
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Compositional Model Checking
E. M. Clarke D. E. Long K. L. McMillan

April 19,1989
CMU-CS-89-145 ,

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

To appear in the Proceedings of the Fourth IEEE Symposium on
Logic in Computer Science, June 4-8,1989, Asilomar, CA.

Abstract

We describe a method for reducing the complexity of temporal logic model checking in systems composed of many
parallel processes. The goal is to check properties of the components of a system and then deduce global properties
from these local properties. The main difficulty with this type of approach is that local properties are often not
preserved at the global level. We present a general framework for using additional interface processes to model the
environment for a component. These interface processes are typically much simpler than the full environment of the
component By composing a component with its interface processes and then checking properties of this
composition, we can guarantee that these properties will be preserved at the global level. We give two example
compositional systems based on the logic CTL*.

This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
4976, Amendment 20, under Contract Number F33615-87-C-1499, monitored by the: Avionics Laboratory, Air
Force Wright Aeronautical Laboratories, Aeronautical Systems Division (AFCS), and Wright-Patterson AFB, Ohio
45433-6543.

This research was also partially supported by NSF grant CCR-87-226-33. The second author holds an NSF graduate
fellowship.

The views and conclusions contained in this document are those of the authors and and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency,
the National Science Foundation or the U.S. Government.

1. Introduction

Temporal logic model checking procedures ([6, 7, 12, 19, 23, 24]) have been successful in finding
subtle errors in relatively small finite state systems ([3, 4, 10]), but they all suffer from one apparently
unavoidable problem: the state explosion problem. This problem arises in systems composed of many
parallel processes. In general, the size of a parallel composition may grow as the product of the sizes of
the components. Because of this phenomenon, a program with a relatively small number of processes may
have far too many states for a model checking procedure to be directly useful. An obvious technique for
avoiding the state explosion problem is to exploit the natural decomposition of a complex parallel program
into processes. The goal of this approach is to verify the processes individually and then piece the results
together to conclude that the original program is correct. The main difficulty is knowing when some
property of a component process remains true in a parallel composition involving that process. It is easy
to come up with examples where a critical property of some process is not preserved when the process
is composed with another process. A similar technique may be used when the program is constructed
in a modular or hierarchical fashion. In this case, lower level components may be simplified by hiding
details that do not need to be visible externally and merging those states that become indistinguishable. If
the original program is reconstructed from the simplified components, then the number of states will, in
general, be much smaller and the program can be checked for correctness more easily. The problem this
time is ensuring that the simplified program satisfies the same logical properties as the original program.

There have been a number of other papers on compositional techniques for reasoning about systems
of processes. Milner's CCS calculus [20] is certainly compositional in nature, but it is only suitable for
showing equivalence between processes and does not handle liveness properties. Barringer [1] has written
several papers that show how to give a compositional temporal semantics for a parallel programming
language like CSP, but it is not clear how such a semantics can be used in developing a compositional
model checking algorithm. Pnueli [22] has developed a compositional proof system for temporal logic
that is based on the assume-guarantee paradigm. The primitive formulas in his logic are triples of the
form {(p)P(i()), where <p and V> are temporal formulas and P is a process. A formula is true if P is
guaranteed to behave according to ^ in any execution in which the environment behaves according to (p.
One problem with this approach is the potential difficulty in expressing the necessary assumptions, since
this can amount to giving the complete specification for an automaton in temporal logic. Josko [18] has
developed a model checking algorithm in which the environment is modeled by a temporal logic formula,
but the complexity of his procedure is exponential in worst case. Mishra and Clarke [21] have investigated
a model checking algorithm for asynchronous circuits that can exploit the hierarchical structure of the
circuit, but their approach is restricted to a particular fragment of the logic CTL and is not as general as
the one presented here.

In the present paper we use a different, although equally natural approach; we model the environment
of a process by another process called an interface process. A rule of inference called the interface
rule provides the basis for our compositional model checking technique. The interface rule allows us to
deduce properties of a composition by checking properties of the individual processes. The complexity
of showing that (p holds for P\\\Pi by using this technique is roughly the the same as the complexity of
computing the parallel composition of P\ and the interface process for Pi. We present an algorithm for
constructing the interface processes from Pi and Pi. We also give a general framework for the interface
rule that is independent of any particular process model or logic. Within this framework we state four
simple conditions that must be true of a process model and an associated logic in order for the inference
rule to hold. These conditions can be easily checked to show that a new logic satisfies the inference rule.

We give two examples of compositional systems for which the inference rule is valid. Both systems

1

use a branching time logic based on the temporal logic CTL* [11]. The first example uses an asynchronous
process model and a notion of composition that is similar to the one used in theoretical CSP [16]. We
define an equivalence relation on processes that allows for finite stuttering along computation paths. This
definition is appropriate for reasoning about asynchronous processes since there is no notion of "next
system state" in such cases. To illustrate the ideas, we prove the correctness of a tree arbiter. The
proof is interesting since it shows how a simple inductive inductive argument can be combined with
model checking to show that tree arbiters of arbitrary size are correct. The second system is designed
for synchronous digital systems. There is an efficient algorithm (0(nlogri)) for deciding equivalence of
processes in this model. As an illustration of this model, we consider a simple CPU with decoupled
access and execution units.

2. The interface rule

In this section we give the basic rule of inference that is used in the remainder of the paper for obtaining
compositional proofs for systems of finite state processes. We show that the rule is sound whenever the
set of processes and the logic for reasoning about them satisfy four general and easily checked conditions.
The importance of this section is not in the complexity of the soundness proof (which is quite simple)
but in the generality of the conditions that we give. Let V be a set of finite state processes, and assume
that we know what it means for two processes Pi and P2 to be equivalent (Pi = P2). Each process
will have associated with it a certain set of atomic propositions that is used in distinguishing states and
transitions. Up will denote the set associated with process P. The set of propositions associated with
the parallel composition of two processes will be the union of the sets associated with the individual
processes: Spl\\p2 = £px U £> 2 . PIU\ will be the restriction of P to S\. This process is obtained by
hiding all of the symbols in Up that are not in E\\ consequently, Epizx = HpC\ S\.

Suppose, in addition, that we have a logic C for reasoning about the processes in V and that we know
what it means for a formula <p to be true of a process P (P |= <p). Each formula will be constructed from
some set of atomic propositions, and we will write <p € C{S) to indicate that the propositions used in <p
are a subset of U. The interface rule deals with the parallel composition of two processes Pi and P2.
The reader might think of the processes as being connected by a set of wires as shown in figure 1,
where the wires correspond to symbols in Epx n Z>2. Ai and A2 are interface processes for P2 and Pi,
respectively. Intuitively, A\ is all that P2 can observe of Pi through the wires that connect them. An
analogous relationship holds between processes A2 and Pi . There are two basic inference rules, which
we state below:

PXIZP^AU P2iZPl=A2,

M\ Pz)r<P Pi \\A2\=rp
Pi \\Pi*1>

If a state minimization procedure is known for V, then Ai can be obtained by running this algorithm
on Pi I Sp2. If such a procedure is not available, the rule will still be useful as long as the size of Ai is
significantly less than the size of Pi . A similar comment applies to A2. The soundness of the interface
rule depends on the properties that we enumerate below:

i. Suppose SPl = SPl, then Pi = P 2 implies V<̂ € C(SPl)[Pi |= <p <-* P2 f= ¥>]•

2

0 0
III

A l O

A models P on
these actions in

O A 2

Figure 1: The interface rule

ii. If Pi = P 2 and Q is another process, then P\\\Q = Pi\\ Q and Q\\P\ = Q || P 2 .

iii. (Pi || P 2) i SPl = Pi | | (P 2 1 SPl) and (Pi || P 2) | SPl = (Pi | SPl)|| P 2 .

iv. If <p 6 £(£) and U C ZP, then P |= ̂ iff P j 271= <p.

It is easy to show that Pi || P 2 |= <p follows from the three hypotheses of the theorem and the above
four properties.

Proof We note that Pi j Sp2 = A\9 so Ax || P 2 = (Px I SPl)|| P 2 . Also (Pi [EPl)\\ P2 = (Px || P 2) | r ? 2 .
Hence Ai || P 2 = (P x || P 2) j 27^ by transitivity of = Now Ai || P 2 |= V f so (P x || P 2) j X>2 |= <p. It follows
that Pi || P 2 |= ̂ since <p e £(P 2) . n

A similar technique can be used to show the soundness of simple rules like:

We can handle arbitrary boolean combinations of formulas in an analogous manner.

3. An asynchronous process model

We begin by defining a simple model of a communicating system. Processes in this model are asyn
chronous and communicate using shared synchronization actions. They are represented as a form of
transition system [20].

Definition 1 A finite transition system, or ftsf is a quadruple L = (K, qo, E, A), where:

i. K is a finite set of states.

P i i I 7 p 2 = Ai, PiiSp, = A 2 ,
<p e £(ZP2), rj> E C(EPl\
Ax\\P2\=<p, Pi | lA 2 [=y;

P i | | P 2 f = ^ A ^

3

ii. qo G K is an initial state.

Hi. 2 is a finite set of actions not containing r.

iv. ACKx (2U {r}) x K is a transition relation.

Here, r represents an internal action of the fts. We can then define the operations of composition,
hiding, and renaming on fts. The notation A(p,a) is used to indicate {q\(p,<?,q) G A} if a G 2. By
convention, A(p, a) = {p} if a g 2.

Definition 2 L" =L\\L' (the composition ofL and V) is given by:

i. K!'=KxK!.

U- 4o = (<?o,4o)-

Hi. 2" = 2\J 27'.

iv. A"{(p,p'), a) = A(p, c) x A'ip1, a) for a G 2".
A"((P,P% r) = A(p, r) x {/>'} U {p} x A'tf, r).

The notion of composition used here is in the style of CSP [16]; an action A in the first fts synchronizes
with an identical action in the second fts.

Definition 3 L' = L \ <r (L with a hidden) is defined when a G 2 and is given by:

i. K* = K.

ii. <?o = <?o.

Hi. 2' = 2 \ {a}.

iv. A'(p,v) = A(p,u) ifve 2'.
A'(p, r) = A(p, r) U A(p, A).

Definition 4 L' = L[ao / ai] (L with <TQ renamed to o\) is defined when OQ G 2 and is given by:

i. fC = K.

ii. qo = q0.

Hi. 2' = (2\ {ff 0})u{«ri}.

iv. A'(p, v) = A(p, u)ifue(2\ {<r0}) U {r}.
A'(p, A\) = A(p,CR0).

4

We note that the operations as defined have certain obvious algebraic properties. For example, composition
is commutative and associative up to isomorphism.

Associated with an fits is a set of runs through the structure. We use the following definitions and
terminology. For a finite set 5, the notation 5* denotes the set of finite sequences of elements of S,
denotes the infinite sequences, and S°° = S* u SP.

Definition 5 A run from q€ K is a pair (q, ir), where n = (po, <7o,Pi)(Pi,<7i,P2). •. 6 A°° and po^q. A
run from the initial state qo is often simply called a run.

We write P*q and P£ for the finite and infinite runs from q, and define = P*q U P^.

For the required equivalence between structures, we use the notion of a bisimulation [20]. Formally,
for an fits L, we have the following.

Definition 6 F : 2KxK -> 2KxK is monotonic if RQ C RX C K x K implies F(R0) C F(RX). F is
equivalence-preserving if R C K x K being an equivalence relation implies F{R) is an equivalence
relation.

At this point we restrict our attention to F which are monotonic.

Definition 7 R is an F-bisimulation ifRC F(R). We define p &F q iff there is an F-bisimulation R such
that pRq.

We also define a series of approximations to « f as follows.

Definition 8 Define &nj7 inductively by:

I ttQyF = K x K.

Define = n»*ii^.

We then have the following simple results.

Proposition 1 &p possesses the following properties:

i. «/7 IS the largest F-bisimulation under C.

ii. «/? IS the maximum fixpoint ofF.

Hi. «f = «c*,f.

iv. If F is equivalence-preserving, then &p is an equivalence relation.

The proof is straightforward and is omitted.

5

4. An asynchronous process logic

We illustrate the development of a compositional system within the framework of branching time temporal
logic. The logic we use is essentially the computation tree logic (CTL) of Emerson and Clarice [6]. The
process model is that defined in the previous section. Because CTL is state-oriented rather than transition-
oriented, we must be able to define the labeling of a state.

We introduce the following notation. ls(p) is the last state of a finite run. st(p) is the sequence of
states the run p passes through. ac(p) is the sequence of actions (excluding r actions) performed. inf(p)
is the set of states which occur infinitely often. We consider the last state of a finite run as repeating.

Definition 9 L ^ p = (^o,(?o,^o,?i)(<?i,^i,?2)...) € P%. Define:

i. \s(p) = qn if\p\ =n.

ii. st(p) = qoq\...

iii. ac(p) = (<TQ(TI<T2 ...) 1 S.

iv.
inf(p) = {ls(p)} if pis finite.
inf(p) = {q\st(p) l{q} = <f} if Pis infinite.

We denote concatenation of runs by juxtaposition. The notation p -< 9 means that the run 9 is a (proper)
suffix of the run p. p/9 will be defined when p < 9 to be the r\ such that p = r\9.

The labeling C(p) of a run will be the set of actions which are performed an odd number of times.
We think of each action as toggling a state variable which is associated with that action. The labeling
C(q) of a state is the set of labelings of runs which end at that state. We will restrict our attention to fts
which have unique labelings for each of their states (i.e., for which \C(q)\ = 1). We will typically write
C(q) for this unique labeling (as opposed to the set containing this unique labelling). Formally, we define
the labeling as follows.

Definition 10 Let p e F%. Define C{p) = {<r|ac(p) !{<r} = o*, n odd } . Define C(q) = {C(p)\p € P*0

ls(/>) = <7>.

Definition 11 The set of formulas CTC(S) is defined as the smallest set of state formulas such that:

i. IfaeU then a is a state formula.

ii. If<p is a state formula, so is -n<p.

iii. If<p and r/> are state formulas, so is <p A ^ .

zv. If cp is a path formula, then 3<p is a state formula.

v.Ifcp and tp are state formulas then {^pU^) is a path formula.

6

vL If (P is a path formula, so is -y<P.

We use the following abbreviations:

<pV IJ) = -i(i</? A -i^)
(F *-+ I\) = (<p A IP) V (iv? A -i^)

F<p = (true£/<^)

(P ^ TFT = -\(P v -0

In general CTC(S) formulas may express the existence of a potentially infinite computation. When
dealing with infinite paths, it is often desirable to impose certain fairness constraints on the possible paths.
For example, we would typically wish to insure that each element of a composition must make progress
if possible. One method for doing this would be to extend our notion of an fits to contain some type of
fairness constraint. Here we take a simpler but less flexible approach. A run is fair if every transition
which is enabled infinitely often occurs infinitely often. This condition is sufficient to guarantee progress
by all components in a composition, and we show show that it is suitable for use with CZC(27). It is not
suitable for use with a linear temporal logic.

Definition 12 P E is a fair path from PIFVQE Inf (pMq, <r, r) e A (P j {(Q, a, r)} = (<?, a, r)°°).

Definition 13 A set of states S C K is said to be closed ifA(S, S U {r}) C S, i.e., if every state reachable
from S is a member ofS.

Given a notion of a fair run, we define the semantics of CTC{E) as follows. In what follows, we identify
a run P £ with its starting state q.

Definition 14 Satisfaction of(P€ C7£(£) by L at state q (denoted L, q f= (P), is defined by:

i. L,q^a iff a g C(q).

ii. For (P a state formula, L,q \=-«P iff not L,q\=<P.

Hi. L, q (= (P A TP iff L, q^=<P and L^q^^P.

iv. L, q f= 3<P iff there exists a fair run P E such that L,P\=CP.

v. L, P |= ((fiUt{?) iff there is a 9 with P -< 9 such that:

(a) L,9^IL>.

(b) L, RJ f= <P for all R] satisfying P •< RJ x 9.

vi. For <P a path formula, L,P\= -MP iff not L,P\=<P.

We now define a notion of equivalence which is designed to preserve CTJC(S) formulas. This definition
is designed to equate fits which differ only by finite stuttering. The notion here is similar to the notion of
stuttering equivalence defined in [5], but it only makes reference to finite paths.

7

Definition 15 p £R q, where R C K x K, if there exists (p, (p, r , p i) . . . (p»_i, r,p r t)(p„, a, q)) E P*p such
thatpRp\ R ...Rpn. In this definition, we allow a = r .

Definition 16 FP(R) = {(p, <7)|V<r E 27 U { r } :

*. Vp7[p p 7 fiipfcf 3tffo = W A p 7 </)]

I I . Vf'fo q* implies 3pf(p £Rp'Ap'R j)]}.

Proposition 2 Fp is monotonic and equivalence-preserving.

Proof The proof of monotonicity is straightforward. To see that Fp is equivalence preserving, assume R
is an equivalence relation. It is clear that FP(R) will be reflexive and symmetric. Suppose (p, q), (q, r) e
FP(R), and let p £R pi. Since (p,q) E FP(R), there exists qf such that q £R q[and p' R qf. Since
(q, r) e FP(R), there exists r7 such that r £R r1 and qf R r7. By transitivity of /?, we have p 7 R /.
Similarly, if r =>R r7, there exists p 7 such that p p 7 and p 7 /? r7. Hence (p, r) 6 •

We denote the equivalence induced by Fp by L « p L7 will indicate that qo &p q*0. Let =5-p denote
the relation for R = «p.

Lemma 1 Assume L and V are fts, 27 = 277. Lef p € K, p' e K* be states, C(p) = £(p 7) A p « p p 7 , ami
let p 6 P$. Then there exist p' E PJJ, and partitions BoB\ .. .£„ and B'0B'X ...B'nof st(p) and st(p7) M C / I
f/iaf jfor a// q € Bi and q* e B\, C(q) = £ (^) Aq&pq[.

Proof By induction on m = |p|.

Case m = 0:
Choose p1 = (p 7 , 6) , 5o = p, £(> = p 7 .

Case m + 1, assuming the result for m:
Write p = 0(pm,cr,pm+\). By induction hypothesis, there exist 0' e F^, and partitions Bo#i Bn

and SjjS; . . . B'n of st(0) and st(07) such that for all q E £/ and qf E £fa) = C(q*) Aq^p q*.
Let / 0 = ls(07). Note that p m « p ^ 0 and p m 4>p p m+i. Hence there is r?7 = (V0, r, r^) . . . (r 7 ^ , <r, r7*)
which shows that £> p ^ with p m + i « p By the definition of labeling, we have C(pm) = £Oo) =

C^) = . . . = A r ^) and £ (p m + i) = £(>*). Further, p m » p » p . . . « p Let p 7 = 0 7 T / ,
and define partitions of st(p) and st(p7) by:

i. Ci = S t , C\ = 5< for 0 < i < n.
ii. Cn = Bn> Cn = Bj/i .. ./fc-i-

iii. C«+i =Pm+i» =

By the above, these satisfy the required conditions. C

Lemma 2 Let p £ P*p with ls(p) = T/iere exists 0 € such that p0 is fair.

8

Proof Write r\ C ro iff r\ is reachable from ro. The relation ro ~ r\ iff ro C n A r\ C ro is trivially an
equivalence relation on the set of states, and C is a partial order modulo ~ . Consider the maximal chains
headed by the equivalence class of q. Since the set of states is finite, each such chain has a least element.
Let the equivalence class of r be such a least element. Note that this equivalence class represents a closed
and strongly connected set of states. From the definition of fairness, a run C S P? which

i. visits each state in turn, and

ii. at each state, takes each transition in turn

is fair. Let 7 7 G P^ be a run with 15(77) = r. Then 9 = 77C satisfies the required conditions. •

Lemma 3 If p G is fair, then inf(p) is closed.

Proof Let q G inf(p) and (<?, a, r) G A. Since <? is visited infinitely often, by the definition of fairness, r
is visited infinitely often. Hence r G inf(p), and so inf(p) is closed. •

Theorem 1 Assume L and V are fts with S = E'. Let p and p1 be states of L and V with C(p) =
C(p') ApKp p'. Then for all <p G CTC(S):

L,p\=<p ijfL',p' \=<p.

Proof By induction on the structure of (p.

<p = a G U:
Up |= a iff a G C(p) iff a G C(p') iff Z/,//

V? = - i^ , a state formula:
L,p |= iff not L,p |= ip iff not L',p' |= 0 iff L',p' (= ->^.

<p = 0o A 0i :
£>P 1= ^ 0 A ^ 1 iff L,p f= ^ 0 and L,p |= ^ 1 iff £ ' ,p ' |= 0o and L',//1= ^ iff U,pf |= 0o A 0 i .

< P = B ^ :

We consider two cases here.

Case 1, ip is logically equivalent to (tpoU^i):
Assume L,p |= (P . Then there is a fair run p G such that L, P [= -0. By definition, there is
9 with P 0 such that:

i. M M i .
ii. L, 7 7 (= t/?o for all 7 7 satisfying P ^ 7 7 ^ 9.

Choose some C' € Pp corresponding to p/9 as in lemma 1, and pick 9' as in lemma 2 so that
('9' is fair. Define p' = £'0'. By the choice of (J and the induction hypothesis, we have:

i. L ' , 0 ' M i .
ii. L ' , 7 7 ' |=0o for all 7 7 ' satisfying p1<r)' •< 9'.

Since p1 G U,p! | = < P . The converse is similar.

9

Case 2, tj> is logically equivalent to -i(^o^^i):
Suppose L,p \= <p. There are two cases. Assume first that there is a fair run p G Pp m& a 0
with p<9 such that:

i. L,0 |= -î o,
ii. L, 771= for all p ̂ 17 -< 9.

In this situation, we proceed as in case 1 above to find a fair run pf G Fp which demonstrates
that Z/.p 7 |= v?. In the second case, there is a fair run p G Fp such that for every 9 satisfying
p •< 9, we have L,9 f= >̂o> -̂ i- By lemma 3, inf(p) is closed. Define V = G ̂ 7|A<?) = AtfO Aq&p cf for some 4 G inf(p)}. We want to show that f is closed. To see this, suppose
c[G / ' and (</, (7 , r7) G A1. Now ^ =5>p r7, and by definition of / 7, there is q G inf(p) such that
£(q) = £(</) Aqttpq*. Hence there is r such that q^pr and r « p r7. Further, £(r) = £ (/) ,
and r 6 inf(p) since q =>p r. Thus r7 G / 7 and / is closed.
Now for every # G inf(p), we have L,<? |= ^o>~»^i» and so by induction hypothesis L7,</ |=

for every q/ G / 7. Choose 9 such that p ^ 0 and ls(p/0) G inf(p). As in case 1 above,
there is £7 G F^ corresponding to p/0, and there is 91 so that CJ91 is fair. Define p 7 = C707. By
induction hypothesis, for all pf d>v' ^ 9' we have L7, V |= V>o, -̂ 1. Also note that ls(C7) G /7.
Hence for all 9f ^ r;7, we have L7, 777

 |= ^o, Tims p' |= "1(V7ô V7i)» so Z/.p7 |= The
converse is similar. •

Corollary 1 IfL « p L' f then for all (p € CTC(S) we have L,q0\=<p iffU, qb (= <p.

We also show that the equivalence is a congruence with respect to the operations. For hiding and
renaming, the result is trivial. For composition we have the following.

Theorem 2 Let LQ, L'q, L\9 and L[be fts with SQ = 2J'Q9 271 = £[, LQ «p L'Q, and L\ &p L\. Then
LQ\\LXKPL'Q\\L\.

Proof Define R by (po,Pi) R (PQ,P\) iff Po &p PQ and pi « p p^. It is trivial to check that R is
an Fp-bisimulation, and hence that R C « p . But now from the hypotheses, qo «p q*0, q\ &p qf

l, so
(<7o,q\) R (qo, <7i), and hence LQ \\ L\ « p L() || L7

X. •

Using corollary 1 and theorem 2 it is easy to show that the first two conditions required for the
interface rule are satisfied. The last two conditions have straightforward proofs.

As an example, we consider a tree arbiter used to control access to a shared resource. An arbiter cell
has three communication channels which we denote by CO, Ci, and Cp. Each channel consists of two
signals, r and a, representing a request and an acknowledgement. A user request on one of the channels
CO or CI initiates a request to a server on channel Cp. After an acknowledge is received on Cp, an
acknowledge is passed on to the user. At this point the user is assumed to have access to the shared
resource. The user initiates another request/acknowledge cycle when finished. By combining arbiter cells
into a binary tree, we can form an arbiter for any number of users. An arbiter with three cells is shown
in figure 2. The specification here is based on an example presented in [9]. We will represent an arbiter
cell by the composition of the fts shown in figure 3. The fts for the users and the server are shown in
figure 4.

10

S e r v e r

a r b i t e r
c e l l

a r b i t e r a r b i t e r
c e l l c e l l

UserO Us e r l User2 User3

Figure 2: Three cell tree arbiter

We write Arbiter for the arbiter cell. To verify the class of tree arbiters, we begin by checking the
following relations:

((Arbiter\\ UserO \\ Userl)[rp / rO'][ap / aO'])
\rO\aO\rl\al\tO\tl * p UserO1

((Arbiter\\ UserO\\ Userl)[rp / rl'][ap / al'])
\rO\aO\rl\al\tO\tl &p Userl'

((Arbiter\\ Userl || Server)[rO / rp'][aQ / ap'])
\rl\al\rp\ap\tO\tl ttp Serve/

((Arbiter\\ UserO || Server)[rl / rp'][al / ap'])
\rO\aO\rp\ap\tO\tl &p Serve/

The first relation here indicates that when we compose two users with an arbiter cell and restrict to the
actions for the server port, the result is equivalent to another user. Thus, a user process can be used as an
interface process for the two users and the arbiter cell. The other relations have similar interpretations.
From these, we can perform an induction on the structure of a tree arbiter to deduce that each cell in an
arbiter with users at the leaves and a single server at the root is equivalent to a cell in an environment of
two users and a server, i.e., to:

Arbiter || UserO || Userl \\ Server

Properties of the entire arbiter are deduced from properties of these components. For example, liveness
for the first user can be checked immediately by verifying:

VG(rO-+VF(rOAaO)).

We can ensure mutual exclusion by checking:

VG(-n(r0 A aO) V ̂ (rl A al))

and:
VG((r0 A aO) -> (rp A ap)) A VG((r7 A al) -» (rp A ap)).

This example illustrates how it is sometimes possible to reason inductively about a system using the
interface theorem.

11

file:///rO/aO/rl/al/tO/tl
file:///rO/aO/rl/al/tO/tl
file:///rl/al/rp/ap/tO/tl
file:///rO/aO/rp/ap/tO/tl

aO

tO

rO tO

tO
y

aO

ap

• A
tl

ap

ap

rp

A
al

A
tl ^

tl

al

Figure 3: Tree arbiter cell

aO

rO

aO al

rl j , rp

al ap ap

rO
UserO

rl
U s e r l

rp
Serve r

Figure 4: Users and server

5. A synchronous model and logic

In this section, we introduce a simple formal model of finite state machine composition which satisfies the
conditions for the interface theorem and is applicable to synchronous hardware controllers. We also show
by an example how the interface theorem may be applied to automatic verification of digital hardware.

We use a model of communicating Moore machines to represent modular hardware control units.

Definition 17 A Moore machine is given by a structure M = (AT, qo, 27/, 27*, J\ 0) where

i. K is the set if states

it qo € K is the initial state

Hi. 27t- and EQ are disjoint sets of propositional variables (representing the input and outputs respec
tively)

12

iv. r is a mapping K-+ 27* {T, JL} (for each state, a truth assignment to each output)

v. & is a mapping K x K -» f(Ed, where T(Si) is the set of propositional logic formulas on 27;
(&(s\, S2) represents the transition condition from state s\ to state S2).

Definition 18 A run of a Moore machine M beginning at a state so is a sequence (so, Jo)(s\,J\) • •where
5o, s\,... 6 K, / o , / i , . . . are mappings 27; -* {T, ±} and the following condition holds:

V i > 0 : / / f = 6 > t e , s I + 1)

Definition 19 Given a propositional formula f and a mapping A : 27 —• {T, _L}, letf[A] be the formula
f with each variable x e 27 replaced by A(x).

Definition 20 The parallel composition M\\ Mf, where U0 and Sf

Q are disjoint, is a Moore machine M"
such that

i. IC'^KXK9

qo = (qo,</o)

iii. 27r = (27 l~27 7)U(27[-27.)

iv. Z'J = Z0uZ'0

v. r"(s,s') = rsur's'

VI. ©"(Oi,^), fe,^)) =
&(sus2)[r's'lx] A ©Vi, fyirsxi

Definition 21 The restriction of a Moore machine M to a set of variables 27 (where 27/ C 27), denoted
M1 = M127, is identical to M except that £'a = 27* n 27 and for all s 6 K, r's = rs j 27.

Using this process model, we now have to define a logic and an appropriate equivalence. The logic
we use will be the temporal logic CTL* [11]. For the notion of equivalence for Moore machines, we first
define equivalence between states of a Moore machine.

Definition 22 The state equivalence relation ~M (written ~ where the context is unambiguous) of a
Moore machine M is the unique greatest fixpoint of the functional Fu : K x K —• K x K such that
(ShS2)eFM(R)iff

i- (sus2)ER

IT rsi = rs2

III. VA : 2 7 ; ^ {T ,±},vy 6 K,

13

(a) A |= ©(si^s*) implies 3s" G K, G * andA H ^ t e , * ")
W A \=&(s2^) implies 3s" G AT, (s"^) G * and A |=0(*i,s")

Here, we have omitted the proof that FM is monotonic and equivalence preserving.

Definition 23 Given two Moore machines M and M', S0 = E'0, 27; = 27/ and K n AT' = 0, jfr«> disjoint
sum M" =Af + M' w f/i* M ^ r * machine (K U A?, 27/, 27*, J 1 U U <9'), wtere is undefined.

Definition 24 Given fwo Moore machines M and M', let ~ 6e state equivalence relation ofM + Mf.
We say M and M' are equivalent, denoted by M ~ M! iff qo~ q^.

We define the CTL* semantics for a Moore machine M by deriving a Kripke structure KM from M
and then using the standard Kripke structure semantics for CTL*.

Definition 25 Given a Moore machine M, let KM = (5, So, L), where

i. S is a set of pairs (y, A), where s G K and A is a mapping 27; —• {T,!_}.

ii. S0 = {(s,A)€ S|s = <7o}

Hi. Lis a map S -> 2 r , u i ; * where L(s, A) = {xe SQ\(rs)x = T} u {x G 27;|A* = T}

iv. RCSxS is defined such that (suAi)R(s2,A2) iff A\ (= e(s\,si).

Note that the set of runs of KM is identical to the set of runs of L.

Definition 26 / / / is a CTL* formula, we define M (=/ iff KM |=/

As an example, we consider a model of the controller of a CPU, which is illustrated as a block diagram
in figure 5. A detailed description of the CPU and a partial formal specification can be found in [8]. The
CPU is broken into two units, called the access unit and the execution unit, in order to allow concurrency
between memory operations and instruction execution. The access unit's function is to fetch instructions
and store them in an instruction queue, and to maintain a cache of the top location of the CPU stack in
a special register. The execution unit's function is to interpret instructions of the CPU's machine code
(which it stack based). The two controllers of the access and execution units (which we will refer to
as AU and EU) are designed as communicating Moore machines. A major part of the temporal logic
specification for the CPU's controller defines correct behavior for the AU and consists of formulas on
the set of signals which are inputs or outputs of the AU (which we will call SAU)- A simple example of
such a formula is the following

^GiFfetch

This formula is a liveness property which states that instructions are fetched from the access unit to the
execution unit infinitely often (fetch is actually a prepositional formula defined in terms of request and
acknowledge signals between the EU and AU).

14

Memory
System

Access
Unit

Controller

Execute
Unit

Controller
Memory
System
Memory
System

Access
Unit

Execute
Unit

Figure 5: CPU block diagram

The parallel composition of the AU and EU controllers in our design has approximately 1100 reachable
states. However, by restricting the outputs of the EU to those in SAU* and then minimizing it, we obtain
an interface process EU' such that AU\\Elf has only 196 reachable states. The reason for this reduction
is that, while the execution unit interprets many different instructions, the memory accesses of these
instructions fall into a few basic patterns. By checking the AU specifications on this reduced composition,
we are making use of the interface rule. In order to justify this step, however, we must prove the four
conditions of section 2.

To demonstrate the first condition of the interface rule, we would like to show that M ~ Mf implies
KM = KM>> where = denotes traditional strong bisimulation equivalence. A straightforward induction can
then be used to show that M and M' satisfy the same set of CTL* formulas. We first define a relation «
on the states of KM as follows.

Definition 27 Given a Kripke structure KM, and two states (s\, A\), (s2lA2) £ S, (s\,A\) « 0 2 , ^ 2) iff
s\ ~ S2 and A\ = A2.

Lemma 4 The relation « is a strong bisimulation on KM*

Proof Assume that (s\,A)R(s[,B) and (s\,A) « (s2,A). Then by definitions 25 and 27,

L(suA) = {xe E0\(rsi)x=T}u{xe Zi\Ax = T}
= {x e S0\(rs2)x = T } U { J C G Ei\Ax = T }

= L(s2,A).

By definition 25, A | = © (J I , ^) , and by definition 27, s\ ~ s2. Thus, since ~ is a fixpoint of FM,
3s'2 e K,A [= ©(f t ,^) and s\ ~ s'2. Hence (sf

vB) « (s^.B) and (s2yA)R(s'2,B). Proof of the other
direction is similar. •

Corollary 2 IfM ~ M1 then KM = KM>.

Proof M ~ M! implies a state equivalence ~ on M + Mf such that qo ~ qQ. By lemma 4, this implies a
strong bisimulation = on KM+M* = KM + KM> such that, for all A : Hi —> { T , ± } , (qo,A) = (#Q, A). •

The equivalence ~ on states of a Moore machine is essentially the same notion used to define equiva
lence in the coarsest partitioning algorithm of [17]. Thus there is an algorithm for determining if M ~ M1

15

(i.e., for determining if the initial states of M and Af fall into the same equivalence class) in time
0((\M\ + |M'|)log(|M| + |M'|)), assuming the transition conditions are coded in disjunctive normal form.
Further, M can be minimized in time 0(|M| log |M|).

In order to satisfy the second condition of the interface rule, we must show that M\ ~ M[and M2 ~ M2

imply Mi || M2 ~ M\ \\ M2. To do this, we define a relation « (different from « above) on the states of
(Mi || M 2) + (M; IIM£) as follows:

Definition 28 (s\,S2) « (. S I , ^) IFFSI ~ s\ and S2 ~ S*2-

We note that the relation « is a F(MX\\M2}+(M[^M^) - bisimulation. Hence we have

Proposition 3 Mi ~ M\ and M2 ~ M£ imply M\ \\ M2 ~ M[\\ M2

Proof Since the state equivalence relation ~ on (Mi HM2) + (M1HM2) is the largest bisimulation
o f ^(AFIHAFIMMILLMY* we have that (sus2) « (^u^> implies (sus2) ~ FRI,^)- By definition 28,
(401, Q02) « (<7oi, <7o2)> therefore O701,<702) ~ (<7ou462)' satisfying the definition of equivalence for Mi || M2
and M ' ^ M ^ •

We next prove that our definitions satisfy condition three. Although this condition requires equivalence,
we show a stronger condition of equality.

Lemma5 (M | | M ' H 2 7 M = M | | (M ' 1 2 7 M)

Proof We consider the 0 component. Let P = (M || M') j HM and Q = M | |(M'j SM\ Then we have

0p((si,Si), te,^))
= 0 (5 I ^ 2) [R V I] A 0 V i ^ 2) [^ I]
= 0(sx,S2)[(R'lEM)sf

x\/\0'(s\,J2)[RSL}

= © (^ 1 , 1 ZJ\\ A 6>M' 1 27*(*I, £)[RS\]

= ©f l ((JI ,J4) , to ,^))

The other components are trivially equal. •

The last condition is trivially satisfied, since restricting a Moore machine M to a set of variables 27 is
equivalent to restricting the labels of the Kripke structure KM to 27.

6. Directions for Future Research

The most important open question is, of course, whether the compositional techniques described in this
paper will permit verification of much more complicated finite state concurrent systems than has previously
been the case. This can only be determined by further experimentation. It is clear, however, that our
technique is most suitable for loosely coupled systems. When this relationship does not hold, the interface

16

processes may be large, and we do not get a significant state reduction by using the interface theorem.
Fortunately, the parallel composition of two tightly coupled processes does not seem to generate as many
states as the parallel composition of two loosely coupled processes of comparable size—there are simply
not as many possible interleavings. Consequently, compositional reasoning may not be as important in
this case as in the case of loosely coupled processes.

It will be interesting to see how well the results of this paper apply to other process models. For
systems like finite transition systems with propositional dynamic logic [14] or CCS [20] with Hennessy-
Milner logic, the results should be straightforward and will be given in the full version of the paper. Our
techniques should work quite well for the Caesar system of Sifakis [23]. It should also be possible to
apply our ideas to Berry's Esterel [2] and Harel's Statecharts [15] if we use a logic like CTL.

Finally, the techniques that we describe in this paper also have some limitations. For example, the
interface rule allows us to handle formulas that are boolean combinations of temporal properties of the
individual processes in a parallel composition. We are currently unable to handle more general properties
involving temporal assertions about several processes. Developing more general rules seems like an
important direction for research but also a very hard one. O. Grumberg [13] has obtained some negative
results which indicate that it may be impossible to develop a fully general system of inference rules
that will handle arbitrary temporal properties. Furthermore, in some cases it seems likely that it will be
necessary to combine the use of the interface rule and model checker with proofs of validity for certain
CTL formulas. In order to use the interface rule it may be necessary to prove an implication of the form
(<F> A IFI) —• 6 where S is another CTL formula that expresses a global property. We believe that in many
cases it will be possible to use informal reasoning to establish such implications.

References

[1] H. Barringer. Using temporal logic in compositional specification of concurrent systems. In Con
ference on Temporal Logic and Its Applications, Leeds University, January 1986.

[2] G. Berry and L. Cosserat. The ESTEREL Synchronous Programming Language and its Mathematical
Semantics. Technical Report, Ecole Nationale Superieune des Mines de Paris, 1984.

[3] M. C. Browne, E. M. Clarice, and D. L. Dill. Automatic circuit verification using temporal logic:
two new examples. In Formal Aspects of VLSI Design, Elsevier Science Publishers, 1986.

[4] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic verification of sequential circuits
using temporal logic. IEEE Transactions on Computers, C-35(12), December 1986.

[5] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing Kripke Structures in Temporal
Logic. Technical Report, Carnegie Mellon University, Pittsburgh, PA 15213, January 1987.

[6] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time temporal
logic. In Proceedings of the Workshop on Logic of Programs, pages 52-71, Springer-Veriag, 1981.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages and
Systems, 8(2):244-263, 1986.

[8] E. M. Clarice, D. E. Long, and K. L. McMillan. A language for compositional specification and
verification of finite state hardware controllers. In Proceedings of the Conference on Hardware
Description Languages, 1989. To appear.

17

[9] D. L. Dill. Trace Theory for Automatic Heirarchical Verification of Speed-Independent Circuits.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA 15213, 1987.

[10] D. L. Dill and E. M. Clarke. Automatic verification of asynchronous circuits using temporal logic.
IEE Proceedings, 133, part E(5), September 1986.

[11] E. A. Emerson and J. Y. Halpern. "sometimes" and "not never" revisited: on branching versus linear
time temporal logic. Journal of the Association of Computing Machinery, 33(1): 151-178, January
1986.

[12] E.A. Emerson and Chin Laung Lei. Modalities for model checking: branching time strikes back. In
Conference Record of the Twelth Annual ACM Symposium on Principles of Programming Languages,
New Orleans, La., January 1985.

[13] O. Grumberg. Personal communication.

[14] D. Harel. Dynamic logic. In D. Gabby and F. Guenthner, editors, Handbook of Philosophical Logic
II, pages 498-544, Reidel, 1984.

[15] D. Harel. Statecharts: A Visual Approach to Complex Systems. Technical Report CS84-05, The
Weizmann Institute of Science, February 1984.

[16] C. A. R. Hoare. Communicating sequential processes. Communications of the Association of
Computing Machinery, 21(8):666-677, August 1978.

[17] J. E. Hopcroft. An nlogn algorithm for minimizing the states in a finite automaton. In The Theory
of Machines and Computation, pages 189-196, Academic Press, New York, N.Y., 1971.

[18] B. Josko. MCTL - an extension of CTL for modular verification of concurrent systems. In H.
Barringer, editor, Workshop on Temporal Logic, University of Manchester, April 1987. To appear
in LNCS.

[19] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their lin
ear specification. In Conference Record of the Twelth Annual ACM Symposium on Principles of
Programming Languages, New Orleans, La., January 1985.

[20] R. Milner. A Calculus of Communicating Systems. Volume 92 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 1980.

[21] B. Mishra and E.M. Clarke. Hierarchical verification of asynchronous circuits using temporal logic.
Theoretical Computer Science, 38:269-291, 1985.

[22] A. Pnueli. In transition for global to modular temporal reasoning about programs. In K. R. Apt,
editor, Logics and Models of Concurrent Systems, pages 123-144, Springer-Verlag, 1984.

[23] J. P. Quielle and J. Sifakis. Specification and verification of concurrent systems in CESAR. In
Proceedings of the Fifth International Symposium in Programming, 1981.

[24] M. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In
Proceedings of the Conference on Logic in Computer Science, Boston, Mass., June 1986.

18

