
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Verifying Atomic Data Types

Jeannette M. Wing

20 July 1989

CMU-CS-89-168^

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

To appear in the Proceedings of the REX Workshop on Stepwise
Refinement of Distributed Systems: Models, Formalism, Correctness,

Plasmolen, The Netherlands, 1989

Abstract
Atomic transactions are a widely-accepted technique for organizing computation in fault-tolerant
distributed systems. In most languages and systems based on transactions, atomicity is implemented
through atomic objects, typed data objects that provide their own synchronization and recovery. Hence,
atomicity is the key correctness condition required of a data type implementation. This paper presents a
technique for verifying the correctness of implementations of atomic data types. The novel aspect of this
technique is the extension of Hoare's abstraction function to map to a set of sequences of abstract
operations, not just to a single abstract value. We give an example of a proof for an atomic queue
implemented in a real programming language, Avalon/C++.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976,
monitored by the Air Force Avionics Laboratory Under Contract No. F33615-87-C-1499. Additional support was
provided in part by the National Science Foundation under grant CCR-8620027.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the
National Science Foundation or the U.S. Government.

Table of Contents
1 . Introduct ion
2. Model for Transact ion-Based Distributed Systems

2.1 . Histories
2.2. Legality of Sequential Histories
2.3. Atomicity = Serializability + Recoverability

2.3.1. Local Atomicity
2.3.2. On-line Atomicity

3. Veri f icat ion Method
4. Implement ing Atomic Objects

4.1 . Transaction identifiers
4.2. Ensuring Serializability and Recoverability

5. A n Example : A Highly Concurrent F IFO Q u e u e
5.1. The Implementation

5.1.1. The Representation
5.1.2. The Operations

5.2. Application of Verification Method
5.2.1. Representation Invariant
5.2.2. Abstraction Function
5.2.3. Type-Specific Correctness Condition

5.3. Verifying the Implementation
5.3.1. Proof Sketch
5.3.2. Formal Proof for Enqueue and Dequeue

6. D iscuss ion and Related Work
6 .1 . Hybrid Atomicity Revisited
6.2. Abstraction Functions Revisited
6.3. Other Models for Transactions

7. Current a n d Future Work
8. A c k n o w l e d g m e n t s
References

ii

List of Figures
Figure 2 - 1 : Interfaces for Queue Operat ions 5
Figure 2-2: Trait for Q u e u e Va lues 5
Figure 5 - 1 : An Example of W h y an Enqueuer (B) Must Wai t 16
Figure 5-2: An Example of W h y a Dequeuer (B) Must Wai t 16
Figure 5-3: An Example of W h e n an Enqueuer (C) Need Not Wait 17
Figure 5-4: An Example Queue Representat ion State 18
F igure 6 - 1 : Relat ionships A m o n g Atomici ty Propert ies 25

1. Introduction
A distributed system consists of multiple computers (called nodes) that communicate through a network.

Programs written for distributed systems, such as airline reservations, electronic banking, or process

control, must be designed to cope with failures and concurrency. Concurrency arises because each

rocess executes simultaneously with other processes on the local node and processes on remote

nodes, while failures arise because distributed systems consist of many independently-failing

components. Typical failures include node crashes, network partitions, and lost messages.

A widely-accepted technique for preserving consistency in the presence of failures and concurrency is to

organize computations as sequential processes called transactions. Transactions are atomic, that is,

serializable and recoverable. Informally, serializability [32] means that concurrent transactions appear to

execute sequentially, and recoverability means that a transaction either succeeds completely or has no

effect. A transaction's effects become permanent when it commits, its effects are discarded if it aborts,

and a transaction that has neither committed or aborted is active.

In most languages and systems based on transactions, atomicity is implemented through atomic objects,

which are typed data objects that provide their own synchronization and recovery. Languages such as

Argus [24], Avalon [18], and Aeolus [39] provide a collection of primitive atomic data types, together with

constructs allowing programmers to define their own atomic types. The most straightforward way to

define a new atomic type is to use an existing atomic data type as a representation, but objects

constructed in this way often support inadequate levels of concurrency [37]. Instead, one could

implement new atomic objects by carefully combining atomic and non-atomic components and exploiting

the semantics of the data type to provide more oncurrency. This degree of freedom comes with a price:

the programmer is now responsible for proving that the implementation of the user-defined data type is

indeed atomic.

In this paper, we formulate proof techniques that allow programmers to verify the correctness of atomic

objects. Although language and system constructs for implementing atomic objects have received

considerable attention in the distributed systems community, the problem of verifying the correctness of

programs that use those constructs has received surprisingly little attention. To our knowledge, the

Avalon Project conducted at Carnegie Mellon University is the only language project to address this

particular program verification problem.

Techniques for reasoning about concurrent programs are well-known [2,19, 22, 31], but are not adequate

for reasoning about atomicity. They typically address issues such as mutual exclusion or the atomicity of

individual operations; they do not address the more difficult problems of ensuring the serializability of

arbitrary sequences of operations, nor do they address recoverability. Reasoning about atomicity is

inherently more difficult than reasoning about concurrency alone.

Our work distinguishes us from most other formal specification and verification research in concurrent and

distributed systems since we address the presence of failures as seriously as the presence of

concurrency and distribution. Our particular approach also distinguishes our work from many others: we

1

focus on the behavior and correctness of objects in a system and not on the processes (transactions) that

manipulate them. We base the proof of correctness of the entire system on a local property of the objects

in the system; if the property holds for each object, the correctness of the entire system is guaranteed.

Thus, we transform the problem of proving an entire distributed system correct into the more manageable

problem of proving each of the objects in the system correct.

This paper is organized as follows. In Section 2 we present our model and basic definitions, and illustrate

most of them through simple examples. In Section 3 we describe three pieces in our verification

technique, the most important of which is an extension of Hoare's abstraction function for data

implementations. In Section 4, we introduce and motivate relevant Avalon/C++ programming language

primitives. We give in Section 5 an extended example using these primitives and a correctness proof

following the technique outlined in Section 3. Section 6 discusses related work, in particular contrasting

the particular correctness condition we use with another more conventional one and contrasting our

extended abstraction function with other kinds of mappings. Finally, we close in Section 7 with a

summary of relevant current and future work.

2. Model for Transaction-Based Distributed Systems
A distributed system is composed of a set of transactions and a set of objects. A transaction corresponds

to a sequential process. We disallow concurrency within a transaction, but allow for multiple transactions

to execute concurrently. Objects contain the state of the system. Each object has a type, which defines

a set of possible values and a set of operations that provide the only means to create and manipulate

objects of that type. A transaction can either complete successfully, in which case it commits, or

unsuccessfully, in which case it aborts. We use the term termination for the end of the execution of an

operation and completion for the end of the execution of a transaction.

Typically, a transaction executes by invoking an operation on an object, receiving results when the

operation terminates, then invoking another operation on a possibly different object, receiving results

when it terminates, etc. It then commits or aborts.

Although Avalon permits transactions to be nested [29,33], the model presented here and our

subsequent discussion consider only single-level transactions. Nested transactions provide a means to

obtain concurrency within a transaction; Lynch and Merritt[26] present a formal model of nested

transactions based on I/O automata. Our model of transactions borrows heavily from Weihl's, first

described in his 1984 Ph.D. thesis [36] and more recently, in [38].

2 . 1 . Histories
We model a computation as a history, which is a finite sequence of events. There are four kinds of

events: invocations, responses, commits, and aborts. An invocation event is written as xop(args*)A,

where x is an object name, op an operation name, args* a sequence of arguments, and A a transaction

name. A response event is written as x term(res') A, where term is a termination condition, and res0 is a

sequence of results. We use "Ok" for normal termination. A commit or abort event is written x Commit A

or x Abort A, and it indicates that the object x has learned that transaction A has committed or aborted.

A response matches an earlier invocation if their object names agree and their transaction names agree.
An invocation is pending if it has no matching response. An operation in a history is a pair consisting of
matching invocation and response events. An operation op0 lies within op1 in H if the invocation event for
op1 precedes that of op0 in H, and the response event for op1 follows that of op0. For histories, we use
"•" to denote concatenation, and "A" the empty history.

For a history H, we define committed(H) to be the set of transactions in H that commit in H, and
aborted(H) to be the set of transactions that abort in H. We define completed(H) to be
committed(H) u aborted(H), and active(H) to be the set of transactions in H not in completed(H). Note
that we can model a failure event (e.g,. node crash) with abort events.

Example

The following history, Hv involves two queue objects p and q, and four transactions A, S, C, and D:

p Enq(1) A
p Enq(2) B
p Ok() B
q Enq(4) B
p Ok() A
q Ok() B
p Commit B
q Commit B
p Enq(3) A
p Ok() A
p Abort A
p Deq() C
p Ok(2) C
q Enq(5) D
p Enq(6) C Q. Ok() C

The first event in H1 is the invocation of the Enq operation on object p by transaction A. The fifth event is
the matching response event. The seventh and eighth events indicate that p and q respectively have
learned that B has committed; the eleventh indicates that p has learned that A has aborted. The Enq
operation of 2 by B lies within the Enq of 1 by A.

A and B execute concurrently and both eventually complete, A unsucessfully and B successfully. C and
D execute concurrently and are both active (have neither committed nor aborted) at the end of Hr

Hence, committedfH,) - {B}, abortedfH,) -{A}, completedfHJ - [A, B}, and actrve(H1)- {C, D}. When
C dequeues from p, it receives a 2. (7s invocation of Enq on q is pending since there is no matching
response event.

3

H1 shows an example of an atomic (to be formally defined) or intuitively "correct" history. H1 is correct

because there is some ordering on nonaborted transactions that is "equivalent" to a "sequential" version

of H1 and because As effects are ignored. It would have been incorrect for C to dequeue 1 from p since

A aborts. If A were to commit instead, then it would be correct either to have C dequeue 1, by ordering A

before S, or to have C dequeue a 2, by ordering B before A. Notice that a transaction can perform more

than one operation, possibly on different objects. A performs two Enq's on p and B performs one each on

p and q. The intuition we would like to capture in our formal definitions is as follows: At the end of H1 (1)

p's first and only element is either 2 (C aborts) or 6 (C commits); and (2) cfs first and only element is 4 (q

does not have 5 in it because D*s invocation is pending, yet it definitely has a 4 in it because £Ts commit

precedes /7s invocation).

End example

A transaction subhistory, H | A (H at A), of a history H is the subsequence of events in H whose

transaction names are A. H \ S and H \ x are defined similarly, where S is a set of transactions and x is

an object. Informally, two histories H and G are equivalent If for each transaction A, ignoring pending

invocations, A performs the same events in the same order in H as in Q.

Definition 1 : Let terminated(H) denote the longest subhistory of H such that every invocation
has a matching response. Histories H and G are equivalent if terminated(H) \ A «
terminated(G) \ A for all transactions A.

If H and G are equivalent, then for all objects x the state of x after H should be the same as that of x after

G; the converse is not true.
Definition 2: A history ^ well-formed if it satisfies the following conditions for ail transactions
A:

1. The first event of H \ A is an invocation.

2. Each invocation in H | A except possibly the last, is immediately followed by a
matching response or by an abort event.

3. Each response in H | A is immediately preceded by a matching invocation, or by an
abort event.

4. If H | A includes a commit event, no invocation or response event may follow it.

5. A transaction can either commit or abort, but not both, i.e., committed(H) r\ aborted(H)

These constraints capture the requirement that each transaction performs a sequence of operations. It

cannot invoke one operation on an object x and then another on x (or any other object) without first

receiving a response from its first invocation. If a transaction commits, it cannot have any pending

invocations; if it aborts, it may be in the middle of executing an operation, and thus have at most one

pending invocation. Once a transaction commits, it cannot perform further operations.

Definition 3: A well-formed history His sequential \1:
1. Transactions are not interleaved. That is, if any event of transaction A precedes any

event of 8, then all events of A precede all events of S.

2. All transactions, except possibly the last, have committed.

4

Examples

H1 is well-formed. H11 B is the transaction subhistory:

P Enq(2) B
p Ok() B
q Enq(4) B
q Ok() B
p Commit B
q Commit B

and H11 p is the object subhistory:

P Enq(1) A
P Enq(2) B
p Ok() B
p Ok() A
p Commit B
P Enq(3) A
p Ok() A
p Abort A
P Deq() C
p Ok(2) C
p Enq(6) C
p Ok() C

The following well-formed subhistory of H1 is sequential:

P Enq(2) B
p Ok() B
q Enq(4) B
q Ok() B
p Commit B
q Commit B
P Deq() C
p Ok(2) C
p Enq(6) C
p Ok() C

End examples

2.2. Legality of Sequential Histories
Each object has a sequential specification that defines a set of legal sequential histories for that object.
To be concrete in this paper, we use the Larch specification approach [16] to write sequential
specifications for objects. Other axiomatic approaches (e.g., lota [30], Clear [7], or OBJ [14]), or other
specification methods, such as operational (e.g., VDM [6]) or state-machine oriented (e.g., I/O automata
[27]) methods, would be just as appropriate.

interface specifications describe the behavior of an object's operations. Interface specifications for

5

the Enq and Deq operations for FIFO sequential queues are shown in Figure 2-1. A requires clause

states the precondition that must hold when an operation is invoked. An ensures clause states the

postcondition that the operation must establish upon termination. An unprimed argument formal, e.g., q,

in a predicate stands for the value of the object in which the operation begins. A return formal or a primed

argument formal, e.g., q \ stands for the value of the object at the end of the operation. The specification

for Deq is partial since Deq is undefined for the empty queue.

Enq(e)/Ok()
requires true
ensures q' = ins(q, e)

Deq()/Ok(e)
requires isEmp(q)
ensures q' = rest(q) A e = first(q)

Figure 2 -1 : Interfaces for Queue Operations

QVals: trait
introduces

emp: —• Q
ins: Q, E Q
first: Q —» E
rest: Q —• Q
isEmp: Q —» Bool

asserts
Q generated by (emp, ins)
for all (q: Q, e: E)

first(ins(q, e)) if isEmp(q) then e else first(q)
rest(ins(q, e)) == if isEmp(q) then emp else ins(rest(q), e)
isEmp(emp) == true
isEmp(ins(q, e)) == false

Figure 2-2: Trait for Queue Values

The assertion language for the pre- and postconditions is based on traits written in the Larch Shared

Language as in Figure 2-2. A trait is akin to an algebraic specification and is used to describe the set of

values of a typed object. The set of operators and their signatures following introduces defines a

vocabulary of terms to denote values. For example, emp and ins(empt 5) denote two different queue

values. The set of equations following the asserts clause defines a meaning for the terms, more

precisely, an equivalence relation on the terms, and hence on the values they denote. For example, from

QVals, we could prove that rest(ins(in$(empf 3), 5))) * ins(empf 5). The generated by clause of QVals

asserts that emp and ins are sufficient operators to generate all values of queues. Formally, it introduces

an inductive rule of inference that allows one to prove properties of all terms of sort Q. We use the

vocabulary of traits to write the assertions in the pre- and postconditions of a type's operations; we use

the meaning of equality to reason about its values.
Definition 4: Given a sequential specification of an object, a sequential object history is legal if
the state of the object before each invocation event satisfies the pre-condition of the object's

6

invoked operation and the state of the object before each matching response satisfies the
corresponding postcondition.

A sequential history H involving multiple objects is legal if it is legal at each object, i.e., each subhistory
H | x is legal with respect to the sequential specification for x.

2.3. Atomici ty = Serial izabil i ty + Recoverabi l i ty

We are interested in defining when a history is atomic, i.e., serializable and recoverable. We first define

when a history is serializable and then when it is atomic, by adding the recoverability property.

Definition 5: If H is a history and T is a total order on transactions, Seq(H, T) is the sequential
history equivalent to H in which transactions appear in the order T.

For example, if A1% An are transactions in H in the order 7, then Seq(H, T) • H\ A1 • ... • H\ An.

Serializability picks off only those equivalent sequential histories that are legal.

Definition 6: Let S • committed(H) u active(H) in a history H. H is serializable if there exists
some total order Ton the transactions in S such that Seq(H / S, T) is legal.

S is the set of transactions in Hthat have committed or are still active, and thus, does not include aborted

transactions. Unrolling the above two definitions, serializability requires only that we find some total order
Ton nonaborted transactions in Hthat yields a legal sequential equivalent history.

Example

H1 is serializable because ordering the transaction 8 before C is equivalent to the sequential history,

p Enq(2) B
P Ok() B
q Enq(4) B
q Ok() B
p Commit B
q Commit B
p Deq() C
p Ok(2) C
p Enq(6) C
p Ok() C

which is legal because C correctly dequeues 2, placed at the head of the queue by 8. Notice that

"equivalence" lets us ignore D because it has only a pending invocation in H1 and "serializable" lets us

ignore A because it aborts in Hr Thus, we need only order 8 and C.

End example

Atomicity requires not only serializability, but recoverability as well. To define when a history is atomic,
we simply restrict S to be just the set of committed transactions in H.

Definition 7: Wis atomic if H | committed(H) is serializable.

Recoverability lets us ignore noncommmitted (i.e., aborted and active) transactions; we require that the

resulting history be serializable. H1 is atomic because it is equivalent to the sequential history that

7

contains just the events of the one committed transaction (B) in Hr

2.3.1. Local Atomicity

The only practical way to ensure atomicity in a decentralized distributed system is to have each object

perform its own synchronization and recovery. In other words, we want to be able to verify the atomicity

of a system composed of multiple objects by verifying the atomicity of individual objects.

However, atomicity as defined so far is too weak a property to let us perform such local reasoning. That

is, H is not necessarily atomic just because H | x is atomic for each object x. For example, suppose s and

t are set objects. The following history H2 is not atomic, even though H2 \ $ and H2 \ t both are:

s lns(1) A
s Ok() A
t Mem(2) A
t Ok(true) A
s Mem(1) B
s Ok(true) B
t lns(2) B
t Ok() B
s Commit A
s Commit B
t Commit A
t Commit B

H2 | s is serializable in the order in which A precedes B and H2\ t is serializable in the order in which B

precedes A, but H2 clearly cannot be serializable in an order consistent with both.

To ensure that all objects choose compatible serialization orders, it is necessary to impose certain

additional restrictions on the behavior of atomic objects. These restrictions let us reason about atomicity

locally. Thus, if each object is guaranteed to satisfy a local atomicity property, the entire system will be

globally atomic. Avalon/C++ uses a local atomicity properly that Weihl calls hybrid atomicity [36].

Informally, a history H is hybrid atomic if it is serializable in the order in which the transactions in H

commit.

To capture formally the restriction that transactions must be serializable in commit-time order, we make

the following adjustments to our model. When a transaction commits, it is assigned a logical timestamp

[21], which appears as an argument to that transaction's commit events. These timestamps determine

the transactions' serialization order. Commit timestamps are subject to the following well-formedness

constraint, which reflects the behavior of logical clocks: if B executes a response event after A commits,

then B must receive a later commit timestamp. For a given history H, let TS(H) be the partial order such

that (A, B) € TS(H) if A and B commit in H and the timestamp for A is less than the timestamp for a

TS(H) defines a total order on committed(H).
Definition 8: A history H is hybrid atomic if H \ committed(H) is serializable in the order TS(H).

Serializability requires only that there exists some total order on transactions in H] atomicity implies we

8

need order only the committed transactions; finally, hybrid atomicity picks an order (commit-time order) for
which there must be a legal sequential equivalent. Weihl shows that hybrid atomicity is an optimal local
atomicity property: no strictly weaker local property suffices to ensure global atomicity [36].

Objects may learn of the commitment of transactions in an order different from the actual commit-time
order. This behavior reflects real distributed systems where long delays or unreliable transmission of
messages may cause objects not to have the most up-to-date view of the entire system. An object may
not know that a committed transaction A has committed, and hence believe A is still active. The following
history,

s lns(1) A
s !ns(2) B
s Ok() B
s Ok() A
s Mem(2) A
s Ok(false) A
s Commit(1:15) B
s Commit(1:00) A

is hybrid atomic since it is serializable in the order in which A precedes 8. Here, s learns about the
commitment of A after it learns about the commitment of 8, even though A commits before 8.

Though all hybrid atomic histories are atomic, not all atomic histories are hybrid atomic [36]. Ignoring the
timestamp arguments to the commit events, the following history,

s lns(1) A
s Ok() A
s Mem(1) B
s Ok(false) B
s Commit(1:00) A
s Commit(1:15) B

is atomic, but not hybrid atomic. It is serializable in the order in which 8 precedes A, but not in which A
precedes 8.

Since hybrid atomicity is local, we henceforth need only consider object subhistories.

2.3.2. On-line Atomicity

Since an object may hear about the commitment of transactions out-of-order, it may be difficult for it to

choose an appropriate response to a pending invocation of an active transaction. Thus, we focus on

"pessimistic" atomicity, where an active transaction with no pending invocation is always allowed to

commit. Using this stronger property, called on-line hybrid atomicity, gives us the additional advantage

that we can perform inductive reasoning over events in a history, which is not possible using simple

hybrid atomicity.

Definition 9: H is on-line atomic if every well-formed history H' constructed by appending well-
formed commit events to H is atomic. We call any sequential history equivalent to
H' | committed(H') a serialization of H.

9

This definition implies that H is on-line atomic if every one of its serializations is legal. We will typically

work with serializations of H, letting us tack on zero, one, or more commit events to H. On-line atomicity

allows us to choose to complete any number of active transactions, and thereby introduces inherent

nondeterminism into our correctness condition.

Examples

The following history,
q Enq(1) A
q Enq(2) B
q Ok() B
q Ok() A
q Commit(1:30) A
q Commit(1:15) B
q Deq() C
q Ok(2) C

is on-line (hybrid) atomic. It has two serializations: one in which B precedes A, and one in which B

precedes A and A precedes C, and it is easily verified that both are legal.

However, the following history,
q Enq(1) A
q Enq(2) B
q Ok() B
q Ok() A
q Commit(t:15) B
q Deq() C
q Ok(2) C

is hybrid atomic but not on-line hybrid atomic, since the history H'3 = H3^ q Commit(1:00) A •

q Commit(1:30) C is not serializable in the order in which A precedes C.

End examples

In summary, we henceforth consider a history to be atomic if its transactions are serializable in commit-

time order, and to be on-line atomic if the result of appending commit events with well-formed commit

timestamps is atomic.

3. Verification Method
We first define our notion of correctness based on the atomicity property presented in the previous

section. We then give a verification method for proving the correctness of implementations of atomic

objects.

An implementation is a set of histories in which events of two objects, a representation object r of type

Rep and an abstract object a of type Abs, are interleaved in a constrained way: for each history H in the

10

implementation, (1) the subhistories H | rand H \ a satisfy the usual well-formedness conditions; and (2)
for each transaction A, each representation operation in H | A lies within an abstract operation.
Informally, an abstract operation is implemented by the sequence of representation operations that occur
within it.

Our correctness r—~-rion for the implementation of an atomic object is as follows: An object a is atomic if
for every history implementation, H | a is atomic. We typically do not require H\ rXobe atomic.

To show the correctness of an atomic object implementation, we must generalize techniques from the
sequential domain. We use three "tools" in our method: (1) a representation invariant, (2) an abstraction
function, and (3) the object's sequential specification. The representation invariant defines the domain of
the abstraction function. The abstraction function maps a representation value to a set of sequences of
abstract operations. The sequential specification determines which of those sequences are legal. The
only unusual aspect of any of these tools is the range of the abstraction function: it is not a set of abstract
values, but a powerset of sequences of abstract operations.

Let Rep be the implementation object's set of values, Abs be the set of values of the (sequential) data

type being implemented, and OP be the sequential object's set of operations. The subset of Rep values

that are legal values is characterized by a predicate called the representation invariant, /: Rep —• booL

The meaning of a legal representation is given by an abstraction function, A: Rep - + 2 o p \ defined only

for values that satisfy the invariant. Unlike Hoare's abstraction functions for sequential objects [20] that

map a representation value to a single abstract value, our abstraction functions map a representation

value to a set of sequential histories of abstract operations.

Our basic verification method is to show inductively over events in a history that the following properties
are invariant. Let r be the representation state of the abstract object a after accepting the history H, and
let Ser(H) denote the set of serializations of H / a.

1 . V S e A(r), S is a legal sequential history, and

2. Ser(H)QA(r).

These two properties ensure that every serialization of H is a legal sequential history, and hence that H is

on-line atomic. We use the object's sequential specification to help establish the first property. Note that

if we were to replace the second property with the stronger requirement that Ser(H) » A(r), then we could

not verify certain correct implementations that keep track of equivalence classes of serializations. In the

inductive step of our proof technique, we show the invariance of these two properties across a history's

events, e.g., as encoded as statements in program text.

4. Implementing Atomic Objects
Given that atomicity is the fundamental correctness condition for objects in a transaction-based

distributed system, how does one actually implement atomic objects? In this section we discuss some of

the programming language support needed for constructing atomic objects. We have built this support in

a programming language called Avalon/C++ [8], which is a set of extensions to C++ [35].

11

Essentially, Avalon/C++ provides ways to enable programmers to define abstract atomic types. For
example, if we want to define an atomic array type, we define a new class, atomic_array, which
perhaps provides fetch and store operations. (Syntactically, a class is a collection of members, which
are the components of the object's representation, and a collection of operation implementations.) The
intuitive difference between a conventional array type and an atomic_array type is that objects of
array type will not in general ensure serializability and recoverability of the transactions that access
them whereas objects of atomic_array type will. However, the programmer who defines the abstract
atomic type is still responsible for proving that the new type is correct, i.e., that all objects of the newly
defined type are atomic. By providing language support for constructing atomic objects, we gain the
advantage that this proof is done only once per class definition, not each time a new object is created.
The verification method used for proving that an atomic type definition is correct is the heart of this paper.

Avalon/C++ has two built-in classes that together let programmers build atomic objects. The trans_id
class provides operations that let programmers test the serialization order (i.e., commit-time order) of

transactions at runtime. The subatomic class provides operations that let programmers ensure

transaction serializability and recoverability.

4.1. Transaction Identifiers
The Avalon/C++ trans id (transaction identifier) class provides ways for an object to determine the

status of transactions at runtime, and thus synchronize the transactions that attempt to access it.

Trans_id's are a partially ordered set of unique values. Here is the t rans_id class definition:
class trans_id {

// ... internal representation omitted
public:

trans_id(); // constructor
~trans_id(); // destructor
trans__id&= (trans_id&) // assignment
bool operator—(trans_id&); // equality
bool operator< (trans__id&) ; // serialized before?
bool operator>(trans_id&); // serialized after?
bool done(trans_id&); // committed to top level?
friend bool descendant(trans_id&, trans_id&);

// is the first a descendant of the second?
);

The three operations provided by trans_id's relevant to this paper are the creation operation, the

comparison operation, and the descendant predicate.

The creation operation, called as follows:
trans_id t - trans_id();

creates a new dummy subtransaction, commits it, and returns the subtransaction's trans_id to the

parent transaction. Each call to the creation operation is guaranteed to return a unique trans__id. A

trans_id is typically used as a tag on an operation. Calling the trans_id constructor allows a

transaction to generate multiple trans_id's ordered in the serialization order of the operations that

created them.

12

The comparison operation, used in the following expression,
tl < t2

returns information about the order in which its arguments were created. If the comparison evaluates to
true, then (1) every serialization that includes the creation of t2 will also include the creation of ti, and
(2) the creation of ti precedes the creation of t2. If ti and t2 were created by distinct transactions T1
and 72, then a successful comparison implies that T1 is committed and serialized before 72, while if ti
and t2 were created by the same transaction, then ti was created first. If the comparison evaluates to
false, then the trans id's may have the reverse ordering, or their ordering may be unknown.

Comparison induces a partial order on trans id's that "strengthens'' over time: if ti and t2 are
created by concurrent active transactions, they will remain incomparable until one or more of their
creators commits. If a transaction aborts, its trans_id's will not become comparable to any new
trans_id's. Hence, "<" is capturing the commit-time order, i.e., serialization order, for committed
transactions.

Finally, we use the descendant operation to compare whether a trans_id t' is a child of another. If
the expression

descendant(t',t)
evaluates to true, then t' was created by the transaction t. Typically t is the t rans_id of a committing
or aborting transaction; the predicate lets us identify all its children.

Avalon/C++ maintains a logically global trans__id tree that provides the information on the relationship
among trans_id's and the status of each transaction associated with a trans_id.

4.2. Ensuring Serializability and Recoverability
An atomic object in Avalon is defined by a C++ class that inherits from the Avalon built-in class
subatomic. Here is the subatomic class definition:

class subatomic : public recoverable {
protected:

void seize (); // Gains short-term lock,
void released; // Releases short-term lock,
void pause(); // Temporarily releases short-term lock,

public:

//... inherits two other operations from recoverable ...
virtual void commit(trans_id& t); // Called after transaction commit,
virtual void abort(trans_id& t); // Called after transaction abort.

};
A programmer defining a new atomic data type derives from class subatomic, gaining access to all the

above operations. The details of each of these operations are not important to this paper. Roughly

speaking, the first three operations permit the implementation of each of the operations of the user-

defined atomic data type to be executed "indivisibly." This property is conventionally called "atomic,"

where atomicity is at the level of an individual operation (i.e., "all-or-nothing" of a single operation), as

opposed to atomicity at the level of a transaction (i.e., "all-or-nothing" of a sequence of operations). The

13

last two operations allow implementors control over the clean-up processing done by an object when it

learns that a transaction has committed or aborted.

With occasional minor variations, the implementation of each operation, op, of an atomic data type,

atomic_r, which inherits from class subatomic, has the following form:
atomic_T::op(...) {
trans_id t = trans_id();
when(TEST)

BODY;
}

As previously explained, the call to the creation operation of trans_id generates a new trans_id
which is used to "tag" the current call to op. The when statement is a conditional critical region: BODY is

executed only when TEST evaluates to t rue. Avalon/C++ implements the when statement in terms of

the seize, release, and pause operations of subatomic and guarantees mutual exclusion at the

operation level by associating a short-term lock with the object, TEST is typically an expression

comparing (using trans_id's "<" operation) op's newly created trans_id t with other trans_id's

embedded in the object's representation, BODY typically computes a result and updates the object's

state.

By inheriting from the subatomic class, the implementor can define new classes like atomicjr, and

use the operations, in particular those encoded in the when statement, provided by subatomic to

implement atomicj 's operations. Since most operations follow the above template, the cleverness

required in implementing operations of a new atomic type is in figuring out what the synchronization

conditions on atomicjr's operations are and then encoding a test for these conditions in each of the

operation's TEST in order to maintain the commit-time order of transactions.1 Proving correctness of the

implementation focuses on showing that the synchronization conditions permit for only atomic object

histories.

Objects defined in a class that inherits from subatomic can also provide commit and abort operations

that are called by the system as transactions commit or abort. A user-defined commit typically discards

recovery information for the committing transaction, and a user-defined abort typically discards the

tentative changes made by the aborting transaction. Intuitively, commit and abort operations in

Avalon/C++ are expected to affect liveness, but not safety. For example, delaying a commit or abort
operation may delay other transactions (e.g., by failing to release locks) or reduce efficiency (e.g., by

failing to discard unneeded recovery information), but it should never cause a transaction to observe an

erroneous state. We do not address liveness properties in this paper, though certain ones are dearly of

great interest. We would need to rely on the extensive work on temporal logic, e.g., [28], for reasoning

about liveness.

1K remains an open research problem to figure out how to derive these synchronization conditions in a systematic way,
does in computing weakest pre-conditions.

14

5. An Example: A Highly Concurrent FIFO Queue
In this section, we Illustrate our verification technique by applying it to a highly concurrent atomic FIFO
queue implementation. Our implementation is interesting for two reasons. First, it supports more
concurrency than commutativity-based concurrency control schemes such as two-phase locking. For
example, it permits concurrent enqueuing transactions, even though enqueuing operations do not
commute. Second, it supports more concurrency than any locking-based protocol, because it takes
advantage of state information. For example, it permits concurrent enqueuing and dequeuing
transactions while the queue is non-empty.

We first give the Avaion/C++ implementation of the queue, then define the verification tools needed to
prove its correctness, and then give a correctness proof.

5 . 1 . The Implementation
As in the implementation of any abstract type, we present first the representation of the abstract type and
then the implementations of each of the operations.

5.1.1. The Representation

We record information about enq operations in the following struct:
struct enq__rec {

int item; // Item enqueued.
trans_id enqr; // Who enqueued it.
enq_rec(int i, trans_id& en) // Constructor,
{item * i; enqr = en;}

>;

The item component is the enqueued item. The enqr component is a trans_id generated by the

enqueuing transaction. The last component defines a constructor operation for initializing the struct.

We record information about deq operations similarly, where the deqr component is a trans_id
generated by the dequeuing transaction:

struct deq_rec {
int item; // Item dequeued.
trans_id enqr; // Who enqueued it.
trans_id deqr; // Who dequeued it.
deq_rec(int i, trans_id& en, trans_id& de); // Constructor,
{item - i;
enqr « en;
deqr * de;

}
};

We represent the queue as follows:

15

class atomic_queue : public subatomic {
deq_stack deqd; // Stack of dequeued items.
enq_heap enqd; * // Heap of enqueued items,

public:
atomienqueue() {}; // Create empty queue,
void enq(int item); // Enqueue an item,
int deq(); // Dequeue an item,
void commit(trans_id& t); // Called on commit,
void abort(trans_id& t); // Called on abort.

>;

The deqd component is a stack of deq__rec's used to undo aborted deq operations. The enqd
component is a partially ordered heap of enq_rec's, ordered by their enqr fields. A partially ordered

heap provides operations to enqueue an enq_rec, to test whether there exists a unique oldest enq_rec,
to dequeue it if it exists, and to discard all enqrec 's inserted by (aborted) transactions.

A typical scenario is that when an enq operation occurs, a new trans_id is generated and stored in a

new enq_rec, along with the item being enqueued; the enq__rec is inserted in the heap. When a deq
operation occurs, a new trans_id is generated and stored in a new deq__rec, along with the

information contained in the unique oldest enq__rec removed from the heap; this deq^rec is pushed on

the stack.

5.1.2. The Operations
If B is an active transaction, then we say A is committed with respect to B if A is committed, or if A and B

are the same transaction. Enq and deq must satisfy the following synchronization constraints to ensure

atomicity. Transaction A may dequeue an item if (1) the most recent transaction to have executed a deq
is committed with respect to A, and (2) there exists a unique oldest element in the queue whose

enqueuing transaction is committed with respect to A. The first condition ensures that A will not have

dequeued the wrong item if the earlier dequeuer aborts, and the second condition ensures that there is

something for A to dequeue. Similarly, A may enqueue an item if the last item dequeued was enqueued

by a transaction committed with respect to A.

Given these conditions, here is the code for enq:
void atomienqueue::enq(int item) {

trans_id tid - trans_id();
when (deqd.is_empty() I I (deqd.top()->enqr < tid))

enqd.insert(item, tid); // Record enqueue.
}

Enq checks whether the Item most recently dequeued was enqueued by a transaction committed with

respect to the caller. If so, the current trans id and the new item are inserted in enqd. Otherwise, the

transaction releases the short-term lock and tries again later (guaranteed by the implementation of the

when statement). The somewhat complicated synchronization condition for enq is needed because

transactions can perform multiple operations which must be ordered in the sequence in which they were

called. (As an aside, the condition is also necessary and sufficient for nested transactions.) Consider the

situation depicted in Figure 5-1. A and B are two transactions where A performs two operations.

Suppose A is still active. B must wait for A to commit because if B commits at an earlier time than A the

16

B

Enq(5) Deq(5) Enq(7)

Figure 5-1: An Example of Why an Enqueuer (B) Must Wait

second operation of A will have dequeued the wrong item (7, not 5, would be at the head of the queue).

Here is the code for deq:
int atomienqueue::deq() {
trans_id tid = trans__id();
when ((deqd.is_empty() || deqd.top()->deqr < tid)

&& enqd.min_exists() && (enqd.get_min()->enqr < tid)) {
enq_rec* mincer = enqd.delete_min();
deq_rec dr(*min_er, tid); // Move from enqueued heap...
deqd.push(dr); // to dequeued stack,
return min_er->item;

}
}

Deq tests whether the most recent dequeuing transaction has committed with respect to the caller, and
whether enqd has a unique oldest item. If the transaction that enqueued this item has committed with
respect to the caller, it removes the item from enqd and records it in deqd. Otherwise, the caller releases
the short-term lock, suspends execution, and tries again later. It is easy to see why a dequeuing
transaction B must wait for the dequeuer A of the last dequeued item to be committed with respect to 8.
If B proceeds to dequeue without waiting for A to complete, then it will have dequeued the wrong item if A
aborts. Consider the situation in Figure 5-2 where 5 and 7 are the first and second elements in the
queue. If A aborts then B should get a 5.

A B

Deq(5) Deq(7)

Figure 5-2: An Example of Why a Dequeuer (B) Must Wait

Note that an enqueuer does not have to wait for the dequeuer of the last dequeued item to commit.

Consider the situation in Figure 5-3. Suppose A has committed, but B has not. C can proceed to

enqueue a 7 even though B has not yet completed. If B commits, it does not matter whether it commits

before or after C. B will correctly see 5 at the head of the queue either way and C will correctly place 7 as

the new head. If B aborts, then C will correctly place 7 after 5, which remains at the head of the queue.

Thus, C can proceed without waiting for B to complete because there is no way C can be serialized

before A and it does not matter in which order B and C are serialized.

17

Enq(5) Deq(5) Enq(7)

Figure 5-3: An Example of When an Enqueuer (C) Need Not Wait

In addition to the enq and deq operations, the atomienqueue provides commit and abort operations

that are applied to the queue as transactions commit or abort. The commit operation looks like:

void atomic_queue::commit(trans_id& committer) {
when (TRUE) // Always ok to commit.

if (!deqd.is_empty() && descendant(deqd.top()->deqr, committer)) (
deqd.clear (); // Discard all dequeue records.

}
}

When a transaction commits, it discards deq_rec's no longer needed for recovery. The implementation

ensures that all deq_rec's below the top are also superfluous, and can be discarded. We state this

property formally when giving the representation invariant in Section 5.2.1.

The abort operation looks like:
void atomic_queue::abort(trans_id& aborter) {

when (TRUE) { // Always ok to abort.
while (!deqd.is_empty() // Undo aborted dequeue by...

&& descendant(deqd.top()->deqr, aborter)) { // aborting transaction.
deq_rec* d = deqd.pop(); // Undo aborted dequeue,
enqd.insert(d->item, d->enqr); // Put it back.

>

enqd.discard(aborter); // Undo aborted enqueues.
}

}

Abort undoes every operation executed by a transaction that is a descendant of the aborting transaction.

It interprets deqd as an undo log, popping records for aborted operations, and inserting the items back in

enqd heap. Abort then flushes all items enqueued by the aborted transaction and its descendants.

5.2. Application of Verification Method
As outlined in Section 3, we need to provide a representation invariant, abstraction function, and

sequential specification in order to apply our verification method.

5.2.1. Representation Invariant
The queue operations preserve the following representation invariant. For brevity, we assume items in

the queue are distinct, an assumption that could easily be relaxed by tagging each item in the queue with

a timestamp. For all representation values r:
1. No item is present in both the deqd and enqd components:

(V d: deq_rec) (V e: enq_rec) (d € r.deqd A e € r.enqd => e.item *
d.item)

A B C

18

2. Items are ordered in deqd by their enqueuing and dequeuing trans__id's:

(V dl, d2: deq__rec) dl < d d2 => (dl.enqr < d2.enqr A dl.deqr < d2.deqr)
where < d is the total ordering on deq_rec's imposed by the deqd stack.

3. Any dequeued item must previously have been enqueued:

(V d: deq_rec) d € r.deqd => d.enqr < d.deqr.

Thus, given an arbitrary state of the queue representation as in Figure 5-4, where the stack grows
upward: The first part of the representation invariant implies that x (and y) cannot be in any enq_rec in

y t2

X tl tr

heap

item enqr deqr

stack
Figure 5-4: An Example Queue Representation State

the heap. The second implies that 11 < t2 and 11' < t2\ The third implies that t1 <tV (and t2<t2).

Our proof technique requires that we show the representation invariant is preserved across the
implementation of each abstract operation. We conjoin it to the pre- and postconditions of each of the
operations' specifications.

5.2.2. Abstraction Function

Intuitively, the abstract value of the queue is defined in terms of what has been enqueued by committed

transactions and may possibly be enqueued by active transactions (what is in the heap) and what has

been and may possibly be dequeued (what is on the stack). On-line atomicity requires that we allow for

the possibility of active transactions to commit. For each, we pretend that it commits and reflect its

effects—tentative enqueues and dequeues saved in the heap and stack—in the image of the abstraction

function for a given representation value. When an active transaction actually does commit or the object

finally finds out about the transaction's commitment, we know that we have already permitted for its

effects to have taken place. Notice that both commit and abort do not change the abstract view of the

queue, but only the representation.

To define the abstraction function, we need some auxiliary definitions. Let Q be a sequential queue
history (not necessarily legal). Define the auxiliary functions ENQ(Q) and DEQ(Q) to yield the sequences
of items enqueued and dequeued in O:

DEQ(A) - emp ENQ(A) « emp
DEQ(Q • Deq(x)) - DEQ(Q) • x ENQ(Q • Enq(x)) - ENQ(Q) • x
DEQ(Q • Enq(x)) » DEQ(Q) ENQ(Q • Deq(x)) - ENQ(Q)

19

For an operation p that is neither an Enq(x) nor Deq(x):
DEQ(Q • p)) = DEQ(Q) ENQ(Q • p) = ENQ(Q)

Here, "Enq(x)" is shorthand for an Enq operation performed by some transaction A, "q Enq(x) A •

q Ok() A" and "Deq(x)" is shorthand for "q Deq() A • q Ok(x) A." Here, "emp" denotes the empty

sequence of items.

Let 7 be the universe of all (unique) trans_id's. P c 7" is a prefix set if, V f, V e T, if t e P A t'< f, then

t'e P. (The lemma below is independent of the queue example.)
Lemma 10: If H is an on-line atomic history for a set of trans_id's and S is a serialization of
H, then the trans__id's whose creation operations appear in Sform a prefix set.

Given a representation value rand a prefix set of trans_id's, we define the auxiliary function OPS(r, P)

to yield the partially ordered set of operations tagged by trans_id's in P. OPS(r, P) for the queue

example is equal to the following set:

(Enq(x) | (3 e:enq_rec € r.enqd) e.item = X A e.enqr € P V
(3 d:deq_rec € r.deqd) d.item = X A d.enqr € P } U

{Deq(y) | (3 d:deq_rec € r.deqd) d.item = y A d.deqr € P}

Each operation is tagged with a trans_id (e.enqr, d.enqr, or d.deqr). These trans_id's induce a

partial order on the elements of OPS(r, P).

We define Present to take a representation value r and a prefix set P, from which we can define OPS(rt

P). The value of Presenter, P) is a set of sequences of (queue) operations where each sequence has the

same elements as in OPS(r, P) in a (total) order that extends the partial order of OPS(r, P).

Presenter, P) = {Q\ elements(OPS(r,P)) = eiements(Q) A order(OPS(r,P)j c order(Q)}

Present(r) is defined as the union of Presenter, P) over all prefix sets P c T :

Present(r) = u Presenter, P)
P

From the representation of the queue, we can see that a representation value r can keep track of only

those items enqueued but not yet dequeued by committed transactions. In order to apply our verification

method (Ser(H) c A(r)), we must consider all possible past histories that could have gotten the

representation to its present state. So, we use Past to generate an infinite set of finite prefixes for a

queue history:
Past» { Q | Q is a sequential queue history A DEQ(Q) » ENQ(Q)}

Finally, we define A(r) as follows:

A(r)m{Q\3Q1e PastS Q2s Present(r). Q » Q1 • Q2)

Note that A(r) typically includes more histories than Ser(H), the set of serializations of H.

Defining abstraction functions for other implementations of atomic queues and for implementations of

other data types follow the same pattern. Since operations are typically tagged by a trans_id, we

20

gather up these trans_id's into a prefix set P, define a type-specific OPS(r, P) (the elements are just
individual instances of the operations provided by the type), define a Past function that lets us generate
all possible legal prefixes2, and finally a Presenter, P) function that lets us turn a set of partially ordered
operations into a set of totally ordered ones, i.e., sequences of operations.

5.2.3. Type-Specific Correctness Condition

The sequential queue specification in Figures 2-1 and 2-2 implicitly defines the set of legal sequential
queue histories, and thus, the set of legal abstract queue values. Our verification method requires that
we reason about serializations of a given queue history, e.g., showing that every history in A(r) is legal.
Recall we introduced serializations to capture the "pessimistic" property of on-line atomicity where a
serialization of a history His a sequential equivalent version of H with appended commit events for active
transactions. Since an object may actually learn of the commitment of transactions in an order different
from their actual commit times, we need a way to recognize when it is legal to insert an operation "in the
middle" of a legal sequential history. The following lemma about sequential queue histories captures this
notion.

Lemma 11: Let Q = Q1 • Q2 be a legal sequential queue history, and let p be a queue
operation. The sequential history Q ' « Q1 • p • Q2 is legal if DEQ(Q') is a prefix of ENQ(Q').

This lemma captures the "prefix" property of a queues behavior. It indirectly characterizes the conditions
under which queue operations may execute concurrently; an analogous lemma would be needed for any
other data type to be verified.

To illustrate why we need to possibly reorder operations in a history, consider the following history:

q Enq(5) A
q Ok() A
q Enq(7) A
q Ok() A
q Deq() A
q Ok(5) A
q Commit(1:00) A
q Enq(1) B
q Ok() B
q Deq() C
q Ok(7) C
q Enq(8) C
q Ok() C

q must permit for B and C to commit, and in either order. Though the sequence of operations that q sees
is:

Enq(5) • Enq(7) • Deq(5) • Enq(1) • Deq(7) • Enq(8)

since C may commit before B it needs to permit for this sequence as well:

Enq(5) • Enq(7) • Deq(5) • Deq(7) • Enq(8) • Enq(1)

where C s operations are inserted before £?s. We need to check that both sequences are legal; and

2Hece again, an object's sequential specification, i.e., its data type semantics, determines how to define P*st

21

indeed, <5, 7> is a prefix of both <5, 7, 1, 8> and <5, 7, 8, 1 >.

5.3. Veri fying the Implementat ion

We verify the queue implementation by showing inductively that every sequential history in Ser(H) lies in

A(r) and that every sequential history in A(r) is legal. First we give an informal summary of our arguments

and then the more formal proofs for the Enq and Deq operations.

5.3.1. Proof Sketch
Suppose the object completes an operation Enq(x) with trans_id f, carrying the accepted history H to

H\ and the representation rto r'. It is immediate from Lemma 10 that Ser(H') Q A(r'). To show that every

history in A(f) is legal, let Q '€ A{f). If Q'fails to satisfy the prefix property of Lemma 11, there must exist

y in DEQ(Q') such that x precedes y in ENQ(Q'), implying that the Enq of x is serialized before the Enq of

y. Let V be the enqueuing trans_id for the item at the top of the deqd stack, and let f" be the

enqueuing trans_id for y. The when condition for Enq ensures that V < f, and the representation

invariant ensures that t" £ t', hence that t" < t, which is impossible if the Enq of x is serialized first.

Similarly, suppose the object completes an operation Deq(x) with trans_id f, carrying the

representation r to r\ Let Q = Q1 • Q2e A(r) and Q'» Q1 • Deq(x) • Q2 € A(r'). The representation

invariant and the first conjunct of the when condition for Deq ensure that x is not an element of DEQ(Q),

and the second conjunct then ensures that x is the first element of ENQ(Q) - DEQ(Q). Together, they

imply that DEQ(Q') - DEQ(Q) • x is a prefix of ENQ(Q') - ENQ(Q), hence that Q is legal by Lemma 11.

If a Commit or Abort event carries the accepted history H to H\ and the corresponding commit or abort
operation carries r to r', we must show that (1) Aff) c A(r), and (2) that no history in A(r) - A(f) is in

Ser(H'). Property 1 ensures that every sequential history in A(f) is legal, and Property 2 ensures that no

valid serializations are "thrown away." For Commit, we check that every discarded history is missing an

operation of a committed transaction, and for Abort, we check that every discarded history includes an

operation of an aborted transaction; either condition ensures that the discarded history is not an element

of Ser(H').

Naturally, this verification relies on properties of sequential queues. To verify an implementation of

another data type, one would have to rely on a different set of properties, but the arguments would follow

a similar pattern. The basic synchronization conditions are captured by a type-specific analog to Lemma

11, characterizing the conditions under which an operation can be inserted in the middle of a sequential

history. The representation invariant and abstraction function define how the set of possible serializations

is encoded in the representation, and an inductive argument is used to show that no operation, commit, or

abort event can violate atomicity.

22

5.3.2. Formal Proof for Enqueue and Dequeue

In this section we will use induction to show the prefix property of Lemma 11. More specifically, if the
prefix property holds of all serializations h e A(r) at the invocation of the enqueue or dequeue operation, it
holds of all serializations h'e A(r') at the point of return. In the following, for H e A(r), H'e 4(r'), let H *
H1 • H2 and H' a H1 • op • H2 such that V p e H f -.(tid < transJd(p)) A V p e H2 -n(transjd(p) < tid),
where op is the enqueue or dequeue operation (as the case may be) with trans_id tid, and
transJd(p) is the trans_id of operation p.

Enqueue

We decorate the enq operation with two assertions, one after the when condition, and one at the point of
return.

void atomienqueue::enq(int item) {
trans_id tid = trans_id();
when (deqd. is__empty () || (deqd. top ()->enqr < tid))

WHEN: {Vyye eiements(DEQ(h)) => transJd(Enq(y)) < tid}

enqd.insert(item, tid);
POST: (DEQ(h') « DEQ(h)}

}

Proof: Case 1: The queue is empty. Trivial since the antecedent of WHEN is false.

Case 2: The queue is nonempty. Then let y be an item dequeued in H, which implies that the
transjd of the enqueue operation of y is ordered before tid by the WHEN assertion. The
enqueue operation must be in H1 since (1) the transjd fs of all enqueue operations of
dequeued items are all ordered before that of deqd.top().enqr (by the representation invariant),
which is ordered before tid (by the when condition); and (2) tid is not ordered before any
operation in H1 (by the definition of H = H1 • H2). Since the enqueue operations of all
dequeued items are in Hv

DEQ(H) prefix ENQ(H f) O

At the point of return, let e * Enq(x). From POST we have that:
DEQ(H) - DEQ(H), which by (#)
=> DEQ(W) prefix ENQ(H r)
=> DEQ(W) prefix ENQ(H t • e • H2)
=> D E Q (P ^ f i x of ENQ(H).

23

Dequeue

Here is the annotated deq operation:
int atomienqueue::deq() (

trans_id tid — trans_id();
when ((deqd.is_empty() || deqd.top()->deqr < tid)

&& enqd.min_exists() && (enqd.get_min()->enqr < tid)) {
{WHEN: V Deq operations d in h (transJd(d) < t id => d in H^}
enq__rec* min__er = enqd.delete_min(); // Transfer from enqueued heap...
deq__rec dr (*min__er, tid);
deqd.push(dr) ; // to dequeued stack,
return min_er->item;

}
{POST: DEQ(h') = DEQ(h) • x A ENQ(h') « ENQfH,) • ENQfH^}

>

and the proof:
Proof: From the first conjunct of the when condition and the second clause of the
representation invariant, we know that DEQ(H) * DEQ(H t) . The second conjunct implies that
there exists some x » first(ENQ(H) - DEQ(H)), the first item in the sequence of enqueued items
that have not yet been dequeued. The third conjunct implies that this item, x, is in Hv Thus, by
properties on sequences, there exists some x = tfrsf(ENQ(Ht) - DEQ(H r)) .

At the point of return, let d = Deq(x). POST implies that
DEQ(H r • d) prefix ENQ(H f • d)
=> DEQ(H') prefix ENQ(H r • d)
=> DEQ(W) prefix ENQ(H r • d • H2)
=> DEQ(H) prefix ENQ(H).

6. Discussion and Related Work

6.1. Hybrid Atomicity Revisited
Atomicity has long been recognized as a basic correctness property within the database community [3].

More recently, several research projects have chosen atomicity as a useful foundation for general-

purpose distributed systems, including Avalon [18], Argus [24], Aeolus [39], Camelot[34], EXODUS

[11] and Arjuna [9]. EXODUS and Arjuna, like Avalon, extend C++ to support recoverability, but neither

gives programmers fine control over serializability. Of all these projects only Avalon and Argus provide

linguistic support for programmers to design and implement user-defined atomic data types, which Weihl

and Uskov argue is necessary for building large, realistic systems [37].

One way to ensure atomicity of a set of concurrent transactions is to associate read and write locks wtth

each object and to use a strict two-phase locking protocol to ensure serializability [10]. A transaction A

obtains a read lock on an object x If A needs only to observe Vs value. It obtains a write lock if it needs to

update Vs value. Each transaction first acquires all the locks it needs, then performs its operations on all

objects for which it has obtained the appropriate locks, and then when it commits or aborts, releases all of

its locks. Locks are held for the duration of a transaction, not individual operations; thus, two transactions

24

that need to perform updates on the same object cannot proceed concurrently.

The two-phase read-write locking protocol is known to guarantee atomicity. However, since operations
are naively divided into readers and writers, the amount of concurrency that can be obtained is restricted
because the type semantics of objects are ignored. For example, consider the following two transactions
that each perform two enqueue operations:

q Enq(1) A q Enq(2) B
q Ok() A q Ok() B
q Enq(3) A q Enq(4) B
q Ok() A q Ok() B

Following a read-write locking protocol would prevent A and B from executing concurrently. Suppose A
has the write lock on q, then B would not be able to obtain it, and hence has to wait for A to commit or
abort before proceeding. Assuming both A and B commit, the only two permissible histories would both
be sequential, where either all of As operations precede all of Bs or vice versa, i.e., As and Bs
operations would not be interleaved. However, it should be possible to permit for the following history in
which A and B are executing concurrently:

q Enq(1) A
q Ok() A
q Enq(2) B
q Ok() B
q Enq(3) A
q Ok() A
q Enq(4) B

• q Ok() B

Our correctness condition (hybrid atomicity) certainly permits this history since any extension of it with
appended commit events for A and/or B is serializable.

Moreover, in the case when the queue is non-empty, we can permit a dequeuing transaction to proceed
concurrently with an enqueuing one. Consider this example, which is a variation of the example drawn in
Figure 5-3:

q Enq(1) A
q Ok() A
q Enq(3) A
q Ok() A
q Commit(1:00) A
q Enq(2) B
q Deq() C
q Ok(1) C
q Ok() B
q Enq(4) B
q Ok() B

The queue can permit C to perform a Deq operation and even return an element to C because it knows

that A has committed and thus it knows what its first element is. Whether B commits or not, C still

25

receives the correct element. Were two-phase read-write locking used, B and C would not be allowed to

proceed concurrently because the Enq and Deq operations would both be classified as writers.

The use of commit-time serialization distinguishes Avalon from other transaction-based languages and

systems, which are typically based on some form of strict two-phase locking. We chose to support

commit-time serialization because it permits more concurrency than two-phase locking [36], as well as

better availability for replicated data [17]. Because commit-time serialization is compatible with strict

two-phase locking, applications that use locking can still be implemented in Avalon/C++. In fact, we

optimize for this more traditional case: As an alternative way to build atomic data types, programmers

can inherit from another built-in Avalon/C++ called atomic, which provides access to read and write

locks.

To summarize the results of this discussion and that in Section 2, the Venn diagram in Figure 6-1 shows

the relationship between atomic, hybrid atomic, and "two-phase-locking" atomic histories. Every "two-

phase locking" history is hybrid atomic, but not conversely; every hybrid atomic history is atomic, but not

conversely. The key point of this section is that hybrid atomicity provides more concurrency than "two-

phase locking." The key point with respect to this paper, however, is that hybrid atomity is local, whereas

atomicity is not.

Figure 6 -1 : Relationships Among Atomicity Properties

6.2. Abstraction Functions Revisited
The main contribution of this paper is the verification method used for showing the correctness of the

implementation of an atomic data type. This method hinges on defining an abstraction function between

a low-level view of an object and an abstract view. In the sequential domain, the signature of the

abstraction function is:

4: Rep -> Abs

Because of the on-line property of our correctness condition, in particular the inherent nondeterminism,

we need to map to a set of values. A first attempt at extending the abstraction function would be to

extend the range as follows:

A: Rep - * 2***

26

This extension is similar to Lynch and Turtle's use of multi-valued possibilities mappings, where each
"concrete state" maps to a set of "abstract states" [27]. Lynch and her colleagues have used possibilities
mappings to prove a wide range of distributed algorithms correct, including transaction-based locking and
timestamp protocols. This abstraction function extension is also similar to what Herlihy and Wing needed
to use in order to prove the correctness of linearizable objects [19], again because of the inherent
nondeterminism in the definition of the correctness condition.

However, even mapping to the powerset of abstract values is insufficient for the on-line hybrid atomic
correctness condition we require. We need to keep track of sequences of operations because we need to
permit for reordering of operations. In fact, we need to be able to insert not just single operations into the
middle of a history, but sequences of operations since a transaction may perform more than one
operation. Hence, we finally extend the abstraction function's range to be:

A: Rep - » 2op*

In either extension, the standard trick of using auxiliary variables (Abadi and Lamport classify these into
history and prophecy variables [1]) would also work. These variables can be included in the domain of
the abstraction function (encoded as part of the representation state) and used (1) to keep track of the set
of possible abstract values; (2) to log the history of abstract operations performed on the object so far;
and (3) to keep track of implicit global data like the trans_id tree. Hence our abstraction functions can
be turned into Abadi and Lamport's refinement mappings, where the extended domain of the
representation state maps to a single abstract state.

In our initial approach to verification we tried to stick to a purely axiomatic approach in our verification

method where we relied on Hoare-like axioms to reason about program statements, invariant assertions

to reason about local state changes and global invariants, and auxiliary variables to record the states

(e.g., program counters) of concurrent processes. In the transactional domain, however, an atomic

object's state must be given by a set of possible serializations, and each new operation (or sequence of

operations) is inserted somewhere "in the middle" of certain serializations. This distinction between

physical and logical ordering is easily expressed in terms of reordering histories, but seems awkward to

express axiomatically, i.e., using assertions expressed in terms of program text alone. Though the proofs

given in this paper fall short of a pure syntax-directed verification, they could be completely axiomatized

by encoding the set of serializations as auxiliary data. Even so, we have found that the resulting invariant

assertions are syntactically intimidating and the proofs unintuitive and unnatural.

6.3. Other Models for Transactions
Best and Randall [4], and Lynch and Merritt [26] have proposed formal models for transactions and

atomic objects. Best and Randall use occurrence graphs to define the notion of atomicity, to characterize

interference freedom, and to model error recovery. Their model does not exploit the semantics of data,

focusing instead on event dependencies. Lynch and Merritt model nested transactions and atomic

objects in terms of I/O automata, which have been used to prove correctness of general algorithms for

synchronization and recovery [12, 25]. None of these models were intended for reasoning about

27

individual programs. Moreover, none are suitable for reasoning about high-level programming language

constructs that include support for user-defined abstract data types.

7 . Current and Future Work
We have applied our verification method to a directory atomic data type, whose behavior is much more

complex than a queue's. A directory stores key-item pairs and provides operations to insert, remove,

alter, and lookup items given a key. Synchronization is done per key so transactions operating on

different keys can execute concurrently. Moreover, we use an operation's arguments and results to

permit, in some cases, operations on the same key to proceed concurrently. For example, an

"unsuccessful" insertion operation, i.e., ins(k, x)/Ok(false), does not modify tfs binding, so it does not

conflict with a "successful" lookup operation, i.e., Lookup(k)/Ok(y). Our proof of correctness relies on

inductively showing a type-specific correctness condition, analogous to the "prefix" property for the

queue. Informally stated, this condition says that it is legal to perform a successful remove, ?lter, lookup

or unsuccessful lookup or insert on a key k as long as a key-item pair has already been successfully

inserted for k and not yet successfully removed. This condition should hint to the reader that, in general,

we need to keep track of the exact operations (including their arguments and results) and the order they

have occurred already in a history to know which permutations are legal. We implemented the directory

example in Avalon/C++.

In line with our philosophy of performing syntax-directed verification, we have used machine aids to verify

the queue example. In particular, we used the Larch Shared Language to specify completely the queue

representation, the set of queue abstract values (in terms of sequences of queue operations), the

representation invariant, and the abstraction function. We used the Larch Prover [13] to prove the

representation invariant holds of the representation and to perform the inductive reasoning we carried out

in our verification method. We describe this work ;,i more detail in [15].

Our work on specifying and verifying atomic data types and more recently, our work on using machine

aids, has led us to explore extensions to our specification language. Two kinds of extensions seem

necessary. First, we need a way to specify precisely and formally the synchronization conditions placed

on each operation of an atomic object. We propose using a when clause analogous to the when
statement found in Avalon/C++ or the WHEN assertion found in our proofs. Birred et al. use informally a

when clause in the Larch interface specification of Modula/2+'s synchronization primitives [5] and Lemer

uses it to specify the queue example [23]. Second, we would like to extend the assertion language of the

Larch interface specifications. The Larch Shared Language and the input language of the Larch Prover

are both restricted to a subset of first-order logic. The assertions we write, however, in both the

PRE/WHEN/POST conditions in our proofs and the requires/when/ensures clauses in our Larch

interfaces, refer to operations, histories, sets of histories, and transactions directly, thereby requiring a

richer and more expressive language than that which either the Larch Shared Language or the Larch

Prover supports.

28

I would like to thank Maurice Herlihy specifically for his close collaboration on the Avalon/C++ design and
implementation, for his ideas about verifying atomicity, and for co-authoring a paper that presents a
preliminary version of the some of the ideas in this paper. I thank Bill Weihl for the original definitions of
his model of transactions and atomicity properties.

I thank the participants of the 1989 REX Workshop on Stepwise Refinement of Distributed Systems:
Models, Formalism, Correctness that took place in Plasmolen, The Netherlands. I especially thank
Willem P. de Roever, Jr. who has been supportive and encouraging throughout my attempts at
explaining this material.

Finally, I thank the following members of the Avalon Project for reading drafts of this paper: Chun Gong,
David Detlefs, Karen Kietzke, Linda Leibengood, Rick Lerner, and Scott Nettles. Qong and Dave have
been particularly helpful with some of the technical points. Dave and Karen have been instrumental in
turning the design of Avalon/C++ into a working implementation.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 4976, monitored by the Air Force Avionics Laboratory Under Contract F33615-87-C-1499. Additional
support was provided in part by the National Science Foundation under grant CCR-8620027. The views
and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the US Government.

References
P] M. Abadi and L. Lamport «nvji i_. Lcinipon.

The Existence of Refinement Mappings.
Technical Report 29, DEC Systems Research Center, August, 1988.

[2] K.R. Apt, N. Francez, and W.P. DeRoever.
A Proof System for Communicating Sequential Processes.
ACM Transactions on Programming Languages and Systems 2(3):359-385, July, 1980.

[3] P.A. Bernstein and N. Goodman.

A survey of techniques for synchronization and recovery in decentralized computer systems.
ACM Computing Surveys 13(2):185-222, June, 1981.

[4] E. Best and B. Randell.
A Formal Model of Atomicity in Asynchronous Systems.
Acta Informatica 16(1):93-124, 1981.

[5]

[6]

A. Birrell, J. Guttag, J. Horning, R. Levin.
Synchronization Primitives for a Multiprocessor: A Formal Specification.
In Proceedings of the Eleventh ACM Symposium on Operating Systems Principles, pages 94-102. ACM/SIGOPS, 1987.

D. Bjorner and C.G. Jones (Eds.).

Lecture Notes in Computer Science. Volume 6 1 : The Vienna Development Method: the Metalanguage.
Springer-Verlag, Berlin-Heidelberg-New York, 1978.

8 . Acknowledgments

29

R.M. Burstall and J.A. Goguen.
An Informal Introduction to Specifications Using CLEAR.
In Boyer and Moore (editors), The Correctness Problem In Computer Science. Academic Press,

1981.
D. L. Detlefs, M. P. Herlihy, and J. M. Wing.
Inheritance of Synchronization and Recovery Properties in Avalon/C++.
IEEE Computer :57-69, December, 1988.

G. Dixon and S.K. Shrivastava.
Exploiting Type Inheritance Facilities to Implement Recoverability in Object Based Systems.
In Proceedings of the 6th Symposium in Reliability in Distributed Software and Database Systems.

March, 1987.
K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger.
The Notion of Consistency and Predicate Locks in a Database System.
Communications ACM 19(11):624-633, November, 1976.

J.E. Richardson and M.J. Carey.
Programming Constructs for Database System Implementation in EXODUS.
In ACM SIGMOD 1987 Annual Conference, pages 208-219. May, 1987.

M.P. Herlihy, N.A. Lynch, M. Merritt, and W.E. Weihl.
On the correctness of orphan elimination algorithms.
In 17th Symposium on Fault-Tolerant Computer Systems. July, 1987.
Abbreviated version of MIT/LCSyTM-329.

S.J. Garland and J.V. Guttag.
Inductive Methods for Reasoning about Abstract Data Types.
In Proceedings of the 15th Symposium on Principles of Programming Languages, pages 219-228.

January, 1988.

J.A. Goguen and J.J. Tardo.
An Introduction to OBJ: A Language for Writing and Testing Formal Algebraic Program

Specifications.
In Proceedings of the Conference on Specifications of Reliable Software, pages 170-189. Boston,

MA, 1979.
C. Gong and J.M. Wing.
Machine-Assisted Proofs of Atomicity.
1989.
in preparation.
J.V. Guttag, J.J. Horning, and J.M. Wing.
The Larch Family of Specification Languages.
IEEE Software 2(5):24-36, September, 1985.

M.P. Herlihy.
A quorum-consensus replication method for abstract data types.
ACM Transactions on Computer Systems 4(1), February, 1986.

M.P. Herlihy and J.M. Wing.
Avalon: Language Support for Reliable Distributed Systems.
In The Seventeenth International Symposium on Fault-Tolerant Computing, pages 89-94. July,

1987.
Also available as CMU-CS-TR-86-167.
M.P. Herlihy and J.M. Wing.
Axioms for concurrent objects.
In Fourteenth ACM Symposium on Principles of Programming Languages, pages 13-26. January,

1987.

30

[20] C.A.R. Hoare.
Proof of Correctness of Data Representations.
Acta Informatica 1(1):271 -281, 1972.

[21] L Lamport.
Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 2'\(7):558-565, July, 1978.

[22] L. Lamport.
Specifying Concurrent Program Modules.
ACM Transactions on Programming Languages and Systems 5(2):190-222, April, 1983.

[23] R.A. Lemer.
Specifying Concurrent Programs.
1989.
Thesis Proposal.

[24] B.H. Liskov, and R. Scheifler.
Guardians and actions: linguistic support for robust, distributed programs.
Transactions on Programming Languages and Systems 5(3):381-404, July, 1983.

[25] N. Lynch.
A Concurrency Control For Resilient Nested Transactions.
Technical Report MIT/LCS/TR-285, Laboratory for Computer Science, 1985.

[26] N. Lynch and M. Merritt.
Introduction to the Theory of Nested Transactions.
In Proceedings of the International Conference on Database Theory. Rome, Italy, September,

1986.
Sponsored by EATCS and IEEE.

[27] N. Lynch and M. Tuttle.
Hierarchical Correctness Proofs for Distributed Algorithms.
Technical Report MIT/LCS/TR-387, Laboratory for Computer Science, 1987, 1987.

[28] Z. Manna and A. Pnueli.
Verification of concurrent Programs, Part I: The Temporal Framework.
Technical Report STAN-CS-81-836, Dept. of Computer Science, Stanford University, June, 1981.

[29] J.E.B. Moss.
Nested Transactions: An Approach to Reliable Distributed Computing.
Technical Report MIT/LCS/TR-260, Laboratory for Computer Science, April, 1981.

[30] R. Nakajima, M. Honda, and H. Nakahara.
Hierarchical Program Specification and Verification- A Many-sorted Logical Approach.
Acta Informatica 14:135-155, 1980.

[31] S. Owicki and D. Gries.
Verifying Properties of Parallel Programs: An Axiomatic Approach.
Communications of the ACM 19(5):279-285, May, 1976.

[32] C.H. Papadimitriou.
The serializability of concurrent database updates.
Journal of the ACM 2S(4):631 -653, October, 1979.

[33] D.P. Reed.
Implementing atomic actions on decentralized data.
ACM Transactions on Computer Systems 1(1):3-23, February, 1983.

31

[34] A.Z. Spector, J.J. Bloch, D.S. Daniels, R.P. Draves, D. Duchamp, J.L Eppinger, S.G. Menees,
D.S. Thompson.
The Camelot Project.
Database Engineering 9(4), December, 1986.
Also available as Technical Report CMU-CS-86-166, Carnegie Mellon University, November

1986.

[35] B. Stroustrup.
The C++ Programming Language.
Addison Wesley, 1986.

[36] W.E. Weihl.
Specification and implementation of atomic data types.
Technical Report TR-314, MIT Laboratory for Computer Science, March, 1984.

[37] W.E. Weihl, and B.H. Liskov.
Implementation of resilient, atomic data types.

ACM Transactions on Programming Languages and Systems 7(2):244-270, April, 1985.

[38] W.E. Weihl.
Local Atomicity Properties: Modular Concurrency Control for Abstract Data Types.
Transactions on Programming Languages and Systems 11 (2):249-283, April, 1989.

[39] C.T. Wilkes and R.J. LeBlanc.
Rationale for the design of Aeolus: a systems programming language for an action/object system.
Technical Report GIT-ICS-86/12, Georgia Inst, of Tech. School of Information and Computer

Science, Dec, 1986.

