
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

MKM: Mach Kernel Monitor
Description, Examples and Measurements

Ted Lehr*, David Black,
Zary Segall and Dalibor Vrsalovic

March 1989

CMU-CS-89-131o

School of Computer Science
and 'Department of Electrical and Computer Engineering

Abstract

Visualization of parallel and distributed algorithms and their intimate interaction with the operating system
is currently part of the research community's main agenda. This paper introduces and evaluates MKM,
the Mach kernel monitor. We show that MKM, when coupled with a user level monitor and visualization
system (the PIE system), is able to fulfill the double role of visualizing kernel behavior in the presence of a
workload as well as the influence of the operating system kernel on user algorithms.

As MKM is expected to be widely used as part of the Mach standard distribution, this paper reports on the
MKM design concepts with emphasis on examples showing the usefulness of the system. The report
concludes with the measurement and analysis of MKM intrusiveness and ways to compensate for its
overhead.

Index Terms: context switching, Mach, monitor, parallel programming, performance
measurement, performance evaluation, PIE, thread scheduling

This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD), Arpa Order No. 4864, monitored
by the Space and Naval Warfare Systems Command under contract N00039-87-C-0251, and in part by the National Science
Foundation, Grant No. CCR-86-02-143.

The views and conclusions contained in this document are those of the authors and and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the National Science
Foundation or the U.S. Government.

i

Table of Contents
1 Kernel Monitoring: Observing Context Switches
2 Background: Mach and PIE

2.1 Tasks and Threads
2.2 Interprocess Communication and Ports
2.3 Portability
2.4 Kernel-Monitoring and PIE

3 Examples of Kernel Monitoring: Understanding the Figures
3.1 Comparing Forking Behavior On Two Versions of Mach
3.2 Time Sharing on the Two Kernels

4 Monitor Description
4.1 General Architecture
4.2 Monitor system calls

5 Monitor Performance Overhead
5.1 Results on the micro-Vax
5.2 Examples of Overhead
5.3 Statistical Calculations of Overhead
5.4 Data Analysis
5.5 Measurement Methodology

5.5.1 Measuring Sensor Firing Times
5.5.2 Measuring Constant Overhead

6 Work Pending
6.1 Monitor Enhancements
6.2 PIE Enhancements

7 Conclusions

ii

List of Figures
Figure 1 : Old Kernel: Entire view of matrix multiplication 3
Figure 2: New Kernel: Entire view of matrix multiplication 3
Figure 3: Old Kernel: A Zoom view of matrix multiplication 4
Figure 4: New Kernel: A Zoom view of matrix multiplication 4
Figure 5: New Kernel: Zoom view of a smaller matrix multiplication 6
Figure 6: Improved Kernel: Entire view of matrix multiplication 6
Figure 7: Improved Kernel: Zoom view of matrix multiplication 7
Figure 8: Improved Kernel: Context-switch "flutter" in main and collector 7
Figure 9: General Kernel Monitor Architecture 9
Figure 10: View of the Finish of another Matrix Multiplication (Old Kernel) 13
Figure 11 : Compensated View of the Finish of the Same Matrix Multiplication 13

(Old Kernel)
Figure 12: Code for measuring kernel sensor firing times 16
Figure 13: Code for measuring kernel monitor overhead 17

Hi

List of Tables
Table 1 : Variable Definitions
Table 2: Context-Switch Sensor Firing Statistics of Loop iterations
Table 3: Statistics for Measuring Static Overhead of Monitor Code

1

1 Kernel Monitoring: Observing Context Switches
During the creation of a computation, designers usually measure how well successive prototypes perform.
The designer of an operating system's scheduler, for example, might gather statistics on how long
processes wait in a run queue or the number of context-switches occurring during a time interval. If the
distribution of the data points suggest that some processes wait for excessively long periods before being
rescheduled, he would want to determine source of the unwelcome behavior. Distributions alone,
however, are often little help in identifying where performance problems lie. Is there any pattern to when
the scheduler forces some of its processes to wait? When does it do this and how often? These are
questions statistical information can raise, but is hard pressed to answer.

The designer must seek additional information about scheduler. In the case of context-switches, he could
try to order the data chronologically and find what entities were associated with each switch in hope of
discovering event patterns surrounding the problematic behavior. If the designer could present the
performance of the kernel in a more tractable way he could hone in on the source of the unsatisfactory
performance. The problem we address then, is the collection and presentation of kernel behavior so that
its performance can be evaluated quickly.

Our solution is a low overhead, high band-width kernel monitor designed for the Mach operating system
[1] for recording context-switches and the entities associated with them. It is integrated with a unique

programming environment called PIE [3], [11], which uses performance graphics to visualize context-
switching in tractable and elegant ways. In section 2 we first give some background information on Mach
and PIE. This is followed by a discussion in section 3 of the advantage of being able to visualize this kind
of behavior using an example which vividly showing significant differences between two schedulers of
separate versions of the Mach operating system. In section 4, we describe the basic architecture and
system calls of the Mach Kernel-Monitor (MKM). Because a kernel-monitor is of little value if it imposes a
heavy performance penalty upon the kernel and its computations, in section 5 we discuss the overhead
incurred by Mach in the presence of the monitor. Finally, we discuss direction of our pending work in
section 6.

2 Background: Mach and PIE
Mach is an operating system under development at Carnegie Mellon University for integrating support of
networks of uniprocessors and multiprocessors while presenting a Unix style software environment. The
basic Mach primitives support Unix functionality by placing it outside the Mach kernel. Although Mach
has a number of abstractions for supporting networks and multiprocessors, only the salient abstractions
like tasks and threads and ports need to be discussed here in order to more clearly understand the
upcoming examples.

2.1 Tasks and Threads
A task is an address space and a set of system resources (eg. file descriptors) while a thread can be
thought of as a program counter and register set. Each task holds a large virtual address space which
can be allocated and de-allocated by any thread running within that task. At least one thread is always
associated with a task (a Unix process can be emulated as a single thread executing within a task),
although several threads may share the task's resources in parallel. The task and thread abstractions
constitutes a major portion of Mach's support for parallel computing on multiprocessor systems.

2

2.2 Interprocess Communication and Ports
The basic Mach communication abstraction is a kernel protected entity called a port for sending and
receiving typed messages. A port is basically a protected queue with associated send (enqueue) and
receive (dequeue) rights. Interprocess communication (IPC) in Mach is transparently extendable over
networks. The Mach kernel implements message passing between tasks on the same host. Messages
sent to ports belonging to tasks executing on remote hosts are sent to a network server which forwards
the message over the network. Mach provides an interface language to generate the client/server
interfaces that place network communication functionality outside the kernel. By moving this functionality
outside the kernel, Mach increases the flexibility of each host in choosing how data is represented, how
network security issues are resolved and how communication protocols are implemented.

2.3 Portability
Because Mach is targeted to run on a variety of machines, close attention has been paid to ensuring that
the Mach implementation is truly portable especially in the area of virtual memory support. Because
virtual memory management units differ widely among different machines, Mach's virtual memory
implementation is divided into machine dependent and independent parts. For more information about
this and other portability issues addressed by the Mach designers, see [1], [2], [4], [10] and [12].

2.4 Kernel-Monitoring and PIE
The Mach kernel-monitor is modeled after the structure of Mach abstractions such as tasks and threads.
The inspiration for MKM arose out of the needs of the Parallel Programming and Instrumentation
Environment (PIE). PIE gives programmers ways to visualize the execution of computations. It allows a
user to insert user-level sensors in a program using a special editor and then visually represents an
execution of that program based on data from the sensors. PIE supports monitoring of executions using
a run-time library that manages not only a user observation monitors but Mach kernel-monitors, MKMs, as
well. Using data from the sensors, PIE displays graphical representations of the observed performance.
Using a graphics tool called PIEscope, the environment displays context-switch data along with user-level
information about the execution of computations. More information about PIE can be found in [11] and
[3].

3 Examples of Kernel Monitor ing: Understanding the Figures
Figures 1 through 8 are selected PIEscope views of a matrix multiplication computation executing on
different versions of the Mach kernel. The initial thread of the matrix multiplier is main. In addition to
forking off the collector thread and the first multiply thread, main also performs the I/O for the
computation as well. As part of the PIE observation monitor, the collector records user and kernel
events belonging to the computation. Although spawned by main, the collector is created and
terminated independently of user written code by special libraries linked with the computation at compile
time. The multiply threads are the workhorses of the computation. When each multiply thread
begins executing, it first checks whether there is sufficient work left to warrant spawning another thread.
If there is, it forks off another multiply. It then determines its share of the workload and begins working
on its parts of the matrices.

Figure 1 depicts the micro-Vax II execution of the matrix multipler on a kernel officially labeled as XF29,
which will be referred to as the Old. Figure 2 depicts the the same computation on an newer kernel,

3

I z o o H t h e l p l I q u i t l | scope] | r e f r e s h | | v i e w s | | f o n t | | s e n o t e j | p r og| fexpl
P i • s c o p * v i e w : e x e c u t i o n - b a r s c o p e
e x p e r i m e n t t i t l e j n m « & 2 2 s e n x i . u

s e l e c t by t y p e : O E I O E I O D E I S E I O E I O E D [H U F ^ s i

main
collector mm mmmmmm mm

mm
MUltlplM >JJ

i ii—nr—jii—iir-
\r-in—hi—iii—tii—ii

m u l t i p l y pnnooami—111—iimimn ic^tnuonnam
multiply
Multiply

n a o a o i o a a D O •icnoDiq
multiply Ull III iil IIL_

O l O I C D O C
•n—ii:—ill Hi iILjIi iiLji i l D D O D D O Jiu
3CZiaiCZ]ICZ30!CZ3ICZ3ICZ3D • O O O D O D

M u l t i p l y ZDDaCDlCDOiaCDaO OOD DID « : multiply mil—ill—in—iir • a a r i i o — i i i — i r u a n a am Multiply ni—ii—urn ̂ • i i—i mimn—iini i—nnaio

k e r n e l ' c o n t e x t s w i t c h ' . . 1m m e « • 3 1 7 , b t i m e • » 2 4 8 9 0 , e t i m e • « 2 5 7 9 0 , t t i m e MM 900
S w i t c h e d f r o m CPU 0 t o CPU 0

k e r n e l ' c o n t e x t s w i t c h ' , irw ine » • 4 9 7 , b t i m e » « 1 9 0 4 0 , e t i m e »« 3 9 4 7 0 , t t i m e « • 2 0 4 3 0
S w i t c h e d f r o m CPU 0 t o CPU o

Figure 1: Old Kernel: Entire view of matrix multiplication

I z o o N) " * l P l i « m * t | I scope! | r e f r e s h | I v i e w s l Font) I s e n o t e l fprog) fexpl
P i e s c o p e v i e w : e x e c u t i o n - b a r s c o p e
e x p e r i m e n t t i t l e : n m 6 2 2 s e n l . u

s e l e c t by t y p e : O E S O E i O D E 3 O O 2 3 (0 E I 3 l * I I l

c l i c k t o i n d i c a t e l e f t hand edge o f zoom r a n g e , or t y p e "-% t o a b o r t ,
c l i c k t o i n d i c a t e r i g h t hand e d g e o f new r a n g e , o r t y p e A g t o a b o r t ,
c l i c k t o i n d i c a t e l e f t h a n d e d g e o f zoom r a n g e , o r t y p e -"g t o a b o r t .
c l i c k t o i n d i c a t e r i g h t hand edge o f new r a n g e , o r t y p e ~g t o a b o r t .

Figure 2: New Kernel: Entire view of matrix multiplication

designated as CS3c, hereafter referred to as New. Figures 3 and 4 are "zoom" views showing greater
detail of each computation. Each higher resolution view also contains a pair of "metering" lines which
measure the time between them. Although the two kernels are dissimilar in a number of respects, the
examples concentrate only on the difference between their scheduling policies. A third kernel officially
designated CS5a but which we call Improved is shown in Figures 6 - 8 . It is discussed after we first
compare the New and Old kernels. In each of the kernel tests, the micro-Vax II is operating in single-user
mode in order to reduce the number of competing processes and thereby the occurrence of seemingly
random events during the computation's execution.

In all the PIEscope figures, time is measured in milliseconds on the horizontal while the computation's
threads are ordered on the vertical. Dark rectangles represent periods when threads are running. White

4

IzooH Ihelpj | quit! I scope! |refresh| |views| I font] |*enot»| I pr og| |exp|
Piescope view: execution-barscope
experiment title: nm622senxl,»u
select by type: O E l E S E l O O I E l E l l k a O C E l E I] H Z D

click to indicate left hand edge °* room range, or type "g to abort,
click to indicate right hand edge of new range, or type ~g to abort,
click to indicate left hand edge of zoom range, or type "g to abort,
click to indicate right hand edge of new range, or type A ; to abort.

Figure 3: Old Kernel: A Zoom view of matrix multiplication

rectangles represent periods when threads are switched out. Because the figures depict uniprocessor
executions, if a swath is cut vertically through any point in a view, only a single thread (a single dark
rectangle) will be found executing at that time. In parts of some of the views, in Figure 1 for example,
there are slightly confusing sets of consecutive white rectangles. Between these apparently contiguous
periods are comparatively shorter episodes when the associated thread is actually running but the graphic
view does not have the resolution to show this. In cases where the resolution is insufficient to display
large numbers of events in given period, PIEscope fills the affected periods with serrated vertical lines or
"squiggles"1.

| (zoowl fhTTpl RuTt) Iscopel Irefresh) [views I f?ont| Isenotel fpFoH fe*xpl
| P i e s c o p e view; execution-barscop*
I experiment title: nm<>22senl.u
I select by type: O O O Q O Q E3 O 0 E3 UHl I"5"*!

click to indicate left hand edge of zoom range, or type ~£ to abort,
click to indicate right hand edge of new range, or type "g to abort,
click to indicate left hand edge of zoom range, or type ~g to abort,
click to indicate right hand <*dge of now range, or typ» -"g to ahort.

Figure 4: New Kernel: A Zoom view of matrix multiplication

1 PIEscope allows the user to "zoom in" on any part of the view in order to increase the resolution .

5

3.1 Comparing Forking Behavior On Two Versions of Mach
As can be seen in Figures 2 and 1, the multiplier computation does not behave identically on the New and
Old kernels. There is, for instance, a notable difference in the forking performance of their schedulers.
Figures 3 and 4 show quite clearly that New successively spawns the first three multiply threads more
quickly than does Old. These views also show that the new kernel eliminates the context-switch "flutter"
that occasionally occurs in Old just as a thread is forked off. Figure 3 shows multiply threads 2, 3, and
4 undergoing considerable context-switching soon after they are spawned on the old kernel. The
collector undergoes similar behavior. Interestingly, much of the context-switching is of the thread to
itself.

As might be expected, the spawning performance of New does not come without some undesirable
baggage. Recall that the first multiply thread is forked off by main, not by the collector. After
spawning the thread, main does a join and switches out, waiting for its children to finish. Examining
Figure 4 again, it is clear that New does not do this until after giving the collector an execution
time-slice of over six seconds. Figure 3 shows that Old, in contrast, forks the first multiply thread after
about four-fifths of second, eliminating the spawning advantage New has over it. So it seems that while
the new kernel spawns threads more efficiently than the old, it occasionally delays the actual creation of
threads because its scheduler does not de-schedule running threads quickly enough.

3.2 Time Sharing on the Two Kernels
The forking behavior the two kernels is not their only difference. Examining the initial time slices allocated
to main and the collector in Figure 2 for example, it is easily seen New's scheduling algorithm
occasionally gives scheduled threads execution time slices of several seconds. On-the-other-hand,
Figures 1 and 3 show that Old's scheduler generally gives shorter, more uniform time slices to its
multiply threads as well as main and the collector. New's scheduler does not always give longer
time slices than Old's. Rather, the new scheduler uses a progressive algorithm that gradually increases
the length of the execution time slices it allocates. New's algorithm is an experimental one which tracks
the history and load on the machine in order to decide whether execution time slices can be extended.
The algorithm is designed to schedule fewer context-switches than would occur using the old kernel's
simpler algorithm which attempts to switch threads every 100 milliseconds.

The new kernel's allocation of progressively longer time-slices is vividly shown in Figure 4. During the
first moments after the multiply threads are spawned, there is regular and frequent context-switching
among all the threads, much like the behavior of the threads on Old. But, after some time, the new
kernel's scheduler allows each thread to execute for longer and longer periods before being rescheduled.
Because there is no significant competition from other threads during the computation's execution, the
scheduler determines that these threads can run uninterrupted longer without being unfair to any of them.

As with its forking performance, the way the new kernel time-shares running threads has some
drawbacks. Examining Figure 4 again, it can be seen that just before the first multiply thread begins
execution, New switches out the collector and does not run it again until nearly all the multiply
children terminate. Alternately, Figure 3 shows that Old time shares the collector with the freshly
spawned multiply threads. The new kernel's scheduler also seems to suffer frequent context-switch
"flutter", where threads repeatedly switch to themselves. Earlier we noted that Old occasionally suffers
from a kind of flutter occurring just after threads are forked off. There is a difference, however, between

6

I I200H |ne.H Iguitl Iscopel he»resh| |vxewt| Fontj jsenotel |prof| fexp]
I Piescope view, execution-barscop*
1 experiment titlt: r#»422senl.u

select bntsyeifniniraraiû niniriFinarn̂ ra

a o| main
a l
a 2| »mltiply
a 3
a 4
a 5

multiply
multiply

click to indicate left hind edge of soon range, or type ~g to abort,
click to indicate right hand edge 0*̂ new range, or type Ag to abort,
click to indicate left hand edge of zoon range, or type Ag to abort,
click to indicate rijftt hand edge new range,, or type Ag to abort.

Figure 5: New Kernel: Zoom view of a smaller matrix multiplication

tzcomj Ihe lp j | «mi t | iscope! | r e f r e s h | I v i e w s j | f o n t | I p l o t l | s e n o t e | |p rog | |e»p|
Piescope view: execution-toarscope
experiment title: nm622ser5a.2.u
select by type: 0 0 [1 3 0 0 0 { E 3 E 1 0 [I l [O I I I 3 [i I I I f^n^l

p a r s i n g k e r n e l s e n o t e f i l e . . . done
p r o c e s s i n g k e r n e l d a t a . . . done
c l i c k t o i n d i c a t e l e f t hand exfce o f z o o * r a n g e , or t y p e t o a b o r t ,
c l i c k t o i n d i c a t e r i g h t hand * d g e o f new r a n g e , o r t y p e ' s g t o a b o r t .

Figure 6: Improved Kernel: Entire view of matrix multiplication

the flutter in New and in Old. In the case of Old, threads usually context-switch to themselves only for a
short time after having been spawned. Threads running on the New however, context-switch to
themselves in a more unpredictable, seemingly random fashion. Figure 5 shows an unambiguous
example of this behavior occuring in matrix computation with only four multiply threads. In this figure,
just before the multiply threads of a smaller matrix multiplier compution, are spawned, the collector
thread repeatedly switches to itself; that is, the collector is repeatedly switched out and then
immediately run again. Such behavior has been seen in other views of executions on New.

It is plain from these views that New's scheduler can be improved. In part because of the visual
information we have presented, the designer of New's scheduler2 identified the cause of threads
occasionally switching out for long periods. It is primarily due to a scheduler "starvation" bug that causes

2David Black was the principal architect of the scheduling changes that differentiates CS3c, the new kernel, from XF29, the old.

7

l ~ r o H l ^ l P l l ^ " * - ! *QO|»»l l r » « r » & N |v»>«-s| |*~>t.j ip lot | |serv>».A| | p r A g | f i ^
P i#*cof»e v i tw: e . i cou t ion - t i r i oup*
•xp#rii««nt. t i t l e : nm6±r*'s<M-ba.;j.u

s * i * o t toy t y p e : GZD E i J O J O COB E2! GDI OB E23 GO SO Fwnel

e l i e k to indicate left Hand edge of room r»i>r#, or t.yf»# ~g to abort,
click to indicate rifht hand edf* of new ran|t. or type ~% to abort,
click to Indicate left hand edge of ZOOM range, or type ' g to abort.
click to indicate right Hand of n w rang*, or t«jf»e to abort.

Figure 7: Improved Kernel: Zoom view of matrix multiplication

I z c o H h * l p | l « i m t | scope! [r e f r e s h ! [v i e v s l I f o n t) | p l o t | | s e n o t * l |p rog | fe *p |
P i e s c o p e v i e w : e x e c u t i o n - t e a r s c o p e
e x p e r i m e n t t i t l e : n w 6 2 2 s e r 5 a . 2 . u

s e l e c t by t y p e : • E l I I E l O O O O [I I 0 E3 EI] EES

k e r n e l c o n t e x t s w i t c h ' , iname 6 1 9 , o t i m e * • 3 6 4 0 , e t i m e • » 3 9 4 0 , t t i * e >
S w i t c h e d f r o * . CPl 0 t o CPU 0

c l i c k t o i n d i c a t e l e f t , hand edge o f zoom r a n g e , o r t y p e A g t o a b o r t .
c l i c k t o i n d i c a t e r i g h t hand edge o f new r a n g e , o r t y p e t o a b o r t .

Figure 8: Improved Kernel: Context-switch "flutter" in main and collector

threads to get stuck at low priorities. The improved kernel is based on New but has the starvation bug
fixed. Figures 6 and 7 show that, with the bug removed, the collector is not descheduled for an
undesirably long period as it is on New. Using the same progressive scheduling algorithm as New, the
improved kernel time shares the collector with the multiply threads. Figure 7 also shows that the
starvation fix has partially alleviated another New performance problem. Recall that after spawning the
first multiply thread, main does a join and switches out, waiting for its children to finish. Figure 7
shows that the amount of time given to the collector before the multiply is first allowed to run has
been reduced from about six seconds to under three. Although Improved removes the starvation
syndrome, it still suffers from a context-switch flutter problem. Figure 8 shows that, as in New, there are
several cases of threads repeatedly switching to themselves. This problem is being addressed using the
information obtained from MKM and PIE.

The unique marriage MKM and the visualization features of the PIE programming environment made this
visual analysis of scheduling possible. Obviously, the synergy of the two yields an indespensable
laboratory with which to run computational experiments. While PIE is discussed in literature cited earlier,
the kernel monitor is a new development which needs to be described more fully.

8

4 Monitor Description
MKM has a different focus than monitoring work aimed at gathering general usage statistics. Kobayashi
[5], for example, uses a kernel trace facility which records transitions between scheduable kernel states

(eg: execution of file servers), unscheduable kernel states (eg: execution of interrupt handlers), and user
states (eg: execution of application threads) to measure the effect of context-switching on cache hit-
ratios. Used in conjunction with a hardware monitor, the trace facility yields interesting results on the
impact of context-switching on cache performance. The only information it stores on individual threads,
however, is whether they are user or kernel level threads. MKM is not like Kobayashi's trace facility
where the context-switches of all measurable threads are recorded. Instead, MKM permits both user and
system programmers to selectively track only those threads they purposively choose. MKM's goal is to
give users a way to disambiguate the sources of performance problems in their individual applications
and to give system programmers means to chronicle the behavior of services such as schedulers.

The MKM interface is compatible with abstractions already present in Mach. It supports simultaneous
monitoring of independent computations so that users may selectively observe as many computations as
they desire, collecting only the data about computations they are interested in, regardless of what else is
running on the system.

4.1 General Architecture
Figure 9 depicts a case in which two independent non-communicating Mach tasks have created separate
monitors. Each monitor is represented by a port in its parent task. Thus, the task that creates a monitor
obtains rights to the port that represents the monitor; only tasks that possesses such rights can access
the monitor. In our example, unless task B gives task A rights to the monitor created by B, task A
cannot access it.

Figure 9 also shows non-intersecting sets of circular buffers allocated to each monitor for holding context-
switch events. A buffer is assigned to each processor in order to eliminate contention between
processors for buffers. When a thread context-switches, a software context-switch sensor detects which,
if any, monitor is tracking the thread and writes an event to the appropriate buffer. Eventually, a task
holding rights to a monitor will release those rights and terminate the monitor. This can be done either
explicitly while the task is alive, or implicitly when the task terminates. In either case, the termination of a
particular monitor is accomplished by the kernel.

4.2 Monitor system calls
There are several monitor system calls for accessing the kernel-monitor abstraction. All the calls take a
monitor as a parameter. In order to create a monitor, monitor_create () is called with a requested
kernel-monitor buffer size.

kern_return_t
monitor^create(my_task, newjnonitor, requested_size)

task_t my_task;
mon±tor_t *new_xnonitor;
int *requested_size;

This call returns a monitor to its caller and the total size of the monitor buffers that were allocated. The
size of the buffer is needed by the caller so that he may allocate sufficient memory in the user space in
order to hold the maximum amount of data the monitor may save before buffer overflows occur. The

Figure 9 : General Kernel Monitor Architecture

10

created monitor is returned in a suspended state and does not record any kernel events until
monitor_resume () is Called.

A monitor is terminated by calling the monitor_terminate ().
kern^ret urn_t
moni.tor_terminate (this_monitor)

monitor^t this_monitor;
This call first breaks communication between the caller and the designated monitor (assuming the caller
is the owner of the monitor). Then it places the monitor in a shutdown state so that the monitor state of
any thread or other entity holding a reference to the monitor is set to a shutdown state. When an entity
sees this state change, he removes his reference to the monitor and sets his state to a null monitor mode.
Before the last reference removed, the holder removes all the dynamic data structures belonging to the
monitor. Any attempt to access the terminated monitor after this call is made will return an invalid
argument code.

When a monitor is created, it is suspended and no kernel events are recorded until monitor_resume ()
is called. The monitor can be suspended and resumed repeatedly by successive calls to
monitor_suspend() and monitor_resume () . These calls give the user some flexibility in using his
monitoring environment.

kera_return_t
monitor_suspend (this_monitor)

xnonitor_t this_xnonitor ;

kern_return_t
monitor_resume (th±s_monitor)

xnonitor_t t hi s_mon± t o r ;

To retrieve recorded kernel events, the user calls monitor_read() . This call reads all the relevant
events that occurred since the first time monitor__resume() was called or since the last time
monitor_read () was Called.

kern_ret:urn_t
monitoreread(th±s_monitor, buffer, eventspread)

monitor_t this_mon±tor;
Ice r n_mon_bu f f e r_t buffer ;
int event s_read;

The call passes a monitor, a buffer for holding basic kernel events, and an integer into which the monitor
returns the number of events that were read. The basic kernel event type is designed to be general
enough to hold kernel events of different types. On a practical note, if monitor_read() is not called
often enough, some kernel events might be lost if the kernel monitor buffers fill and overflow. Correcting
this requires either creating a new monitor with larger buffers or making more frequent calls to
monitor_read() .

As noted earlier, the current version of the monitor only observes selected context-switches. The
thread__monitor () call enables the context-switches of selected threads to be observed. To disable a
thread, thread_unmonitor () is called. Both calls are passed a monitor and a thread. The
thread_monitor () call also requires an id which the user is responsible for keeping unique among
threads.

11

kern_return_t
thread_monitor(this_monitor, unique_id, this_thread)

xnonit or_t t hi s_monit or ;
int un±que_id;
thread_t this_thread;

kern_return_t
thread^unmonitor (this_xnonitor, this_thread)

mon±tor_t this_monitor;
thread_t this_thread;

5 Monitor Per formance Overhead
As was shown in Section 1, the kernel-monitor provides useful information about the scheduling behavior
of a computation. But this information comes with a price of some overhead. The overhead is two tiered:
1) sensor-firing overhead consisting of storing event information to special kernel buffers and 2) constant
overhead consisting of checking whether a switched thread is monitored. The measurements of both
kinds of overhead are discussed below followed by a brief description of the measurement techniques.

T T
sensors—on ' sensors-on

T T sensors-off ' * sensors-off

T T sensor-fire 9 sensor-fire

Inner loop time with sensors enabled;
used in firing time measurement

Inner loop time with sensors disabled;
used in firing time measurement

Sensor firing time

T , T
sensors—tn ' sensors—in

T T sensors-out » sensors—out

T T const-overhead ' const-overhead

Inner loop time with sensors disable;
used in constant overhead measurements

Inner loop time with sensors removed from code;
used in constant overhead measurements

Constant overhead per context-switch

N N
sensors-on ' sensors-on '

N N sensors-off » sensors-off '

Nes, > Nes,
loops '

Inner loop iterations with sensors enabled

Inner loop iterations with sensors disabled

Estimated Inner loop iterations, sensors removed
Number of iterations of outer loop;
see experiment description

Table 1 : Variable Definitions

5.1 Results on the micro-Vax
Table 1 describes the statistics used in the overhead measurements. Tables 2 and 3 list the means,
standard deviations and 99% confidence intervals for these statistics. The programs used to gather the
data points for these statistics consisted of pairs of loops running on two concurrently executing
processes. Described more fully in Section 5.5, the programs' loops were timed and, in the appropriate
places, enabled for monitoring. Briefly, Tables 2 and 3 show that the average sensor firing time is about
211 microseconds and the constant context-switch overhead is about 17 microseconds.

12

Statistic |i a Confidence Intervals
99%

Tsensors-on 3.453 sees 0.126 sees 3.453 + 0.016
"sensors-on ' 2414.4 14.0 2414.4 ± 1.8

Tsensors-off : 2.943 sees 0.102 sees 2.943 + 0.013
"sensors-off ' 2412.3 14.0 2412.3 ± 1.8

r n M r ~ ' 211 u-secs 50 ^i-secs 211 + 6
sensor—pre ~ ~ —

Table 2: Context-Switch Sensor Firing Statistics of Loop iterations
Statistic \i a Confidence Intervals

99%
Tsensors-in 2.907 sees 0.088 sees 2.907 + 0.009
Tsensors-out '• 2.866 sees 0.066 sees 2.866 ± 0.006
Nest : 2412.3 14.0 2412.3 ± 1.8

Tconst-overhead ' 17 R-SeCS 3.5 ^ S e C S (^) 17 + 0.5

Table 3: Statistics for Measuring Static Overhead of Monitor Code

5.2 Examples of Overhead
What do these figures portend for the performance of typical computations? Let's assume that we are
running computations on a kernel like the XF29 kernel described in Section 3.2. That is, the kernel
regularly context-switches threads ten times a second. Because there are frequently miscellaneous
deviations from a scheduler's regular behavior, lefs also assume that the kernel must context-switch an
additional five times a second. An unmonitored computation running under these circumstances would
incur only the constant monitoring overhead each context-switch. Thus, if it normally takes a computation
an hour to execute, the constant overhead of the monitor code would delay it by only
15x3600x0.000017=0.92 seconds, or less than 0.03%. Now let's assume the same computation is
running under the same conditions, but this time it's monitored. Realistically, if there are other
computations running such as system utilities, not every context-switch will involve the computation. So
let's say 12 out of 15 context-switches per second are monitored. Thus, if such a computation executed
in an hour on an unmonitored kernel, it would require an extra 12x3600x0.000211=9.12 seconds due to
sensors firing and an additional 3x3600x0.000017=0.18 seconds due to constant-overhead making up a
total delay of about 9.3 seconds or only about 0.25 %.

These delay estimates are probably typical, but certainly not worse case. The experiments used to
measure the sensor firing time and constant overhead gave results that are more like worse case
scenarios. In the constant overhead experiments, for example, an average of over 2400 context-switches
were estimated to have occurred in span of about 2.9 seconds (ie, almost one every millisecond). In
these experiments, the constant overhead yielded a penalty of about 1.4%. When the sensors fired, the
degradation rises to 14%. Since most computations do not context-switch every millisecond (and if they
do, there is probably something awry), severe performance penalties are unlikely.

Although delay due to the context-switch sensors is the most regularly occurring intrusion of the monitor
upon computations, the events detected by the sensors must occasionally be retrieved from their buffers
and stored in user space, either in physical memory or to disk. This requires making periodic
monitor__read calls each requiring about 1.3 milliseconds. The effect of monitor_read calls on the

13

| I = ' -""! l o u i t l "scope) | r » t r e s h | | v i » w , | [f o n t] [p l o t] fcenotel f p r o j) feTpj
| P i e s c o p e v i e w : e x e c u t i o n - f c a r s c o p e
| e x p e r i m e n t t i t l e : HKnml .100.50.sen.u

| s e l e c t by t y p e : •OODOOOEBOSlEEIIItilll EEi

S w i t c h e d f r o m CPL 0 t o CPU 0 ~~~~ " ~ i *
k e r n e l ' c o n t e x t s w i t c h ' , i n a * e » • 2 1 2 2 , b t i n e • » 1 5 7 3 2 0 , e t i r * e » • 1 5 8 0 2 0 , t t i w e »» 2 0 0 £

S w i t c h e d f r o * CPU 0 t o CPU 0 |
c l i c k t o i n d i c a t e l e f t hand edge o f 2 0 0 * r a n g e , o r t y p e ~z t o a b o r t . |

Figure 10: View of the Finish of another Matrix Multiplication (Old Kernel)

Izoowt l " * i P t N m t l Iscopel [r e f r e s h l [v iews! f f o n t l fFTot] I s e n o t e l fpToj] f e ^
P i e s c o p e v i e w : e x e c u t i o n - b a r s c o p e
e x p e r i * e n t t i t l e : HKcowp.u

s e l e c t by t y p e : Q Q E B E S E S Q E S E l O Q ^ l O E I D S n i E E i

S w i t c h e d f r o * . CPU 0 t o CPU 0 "
k e r n e l ' c o n t e x t s w i t c h ' . , i n a n e « • 4 2 9 0 , b t i w e — 1 5 2 2 2 3 , e t i m e « « 1 5 8 4 9 8 , t t i i » e » « 6 2 7 5

S w i t c h e d f r o m CPU 0 t o CPU 0
c l i c k t o i n d i c a t e l e f t hand edge o * z o o * r a n g e , o r t y p e t o a b o r t .

Figure 11 : Compensated View of the Finish of the Same Matrix Multiplication (Old Kernel)
computations discussed in this paper is negligible because if it were the case that the collector never
called the routine, the collector would have merely busy waited. The length of time the collector
executed in these computations was not dependent upon what it was doing, but rather upon how long the
mulitply threads executed. Thus the delays due to sensor firings were the dominant intrusion upon the
computations. PIE provides means to compensate for the intrusion of the sensor firings on micro-Vaxes
and other uniprocessors. The compensation algorithm is a fairly simple one consisting of adjusting the
timestamp of each context-switch in accordance with how many have switches occured before it. The
algorithm compensates for the delays by subtracting from each time stamp a quantity corresponding to
the sum of all the sensor firing times of previous context-switch events. The current algorithm does not
attempt to modify the total number of context-switches counted in a computations even though it is
reasonable to expect that shorter computations should suffer fewer context switches. Figure 10, for
example, shows the tail end of a matrix multiplication. Figure 11 shows the same computation after
compensation by PIE. As can be seen, the computations appear identical except that their termination
times and the metering line point to their differing execution times. Fortunately, the compensation is often
unnecessary. Even without compensating for the sensor firings, the execution times of computations
executing on micro-Vaxes with and without kernel monitoring are generally with one percent of each
other.

14

5.3 Statistical Calculations of Overhead
The mean firing time is found by:

T = T ° n - T a f f

sensors—fire ~~
"sensors—on "sensors—off

Because ^ ^ ^ c o u l d not be measured, Tsensors_^rt is approximated by:

T — T — sensors-on sensors-off
T ss —

sensors—fire
N

sensors-on

It turns out this approximation for the nVax does not alter the estimate of the sensor firing time since its
effects fall outside the accuracy of the measurements. The mean constant overhead incurred by the
kernel because of the monitor code is approximated by:

T - T
— sensors-tn sensors-out
T overhead ~

"est

is presumed equal to Nsensor5^ff

The first columns in Tables 2 and 3 list the statistics of interest. Excepting a few notable cases, the
standard deviation and confidence intervals of each statistic were obtained using ordinary techniques.
Comments on the exceptional cases are discussed in section 5.4. It should be noted that TS€nsors^an6
Tsensors-in a r e measurements of ostensibly equivalent phenomena, namely, the loop times with monitor
sensors off. The two statistics were measured under different conditions; Tsensors^^Nas measured during
tests run overnight with the (iVax connected to the network. However, because it had been expected that

the difference between the means of T s e n s o r s ^ n and TseflsorSmm<na would be small, it was desirable to ensure
that no other user could load the machine so that the standard deviations of the two statistics could be
kept small. To ensure this, the jiVax was disconnected from the network when T s e r u o r S m 4 n and TS€nsors_oyt

were measured resulting in Tscnsors_in being less than Tsensors_^ Actually, disconnecting the (iVax caused
some network queries from the system to timeout, producing periodic outliers in the collection of time-
stamps. This periodicity was so regular and the outliers so extreme, however, that those data points were
easily detected and discounted.

15

5.4 Data Analysis
The assumptions and calculations used to generate the numbers in Tables 2 and 3 are not of central
importance in this report. For those not concerned with the specifics, this section can be skipped.

Most of the data listed the two tables was calculated using ordinary statistical formulas. The exceptions
a r e Nsensors-off a n d °sensors-fire a n d * const-overhead* t h e standard deviations of the sensor firing time and
constant overhead per context-switch. The mean number of context-switches occurring when the
sensors were off is an estimate based on three considerations:

1. Aside from the firing of the sensors, the loops are identical.

2. The loop index limit was 1200, limiting the number of intentionally induced context-switches
to 2400. The remaining switches resulted from other scheduling behavior.

3. Assuming this "other" scheduling behavior is roughly periodic, there will be a slightly lower
mean number of context-switches when the sensors are off than when the sensors are on
because the loop times are shorter.

The problem of not being able to get a count of loop context-switches in the unmonitored tests, required
an approximation in the calculation of the standard deviation (and, thus, confidence interval) of the
estimated sensor firing time.

The variance Gsensors-fir? i s approximated by:

Ideally, of course, it would be desirable to have a unique Tsensor5^ffi for each Tsensors_orli and N s e n s o r 5 ^ n .

But, the inability to retrieve an individual context-switch count with each unmonitored loop time (eg.
Tsensors-off) necessitates using an approximate method to calculate the variance of Tsensors_fire. If the
standard deviations for TsensorSmm0n and TsensorSmmCffviBr% large and different, then it would not be likely that
the approximation reflects a reasonable estimate of a hypothetical sum containing unique Tsensors_off. But,
because the standard deviations for Tsensors_on and Tsensors_off are small and close, this approximation
yields a viable estimate for csensors_fire

2. An estimate for osensorSmm0ui

2 is obtained in a similar way. The
value for oconst^overh€tJ' is then computed using ordinary techniques.

5.5 Measurement Methodology
Measurements the constant overhead of the kernel-monitor as well as sensor firing times were done
using programs modeled after the two outlined in Figures 12. The programs were executed on a juVax
booted in multi-user mode because certain system services they used were unavailable in single-user
mode. In the experiments to determine the constant overhead, the ^Vax's ethernet cable disconnected in
order to reduce competition for the processor. Disconnection from the ethernet caused some servers to
cycle longer, but these periods were predictable and easily discounted.

16

5.5.1 Measuring Sensor Firing Times
Measurement of the firing times was done using a program like that shown in Figure 12. Implicit in its
design is that identical loops will, on mean, have the same number of context switches. As can be seen,
one instance of the loop contained in send_receive_messages_and_time_them(), was monitored
and timed, the other was just timed. By subtracting the time difference and dividing by the number of
context-switches, an estimate of the sensor-firing times could be obtained.

main()
{

declarations;

if (fork()) {
while (child_done != CHILDJDONE) {

receive^childjoaesgO ;
send_child_mesg () ;

}
} else {

create_and_start_xnonitor () ;
for (i= 0; i < SOME_CONSTANT; i ++) {

enable_thread_for_monitoring() ;
send_receive_messages_and_tinie_them() ;

disable_thread_f or_moriitoring () ;
get_and_countyconteaet_switches () ;

send_receive_messages_and_time_them() ;
}
terminate_monitoring();

}
}

Rgure 12: Code for measuring kernel sensor firing times

5.5.2 Measuring Constant Overhead
The second measurement program shown in Figure 13 was run on two versions of the "same" kernel.
The only difference between the two kernels is that one contained sensors and the other did not. The
loop-limits were the same as in the first program so that it could be assumed that the number of context-
switches were the same. By subtracting the shorter time from the longer and dividing by the expected
number of context-switches, an estimate of the constant overhead was obtained.

6 Work Pending
This paper has shown how the marriage of a context-switch kernel-monitor and the visualization graphics
of a programming environment yields penetrating glimpses into scheduler performance. The example
showed that visually ordering performance data is a powerful technique for studying experiment results.
The PIEscope views chronicled the context-switch behavior, clearly illuminating several salient
differences between the two schedulers. They provided an intuitively appealing representation of context-
switching performance, permitting a designer to quickly analyze the performance of scheduling policies
for both sequential and parallel machines.

Although MKM and PIE are a powerful synergy, they both can be improved and extended in a number of
ways. For example, the current version of MKM only monitors context-switches. Other monitoring work

17

main()
{
declarations;

if (fork()) {
while (child_done != CHILDJDONE){

receive^child_mesg () ;
send_ch±ld_mesg () ;

}
} else {
for (i= 0; i < S0ME_CONSTANT; i ++) {

send_receive_inessages^and_tixne^them() ;
}

}
}

Figure 13: Code for measuring kernel monitor overhead

consists of tracing file system management [9] or inter-thread actions as in METRIC [6] and DPM [8].
Both METRIC and DPM include a monitoring facility for distributed programs which traces actions
between the distributed processes of a computation. The monitoring provides data which, when
analyzed, not only yields basic communication statistics but also rudimentary information about execution
histories.

6.1 Monitor Enhancements
As just noted in our discussion of alternative monitoring, there are other interesting kernel-level actions
that can be monitored and visualized besides context-switches. Being able to visualize disk accesses or
page fault behavior, for example, would be useful for a designer investigating various memory
management policies. One of our long-range goals is to develop a work-station computational laboratory
based on a kernel-monitor which observes a sufficient variety of actions and a visualization environment
which offers flexible views of performance data. In addition to being able to measure sequential and
tightly-coupled parallel systems, such a kernel-monitor would have to be sensitive to actions peculiar to
distributed environments as well. Although MKM is extensible to a distributed environment, it is not clear
how the additional behavior should be visually represented by PIE. Although the actions measured by
MKM for distributed programs will be similar to those monitored by systems like DPM, the data describing
them will be targeted for visualization formats like those provided by PIE.

6.2 PIE Enhancements
From the beginning, PIE has included a user-level run-time monitoring facility as a part of its environment.
It was recognized early on, however, that in order to disambiguate user-level performance data, kernel-
level information is needed. The addition of kernel-monitoring, however, has been only one of several
improvements made to PIE since its inception. For example, work is continuously underway to enhance
the visualization formats and performance analysis tools offered by PIE in order to speed up the
performance improvement process. IPS [7], for example, includes automatic assistance for peformance
analysis. There is, of course, work on other aspects of performance monitoring such as making certain
that the data collected about a computation is an accurate portrait of what it did. It is important to
understand how a computation is perturbed by a monitor. Because total elimination of monitor
perturbation is impractical, work on perturbation has centered on measuring monitor overhead instead of

18

eliminating it. Although this work will undoubtably improve performance analysis by PIE, the synergy of
the kernel performance monitor and the visualization tools already available in PIE yields a powerful
performance analysis tool for a variety of applications.

7 Conclusions
The contribution of this research is not only proving that an integrated user-level/kernel-level visualization
system is conceptually and practically feasible, but that such system could be fully implemented and
evaluated. MKM as integrated with PIE is fully operational on a number of types of workstations and
parallel computers. In fact, we are fully expecting that MKM/PIE will be operational on any machine
running Mach.

MKM is providing valuable insights into the design of the Mach scheduler as well as in the design of
concurrent and parallel applications. The evaluation of MKM concluded that the intrusiveness is
predictable in well defined limits and for a certain set of applications the overhead incurred is either
acceptable or compensable. This result serves to highlight the attractiveness of the software based
monitoring used in MKM when contrasted with potentially less portable, less intrusive hardware based
monitoring techniques. Further research is needed and planned in the above area as well as in how to
use MKM as a basis for a general purpose parallel and distributed functional and performance debugger.

19

References

[I] M. Accetta, R. Baron, W. Bolosky, D. Bolub, R. Rashid, A. Tevanian, M. Young.
Mach: A New Kernel Foundation for Unix Development.
In Proceedings of USENIX 1986 Summer Conference, pages 93 -112. Computer Science

Department, Carnegie Mellon University, Summer, 1986.

[2] R. Fitzgerald, R. F. Rashid.
The Integration of Virtual Memory Management and Interprocess Communication in Accent.
ACM Transactions on Computer Systems 4(2), May , 1986.

[3] Francesco Gregoretti, Zary Segall.
Programming for Observability Support in a Parallel Programming Environment
Technical Report CMU-CS-85-176, Computer Science Department, Carnegie Mellon University,

November, 1985.

[4] M. B. Jones, R. F. Rashid, M. Thompson.
Match Maker: An Interprocess Specification Language.
In ACM (editor), ACM Conference on Principles of Programming Languages. Computer Science

Department, January, 1985.

[5] Makoto Kobayashi.
An Empirical Study of Task Switching Locality in MVS.
IEEE Transactions on Computers C-35(8):720 - 731, August, 1986.

[6] Gene McDaniel.
METRIC: a kernel instrumentation system for distributed environments.
In Proceedings of the Sixth ACM Symposium on Operating System Principles, pages 93 - 99.

Xerox Palo Alto Research Center (PARC), November, 1977.

[7] Baron P. Miller, Cui-Quing Yang.
IPS: An Interactive and Automatic Performance Measurement Tool for Parallel and Distributed

Programs.
In Seventh International Conference on Distributed Computing Systems, pages 482 - 489.

Computer Sciences Department, University of Wisconsin, September, 1987.

[8] BP. Miller.
DPM: A Measurement System for Distributed Programs.
IEEE Transactions on Computers 37(2) :243 - 247, February, 1988.

[9] J.K. Ousterhout, H. Da Costa, D. Harrison, J.A. Kunze, M. Kupfer and J.G. Thompson.
A Trace-Driven Analysis of the UNIX 4.2 BSD File System.
In Proceedings of the Tenth ACM Symposium on Operating Systems Principles, pages 15 - 24.

Computer Science Division, Electrical Engineering and Computer Sciences, UC Berkeley,
December, 1985.

[10] Richard Rashid, Avadis Tevanian, Michael Young, David Young, Robert Baron, David Black,
William Bolosky and Jonathan Chew.
Machine-Independent Virtual Memory Management for Paged Uniprocessor and Multiprocessor

Architectures.
IEEE Transactions on Computers 37(8), August, 1988.

[I I] Zary Segall, Larry Rudolph.
PIE - A Programming and Instrumentation Environment for Parallel Processing.
Technical Report CMU-CS-85-128, Computer Science Department, Carnegie Mellon University,

April, 1985.

20

M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky, D. Black,
R. Baron.
The Duality of Memory and communication in the Implementation of a Multiprocessor Operating

System.
In Proceedings of the Symposium on Operating System Principles. School of Computer Science,

Carnegie Mellon University, November, 1987.

