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Abstract 

A semi-continuous hidden Markov model based on the multiple vector quantization codebooks is used 
here for large-vocabulary speaker-independent continuous speech recognition. In the techniques 
employed here, the semi-continuous output probability density function for each codebook is represented 
by a combination of the corresponding discrete output probabilities of the hidden Markov model and the 
continuous Gaussian density functions of each individual codebook. Parameters of the vector quantization 
codebook and the hidden Markov model are mutually optimized to achieve an optimal model/codebook 
combination under a unified probabilistic framework. Another advantage of this approach is the enhanced 
robustness of the semi-continuous output probability density function by the combination of multiple 
codewords and multiple codebooks. For a 1000-word speaker-independent continuous speech recognition 
using a word-pair grammar, the recognition error rate of the semi-continuous hidden Markov model was 
reduced by more than 29% and 40% in comparison to the discrete and continuous mixture hidden Markov 
model respectively. 
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ABSTRACT 

A semi-continuous hidden Markov model based on the multiple vector quantization codebooks is 
used here for large-vocabulary speaker-independent continuous speech recognition. In the tech­
niques employed here, the semi-continuous output probability density function for each codebook 
is represented by a combination of the corresponding discrete output probabilities of the hidden 
Markov model and the continuous Gaussian density functions of each individual codebook. 
Parameters of vector quantization codebook and hidden Markov model are mutually optimized to 
achieve an optimal model/codebook combination under a unified probabilistic framework. Another 
advantages of this approach is the enhanced robustness of the semi-continuous output probability 
by the combination of multiple codewords and multiple codebooks. For a 1000-word speaker-
independent continuous speech recognition using a word-pair grammar, the recognition error rate 
of the semi-continuous hidden Markov model was reduced by more than 29% and 41% in com­
parison to the discrete and continuous mixture hidden Markov model respectively. 
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1. INTRODUCTION 

The hidden Markov Model (HMM), which can be based either on the discrete observation proba­
bility distributions or continuous mixture probability density functions, has been demonstrated as 
one of the most successful techniques for automatic speech recognition 
[Jelinek85a, Chow87a, Rabiner88a, Lee89a]. 

In the discrete HMM, vector quantization (VQ) [Makhoul85a] produces the closet codebword from 
the codebook for each acoustic observation. This mapping from continuous acoustic space to 
quantized discrete space may cause serious quantization errors for subsequent hidden Markov 
modeling. To reduce VQ errors, various smoothing techniques have been proposed for VQ and 
subsequent hidden Markov modeling 
[JeUnek76a,Nishimura87a,Tseng87a,Lee88a,Huang88a,Schwartz89a]. A distinctive technique is 
multiple VQ codebook hidden Maikov modeling, which has been shown to offer improved speech 
recognition accuracy [Gupta87a,Lee88a]. In the multiple VQ codebook approach, VQ distortion 
can be significantly minimized by partitioning the parameters into separate codebooks. Another 
disadvantage of the discrete HMM is that the VQ codebook and the discrete HMM are separately 
modeled, which may not be an optimal combination for pattern classification [Huang89a]. The 
discrete HMM uses the discrete output probability distributions to model various acoustic events, 
which are inherently superior to the continuous mixture HMM with mixture of a small number of 
probability density functions since the discrete distributions could model events with any shapes 
provided enough training data exist. 

On the other hand, the continuous mixture HMM models the acoustic observation directly using 
estimated continuous probability density functions without VQ, and has been shown to improve the 
recognition accuracy in comparison to the discrete HMM [Rabiner85a,Poritz86a,Brown87a]. For 
speaker-independent speech recognition, mixture of a large number of probability density func­
tions [Rabiner88a,Paul89a] or a large number of states in single-mixture case [Doddlngton89a] are 
generally required to model characteristics of different speakers. However, mixture of a large 
number of probability density functions will considerably increase not only the computational com­
plexity, but also the number of free parameters that can be reliablely estimated. In addition, the 
continuous mixture HMM has to be used with care as continuous probability density functions 
make more assumption than the discrete HMM, especially when the diagonal covariance Gaussian 
probability density is used for simplicity [Rabiner85a,Brown87a]. To obtain a better recognition 
accuracy, acoustic parameters must be well chosen according to the assumption of the continuous 
probability density functions used. 

The semi-continuous hidden Markov model (SCHMM) has been proposed to extend the discrete 
HMM by replacing discrete output probability distributions with a combination of the original 
discrete output probability distributions and continuous probability density functions of a Gaussian 
codebook [Huang88a]. In the SCHMM, each VQ codeword is regarded as a Gaussian probability 
density. Intuitively, from the discrete HMM point of view, the SCHMM tries to smooth the 
discrete output probabilities with multiple codeword candidates in VQ procedure. From the con­
tinuous mixture HMM point of view, the SCHMM ties all the continuous output probability densi­
ties across each individual HMM to form a shared Gaussian codebook, i.e. a mixture of Gaussian 
probability densities. With the SCHMM, the codebook and HMM can be jointiy re-estimated to 
achieve an optimal codebook/model combination in sense of maximum likelihood criterion. Such a 
tying can also substantially reduce the number of free parameters and computational complexity in 



comparison to the continuous mixture HMM, while maintain reasonablely modeling power of a 
mixture of a large number of probability density functions. The SCHMM has shown to offer 
improved recognition accuracy in several speech recognition experiments 
[Huang88a, Huang89a, Huang89b, Paul89a, Bellegarda89a]*. 

In this study, the SCHMM is applied to Sphinx, a speaker-independent continuous speech recogni­
tion system. Sphinx uses multiple VQ codebooks for each acoustic observation [Lee88a]. To 
apply the SCHMM to Sphinx, the SCHMM algorithm must be modified to accommodate multiple 
codebooks and multiple codewords combination. For the SCHMM re-estimation algorithm, the 
modified unified re-estimation algorithm for multiple VQ codebooks and hidden Markov models 
are proposed in this paper. The applicability of the SCHMM to speaker-independent continuous 
speech is explored based on 200 generalized triphone models [Lee88a]. In the 1000-word 
speaker-independent continuous speech recognition task using word-pair grammar, the error rate 
was reduced by more than 29% and 41% in comparison to the corresponding discrete HMM and 
continuous mixture HMM respectively. 

This paper is organized as follows. In Section 2, the mathematical formulation of the HMM is 
reviewed and re-estimation algorithms for the semi-continuous HMM with multiple codebooks are 
derived. In Section 3, the implementation of the SCHMM is discussed and experimental results 
for 1000-word speaker-independent continuous speech recognition are presented. Finally, Section 4 
contains a summary and discussions. 

noticed that J. Bellegarda et fl/.m I B M Watson Research Center developed their techniques independently. 



-4-

2. SEMI-CONTINUOUS HIDDEN MARKOV MODELS 

2.1. Discrete HMMs and Continuous HMMs 

An N-state Markov chain with state transition matrix A=[a^], i,j=l, 2, N, where denotes 
the transition probability from state i to state j ; and a discrete output probability distribution, 
bj(Ok\ or continuous output probability density function bj(x) associated with each state j of the 
unobservable Markov chain is considered here. Here Ok represents discrete observation symbols 
(usually VQ indices), and x represents continuous observations (usually speech frame vectors) of 
K-dimensional random vectors. 

With the discrete HMM, there are L discrete output symbols from a L-level VQ, and the output. 
probability is modeled with discrete probability distributions of these discrete symbols. Let O be 
the observed sequence, 0 = 0^0^ • • • observed over T samples. Here denotes the VQ 
codeword observed at time i. The observation probability of such an observed sequence, 
Pr(01X), can be expressed as: 

Pr(0\X) = £ i c l o n ^ A ( ° f c ) (1) 

where S is a particular state sequence, S € (sqS^ • • • ,st), st e {1, 2, N}, and the summation 
is taken over all of the possible state sequences, S, of the given model X, which is represented by 
(7C, A, B), where K is the initial state probability vector, A is the state transition matrix, and B is 
the output probability distribution matrix. In the discrete HMM, classification of from xt in 
the VQ may not be accurate. The effects of VQ errors may cause the performance of the discrete 
HMM to be inferior to that of the continuous mixture HMM [Rabiner85a]. 

If the observation to be decoded is not vector quantized, then the probability density function, 
f(X IX), of producing an observation of continuous vector sequences given the model X, would be 
computed, instead of the probability of generating a discrete observation symbol, Pr(0 IX). Here X 
is a sequence of continuous (acoustic) vectors x, X=x x x 2 • • • xT. The principal advantage of 
using the continuous HMM is the ability to directly model speech parameters without involving 
VQ. However, the continuous HMM requires considerably longer training and recognition times, 
especially when a mixture of several Gaussian probability density components is used. In the con­
tinuous HMM, Eq. (1) can be re-written as: 

Vt) (2) 
S t=l 

where the output probability density function can be represented by mixture of Gaussian probabil­
ity density functions. More generally, in the continuous Gaussian (M-component) mixture HMM 
[Juang85a], the output probability density of state y, bj(x), can be represented as 

M 

bj(x) = £ c ; * i V ( x , ^ X , * ) (3) 

where N(x9 )!,]£) denotes a multi-dimensional Gaussian density function of mean vector |i and 
covariance matrix J), and Cjk is a weighting coefficient for the kth Gaussian component. With 
such a mixture, any arbitrary distribution cab be approximately modeled, provided the mixture is 
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large enough. 

For either the discrete HMM or continuous mixture HHM, the Baum-Welch re-estimates 
[Baum72a,Rabiner86afPoritz86a], X, guarantee increase of the likelihood, i.e. 
Pr (OI X)ZPr (OIX) or / (XI X)>f (XIX), unless a local maximum has been reached. This algo­
rithm can be used to iteratively improve the model parameters until some criterion of convergence 
is satisfied. 

2.2. Semi-Continuous Hidden Markov Models 

In the discrete HMM, the discrete probability distributions are sufficiently powerful to model any 
random events with a reasonable number of parameters. The major problem with the discrete out­
put probability is that the VQ operation partitions the acoustic space into separate regions accord­
ing to some distortion measure. This introduces errors as the partition operations may destroy the 
original signal structure. An improvement is to model the VQ codebook as a family of Gaussian 
density functions such that the distributions are overlaped, rather than disjointed. Each codeword of 
the codebook can then be represented by one of the Gaussian probability density functions and 
may be used together with others to model the acoustic event. The use of a parametric family of 
finite mixture densities (a mixture density VQ) can then be closely combined with the HMM 
methodology. From the continuous mixture HMM point of view, the output probability in the con­
tinuous mixture HMM is shared among the Gaussian probability density functions of the VQ. T^is 
can reduce the number of free parameters to be estimated as well as the computational complexity. 
From the discrete HMM point of view, the partition of the VQ is unnecessary, and is replaced by 
the mixture density modeling with overlap, which can effectively minimize the VQ errors. 

The problems of estimating the parameters which determine a mixture density has been the subject 
of a large, diverse body of literature spanning some ninety years [Redner84a], The procedure, 
known as the EM algorithm [Dempstei77a], is a specialization, to the mixture density context, of a 
general algorithm for obtaining maximum likelihood estimates for incomplete problems, i.e. the 
mixture density estimation problem is an estimation problem involving incomplete data by regard­
ing an unlabeled observation on the mixture as missing a label indicating its component popula­
tion of origin. This has been defined earlier by Baum [Baum70a] in a similar way and has been 
widely used in HMM-based speech recognition methods. Thus, the VQ problems and HMM 
modeling problems can be unified under the same probabilistic framework to obtain an optimized 
VQ/HMM combination, which forms the foundation of the SCHMM. 

Provided that each codeword of the VQ codebook is represented by a Gaussian density function, 
for a given state st of HMM, the probability density function that st produces a vector x can then 
be written as: 

bSt(x)=f(x\st) 
L (4.a) 

= ZfWOjt1st)Pr{Ojt\st) 
;=i 

where L denotes the VQ codebook level. For the sake of simplicity, the output probability density 
function conditioned on the codewords can be assumed to be independent of the Markov states st, 
(4.a) can then be written as: 
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/ ( x l * , ) = Xf(x\Ojt)Pr(Ojt\st) 

L

 M (4.b) 
= Xf(x\Ojt)bSt(Ojt) 

This equation is the key to the semi-continuous hidden Maikov modeling. Given the VQ code-
book index Ojt, the probability density function f(xl(9^) can be estimated with the EM algorithm 
[Redner84a], or maximum likelihood clustering [Huang89c]. It can also be obtained from the 
HMM parameter estimation directly as explained later. Using (4) to represent the semi-continuous 
output probability density, it is possible to combine the codebook distortion characteristics with the 
parameters of the discrete HMM under a unified probabilistic framework. Here, each discrete out­
put probability is weighted by the continuous conditional Gaussian probability density function 
derived from VQ. If these continuous VQ density functions are considered as the continuous out­
put probability density function in the continuous mixture HMM, this also resembles the L-mixture 
continuous HMM with all the continuous output probability density functions shared with each 
other in the VQ codebook. Here the discrete output probability in state / , bi(Ojt), becomes the 
weighting coefficients for the mixture components. 

In implementation of the SCHMM [Huang89b], Eq. (4) can be replaced by finding M most 
significant values of f(x\Oj) (with M be one to five, the algorithm converges well in practice) 
over all possible codebook indices Oj, which can be easily obtained in the VQ procedure. This 
can significantly reduce the amount of computational load for subsequent output probability com­
putation since M is of lower order than L. Experimental results show this to perform well in 
speech recognition [Huang89b], and result in an L-mixture continuous HMM with a computational 
complexity significantly lower than the continuous mixture HMM. 

2.3. Re-estimation formulas for the SCHMM 

If the bi(Ojt) are considered as the weighting coefficients of different mixture output probability 
density functions in the continuous mixture HMM, the re-estimation algorithm for the weighting 
coefficients can be extended to re-estimate bi(Ojt) of the SCHMM [Juang85a]. The re-estimation 
formulations can be more readily computed by defining a forward partial probability, at (i), and a 
backward partial probability, p f (i) for any time t and state i as: 

cc,(/) = Pr(xhx2, - • • x f st=i \X) 
. (5.a) p,( i) = P r ( x , + 1 x r + 2 , • • • x r \st=i, X) 

The forward and backward probability can be computed recursively as: 
N 

a , ( 0 = Z a r - i O ' ) ^ ^ ( x r ) , 2<r<T; 

JNl (5-b> 
P r ( 0 = Z ^ * y ( » f + l ) P r + l O ' ) . 1 ^ - 1 . 

7=1 
where (XjO*)^ and (3 T(j)=l if i is a final state, otherwise J3T(O=0. 

The intermediate probabilities, %t(ijk\ yt(i J), yt(i), and £ , ( / ) can be defined as 
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follows for efficient re-estimation of the model parameters: 

XtdJJc) = Pr(s,=i, st+1=j, O^JX, X) 

Pr(X\X) 
yt(* J) = Pr(st=i, st+1=j IX, X) ( 6 a ) 

yt(i) = Pr(st=i IX, X) 

Z>t(iJc) = Pr(st=i,Okt\X,X) 

t>t(k) = Pr(Okt\X,X) 

All these intermediate probabilities can be represented by & 0 as 
L 

yt(ij) = X XtdJ*) (6.b) 

Y»(0 = ZYrO'J) (6.c) 

7=1 
N 

CrO'^)= Z Xt-iO'JJc) (6.d) 
;'=i 

C r ( * ) = Z Z f c - l O ' . M ) (6.e) 
i=l;=l 

Using Eq. (5) and (6), the re-estimation equations for 7t,-, , and ) can be written as: 

w«=Yi (0 , (7) 

a 

£ y , ( U ) 
t=l 

v ~ T 
XYrCO 
t=l 

l<i,j<N; (8) 

^ ( 0 , . ) = - ^ , 1<*<W; l^y<L. ( 9 ) 

ZY«(0 

The means and covariances of the Gaussian probability density functions can also be re-estimated 
to update the VQ codebook separately with Eq. (5) and (6). The feedback from the HMM estima­
tion results to the VQ codebook implies that the VQ codebook is optimized based on the HMM 
likelihood maximization rather than minimizing the total distortion errors from the set of training 
data. Although re-estimation of means and covariances of different models will involve inter-
dependencies, the different density functions which are re-estimated are strongly correlated. To 
re-estimate the parameters of the VQ codebook, i.e. the means, and.covariance matrices, of 
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the codebook index j , it is not difficult to extend the continuous mixture HMM re-estimation algo­
rithm with modified Q function [Huang89c]. In general, it can be written as: 

V *=1 
and 

= J L i f l j . 1 ^ / ^ . (ID 

v f=l 

where v denotes the HMM used; and expressions in [ ] are variables of model v. In Eq. (10) and 
(11), the re-estimation for the means and covariance matrices in the output probability density 
function of the SCHMM are tied up with all the HMM models, which is similar to the approach 
with tied transition probability inside the model [Jelinek80a]. From Eq. (10) and (11), it can be 
observed that they are merely a special form of EM algorithm for the parameter estimation of mix­
ture density functions [Redner84a], which are closely welded into the HMM re-estimation equa­
tions. 



2.4. Multiple Codebook Case 

When multiple codebooks are used, each codebook represents a set of different speech parameters. 
One way to combine these multiple output observations is to assume that they are independent, and 
the output probability is computed as the product of the output probability of each codebook. It has 
been shown that performance using multiple codebook can be substationally improved [Lee89a]. In 
the semi-continuous HMM, the semi-continuous output probability of multiple codebooks can also 
be computed as the product of the semi-continuous output probability for each codebook as Eq. 
(4), which consists of L-mixture continuous density functions. In other word, the semi-continuous 
output probability could be modified as: 

k ( x ) = n £ / c (* 1 0 1 )bc

St {oi) ( 1 2 ) 
c 7=1 

where c denotes the codebook used. The re-estimation algorithm for the multiple codebook based 
HMM could be extended if Eq. (6.a) is computed for each codeword of each codebook c with the 
combination of the rest codebook probability. Since multiplication of the semi-continuous output 
probability density of each codebook lead to several independent items in Q function [Huang89c], 
for codebook C / , Xt (* J *kCl) 0 0 1 1 1 ( 1 ^ extended as: 

c*cx m=l (13) 

fcO'J-**)- PrQLW) 

Other intermediate probability can also be computed similar to Eq. (13). It can be easily proved 
that this is consistent with maximum likelihood criterion. 

Experimental observation shows that the increase of the likelihood of training data due to the re-
estimation of codebook is about 3-6 times as large as the re-estimation of HMM output and transi­
tion probabilities alone, which indicates in part the significance of re-estimation of the VQ code-
book. 
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3. EXPERIMENTAL EVALUATION 

3.1. Analysis Conditions 

For both training and evaluation, the standard Sphinx analysis conditions consist of the following: 

sampling rate 
analysis method 

LPC analysis order 
cepstrum order 

bilinear transformation constant 
window type 

window length and shift 
pre-emphasis 

16 kHz 
bilinear transformed LPC cepstrum 

14 
12 

0.6 
Hamming window 
20 ms and 10 ms 

1-0.97Z"1 

The complete database consists of 4358 training sentences from 105 speakers (june-train) and 300 
test sentences from 12 speakers. For tuning experiments conducted here, the training data consist 
of 2880 sentences from 72 speakers, the tuning test data consist of 45 sentences from 12 speakers, 
which are extracted randomly from the 300 test sentences. 

The vocabulary of the Resource Management database is 991 words. There is also an "official" 
word-pair recognition grammar, which is just a list of allowable word pairs without probabilities 
for the purpose of reducing the recognition perplexity to about 60. 

3.2. Experimental Results Using Bilinear Transformed Cepstrum 

Discrete HMMs and continuous mixture HMMs based on 200 generalized triphones are first exper­
imented as benchmarks. The discrete HMM is the same as Sphinx except only 200 generalized tri­
phones are used [Lee88a]. 

In the continuous mixture HMM implemented here, the cepstrum, difference cepstrum, normalized 
energy, and difference energy are packed into one vector. This is similar to the one codebook 
implementation of the discrete HMM [Lee88a]. Each continuous output probability consists of 4 
diagonal Gaussian probability density function as Eq. (3). To obtain reliable initial models for the 
continuous mixture HMM, the Viterbi alignment with the discrete HMM is used to phonetically 
segment and label training speech. These labeled segments are then clustered by using the k-
means clustering algorithm to obtain initial means and diagonal covariances. The forward-backward 
algorithm is used iteratively for the monophone models, which are then used as initial models for 
the generalized triphone models. Though continuous mixture HMM was reported to significantly 
better the performance of the discrete HMM [Rabiner85a], for the experiments conducted here, it is 
significantly worse than the discrete HMM. Why is this paradox? One explanation is that multi­
ple codebooks are used in the discrete HMM, therefore the VQ errors for the discrete HMM are 
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not so serious here. Another reason may be that the diagonal covariance assumption is not 
appropriate for the bilinear transformed LPC cepstrum since many coefficients are strongly corre­
lated after the transformation. Indeed, observation of average covariance matrix for the bilinear 
transformed LPC cepstrum shows that values of off-diagonal components are generally quite large. 

For the semi-continuous model, multiple codebooks are used instead of packing different feature 
parameters into one vector. The initial model for the SCHMM comes directly from the discrete 
HMM with the VQ variance obtained from k-means clustering for each codeword. Though diago­
nal Gaussian assumption may be inappropriate here, the SCHMM outperformed either the discrete 
HMM or continuous mixture HMM. In computing the semi-continuous output probability density 
function, only M most significant codewords are used for subsequent processing. Experiments 
with top one and top four codewords were conducted. 

Under the same analysis condition, the percent correct (correct word percentage) and word accu­
racy (percent correct - percent insertion) results of the discrete HMM, the continuous mixture 
HMM, and the SCHMM are shown in Table 1. Parameters tuned include floor to the diagonal 
covariance, language weight, and number of iterations. The optimum value for the iteration number 
is 1-3; for language weight is 2.5-3.8; for covariance floor is 1(T 3 to 0 depending on different 
acoustic parameters used. 

Table 1 
Average recognition accuracy based on 200 generalized triphones 

4358. training sentences; 300 test sentences 
types percent correct (word accuracy) 

Discrete HMM 

Continuous Mixture HMM 

Semi-continuous HMM + topi 

Semi-continuous HMM + top4 

89.5% (88.0%) 

84.2% (81.3%) 

87.2% (84.0%) 

90.6% (89.1%) 

From Table 1, it can be observed that the SCHMM with top 4 codewords works better than both 
the discrete and continuous mixture HMM. The SCHMM with top 1 codeword works actually 
worse than the discrete HMM. Though bilinear transformed cepstral coefficients could not be well 
modeled by the diagonal Gaussian assumption (which was proven by the poor performance of the 
continuous mixture HMM and the SCHMM with top 1 codeword), the SCHMM with top 4 code­
word works modestly better than the discrete HMM. The improvement may primarily come from 
smoothing effect of the SCHMM, i.e. the robustness of multiple codewords and multiple code-
books in the semi-continuous output probability representation, albeit 200 generalized triphone 
models are relatively well trained in comparison to standard Sphinx version [Lee88a], where 1000 
generalized triphone models are used. Detailed observations suggest that the SCHMM can 
significantly improve the performance of some speakers, but not others. Overall, it is only slightly 
better than the discrete HMM. 
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3.3. Experimental Results Using Less Correlated Data 

If the diagonal Gaussian covariance is used, each dimension in speech vector should be un-
correlated. In practice, this can be partially satisfied by using less correlated feature as acoustic 
observation representation. 

One way to reduce correlation is principal component projection. In the implementation here, the 
projection matrix is computed by first pooling together the bilinear transformed cepstrum of the 
whole training sentences, and then computing the eigenvector of that pooled covariance matrix. 
For the tuning database, result comparison between projected data and un-projected data is shown 
in Table 2. Unfortunately, only insignificant improvements are obtained based on such a projec­
tion. This is because the covariance for each codeword is quite different, and such a projection 
only makes average covariance diagonal, which is inadequate. 

Table 2 
Average accuracy of projected and un-projected data 

2880 training sentences; 45 tuning test sentences 
types percent correct (word accuracy) 

Semi-continuous HMM + topi 

Semi-continuous HMM + topi + projection 

87.8% (85.3%) 

88.3% (85.8%) 

As bilinear transformed cepstral coefficients could not be well modeled by diagonal Gaussian pro­
bability density function, experiments without bilinear transformation are conducted. Here, 18th 
order cepstral coefficients derived from 18th order LPC analysis are compared with 12th order cep­
stral coefficients derived from 14th order LPC analysis. Results for the discrete HMM are shown 
in Table 3. The 12th order cepstrum with bilinear transformation is also listed in Table 3 for 
reference. Though previous experimental results suggest that the recognition accuracy of the 18th 
order bilinear transformed cepstrum is about the same as that of the 12th order bilinear transformed 
cepstrum, the recognition accuracy of the 18th order cepstrum is better than that of the 12th order 
cepstrum, but worse than that of the bilinear transformed cepstrum. 
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Table 3 
Average accuracy of discrete HMMs based on 200 generalized triphones 

2880 training sentences; 45 tuning test sentences 
types percent correct (word accuracy) 

12th LPC 

12th LPC + Bilinear Transformation 

18th LPC 

84.4% (81.6%) 

88.2% (86.2%) 

86.1% (82.9%) 

The 18th order cepstrum is used here for the SCHMM because of less correlated characteristics of 
the cepstrum. With 4358 training sentences (june-train), test results of 300 sentences (june-test) are 
listed in Table 4. 

Table 4 
Average accuracy of 18th order cepstrum based on 200 generalized tripliones 

4358 training sentences; 300 test sentences 
types percent correct (word accuracy) 

Discrete HMM 86.3% (83.8%) 

Semi-continuous HMM + topi 86.6% (85.5%) 

Semi-continuous HMM + top2 88.8% (87.6%) 

Semi-continuous HMM + top4 89.3% (88.5%) 

Semi-continuous HMM + top6 89.6% (88.6%) 

Semi-continuous HMM + top8 89.3% (88.2%) 

Here, the recognition accuracy of the SCHMM is significantly improved in comparison with the 
discrete HMM, and error reduction is over 29%. Even the SCHMM with top one codeword is 
used, it is still better than the discrete HMM (85.5% vs. 83.8%). Use of multiple codewords (top4 
and top6) in the semi-continuous output probability density function greatly improves the word 
accuracy (from 85.5% to 88.6%). Further increase of codewords used in the semi-continuous out­
put probability density functions shows no improvement on word accuracy, but substantial growth 
of computational complexity. From Table 4, it can be seen that the SCHMM with top four code­
words is adequate (88.5%). In contrast, when bilinear transformed data was used (Table 2), the 
error reduction is less than 10% in comparison to the discrete HMM, and the SCHMM with top 
one codeword is actually slightly worse than the discrete HMM. This strongly indicates that 
appropriate feature is very important if continuous probability density function, especially diagonal 
covariance assumption, is used. If assumption is inappropriate, maximum likelihood estimation 
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will only maximize the wrong assumptioa 

Although more than 29% error reduction has been achieved for 18th order LPC analysis using 
diagonal covariance assumption, the last results with the discrete HMM (bilinear transformed cep­
strum, 88.3%) and the SCHMM (18th order cepstrum, 88.6%) are about the same. This suggest 
that bilinear transformation is helpful for recognition, but have correlated coefficients, which is 
inappropriate to the diagonal Gaussian assumption. It can be expected that with the full covariance 
SCHMM and bilinear transformed cepstral data, even better recognition accuracy can be obtained. 
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4. CONCLUSIONS 

Semi-continuous hidden Maikov models based on multiple vector quantization codebooks take the 
advantages of both the discrete HMM and continuous HMM. With the SCHMM, it is possible to 
model a mixture of a large number of probability density functions with a limited amount of train­
ing data and computational complexity. Robustness is enhanced by using multiple codewords and 
multiple codebooks for the semi-continuous output probability representation. In addition, the VQ 
codebook itself can be adjusted together with the HMM parameters in order to obtain the optimum 
maximum likelihood of the HMM. A unified modeling approach can therefore achieve an 
optimum HMM parameters and VQ codebook parameters combination. From tie continuous 
HMM point of view, the SCHMM can be considered as a special form of continuous mixture 
HMM with tied mixture continuous density functions. Because of the binding of the continuous 
density functions, in the SCHMM, the number of free parameters and computational complexity 
are reduced in comparison to the continuous mixture HMM while retaining the modeling powers 
of continuous HMM with a mixture of a large number of probability density functions. 

The applicability of the continuous mixture HMM or the SCHMM relies on appropriately chosen 
acoustic parameters and assumption of the continuous probability density function. Acoustic 
features must be well represented if diagonal covariance is applied to the Gaussian probability den­
sity functioa This is strongly indicated by the experimental results based on the bilinear 
transformed cepstrum and cepstrum. With bilinear transformation, high frequency components are 
compressed in comparison to low frequency components [Shikano86a,Lee88a]. Such a transfor­
mation converts the linear frequency axis into a mel-scale-like one. The discrete HMM can be 
substantially improved by bilinear transformation. However, bilinear transformation introduces 
strong correlations, which is inappropriate for the diagonal Gaussian assumption modeling. Using 
the cepstrum without bilinear transformation, the diagonal SCHMM can be substantially improved 
in comparison to the discrete HMM. However, if the bilinear transformed cepstrum is used, the 
recognition accuracy of the diagonal SCHMM is only slightly higher than the discrete HMM. 

All experiments conducted here were based on only 200 generalized triphones; as smoothing can 
play a more important role in those less-well-trained models, more improvement can be expected 
for 1000 generalized triphones (where the word accuracy for the discrete HMM is 91% with bil­
inear transformed data). In addition, removal of diagonal covariance assumption by use of full 
covariance can be expected to further improve recognition accuracy [Doddington89a]. Regarding 
use of full covariance, the SCHMM has a distinctive advantage. Since Gaussian probability den­
sity functions are tied to the VQ codebook, by chosing M most significant codewords, computa­
tional complexity can be several order lower than the conventional continuous mixture HMM while 
maintaining the modeling power of large mixture components. 

Experimental results have clearly demonstrated that the SCHMM offers improved recognition accu­
racy in comparison to both the discrete HMM (a error reduction of 29%) and the continuous mix­
ture HMM (a error reduction of 41%) in speaker-independent continuous speech recognition. We 
conclude that the SCHMM is indeed a powerful technique for modeling non-stationary stochastic 
processes with multi-modal probabilistic functions of Markov chains. 
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