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1 Introduction 
The problem addressed in this paper originally arose in the context of learning. In many domains like 

two-person games, it is computationally intractable, if not impossible, to learn complete and correct 
knowledge. Learning systems typically solve this problem by making various simplifications and 
approximations to the learning process [7,1,5,14]. However, this introduces errors and imperfections in 
the learned knowledge and raises difficulties to the planner which makes use of that knowledge. Hence, 
in systems that incrementally acquire approximate knowledge, either by learning or through human 
interaction, it is imperative that the planner is able to make effective use of the knowledge even when the 
knowledge is not complete and correct. 

In this paper, I address the problem of knowledge based planning in two-person games, where, due to 
the inherent uncertainty in the future actions of the opponent, it is intractable to learn complete and 
correct knowledge. There are several requirements a knowledge based planner must fulfill to be useful in 
game domains. In particular, 

1. It should be able to cope with imperfect knowledge. A weak planner that simply instantiates 
the learned knowledge is inadequate in complex domains where the knowledge is only 
approximately correct. 

2. However, it is unreasonable to expect the planner to be completely insensitive to the 
imperfections in its knowledge. While it is allowed to make some errors due to its imperfect 
knowledge, its errors must reduce with improved knowledge. 

3. To justify the cost involved in the arduous task of learning, planning with knowledge should 
be faster than knowledge-free planning. 

4. Finally, since we are interested in planning in two-person games where there is an active 
opponent trying to defeat an agent's plans, it is important to account for the counter-plans of 
the opponent in planning. 

A planning technique called Knowledge Enabled Planning (KEP) is introduced in this paper and is 
shown to reasonably satisfy the above requirements. Knowledge Enabled Planning is embodied in a 
planner which is part of a system called LEBL (Lazy Explanation-Based Learner). LEBL learns over-
general macros in two-person games by generalizing incomplete explanations [14]. LEBL refines its 
macros when it is confronted with plan failures due to its incomplete knowledge of useful macros. The 
planner of LEBL composes the macros learned by the learner to plan for a given problem, and tests its 
plans by building a game tree consistent with the plans and counter-plans of the two players. The planner 
terminates when some plan of a player cannot be defeated by any opponent's plan built using the 
currently available macros. 

The rest of the paper is organized as follows: Section 2 describes how LEBL represents its knowledge 
and its plans. Section 3 introduces Knowledge Enabled Planning, and illustrates it with an example from 
king and pawn endgames in chess. Section 4 presents some empirical results comparing our planner to 
another program that uses oc-p search. Section 5 presents a complexity analysis of our algorithm and 
compares it with that of an ct-p algorithm. Section 6 describes some previous work in this area and 
relates it to ours. Section 7 is a discussion of some of the issues involved in this kind of planning. The 
final section summarizes the contributions of this work. 
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2 Knowledge Representation 
Knowledge in our system is represented by a set of inter-related goals and macros which are called 

optimistic plans or o-plans. A goal has a logical definition expressed as a quantifier-free formula, a sign, 
and a number called promise that indicates its relative worth. If the sign of the goal is positive, the goal is 
achieved when the goal definition changes its value from false to true. If the sign is negative, the goal is 
achieved when the value of the definition changes from true to false. The promise of a goal is used in 
evaluating a state (chess position). The value of a state is the sum of the promises of all different 
instantiations of all the goals achieved in that position. 

Associated with each goal is a set of o-plans. The body of an o-plan is a sequence of generalized 
moves, each move being preceded by the weakest conditions that must be true of a state so that the rest 
of the move sequence is applicable in that state.1 For example, the body of the o-plan PLl (see Table 1) 
to queen a white pawn consists of three rules. The first rule recommends pushing a white pawn in the fifth 
rank if the squares in the sixth, seventh and eighth ranks in the same file are free. Similarly, the second 
rule says that a white pawn in the sixth rank must be pushed if the corresponding seventh and eighth rank 
squares are free, and so on. 

Each move in the o-plan is associated with a player who makes that move. The order of moves in the 
o-plan is fixed, except that when two successive moves are to be made by the same player, it is assumed 
that there is an irrelevant move by the opponent between those two moves. Each move in the o-plan 
either directly achieves a part of the goal or enables another move that follows it by satisfying some of its 
preconditions. 

Player: WHITE 
Goal: QUEEN-WHITE-PAWN 

Def: ((ON ?p1 ?x 8) (TYPE ?p1 PAWN) (OWNS WHITE ?p1)) 
Promise: 200 

Body: [If ((ON ?p1 ?x 5) (TYPE ?p1 PAWN) (TO-PLAY WHITE) (OWNS WHITE ?p1) 
(£ ?x 1) (£ ?x 8) (FREE ?x 6) (FREE ?x 7) (FREE ?x 8)) 

Then PAWN-MOVE(WHITE ?x 5 ?x 6) 
If ((ON ?p1 ?x 6) (TYPE ?p1 PAWN) (TO-PLAY WHITE) (OWNS WHITE ?p1) 
(£ ?x 1) (£ ?x 8) (FREE ?x 7) (FREE ?x 8)) 

Then PAWN-MOVE(WHITE ?x 6 ?x 7) 
If ((ON ?p1 ?x 7) (TYPE ?p1 PAWN) (TO-PLAY WHITE) (OWNS WHITE ?p1) 
(£ ?x1)(£ ?x8) (FREE ?x8)) 

Then PAWN-MOVE(WHITE ?x 7 ?x 8)] 
Counter-plans: [PL2, PL3] 

Table 1: O-plan PL1: to queen a pawn 

O-plans are related to other o-plans through sub-plan and counter-plan relations. An o-plan P is a 
sub-plan of another o-plan Q, if, under some circumstances, P enables some conditions necessary for Q. 
Similarly, an o-plan P is a counter-plan of Q, if, under some circumstances, achieving P disables some 
conditions necessary for Q. The o-plan PLl has two counter-plans PLl and PL3 each of which may be 
used to prevent the white pawn from queening by taking it. 

If the preconditions of (any suffix of) an o-plan are satisfied, it is guaranteed that the goal of the o-plan 

'This can be viewed as a compact way of storing a macro and all the suffixes of that macro along with the applicability conditions 
of each of them. As in [8], while planning, each o-plan is tried from the last suffix of its body toward the first until either the 
precondition of one of them matches the problem or none of the preconditions matches it This has the advantage of trying a longer 
suffix of an o-plan only when no shorter suffix is applicable. 
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can be achieved //the moves in (that suffix of) that o-plan (and no other moves) are executed one after 
another. O-plans are optimistic since it is implicitly assumed that either the opponent's moves are 
irrelevant to the success of the o-plan, or they form parts of the o-plan itself. They are also approximate in 
that they ignore possible interactions between different o-plans or, indeed, some interactions between 
different moves of the same o-plan, which have not been taken into account during the learning. Due to 
these reasons, it is typically not possible to execute an entire o-plan successfully in a two-person game. 
So the planner combines o-plans into more complicated c-plans using plan combinators such as SEQ and 
MESH, which, among others, have the purpose of preparing for more than one alternate scenario. 
(Similar plan combinators are used by Bratko [2] and Campbell [3].) Trivially, every instantiated o-plan is 
a c-plan. Each c-plan c is associated with a search tree 7(c) as follows (cf. Figure 1): 

T(p a) The single path defined by the move sequence of the o-plan o instantited with a. 
T(SEQ pi p2) Obtained by appending each path in T(pl) with each path of T(p2). 
7( MESH pi p2) Obtained by interleaving each path in T(pl) with each path of T(p2) in all possible 

ways, stopping when both the paths are exhausted. 

The complexity of a c-plan is defined as the total number of o-plans in the c-plan. 

Figure 1: Plan Combinators 

3 Knowledge Enabled Planning 
This section describes the planning algorithm and illustrates it with an example from the king and 

endgames. 

3.1 Algorithm 
The planner is given a problem state (i.e. a board position), the player for whom the system is 

supposed to plan, and a minimum expected evaluation for that state. It also has access to a knowledge 
base consisting of previously learned o-plans, and is given an upper bound k on the complexity of SEQ 
and MESH plans it is going to consider. The output of the planner is a partial solution tree whose 
min-max is at least as good as the expected value from the point of view of the player for whom it is 
planning, if indeed there is such a solution tree. The solution tree output by the planner is partial in the 
sense that not all possible moves of the opponent are considered at each intermediate state. Which 
moves do get consideration is determined by the o-plans present in the knowledge base, and the value of 
k. In particular, only those moves which occur in c-plans of complexity less than k constructed from the 
o-plans currently present in the knowledge base are considered. The minimum expected value of a 
position is used to prune out the plans which are not promising to meet the expectation early on, and to 
terminate the search as soon as the planner finds a solution tree which meets the expectation. 
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Plan (problem state S, player Pt expectation E) 
Initialize the oldjc-plans of both the players to contain the null plan; 
Initialize the game tree to S; 
Initialize the c-plan pointer to the first old c-plan of P\ 
Loop 

Do until P succeeds or P's old c-plans are exhausted 
If there are no new_c-plans of P left 

Generate more new c-plans (of complexity < k) for P 
by composing his current old c-plan with all applicable o-plans 
increment the c-plan pointer; 

For each new c-plan N of P 
Move N to the old c-plans of P 
For the opponent's active c-plan and each of his old c-plans O 

If P is to move in S, Testis, N, O) Else Test{S, O, N) 
{Expand the game tree by adding moves consistent with N and 0\) 

End Do; 
If P succeeds exit the loop; 
Let P:» opponent^) 

End Loop 
Return the solution tree 
End Plan 

Note: P succeeds » min-max(S) is better than E from P's perspective 
Table 2: Planning Algorithm 

The c-plans of each player are maintained in two lists oldjc-plans and newjc-plans. Newjc-plans are 
c-plans that have not yet been tested against the old_c-plans of the opponent. Oldj:-plans are c-plans 
which have been tested and found to lose against some of the opponent's c-plans. (See Table 2 for the 
planning algorithm). The oldjz-pUms of each player are initialized to contain a null plan in the beginning. A 
null plan for a player is always applicable and simply changes the turn of the player. The purpose of a null 
plan is to simulate the effect of an irrelevant move.2The planner works by alternately generating new 
c-plans for each player and testing them against the old c-plans of the opponent. New c-plans are 
generated by composing the current old c-plan (pointed at by the c-plan pointer) with any o-plan using a 
plan combinator. Each new c-plan of a player P is tested with the old c-plans of his opponent, and, if 
defeated, moved to P's old c-plan list. 

Testing of a c-plan against an opponent's c-plan consists of adding the move sequences consistent 
with both the c-plans to the existing game tree and re-evaluating its min-max. The testing algorithm 
makes a move according to the c-plan of the current player, and recursively calls itself on the resulting 
state with the remaining c-plans of the two players. (See the testing algorithm in Table 3.) After exploring 
all possible moves consistent with the current player's c-plan, it returns the maximum (or minimum) of the 
evaluations of all the children of the current state. If one player's c-plan exhausts before the other's while 
testing, it is assumed that the first player follows a null plan. A c-plan of a player P defeats an opponent's 
c-plan if it manages to keep the min-max of the game tree better than the minimum expected value (from 
P's perspective). If a (new) c-plan of a player defeats all the (old) c-plans of the opponent then the planner 
switches sides and plans for the opponent. It terminates when it fails to generate any new c-plan with a 
complexity less than k that can improve the min-max value for a player, and outputs a partial solution tree 
for the winning player - i.e., the solution tree of the winning player when the moves of the two players are 
restricted to those in the explored part of the game tree. 

2jhe use of a null plan might sometimes introduce errors in the evaluation of positions, especially when no irrelevant moves exist. 
Our system currently ignores the complications that arise due to this. 
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7*rf(problem state S, current player's c-plan(s) Pa, opponent's c-plan(s) Pb) 
If both Pa and Pb have ended, return updated value(S). 
Else if one of them has ended, make it a null plan 
For all possible moves M consistent with Pa 

Do 
Ra remaining part of Pa 

Rb :» remaining part of Pb consistent with Af 
S':« apply{SM) 
valueiS*):» TfcsfCS', i? ,̂ J?J 

End 
Update value(S) by doing min/max on the values of children of S. 
Return value(S) 
End r « r . 

Table 3: Testing of C-plans 

3.2 Example 
I now illustrate Knowledge Enabled Planning in LEBL with an example from king and pawn endgames 

in chess. Let us assume that White is trying to maximize the value of a position, while Black is trying to 
minimize it. Initially, LEBL is given three goals for each player: promoting a pawn which is worth 200, (or 
-200 if it is a Black's pawn), taking the opponent's king of worth 10,000 (or -10,000) and taking the 
opponent's pawn of worth 20 (or -20). The chess problem in Figure 2 is given to LEBL after it learned a 
few o-plans. The system is asked to plan for White with a minimum expectation of 100. The maximum 
c-plan complexity is to be 3. In addition to the White's o-plan of queening the white pawn (Table 1), the 
portion of the knowledge base relevant to solving this problem consists of two o-plans of Black to take 
white pawns. One of these o-plans, PL2t is shown in Table 4. The body of this o-plan consists of two 
moves: the first move is by White and it consists of pushing a pawn when there is a black pawn ?p2 
two ranks ahead in its left adjacent file. The second move consists of Black's pawn ?p2 taking the white 
pawn lp\ in its right diagonal position. Another relevant o-plan PL3 is a symmetrical plan of Black to take 
white pawn from the right instead of from the left.3 

First, the planner finds that null plans by both the players do not achieve the expected min-max for 
White. The planner then generates all instantiations of o-plans of White applicable in that position. One of 
the c-plans thus generated by instantiating the o-plan PLl is to queen the c5 pawn of White. This c-plan 
is then tested against Black's null plan, and is found to win, i.e. change the min-max value of the initial 
state to 200, which is more than the minimum expected value. The planner then switches sides and 
generates a new c-plan for Black by instantiating PLl: the plan to take the white pawn which is moved to 
c6 with the black pawn at bl. This c-plan of Black is found to succeed against the White's c-plan reducing 
the min-max value to -20. The planner again switches sides and tries the remaining new c-plan of White 
which is still not tested: pushing the aS pawn to queen. This is tested against the two old c-plans of Black, 
and is found to succeed. Once again, by instantiating PL3, the planner generates a new c-plan of taking 
the queening white pawn with the black pawn at 67, when it is on a6. This c-plan is found to successfully 
defeat White's new c-plan. 

nrl^tfflT ,6arr!S lfferJnt ^ P ' ^ f o r these two kinds of capture simply because the domain theory and the operational 
e!S , S 3 , i m J t a t J O n ° f t h G P , a n n e f ' b U t 3 n G f f e C t ° f ° U r ^Presentation choice on S 
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a b c d e f g h 

Figure 2: White to Play 

Player: BLACK 
Goal: TAKE-WHITE-PAWN 

Def: -((OWNS WHITE ?p1) (TYPE ?p1 PAWN)) 
Promise: -20 

Body: [If ((ON ?p2 ?X1 ?Y1) (ON ?p1 ?X ?Y) (TYPE ?p2 PAWN) (TYPE ?p1 PAWN) 
(OWNS BLACK ?p2) (OWNS WHITE ?p1) (PLUS1 ?X1 ?X) (PLUS1 ?Y2 ?Y1) 
(PLUS1 ?Y ?Y2) (£ ?Y2 8) (£ ?X 8) (£ ?Y2 1) 
(£ ?X1)(FREE ?X ?Y2)) 

Then (PAWN-MOVE WHITE ?X ?Y ?X ?Y2) 
If ((ON ?p2 ?X1 ?Y1) (ON ?p1 ?X ?Y2) (TYPE ?p2 PAWN) (TYPE ?p1 PAWN) 
(OWNS BLACK ?p2) (OWNS WHITE ?p1) (PLUS1 ?X1 ?X) (PLUS1 ?Y2 ?Y1)) 

Then (PAWN-TAKE BLACK ?X1 ?Y1 ?X ?Y2)] 
Counter-plan-of: [PL1] 

Table 4: O-plan PL2: To take White's pawn 

Using the MESH combinator, the planner then generates the c-plan of interleaving the two White's 
c-plans, i.e. pushing both a5 and c5 pawns in all possible orders. This c-plan is tested against all the old 
c-plans of Black and is found to succeed with a final evaluation of 180. Black then generates some more 
c-plans such as interleaving its old c-plans, but none of them are successful against the White's c-plan. 
After exploring all such c-plans of Black of complexity £ and finding that none of them works, the 
planner outputs the current solution tree for White for that position. See Figure 3 for the game tree 
explored and the solution tree output by the planner. 

Notice that only a small percentage of all possible moves of both the players are explored. In particular, 
no moves have been explored without a purpose, i.e. without being part of a specific c-plan to achieve 
some goal. Hence, only a few directed moves of the black and white pawns are explored, and none of the 
king moves are explored. The system does not replan during the course of testing a given pair of c-plans, 
which also helps reduce the search considerably. While this approach might seem too weak and fallible 
for a complex domain like chess, incremental learning of o-plans from plan failures makes it self-
correcting and practical. 
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: null move 

Figure 3: A part of the search tree explored for the example. 
The thicker lines indicate the partial solution tree output by the planner. 

3.3 Optimizations 
A straight-forward implementation of the planning algorithm can be quite inefficient. Several 

optimizations are used to make it efficient. 

1. O-plan relevance: Every o-plan in the two c-plans is checked to see if it is relevant An o-plan is 
relevant if (a) it has a non-zero promise, or (b) it is a sub-plan of a relevant o-plan in the same player's 
c-plan, or (c) it is a counter-plan of an o-plan in the opponent's active c-plans. If some o-plan in either of 
the two c-plans is not relevant, then the c-plans are not tested against each other. 

2. Move set hashing: While testing a MESH plan, adding the moves consistent with the c-plan to the 
game tree requires prohibitively expensive search, since that involves exploring all possible orderings of 
two or more o-plans (see next section for details). However, we can design a faster algorithm by making 
some assumptions about the representation of operators. We assume that the bindings of the operator 
preconditions completely determine the differences between the initial and the resultant states of the 
operator application. We call such operators tight operators.4 If all the operators in the domain are tight, it 
can be shown that any two move sequences made up of the same set of instantiated operators, when 
played from the same state, result in the same final state. For example, the move sequence <ml, ol, ml, 

An example of an operator which is not tight is TOGGLE; it is always applicable, and if the switch is initially ON it turns it OFF 
and vice-versa. Another example may be CLEAR-TABLE, which is also always applicable, and clears all the blocks on the table In 
each case, the preconditions do not bind the variables to specific parameters which are going to determine the exact effects of the 
operators. 
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o2> and the move sequence <m2, o2t ml, ol>, when played from the same state result in the same final 
state.5 This property is exploited by hashing a state by the set of moves ({ml, m2, ol, o2] in our example) 
in the move sequence used to reach that state. 

3. Within-plan a-p: In ordinary min-max search a-p cutoffs preserve the correctness of the solution. We 
can not directly incorporate a-p cutoffs in our system because its correctness preserving property 
depends on the fact that the game tree is explored depth first. LEBL explores the game tree in depth first 
order only during the testing phase. Hence, we use a-p cutoffs during the testing of each pair of c-plans. 

4. C-plan subsumption: Some c-plans are subsumed by other c-plans in the sense that the game tree 
that corresponds to one is guaranteed to be a subtree of the game tree that corresponds to the other. 
E.g., <MESH Ox 02> subsumes <SEQ Ox 02>. If two old c-plans O and Oq of the two players p and q 
which have been tested against each other respectively subsume the two new c-plans Np and Nq% then 
the new c-plans need not be tested. This results in large savings if it is applied at all nodes in the game 
tree by caching the latest two c-plans which have been tested against each other at that node and 
skipping the testing of any two new c-plans subsumed by the cached c-plans. 

The efficiency of LEBL significantly increased due to these optimizations. Unless otherwise specified, 
"LEBL" corresponds to a program with all the above optimizations. 

4 Empirical Results 
This section demonstrates two things: first, it shows that Knowledge Enabled Planning involves 

significantly less search than knowledge-free techniques like a-p search in our domain, king and pawn 
endgames. Second, it demonstrates that the errors, defined as the incorrect first moves on test problems, 
reduce in our method with increased knowledge. 

4.1 Comparison of Search Effort 
To compare the search effort of LEBL with that of a knowledge-free planner, a program called ABE 

which is based on a-p search is constructed. ABE accepts a board position, the minimum expected 
evaluation for the state, and the maximum depth of search as inputs, builds a complete solution tree for 
that position using the a-p algorithm, and outputs the number of nodes searched. ABE uses the same 
evaluation function as LEBL, i.e. the sum of the promises of all goals achieved in a given position. ABE is 
also given the same minimum expected evaluation of the state as LEBL. The maximum height of the 
correct solution trees for the problems is input to ABE as the maximum depth of search.- This is probably 
unfairly favorable to ABE since one would typically not know the height of the correct solution tree and 
LEBL is not given this information. However, except for the o-plans, LEBL does not have any more 
information than ABE. 

A set of 19 examples was selected from the king and pawn endgames to train LEBL on, and 8 
completely different problems (with known solutions) were chosen to test it on. The column labeled "ABEM 

in Table 5 shows the number of nodes visited by ABE on the 8 test problems. The next three columns 
show the number of nodes visited by LEBL on the test problems after training it on the first 6,12 and all 
19 of the training examples respectively. In this training session, LEBL learned a total of 25 o-plans and 5 
new goals. After finishing one training session, LEBL is again trained on the same 19 training examples. 
It learned a total of 5 new o-plans for the 5 new goals it learned in the first session. It is then tested on the 
8 test problems once again. The number of nodes visited in this session are shown in the last column of 
Table 5. 

The results shown in Table 5 indicate that LEBL's planner consistently searched one to two orders of 
magnitude fewer nodes than ABE. Though the number of nodes visited by LEBL usually increased with 
the number of o-plans, it still remained significantly less than the number visited by ABE. Surprisingly, in a 

SSome of these sequences might not be legal in a given position. However, they reach the same final state when they are legal. 
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# ABE 
LEBL 

(6) 
LEBL 
(12) 

LEBL 
(19) 

LEBL 
(2X19) 

1 >50,000 10 878 1,374 294 H
i >50,000 10 1,199 2,017 2,017 H

i >50,000 14 97 352 68 
4 >50,000 17 33 1,294 1,150 
5 157 

CO
 18 33 33 

6 1,361 7 21 21 21 
7 47,888 14 92 180 14 
8 971 5 5 9 9 

Table 5: The number of nodes visited: ABE vs LEBL 

few cases, the amount of search decreased with learning more o-plans. The reason for this is that when 
there is no o-plan present in the system to achieve a goal, it tries to combine a number of o-plans to 
achieve it. This causes additional search which is avoided by having an o-plan which directly achieves the 
goal. 

4.2 Variation of Errors 
While the amount of search in LEBL was much less than ABE, it made errors while ABE did not 

However, as shown below, the number of errors made by LEBL decreased with increaed knowledge The 
errors may be measured either by the number of incorrect first moves on a problem, or the number of 
incorrect evaluations of min-max on the 8 test problems. Both these measures are reported in the table 
below. 

# training 
examples 

# o-plans 
learned 

# incorrect 
first moves 

# incorrect 
evaluations 

0 0 8 8 

CO 8 2 5 
12 17 0 5 
19 25 0 3 

2X19 30 0 3 

Table 6: Variation of errors with knowledge 

The first column of Table 6 indicates the number of examples LEBL was trained on, the second column 
shows the total number of o-plans in the system after the training, the third column shows the number of 
test problems on which LEBL's first move was incorrect, and the fourth column shows the number of 
problems for which LEBL's evaluation (minmax) was incorrect. It is clear from the table that both the 
number of incorrect evaluations and the number of incorrect first moves in LEBL decreased gradually with 
learning. 

Though the above results appear good, the sample is too small to make any general conclusions, and 
it is to be seen whether this approach scales up sufficiently well with the number of o-plans in the system. 
In other words, we need to study the asymptotic behavior of our system more thoroughly to discover its 
strengths and limitations. 
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5 Complexity Analysis 
The empirical results are sensitive to many domain parameters such as how the domain is 

represented, how many o-plans are learned and how good the learned o-plans are. Unless one does a 
thorough empirical investigation varying all these parameters systematically, it is difficult to draw any 
definite conclusions from empirical studies alone. In this section, we turn to complexity analysis of the 
algorithms used by the two programs to complement the knowledge gained through empirical studies. 

We first estimate the complexity of planning in LEBL. In our analysis, we assume that the c-plan 
complexity is bounded by k. We let n be the average o-plan branching factor, i.e. the average number of 
o-plan matches in each state, and let / be the average length of an o-plan. We make the assumption that 
the cost of matching an operator precondition to a state description and the cost of matching an o-plan 
precondition to the state description are of the same order, and denote this cost by Match_cost6 We let p 
denote the number of o-plans in the knowledge base. 

We estimate the planning complexity by dividing it into its two components, generation and testing. In 
the worst case, the planner generates all possible c-plans of complexity <k for each player. Hence, the 
maximum number of possible c-plans generated for each player is (2n)k. The factor 2 in the base here is 
due to the number of plan combinators (SEQ and MESH), and n is the o-plan branching factor. 

In the worst case, a match is attempted for every suffix of every o-plan, whenever new c-plans are 
generated. Hence the total match cost during the generation of c-plans for each player is: 

(2n)kpl-Matchjcost. 

Each c-plan of each player is tested against each c-plan of the opponent. The testing of two c-plans in 
the worst case involves generating all possible ways of interleaving all the o-plans in the two c-plans. 
Doing this in the straight forward way involves generating (2*/)!/(Z!)2* states in the worst case. That is 
indeed too many states! However, assuming that all our operators are tight, and using the hashing 
scheme described earlier reduces the complexity to it-/2*. The term z2* is the number of different 
intermediate states when interleaving k o-plans of each player. The additional factor k occurs since each 
such state can be visited at most k times, each time by advancing a different o-plan of the same player. 

So the complexity of testing all c-plans that have at most k o-plans for each player is given by the 
following: 

( 2 / I ) 2 * * / 2 * 

Adding the match cost to the above, and simplifying, we have 

Planning cost 0((2nQ2kkpl-Motchjcost) 

Let us now turn to the worst case complexity7 of the a-p algorithm. In order to be able to always find 
the solution that LEBL's planner finds, the average depth to which the a-p algorithm must search is Ilk. If 
the average branching factor of the game tree is b, we have 

Complexity of a-p :» OQp^Matchjcost) 

Let us compare the above to the complexity of KEP. Since we assumed that the match costs in both 
the algorithms are of the same order of complexity, the major savings in KEP is going to come from the 
exponent. Since the complexity of our method has only the exponent 2k, compared to 2lk of a-p, we can 
say that KEP performs better if the average length of the o-plans / is high. Further, it helps if the total 
number of o-plans p, the average o-plan branching factor n, and the maximum allowed plan complexity k 

6This assumption is not true if the preconoltions are general open conjunctive formulae, since the match problem for them is 
exponential in the length of the formulae. However, sorting the terms in our preconditions in a predefined order of predicates seems 
to keep the match cost in our domain sufficiently low so that this assumption is not unreasonable. 

7We expect that a comparision of corresponding average complexities would be similar. 
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are low. In other words, our analysis reveals that Knowledge Enabled Planning out-performs ct-p 
algorithm if the natural distribution of problems in a domain is such that a high proportion of the problems 
are solvable by c-plans of tow complexity built from a small library of long o-plans with a small branching 
factor. 

6 Related Work 
There are many planning systems that plan using learned macros (see [8], and [10] for example). 

However, all these systems assume that the learned knowledge is guaranteed to be correct since it is 
learned by generalizing proofs formed of truth preserving inference rules. These planning systems are 
not directly usable in highly combinatorial domains where the learned knowledge is usually only 
approximately correct. 

Carbonell, in his POLITICS system, addressed the issue of adversary planning in natural language 
comprehension [4]. His system contained several heuristic strategies applicable to general conflict 
situations such as causing resource conflicts, goal compromise etc., and a control algorithm that 
determines when to apply them. However, the control algorithm, and the heuristic strategies of POLITICS 
are quite involved, and more importantly, the notion of time is not adequately represented which makes it 
unsuitable for game domains. 

PARADISE, a program developed by David Wilkins, used chess knowledge encoded as production 
rules to plan in tactical middle game positions [16]. PARADISE used chess knowledge to selectively 
search the game tree. However, the knowledge of PARADISE is hand-coded and domain-specific. It uses 
high level constructs like safely-capture-a-piece, safely-move-a-piece etc. which are implemented using 
production rules. Until we know how to learn these high level concepts automatically, this approach to 
planning is difficult to integrate with learning. 

Bratko developed a program called AL3 which was used to plan in KPK (King and Pawn vs. King) 
endings [2] in chess. While AL3 and LEBL have many similarities and are used on similar problems, there 
are some important differences. One difference between AL3 and LEBL is that chess knowledge in AL3 is 
hand-coded rather than learned. Another difference is that LEBL's planning algorithm uses min-max to 
evaluate a position and has a numerical measure to denote the worth of the goals. AL3, on the other 
hand, measures success depending on the achievement of goals. AL3 expressed chess knowledge as 
constraints on possible moves to achieve new goals while protecting the old goals, where as knowledge 
is represented in LEBL as inter-related goals and o-plans. Finally, the AL3 planner terminates after 
searching a predetermined maximum number of nodes. The termination .condition for our planner 
depends only on the availability of relevant plan knowledge and the maximum allowed c-plan complexity. 

Another program which solves problems in king and pawn endgames in chess is CHUNKER developed 
by Murray Campbell [3]. CHUNKER exploits the fact that the pawns and kings in a chess endgame 
position can be aggregated into small groups called chunks such that the interactions between different 
chunks are minimal. The planner works by planning for each chunk separately, combining the plans, and 
checking for possible interactions between the plans. It appears that the control of o-plan use can be 
improved by methods like this if we are able to generalize the notion of chunks so that it is applicable to 
other domains. 

7 Discussion 
The need to plan with incomplete or incorrect knowledge has not been addressed until recently. 

However, in many realistic domains, acquisition of complete and correct knowledge is intractable, or even 
impossible. In this paper, we discussed a planner that effectively uses the over-general o-plans learned 
through Lazy Explanation-Based Learning to plan in game domains. It may be argued that if the learner 
learned general c-plans instead of o-plans, a complicated planner like ours wouldn't be necessary. A 
simple instantiator of c-plans would suffice. However, the validity of this line of argument rests on how 
frequently each c-plan occurs as a solution to the problems in the domain. If the frequency of occurrence 
of each generalized c-plan is low, then it makes more sense to compose c-plans out of smaller 
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components like o-plans at the time of the problem-solving than to explicitly learn c-plans. If each c-plan 
repeats with high frequency, then it is better to explicitly learn them. It is our belief that in our domain the 
frequency of occurrence of o-plans is high while the frequency of occurrence of c-plans is low. Hence, it is 
better to explicitly learn o-plans and compose c-plans at the problem solving time.8However, this 
statement needs to be supported with more empirical evidence for the effectiveness of o-plans to 
represent planning knowledge in many domains. 

This raises another interesting question: why should the system learn o-plans instead of planning from 
the scratch every time it sees a problem? Surely, the frequency of occurrence of primitive moves in a 
solution is higher than that of any set of o-plans. However, as we have shown in our complexity analysis, 
the higher the grain-size of the primitives with which planning is done, i.e., the longer the o-plans, the 
lower the complexity of planning. So it makes sense to choose units of larger grain size, if they are 
frequent enough in the solutions of problems we are interested in solving. This suggests the following 
solution to the choice of grain size problem [11]: choose the largest grain-size at which the primitives are 
sufficiently frequent in the solutions of problems of interest. It might be possible to quantify this insight 
more precisely in the future. 

Our system also illustrates a fundamental tradeoff between learning time and problem-solving or 
planning time. A system that learns c-plans explicitly, and simply instantiates them during planning 
requires learning every plan that occurs in the solutions of problems of interest. Hence, it needs more 
learning time, and less planning time. A system that plans from scratch for every problem requires no 
learning time but takes very long to plan. Our system strikes a compromise between these two extremes. 
It would be interesting to see more systems as data points on this spectrum. 

It might appear paradoxical that the number of nodes searched by our planner should increase with the 
number of learned o-plans. However, it must be remembered that limited knowledge leads to erroneous 
plans in our system especially when those limitations are relevant to the problem at hand. As the system 
learns more o-plans, its search becomes more exhaustive, and the number of errors in its planning 
decrease. It may also be necessary to learn higher level control knowledge about using c-plans instead of 
trying to use all applicable c-plans one after another. There are two sources of high complexity in our 
planning. The first one is due to lack of sufficient guidance in plan generation. For example, LEBL 
proposes to compose any two o-plans by SEQ operator, if it happens to see one instance in which they 
are successfully composed by SEQ. This is because it does not explicitly learn the conditions under which 
such composition is going to succeed, and test them before composing. On the other hand, explicitly 
learning such conditions might be too expensive, since there may be too many such conditions. The other 
source of high complexity in planning is while testing c-plans. Our testing algorithm is too conservative in 
the sense that it assumes the worst possible interactions between the o-plans. A better approach might 
be to assume independence of o-plans and learn about interactions when the c-plans fail. The planner 
might check for only explicitly learned interactions during the planning. This approach works better if the 
solution space is such that the o-plans interact minimally. 

Another source of high complexity in planning is the match cost of o-plans. In the logic based 
representation we currently use, matching of open conjunctive formulae is known to be NP-hard. One way 
to tackle this problem is to reduce the expressiveness of the language of o-plan preconditions. A similar 
solution is proposed to avoid expensive chunks in SOAR by Tambe and Rosenbtoom[15]. Though this 
limits the kinds of o-plans we could express in our system, we think that most natural domains allow 
languages much less expressive than open conjunctive formulae to represent their plan preconditions. 

A complimentary problem is the lack of adequate expressive power in the action part of the o-plans and 
c-plans. Currently o-plans are limited to causally connected sequences of moves. It sometimes requires 
too many such o-plans to express some piece of useful domain knowledge, which may be more 
compactly represented as a loop or a sequence of high level actions. Learning and planning with such 

8lt is claimed that a similar property underlies the reason behind the learning curve exhibited by SOAR. Learning in the beginning, 
when the chunks formed are of smaller size, is faster since the frequency of occurrence of smaller chunks in the solution space is 
greater [9]. 
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complicated o-plans is non-trivial. For example, learning macros with loops has been a difficult problem in 
EBL, though there have been a number of solutions proposed recently [12,13, 6]. To plan with o-plans 
involving abstract actions is also difficult, since it would probably require base level search to instantiate 
the abstract actions with primitive moves. We need to study the relation between the expressiveness of 
the plan languages and the complexities of planning and learning in those languages. This seems to us to 
be the central issue in learning plan knowledge and using it to solve problems. 

8 Conclusion 
In this paper, a knowledge based planning technique called Knowledge Enabled Planning (KEP) is 

introduced using a program called LEBL that makes use of approximately learned planning knowledge to 
plan effectively in game domains. LEBL is found to satisfy several properties desirable in such a 
knowledge based planner. In particular, (a) LEBL accounts for imperfections in o-plans by composing 
them and checking for interactions (b) it makes less errors with increased knowledge by searching more 
exhaustively (c) it is faster than knowledge-free planning in some domains, and (d) it takes into account 
the presence of an active adversary. The above claims are empirically supported by our program in the 
domain of king and pawn endgames in chess. A complexity analysis of our planning algorithm is 
presented and is used to derive the conditions under which Knowledge Enabled Planning performs better 
than a-p search under the worst case assumptions. Several questions such as the asymptotic behavior 
of Knowledge Enabled Planning, the adequacy of o-plans to represent planning knowledge, and the 
tradeoffs between planning and learning costs in systems like ours remain to be answered. 
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