work, T is trivial, and B=Bq .

2. If p has no equality relations, then (I is one-one, f does no consistency checking, and T performs all

the tests.

We now explore the finer grained structure of f needed to work with objects in D, rather than tuples.

The attribute set A restricted to the coordinate k is A^ = {(k,i) I ie L^}. Clearly, A is partitioned into

its disjoint A^, k€ K. These inclusions induce the maps (i^,

A C k • A
k

^ l

J
Transforming to sets of values, we induce the family of functions f̂ , D r • T = n D k

K
f

B = E [V:
J J

More precisely,

fk: -> Sub(B)

object d^ S, a subspace of B, Dim(S) = Dim(B),

where the coordinate projection of S

7tj(S) is defined by the operations:

Appendix 5

l .Let A ' k = ^ k " 1 (j) .

By the unary a filtering, the j ^ 1 variable refers to

the k**1 object at most once. So the cardinality

#A ' k = 1, if f constrains the k ^ tuple coordinate

by checking the j ^ 1 variable;

0, otherwise.

2. If # A ' k = 1, A ' k = {a},

7Uj(S) = singleton set comprised of value[a,t],

i.e., the constrained value a.

If # A ' k = 0, then Xj is unconstrained by fk, so

So f k (d k) = I l j value[a k j , t] .

The coordinate restrictions {fk} can be combined to form the function f.

FACT. f = r>£ f k° 7 t k where 7 t k is the projection of the k1*1 coordinate.

Proof. Let t = < d t , d n > € T = n K D k .

n K f k ° * k (t) = n K f k (d k >

= n ^ l l j value[a k j , t] ,

i.e., the value or the Vj identity set,

= FIj value[a k j , t] ,

= f(t).

We now demonstrate the

LEMMA. Let h: P -» Q, with P = n K (P k) a product space, and h = n R (h k ° 7 t k) a well formed

function, and

Appendix 6

Then h ' 1 = n R(hk'1).

Proof. Let q€ Q.

h -^q) = { p l q = h(p) },

= (p 1 q = n K h k ° 7 C k (P) >'

by the well-formedness of the function.

= { p I q€ h k ° 7 t k (p) , VkeK },

= { P = <Pl. P2- Pn> 1 q € hk^Pk>' V k € K)'
by the independence of the coordinates,

= n K { p k I qe h k (p k) },

= n K h k - 1 (q) .

Since f = f̂ 0 TC .̂, by the Lemma we have

THEOREM. f 1 = n K f k ~ l .

COROLLARY. For any binding be B, the set of tuples f *(b) mapping into b forms a subspace of T.

We call f *(b) the match box of b.

When f ^(b) achieves full dimensionality n, binding b then has support in tuple space. For example,

for n=3, if

f j - l (b)= {the object d j} ,

f 2 " 1 (b) = {d 2 , d 3 } ,

f 3 " 1 (b) = { } 1

then b has no support. Should adding object d4 augment f3~*(b) to ^ 4 } , then

rl(b) = f f 1 (b) x f 2 - 1 (b) x f 3 - 1 (b) ,

Appendix 7

= {d{} x { d 2 , d 3 } x {d 4 } ,

= {< d j , d 2 , d 4 > , < d j , d 3 , d 4 > } .

Thus, tuple formation has been reduced to the independent routing of objects.

To correctly route the data objects through BQ, we introduce the map = f̂ 0

P(D)

D , 5*— B

which places objects d in into their proper bindings in binding space B . Performing for every

k€ K gives a = Ujr a^:

P(D)

/ \
r f ^

T • B

The match box algorithm performs G on all objects d, and monitors F^CBQ) for tuple formation. That

is. the diagram traversal for computing I c T is reversed from % ° f ° a object testing, to f l o a

object routing:

P(D)

\
f -i ^

I ^ B 0

P 1 \ / T 1

\ /

true

Appendix 8

