NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Visualizing Performance Debugging

Ted Lehr*, Zary Segail, Dalibor Vrsalovic,
Eddie Caplan, Alan L. Chung, Charles E. Fineman

April 1989
CMU-CS-89-140

School of Computer Science
and *Department of Electrical and Computer Engineering
Carnegie Mellon University

Abstract

This article discusses visualizing performance of parallel and sequential computations using the
Programming and Instrumentation Environment (PIE) as an example. First, the importance of being able
to visualize the performance of a computation is demonstrated. Secondly, an easy guide to one way, the
PIE way, of his visualization process is presented. This is followed by examples of concrete uses of the
environment. Finally, some of the pressing issues concerning measuring performance are discussed.

Three issues are stressed in this article:
1. Visualization of program performance is necessary for fast, correct performance debugging.

2. PIE is a powerful and useful implementation for supporting visualization. It is also a
dramatic teaching assistant in that it visually shows actions like forking, scheduling, etc.

3. PIE provides complete support for visualization. The system is aware of issues like
program replay, suitably presenting performance data, compensation for perturbation by the
measurement facility and support for multiple architectures and languages .

This research was sponsocred in part by the Defense Advanced Research Projects Agency (DOD), Arpa Order No. 4864, monitored
by the Space and Naval Warfare Systerns Command under contract NOO038-87-C-0251, and in part by the National Science
Foundation, Grant No. CCR-86-02-143.

The views and conclusions contained in this document are those of the authors and and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the National Science
Foundation or the U.S. Government.

Errata;

On page 7 of the text:
* The textual references to "yellow rectangles” are shown in Figure 2-4 as dotted rectangles.
» The textual references to "green rectangies” are shown in Figure 2-4 as slashed rectangles.

1. Introduction: Visualizing Performance

Designing computations to perform efficiently is usually an iterative task in which programmers alternate
between measuring and modifying the performance of successive computation prototypes. This iterative
performance tuning is called performance debugging and can be done in several ways. Perhaps at the
start, programmers may gather general statistics on metrics such as the average amount of paralielism in
their computations. Averages are large grain reports of what computations do and, as such, often reveal
only the hints of troubie. An average parallelism of, say 2.1, in a computation intended to have eight
processes running simultaneousiy probably suggests a problem. The average, however, does not point
directly to where the probiem lies. it can be misleading for it may have remarkably iittle to do with
“reality.” There is no guarantee that a value was measured that equals the average and it may not even
be possible for such a value to ever occur. Embellishing averages with other statistics such as measures
of spread is an improvement but may raise more questions than they answer. The additional statistics
may suggest that the degree of parallelism exhibited by a computation is not only smail but also varies
widely, raising the specter of erratic performance. Does the computation occasionally hit synchronization
barriers, forcing some of its processes to wait? When does it do this and how often? These are
questions statistical information can raise, but is hard pressed to answer.

Because of the limited information contained in averages and other statistics, programmers must pry into
the collection of data that yields the statistics. They must sift through the records, searching for
suspicious data that might indicate anomalous instances of exceptional or degenerate performance.
They must look at individual cases of scheduling and communication costs. If they have not collected the
proper data, additional experiments must be run. All in all, a time consuming and tedious endeavor. The
tedium arises because of the human limitations in conceptualizing relationships between mountains of
raw numerical data and the objects they characterize; in this case, computational constructs. It is
essential that this tedium be eliminated if performance debugging is to be a productive activity. The raw
numerical data must be distilled into a form that is readily grasped by programmers. In order to
productively debug the performance of their computations, programmers must be able to visualize that
performaan.

Just as measuring performance can be done in a number of ways, visualization of performance takes on
several forms. For example, the histogram in Figure 1-1 shows the distribution of the degrees of
parallelism in our hypothetical eight-process computation. It is more revealing than straight numerical
statistics in alluding to the possibility of a performance problem. It is fairly clear, for example, that the
computation never even comes close to eight-way parallefism. The histogram does not tell, however,
when the various degrees of parallelism occur or what the rest of the computation is doing at those times.
Trying to answer the question of "when”, the performance view shown in Figure 1-2 further sharpens the
debugging scalpel by plotting the amount of parallelism versus time during an important period in the
computation. The edge which this kind visualization has over the histogram is clear. A programmer
immediately sees how much paralielism the computation is able to muster at different moments in its
execution. This is the primary advantage of presenting performance data in a visual form: programmers
interpret performance data more quickly. It is quite obvious, for example, that at the start of the measured
period the computation manages o get parallelism of about four or five but qQuickly plurmmets to a fairly
steady level of around two. Even though this time-line helps to answer the question of when parallelism
occurs, a problem remains: the programmer needs more information in order to determinine precisely
whera this behavior occurs.

Fraction of
Execution

0.7r

0.6

0.5

0.4

0.3

0.2

¢.1

5 6
Parallelism
Figure 1-1: Distribution of Parallelism in Computation (measured at regular intervals)

0.0

Parallelism
5 -

4r

L -l . - A J

0
2000 4000 6000 8000 10000 12000
Execution Time {milliseconds)

Figure 1-2: Parallelism versus Time

Statistical plots, such as histograms, help to guide programmers to the presence of lackadaisical
performance by revealing subtle hints of the underlying problems. Histograms, however, cannot lead
prograrnmers directly to where the performance difficuities lie. Plotting the data on a time-line helps to
focus the suspicions generated by stafistical data, but severai must be studied together so that
programmers see a more global picture of what is going on. If one time-line reveals an anomaly, several
may help programmers isolate not only what happens when the anomalies arise, but also the succession
of events that leads up to them. In order for programmers to debug for performance they need to be able
to visualize executions on the level they program in. Because programmers know their programs by the
constructs and abstractions with which they designed them, a vital characteristic of the presentation of
performance data must be a visual mapping which vividly draws the connection between the data and the
computational constructs which are responsible for them.

Raw data >> graphics >> mapping magic << visual icons << Program text

As is diagramed here, if programmers are to visualize the performance of computations, not only must the
performance data have visual representations, but so must each construct in the corresponding
programs. The remainder of this paper focuses our arguments for performance visualization by
examining a special software development environment, called the Paralief Programming and
Instrumentation Environment (PIE). PIE is meant for developing performance efficient parailel and
sequential computations!. Following an explanation of the general features of PIE, we reveal that the
hypothetical eight process computation we have been discussing is actually a real one and we use PIE’s
visualization tools to isolate and repair its parallelism probiem. After showing how valuabie PIE is in fixing
the computation’s parallelism problem, we discuss two other, more difficult examples of using PIE. The
two examples use slightly modified versions of the repaired computation executing under different
circumstances. The first focuses its examination on the behavior of a uniprocessor's kernel running under
two different scheduling algorithms. The second is an instructive glimpse of how two simuitaneously
executing computations behave on a multiprocessor after they spawn more parailel processes than there
are processors to run them. We then round out our discussion of performance visualization by remarking
on some of the issues involved in correctly presenting visual information.

'A performance efficient computation is a computation which decomposas anto a target set of computing resources in such a way
that that the resourcas are matchad to the functions of the computation.

2. A Visual Programming Environment: The PIE exampie

Automatic assistance for visuaily projecting performance data onto programming constructs is practically
necessary if visualization is to quicken the performance debugging task. Bringing together programs and
their performance data is best done by systematic software development environments which integrate
different data analysis tools into one package providing a "computational laboratory® in which
programmers can easily design experiments to test the behavior of their computations. A software
development environment for performance debugging is not an effective one if it compels its users to
vigorously search for problems, especially for problems that could be easily revealed by automatic
techniques. On-the-other-hand, an environment should not attempt to second guess a designer by
reporting that a certain set of performance data represent a problem. An environment which impudently -
makes qualitative judgements about a computation's performance without the users permission may
annoy and mislead the user. The proper role of an environment, then, is to present the information it
retrieves about computations in forms that assists users in making their own qualitative judgements about
how their computations behave. The Parallet Programming and Instrumentation Environment (PIE) [16] is
a software development environment for performance debugging which gives programmers ways to
observe how computations execute by making use of special development and run-time visualization
tools. PIE is not just a programming environment, as defined by Dart and others [6], which supports only
the development of program coding. PIE supports a software development methodology extended to the
analysis, verification and validation of a computations performance.

Where does the environment begin to assist a programmer? Weil, iet us assume the programmer has a
problematic parallei matrix muitiplier computation executing on a 16-processor shared-bus architecture
that exhibits a parallelism problem like that described earlier. The programmer wants some performance
information on it; specifically, why is the computation’s average parallelism only 2.1 especially since eight
multiplier sub-processes are spawned, each of which operate on well partitioned parts of the matrices.
Each of the computation’s sub-processes examines the size of the parts of the two matrices it is passed
and decides whether the parts are small enough for it to operate on without partitioning them further and
passing them on to another sub—process which it spawns. Upon making the decision, the sub-process
iterates through its part of the matrices, multiplying each pair of row and column ang writing its result out
to shared memory.

Figures 2-1 and 2-2 showcase how PIE implements visualization of programming constructs. Figure 2-1
depicts parts of the text of the computation via three windows of a special PIE editor. The program is
written in an extended C-language, called MPC [19], which supports parallelism using constructs that
implement actions such as sharing of global memory and spawning of parallel processes. It is not
important to fully understand the semantics of the text but some elucidation of the unconventional parts
will be helpful.

Briefly, the top window shows a section of the definition of the computation's multiplier procedure,
multproc. lt includes a variable declaration of the type multiply which is an instance of what MPC
calls an activity or act as shown in the middle window. Activities can be thought of as process-like units
of paraliel work which, when spawned from the same program, are able to enjoy such luxuries as sharing
and operating on global memory. Notice that multiply contains a call 0o multproc. Multproc
implements the basic matrix partitioning and multiplying functions described above. After the value of an
element of the result matrix is calculated, it is written out using put, shown in the lowest window, which is
an instance of an MPC function type called opr. Entities of this type may be shared by several activities

lﬁultproc(xiy x2, yl, 42, mx, my, sz
£

int x1, x2, 41, 42, mx, my, sz3
int ex, &4, i, j, k:
float t, tmp, tmp2:
multiply subtask:

ex = x2 - %1 + 13
ey = y2 -yl + 1;
if (ex > oW {
if Cex > med i
subtask (x1, GOd + ex / 2 - 1), y1l, y2, mx, my, s2)1
multproc(ixl + ex 7/ 23, x2, yl, 42, mx, my, sz);
JoinCsubtasko s
return:
¥
if ey > my> £
subtask (x1, x2, yil, (Yl + ey / 2 - 1), mx, my, sz)3
multperoc (x1, x2, (Yl + ey / 27, y2, mx, my, sz)?

Join{subtaskl}
return:
¥

~—ww— JEmacs?: matsunc.mpc (MPC)==~34F=—% Hormal :
act
multiplydxd, x2, yi, 42, mx, my, sz2

int x1, x2, yl, 4z, mx, my, sz}
i

multprocixl, x2,4yl, 42, mx,my,sz>;
i3

—=wr=F]Emacs? matsuync.mpo (MPC)>——31%—<% Hormal *———m—m—————
opr float putix, 4
int X, Yz
i
sync(put) {

exportimatrix_datalxIlylo:
3

CMPLCI——23%—% Normal ¥-——————————— e ————

Figure 2-1: Part of a Matrix Multiply Program Text

and are used to operate on global memory. The only feature of put that needs to be appreciated here is
the sync function, which is a special MPC function that enforces mutual exclusion on global operations.
Here, sync ensures that only one result may be written back to global memory at a time.

Figure 2-2 is another PIE window showing the visuaiization of the matrix multiplier's principal constructs.
Each box in Figure 2-2 has a corresponding textual entry shown in Figure 2-1. In fact, when a box is
touch-selected by a mouse, as is shown by the enlarged border surrounding the box labeled [c]
multproc, the editor window automatically moves its cursor to the head of the corresponding textual
construct, in this case, a call to the multproc procedure.

Having had the program’s constructs automatically mapped onto a visual representation, it is time for the
programmer to gather performance information. Let us assume that the programmer has run some tests,
either using PIE or other methods, and already knows that the paralielism in the computation is
disappointing. PIE can generate performance views like the histogram and timeplot shown in Figures 1-1
and 1-2, but these are ancillary to a grander, more informative format which will be shown shortly. Since
the programmer wants to improve the parallelism of the computation, it is important to look at what each
multiplier process does when it executes. The programmer knows that if the computation has sight

o Goets FEIE 5y o ey Fefren [ivws) (o =2 =8
FLesoope View! roadmer
program title: Huei/t#lnnwlr/nﬁw.

sersors oy tuee: IO ANUBES

— e ————————— |
| s]
G I |

—>
—~ =]

i

(O For [~—3 <
1 ICEE53

Ooject rame=bhile tuse=t i1nams30 parinane3d

call namesmultprod tupest inswed parinameY, (rete—l1
Object name=loin tyses® inameil parinamed

call nameamultproc tuypesS irsms8 parinam=7, irate-l

Figure 2-2: Part of Visual Representation of Program

processes eligible to run in paraliel but only two or three ever seem 10 be able to do s¢, then the others
must be blocked and waiting for some event to occur. The programmer thus decides to examine the
behavior of any program construct that might force a multiplier to wait, namely the sync just discussed
and the jain (an example is shown in the top window in Figure 2-2) which a multiplier executes after
finishing its part of the matrices and moves to join its children. To get this information with PIE is simple.
Figure 2-3 shows a number of darkened boxes, {A] multiply, (8] Sync and several cases of {J]
Join. The {A] multiply represents the multiplier processes and [S] Sync is the synchronization
function in the put operation discussed earlier. Each (J] Join represents in instance of a join
function. The darkening of these boxes indicates that the programmer, using & mouse, has seiected
them to be automatically observed when the computation runs.

We have only compileted half of the mapping of the program constructs onto performance data. Before it
is completed, of course, the programmer must run the program to get some data. PIE ensures that when
a selected construct executes, information is collected which identifies the construct, the process in which
it executed and how long it executed. For example, time stamps are retrieved at the beginning and
ending of each multiplier process {multiply). The time stamps are then married to other information
uniquely identifying each multiply instance. As noted earlier, PIE presents the performance
information in a variety of ways including histogram and time-line formats. Although formats like those
shown 1-1 and 1-2 are incomplete and imprecise representations of the behavior of computations, they
allow the wealth of performance data to be distilled into visual forms for quick and tractable detection of
performance problems. More precise identification of what those performance problems are is better
done using the upper view shown in Figure 2-4, PIE's principal format for visualizing performance data.

(oTR (o] (sos) fntold [¥mesh) (riecs) =8
Piescope view! roadmap
orogram title: Jusrl/tfl/testdir/matsunc.

sensors by wuee: BRENOHEEEED
—— _——— —————— — — ———————

[] M=
EmE] watrin } é [0 intteat}
() prt” ™] —n

R —> (=]

_ o MEET
=] — e < M) < e
(o]

[OF] milteroc]

processing kernel dats... dorm

sliok to indicate left hand sdge oF ZOOR range, o Ltype g to abort,
click to indicate right hand edge oF new range, o tuke g to sbort,
retrieving progras’s data from piseman.., received,

Flgure 2-3: Using the Visual Representation to Enable Sensors

In this view, time is measured in milliseconds on the horizontal while the processes of the computation
are ordered on the vertical. This particular view shows only the part of the execution from 5.590 to 6.543
seconds. _\The execution of each process is depicted by a concatenation and occasional overiap of
several rectanguiar pattems, each representing a particular episode in the process’s history. Waits due to
a sync, for example, show up as yellow rectangles lying on top a dark, extended rectangle representing
the generic body of the associated process. Green rectangles represent periods when processes are
waiting to join a child. If one entity is contained within another, its réctangie overtaps the rectangle of the
Other. For example, since sync-waits execute within processes, all yellow sync-wait rectangles overlap
their corresponding process rectangles. When any of the rectangles is selected by the mouse, the cursor
in the PIE editor is automatically moved to the head of corresponding construct in the program text. Here
for example, the join rectangle in main has been clicked on (as shown by the "Join" message in the
bottom of the small text window immediately beneath the rectangular patterns). The cursor in the
corresponding PIE editor window, shown in the bottom view of Figure 2-4, is moved to the head of the
appropriateé join definition. The programmer can now analyze the performance based on data
automatically projected onto the computation's structures. The mapping of performance data onto
program constructs is complete!

What does the upper view in Figure 2-4 depict? It represents a small section of the computation’s
execution when only some of all the row/column muttipiications performed by the entire computation are
executing. The initial process of the computation, main, shown in green here, is waiting to join the other
processes. Before entering this stage of the computation, it performs the /O for the computation as well

FLesCOPE view! &recul l1on=-Darscope
sxper Lment. title! fMimavs.u

select by vwee: [I 35 3 030 (033 £33 6 68 0 G0 B (al) e

=

LT O] e[S (W U] S 4] S —————— U —
aitaplu N W e el SO
ity Ly] e —— e Snar— | (§]__ ", [S—e———

pralEag D—:::n-n:_mmm
¢l multiply [T ———— A —— | ST [R5 S| W e, | S —
Timualtipiy N e e
| waltiply N IR | S — |
o multipiu iI'-__"'—"”-"_—"’-Cr“_'_Ir—"_j-TI____!-F_’_“‘_"—*—Y—!IE

.

gogcoconda
9 M 4 6 AR & Wb

BCLIYVity multiplu’, 1nend =m B, ptime == 2TEL, dtame 8% 10B30. ttike == £iE

SUNC dAWNC Waited TaunCusit’. jraee e= 1184, Dtime es LI0Z. etime me L3TS, ttimw = 175
SURC/OBUNC walLted “IunC-uBit . 1naee € 10T, BUime =w BITE, etime w& (4GF, Trime == 122
Join "Join', iname =m 4, btime == 2779, etime am 11330, ttime == 2551 H

maintargs, argy)

int argo:
char wRarewt
i

int SZ, Mx, Myl

muyltiply tazh:

if Cargo = 47 £
fFprintfistderr, "Usage: matrix size dw dysni:
exit{r:

b

n

sz = atoilargviild:

mx = ztoilargvl2ls:

my = atoilargvlZlds

1hit_matrices(zz):

SENSOR("Before task"?:

taski®, sz - 4, &, 3z — 1, mx, my, ==r:
Foinitazks:

Erimt_resultcszs

3

~————FP]Emacs: matsunc.mpc

Figure 2-4:

Top: Part of a Parallel Execution of the Computation on 18-processor Machine
Bottom: A PIE editor window
as forks off the first multiply process. The multiply processes, numbered in the order they are
forked off, execute the multproc procedure. A special process, one used in gathering performance data
on the computation, has been left out of the view in order to simplify this example (it would have been
numbered as "17). Just as expected, the figure shows that, at any given time, several of the processes
are waiting. Cutting a vertical swath through a view at any point, for example, slices through only two or
three black rectangles indicating that only those processes are doing useful work. Obviously, the source
of the performance degradation is the sync function in the put operation. :

What the programmer does to remedy this is up to him or her. Is the sync really necessary? Each time
the put operation is called, after all, it only filis a single location in the resuit matrix. Since the matrices
are well partitioned, no other call to put will touch that location. Consequently, the sync is not
necessary. Figure 2-5 shows the executions of the original and a corrected version of the computation.
The top view shows the entire multiplying section of the original computation. The bottom view shows the

corresponding section in the corrected computation without the sync. The "squiggles” in the top view
represent moments of insufficient resolution on the part of the display, but are otherwise unimportant.
Without the sync, not only is the average parallelism of the computation greater, but the execution time
has been cut from about nine seconds to just under one second. Figure 2-6 is a PIE generated
parallelism plot for the corrected computation,

(S TR [uTY (soord] (¥R {vina (Ford] [omotel [Frog) fexp)
Piescope view: smecutior—oarscope
caperiment titje: mm

wiect by toee: I RRFRFRCETRFDEN CN I 3 @) 61 ()
Rt —)]

= 2618 11569
b Ln
L EQS-ESB_Q e B e | €0 e 71034 I ey (W[t0 a2 e o 3 T
A O e OO0 0 DX W0 T 0008 TR iSEEE,.m__-_sJ.i
BD T LQI- MR DRGSO R OGN WC O NORTOL T eee T
R (O s u YW W T W O S BT TR et ey § e]]
[m!&l’!E:Ll) R X e) o N MO DO K ([T WK (] T
R m&asz&smm@c ’J:EEE_"iiiE' L
AR T AN e e Te T Ty H::Dt: iR
4101011 & e ot {17 [o0s 1 ouala” [W ol 175 s §EJEE§

000D00DDD
DR N DA NND
£
o
s

recomputing graphics, pieass wvait..., dorw,
click to indicste left nano edge of Z00m range, or tyse ~f Lo abort,
click to indicate right nand edge Of M range,. o tupe ~[to aDOrt.
reconputing graphics, please wait.,. dore.,

o) el (5 o) [Fefres (T (1o ol i o
exrermant. Litler SO

e
select by tyee: BN EE FI 03 T0 EX FR ER OR) B0 G0

=]

o 2{weltiely

= I maitiely ‘
= a[matiely m

= s[naltisly .

= e[maltiply N o B
= glmaltiply e

‘= r[rltiply e

o o[mltiely .

200 sensors rexl 50 far (more 1o COME)...

tailer: 202 seraors resd in all,

click to indicate Left hard edge of zoom range, or tupe “g to .
click to 1ndicate right hand edge of neu range. or tupe "¢ tO abort,

Figure 2-5: Parallel Executions of the Computation with and without the sync

This example was simple and perhaps contrived; the programmer’s error of enforcing mutual exclusion on
the matrix writes is probably a mistake only a novice would make. Never-the-less, it has shown the value
of being able to visualize what a computation is doing. Our next two examples are more rigorous and
detailed illustrations of the value PIE brings to both designing and understanding computations. Unlike
our introduction, they are not examples of using PIE to find performance bugs in computations. Instead,
the thrust of their attention is devoted to examining and explaining the behavior of kerneis on a
uniprocessor and a shared-bus multiprocessor. The first discusses scheduling performed by two versions
of the same operating system running on identical machines. The second describes one instance of what
happens when two parallel computations running on a multiprocessor spawn more processes than there
are processors on the machine. Together they are dramatic demonstrations of the luxurious advantage of
being able to visualize the performance of computations.

10

ior

0
2200.0 2400.0 2600.0 2800.0 3000.0 3200.0 3400.0
Figure 2-6: Parallelism versus Time for Corrected Computation without sync

3. Visualization Examples: Its Analytical and Pedagogical Uses

The simple example just discussed is not a particularly exciting instance of using the PIE environment.
The next examples focus on kernel activity because kernel behavior has accounted for some of the most
graphic illustrations of how a significant component of either a program, kemei or system state can affect
a computation’s behavior. in the first example, the component is a modified kernel scheduler. In the
second, it is a system state marked by too many processes. These examples shouid be of interest to a
wide audience because kernel performance impacts the performance of every computation. ’

The first example analyzes what effect a change in a kernel's scheduling algorithm has upon a
computatioh. The computation is a matrix multiplier similar to the corrected version just discussed. The
kernel is Mach [1], an operating system under development at Garnegie Meilon University for supporting
parallefism. The computation and kerel both execute on a micro-Vax Il is booted in singie user mode in
order to reduce the number of processes that compete with the computation for the machine’s processor.

The second example is most difficult one we present. It is a dramatic illustration of what happens when
two parallel computations compete for the same processors on a shared-bus multiprocessor machine.
The selected PIEscope views of the example are pedagogic glimpses of what a multiprocessor scheduler
does when the number of schedulable, parallel processes? is greater than the number of available
processors.

In order for the discussion of the examples to be clear, however, it may be prudent to peruse some
summary remarks about Mach and its unique context-switch monitor as well as a brief tutorial on basic
scheduling issues. Of course, if these topics are already familiar, the remarks can be skipped in favor of
studying the two examples.

2Ghortly, we will define ancther term, “thread,” to replace “process™ as the term designating a schedulable ontity.

1A

3.1. Mach: An operating system for distributed computing environments

The Mach kernel integrates support for networks of uniprocessors and multiprocessors while presenting a
Unix style software environment. The basic Mach primitives support Unix functionality by placing it
outside the Mach kernei. Although Mach has a number of abstractions for supporting networks and
multiprocessors, only the task, thread, port and monitor abstractions need to be discussed here in order
to more clearly understand the upcoming examples.

3.1.1. Tasks, Threads, Ports and Monltors

A task is an address space and a set of system resources (eg. file descriptors} while threads are the basic
units of execution. Each thread can be thought of as a program counter and register set. Each task has
at least one thread associated with it (a Unix process can be emulated as a single thread executing within
a task), athough a task may have several threads may threads sharing its resources in paraitel. A portis
the Mach communication abstraction for for sending and receiving typed messages between Mach
entities such as tasks. A portis basically a protected queue with associated send (enqueue) and receive
(dequeue) rights. The port abstraction supports intertask communication across network boundaries It is
by means of the task, thread and port abstractions that Mach implements much of its support for paralle
computing. Specially equipped versions of Mach permit the creation of kernel monitors for detecting and
recording the context-switches of selected threads [11]. By "monitor,” we mean a data collection facility
for retrieving run-time information about the execution of computations. These monitors perform
observational functions rather the mutual exclusion errands typically ascribed to objects referred to as
"monitors.”

3.1.2. Other Abstractions

In addition to the task, thread and monitor abstractions, Mach has other primitives for supporting networks
of uniprocessors and multiprocessors including portable virtual memory support. For information
concerning Mach, see [7], [10], [15], [21].

3.2. Schedulers

Schedulers are operating system functions which assign processes (threads) to processors. They make
their assignments using algorithms rooted in polices like first-in-first-out, round-rabin, shortest-job-first and
others {8], [18]. The policy which a scheduier uses depends upon which computing goals wish to be
supported. A scheduling algorithm that helps a single computation perform superbiy often has littie in
common with one that attempts to keep every processor busy in a multi-programming environment. A
common desire of all schedulers, however, is reducing the number of context switches. As will be seen
shortly, meeting every scheduling goal is not aiways easy.

3.3. Examples of Kernel Visualization: Understanding the Figures

Visualization, especially visualization of kemel behavior, is useful for comparing performance of
architectures or operating systems. Different versions of the same kernel using different scheduling
algorithms, for exampie, frequently yield markedly dissimilar visual views.

Figures 3-1 through 3-5 are selected PIEscope views of a matrix multiplier computation executing on
three similar, but slightly different versions of Mach. The PIEscope views show a layer of performance
information, the kernel layer, not included in the introductory example. It also shows an additional thread,

12

(eoon) [REIE GRiY) (scops) [Cxfred (i) (Fome) {F8okte] [erogd (o=
:m:l:‘l:lmlwm

select by tee: BN EA SR T O FS FNEH 05 B3 @0 G101 Berdl

0
a6 LSS S SRR T L S SRR RS SRH41

= o = T
[JN R iRt iSO R i n,,x3!‘sm:nhhi?mﬁmi@t{ll@nﬂai*EIEeCiE@‘l O
= 2 euitiply ifplfmﬂ
o Ifeultipiy 151} T e e s o) o i}

o amernris s:z.._--———-—-;-—.*“—*.i"——-F;_;gCrz_;:; =
=2 S euitiply O RN T W I MY SOCIC OO |
= Sl multiply

=2 7| multiplu

= Blmalriple

=S Y multiplu

= 10| multiply

lerre]l CONLExt MWILCH’ . ingme w= I17. bime == 24890, etine == 2E7%, ttime e %00
Sultohed from CFYU ¢ to CPU &

Kkl CCOMbewt Buitoh’, iname S8 457, btisr e 19040, etime == IIA7G, ttimp == 20410
Switohwd from (PU & to CPU O

Figure 3-1: Old Kernel: Entire view of matrix multiplication

the collector, which, as part of PIE, records user and kemnel events belonging to the computation.
Although spawned by main, its creation and termination are accomplished independently by special
libraries linked with the computation at compile time. The collector was not shown or menticned in
the earlier example because it wouid only have cluttered the presentation.

e [eTa) [ent) Eses [reiresh) [iews) (Fort] et forexd (exp!
PlLestope vidw! o)-:owtl
experiment title:

select by tupe: EEI-EIBDEEIEI-EDEDEE@

]
* = 19376
= ofmain ﬂﬂﬁ_j (T T ————_ ||
o ilnihee %ﬁ::————:ﬂg——jzm-
9 2| multiply
= Feultipld
= A muitiely
= 5 muitiply
= G multiely
= 7 maltisly
= s[maltisly
= Mmultiply LN W l:
= 10imultiply | — S w—— |

CliCk to indicats left hand edge of Ioom range, or tuyse “f %0 short.
click to 1ncncate right hane eoge of new rangs. oF Lyse [Lo abort,
click to indicate left hand sdge of Ioom range, or type "¢ 10 abort,
click to indicate right hand sdge of new range. Or tuse "t to abort,

Figure 3-2: New Kernel: Entire view of matrix multiplication

The addition of kernel events to the views needs to be explained. Shaded rectangles represent periods
when threads are running. White rectangles represent the periods when threads are switched out.
Because the figures depict uniprocessor executions, cutting a vertical swath through a view at any point
wouid slice through only one running thread ... only a single dark rectangle. In parts of some of the views,
in Figure 3-1 for example, there are slightly confusing sets of consecutive white rectangles. Between
these apparently contiguous periods are comparatively shorter episodes when the associated thread is

13

actually running but the view does not have the resolution to show this>.

3.3.1. Time Sharing on three Mach kernels

Figure 3-1 depicts micro-Vax Il execution of the matrix multipler on a kernel officially labeled as XF29 but
which we refer to as Old. Figure 3-2 depicts the the same computation on on a newer kernel designated
as CS3c, hereafter referred to as New. Figures 3-3 and 3-4 are "zoom" views showing greater detail of
each computation. Figure 3-5 is a zoom view of the computation executing on a kernel very similar to
New but with an improved thread priority evaluation policy. Each higher resolution view also contains a
pair of "metering” lines which measure the time between them. Although the two kernels are dissimilar in
a number of respects, our comparison concentrates only on the difference between their scheduling
poiicies.

(zzon) (RETH [Furf] [i=sed] [Fefresh) (vivea] Font) fered ¢

Fiescome view: #xecutior-Laerscome

sxmeriment Litle! red2liendi.u

seieet by tyme:) B0 00 P 08 O 573 ©0 £ 0 £ 601 &0 o)

= 14640 39347

02 o main B f]
5 i|eollector [. — " e e—————— I
S Z{muitiely J— A — T [1 | S— A | ——— S [—— {
= Maultisly [[P S A | GE— R 1 S C— |
= almultiply S S S—— | S 8 | T ————— | ——— | — T
= 8leultipiu [e i e ||| e——— | | — | Vo———————
= 8 multipiy | s i | S—— | S—————— U [§ | — — | |
= ity [T i s | —) i — wes SN
o afmiltiery T e ———
= aultiply mmmﬂ:::;
o o[mitiely ¥ WXy

click to 1ndicate l1eft hand soge of TooR rangs, or ture [tc sbort,

click to indicate right hend edge of raw range, or type “f to sbort,

clich te indicate L[eft nana sage oF zoom range. o tusd “g to abort,

click te andicate right nand edge of rew TaNge. O tuyse "¢ tO abort,

~ Figure 3-3: New Kernel: A Zoom view of matrix multiplication

As can be seen in Figures 3-1 and 3-2, the computation does not behave identically on the two kerneis.
Figure 3-1 shows that Old's scheduier generally gives short, uniform time slices to its threads (here main
is waiting for its children to terminate and is not rescheduled until that time). Oid uses a simple
scheduling algorithm which usually switches threads every 100 milliseconds. On-the-other-hand, Figure
3-2 shows that New occasionally gives scheduled threads execution time slices of several seconds as
evidenced by the initial time slices allocated t0 main and the collector. New's scheduler uses a
progressive algorithm which gradually increases the length of the execution fime slices it allocates
causing fewer context-switches per unit ime than the old scheduler. This experimental algorithm tracks
the history and load on the machine for deciding whether execution time siices can be extended. Figure
3-3 vividly shows this allocation of gradually longer time-siices. During the first moments after the
multiply threads are spawned, there is regular and frequent context-switching among all the threads,
much like the behavior of the threads on Qid. After some time, the new kernel's scheduler gradually
schedules each thread for longer and longer periods before switching them out. Because there is no
significant competition from other threads during the computation’s execution, the scheduler determines
that each thread may run for longer periods without being unfair to any of them.

3Squiggles™ are not used in these cases because tha number of events beneath the resolution is small.

14

(=2 [felH [34af) (x€rg [reos} [Fony =2 =8
P'l.lm Wit ERAGUL L OFOar RGO
Superimatt LILISI rmbiZsenxl.u

select by wee: [AN FR PR ERTHES V0 CR 0D] F 61T oo

O 1

- .
= 19784 b rcks

= & esin v H

= afollwtr ¥)8 [wa— | o— —+_|s— [}

= 2fmultiehy H

= I eultiely [o] —————————

o 4 multielu i p— f— [r— | — — — i |8 e §_jeia e g | e—

o S multietu [—— | S ju— P vaa g s -]

o [muitisla [e e e— — i w— : g

= wultiplu [——— A (WA ORI |V AR, [an | s — gy (o o [w— [T]

= glmultislu N = C

= M eultiply [T —T— — i [| —] e a—" | S—" ——"T | a— a— e 4]]

= 10| multiplw ﬁr——u—g—r—m—m—m——ur—_m—:lr'—u

Slitk to indicate left hand edge Of Z00R Féige. OF Lupd “f Lo MDONT,
Click to indicate ~ight hand +age oF New range, or typd [Lo Mbort.
cliok to trdicets left hard soge of ZOOR Frangk, OF tuype “[to aoort,
elick 1o trolicate ~ight Piewd sdge OF Piw FNgE, OF tuyss L to aDort,

Figure 3-4: QOld Kernel: A Zoom view of matrix multiplication

In addition to the advantages New enjoys over Qid, there are some drawbacks as well. Threads running
on the new kernel seem to suffer from context-switch "flutter” where a thread frequently context-switch to
itself as shown in Figure 3-2. The most pronounced episode occurs in the first time slice allocated to
main and in several of the smaller time slices allocated to the multiply threads as evidenced by the
"squiggles” in those slices. Such behavior has been seen in other views of executions on New. The New
kernel also suffers some probiems in equitably time sharing threads. Examining Figure 3-3, it can be
seen that just before the first multiply thread is forked off, New switches out the collector and does
not run it again until nearly ail the other chiidren terminate. Afternately, Figure 3-4 shows that Olid time
shares the collector with the freshly spawned chiidren.

3.3.2. ComSartng Forking Behavior On Oid and New

How threads are scheduled after they are running is not the only difference between the oild and new
kernels. There is also a difference in the forking performance of the schedulers. Figures 3-3 and 3-4
show quite clearly that New successively spawns the first three multiply threads more quickly than Old.
They aiso show that the new kernel eliminates the context-switch "flutter” that occasionaily occurs in Qld
just as a thread is forked off. Figure 3-4, for example, shows multiply threads 2, 3, and 4 undergoing
considerable context-switching soon after they are spawned by Old. The collector undergoes similar
behavior. Interestingly, much of the context-switching is of the thread to itseff, much like the behavior
described earlier for the collector on New. There is a difference, however. In the case of Old, threads
usually context-switch to themselves only for a short time after having been spawned. Threads running
on the new kernel, however, context-switch to themselves in an unpredictable, seemingly random fashion.

As might be expected, the improved spawning performance of New is not without some undesirable
baggage. Recall that the first multiply thread is forked off by main, not by the collector. After
spawning the thread, main does a join and switches out, waiting for its children to finish. As was naoted
earlier, once the new kernel's scheduler gets around to forking off the multiply threads, it does so more
quickly and with less flutter than does Old’s. But Figure 3-3 shows that New does not do this until after
giving the collector an execution time-slice of over six seconds. Oid, in contrast, forks the first

15

— —— ———_—— . L — — — e e e

AE s e e i] SBR[Fopd i

SIIEL Vo Ind1CAra (eit Rann mare A1 Ehee remeRL
Clach tu Ilie e PN e e O s - e G
SILEE fe JAMICAYE 1eft nar mnge AE PAee ©ange
SLigh bv AL ete FgHL e v O et e

Figure 3-5: Improved Kernel: Zoom view of matrix multiplication

multiply thread after about four-fifths of second, negating the spawning advantage New has overit. So
it seems that while the new kemel spawns threads more efficiently than the old it occasionally detays the
actual creation of threads because its scheduler does not de-schedule running threads quickly enough.
Figure 3-5 shows part of the execution of the matrix multiply computation on a kernel with an improved
thread priority evaluation policy. As can be seen, the improved kernel reduces the amount of time given
o the collector before the multiply is first allowed to run by about three seconds.

It is plain from these views that although New's scheduler has advantages over Old's scheduler, it can be
improved even further. To the designer of the new scheduler?, the views like those shown here confirmed
that the changes perform as he specified. New's probilem of thread’s being descheduled for long periads
is primarily due to a starvation bug which causes threads to occasionally get stuck at low scheduling
priorities. The improved kernel shown in Figure 3-5 also fixes the starvation bug that is present in New,
Using a progressive scheduling algorithm similar to the cne in New, the improved kernel time shares the
collector with the multiply threads instead of switching it out for several seconds. The curious
problem of context-switch fiutter detected in these views was unexpected and will be addressed and
monitored in future tests.

Betfore moving on to our next example, it is important to note the utility of these PIE visualizations. Being
able to see scheduling activity as these figures depict it is excellent assistance in analyzing and veritying
the performance of scheduling functions. This kind of analysis of scheduling would not have been
possible without the kind of performance visualization provided by PIE. These schedulers ran on a
uniprocessor machine, however, and the central aim of PIE is support for the development and analysis
of parallel computations. We now go onto an example dealing with the parallel execution of the matrix
computations.

*David Black, of the Mach project, was the principal architect of the scheduling changes that differentiates the old, new ard
improved kernels.

16

3.4. Saturating a Muitiprocessor

Multi-threaded computations like the matrix multiplier execute differently on multiprocessors than on
uniprocessors. Qbviously, a fundamental source of the difference lies in how many processors the
threads time-share. On a uniprocessor, only one thread may run at a time, each waiting its turn as
decided by the scheduler. In spite of anything a scheduler might do, however, the single processor holds
the latent parallelism of a multi-threaded computation in abeyance. Aithough all multiprocessors support
some form of paralielism, often it is not easy 10 match the parallelism demanded by a computation with
that available on a particular system. Loosely-coupled and tightly-coupled machines, for example,
efficiently support different kinds of parallelism. The architecture of a system is not the only factor
affecting available parallelism. It is not remarkable that an otherwise desirabie target system may have
several users running computations simuitaneousiy, encroaching upon the parallelism availabie to each of
them. The performance of a muiti-threaded computation thus depends as much on how it is scheduled as
on how the user designs it.

(zoon) (reTr} mun®) iacos) irefreshy [vievs) [Tond (zenots [rog] [exn)
Pietoope view: exsoution—tarioome
rupbriment title: tews u

select by veme: 7 B B FH &8 [C8 B MR EW TS E1 5] BI7 o

[=] 16576 ©0218
~air

<ol lector {]
el lply -
maltiply 1
]t

waltiply X 20 H

ultiely t
Lt gl))is 30
multiple 80 . R |
myltiply X | i
multipl |
mltiely |
el b1l !
A4l auttapt |
16} multipl !
13 maltipiu

15| multiplu

—alt ey R

19| multipln 1

20| multimiy

17[multipiy E R Ll
Z2hmultiply 4

24 maltipiy i
23| muitapiun
24| meltapiy !
25| sultapiv
260 mubtiply
2?2t multaply
Z8f maitaply
29
30

. n_onu:urnuumuo

el tiply [i
it iely }
315 multawly i

32 multiely B i}
B muitirly s |

gooooodoaOO00O0O0D00ODODODOOOO0ODODODODOBTED

click Lo IMILiCALE vipht Tand edge ©F naw Cange, of tupd ¢ o short,
cliok to indicate left hand sdge of Zoom range, or bLyss [Lo sbort,
click to indicste right hand sdte of new range, o Ly [0 sbork,
cliok to inaLcate left hand sdge of Toom range, o tupe [to sbort,

Figure 3-6: Matrix Multiplier: First computation

Figures 3-6 and 3-7 are PIEscope views showing parts of two matrix multiplier computations executing
simultaneously on a 16-processor shared-bus computer. There is much happening in these figures but
our interpretation of them is restricted to the kernel's behavior; specifically, how the kernel’s scheduler
reacts to the periods when the two parailel computations together spawn many more threads than there
are processors available to run them. Although our discussion contains some fairly detailed analysis, it is
not intended as an exhaustive critique of the schedulers performance. Rather, we mean it only as an
another illustration of how a scheduler's behavior is observable using the PIE environment.

17

(Esen) [Fep) (36TY) faceee) Eeirend) Faea) (ond) [oo0ons) o) (250)
FLesooms view: e-ocutiombar acome
FURAT IRt tIL1eD Amomul 12E8, ben,u

joretect bt O TR ER (08 00 O3 F0 EF 0 6 (0 @17 e
D]

= 160a” copes

e e =)

TN E ¥

1] ealiector u] 3 L] 3 - 3 {0

2|l sl] I — e i
3 e AT H_“-_'—'—‘—-—] i
P milTaplu { 9 E
At multiplw | — It b1 !
HEMETI™ 1 g i
AT | — 7 I
Mmalzip]w ‘
Bl weal = 1w b [————— i !
BIENETI 3 5
1 maltaply C:__'—‘)_—-———-—J—..—_._;L

13 multaplu e e :

16 mattaply e e

15 malsiplv

1
Leimuliimly —
13 mulziplu H
b T R 1]
13 malsamin E
13 multipiy i H
Z9) maltiplu T —
et multinly I
i malsir e ;_,‘aﬁ—
23 malsiely e}
24 multak v ;* i
250 multiely ‘_i
FATET T |
E T “1
23 malzip)u | I |
2 malzaely [e— H
ol amiy |
2l maltip)u
T2 maliiely

T li—t 1

T

l]ﬂ[]ﬂﬂﬂﬂl'lI]Uﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Switcrea from CPU 3¢ to CPU &
cliek to andicate left hana 40fe O Zoom range, or tyee " LG abort, l
click 2 andicate Fight hand sdge of r FEgr, or tuoe "t sbort, I
Lc““ t2 andicate left nend sdge o zoow FaNEE. or tupe f Lo scort,

Figure 3-7: Matrix Multiplier: Second computation

3.4.1. Interpreting the Figures

As in the previous examples, the computations are matrix muitipliers, but here they execute on a 16-
processor shared-bus computer. As before, the colored rectangles represent periods when threads are
running while white rectangles represent the periods when threads are switched out. Because the views
depict executions on sixteen processors, cutting a swath vertically through a view at any point may slice
through as many as 16 running threads instead of just one as was the case in the uniprocessor
executions. The kermnei schedules the threads using a simple, non-discriminating algorithm with a goal of
assigning equal time-slices to competing threads. To facilitate the comparison of the views, the time-
stamps of the computations are normalized to each other. That is, a time-stamp of 26.300 seconds in
one computation, for exampie, is simultaneous with a time-stamp of 26.300 seconds in the other. The
time stamps at the beginning and end of the PIE views in Figures 3-6 and 3-7 are almost identical®,
indicating that the views are snapshots of roughly the same period in time. A similar pairing of time
stamps is done in Figures 3-8 and 3-9,

The two computations Spawn several threads expecting that the scheduier will run them in parallel. By
the time they terminate, each will have created 33 fogical threads, but only 17 physical threads. In PIE,
invisible user level run-time parameters limit the number of physical threads each computation may

SGurrent implementations of PIEscope do not support automatic time alignment of separate windows. The time limits in the views
were set interactively using a mouse pointer and thus were difficult to align precisely, :

18

execute in parallel based on considerations such as the architecture of the target system. Thus even
though the computations may ask for 33 logical threads in parallel, they receive only 17 physical ones
from the kemel. As will be shown shortly, the surplus logical threads must wait to execute until a physicat
thread becomes available (upon the termination of another logical thread, for example).

3.4.2. General Scheduling Behavior

Our discussion is restricted to the periods when the matrices are actually multiplied since these periods
exhibit the most interesting behavior. The vertical metering lines in Figures 3-6 and 3-7 mark the
approximate moment when the second computation commences multiplying its matrices. It is quickly
seen in both views that especially in the later stages of the computations some threads run without ever
being switched out. Other threads occasionally suffer some context-switch fiutter, as clearly shown by the
scattered periods of dense "squiggles,” or are switched out for long periods before being ailowed to run,
as in the case of thread number 13 in the first computation in Figure 3-6. Unfortunately several of these
scheduling phenomena not are explainable without intimate knowledge of the kernel's scheduling policy
and what other tasks, if any, are running on the machine. In the discussion that follows, however, it is
important to know only a few basic characteristics of the kernel. First, on this particular machine, the
kernei designates one processor as a master processor on which all thread creation and other speciai
work, such as certain disk accesses, is done. If all processors have been allocated and a new thread is
spawned, the scheduler occasionally will not run the thread right away, apparently waiting to see if
another thread finishes before adding the thread to the run-queue. Also, if at any time there are more
threads than processors eiigible to run, the scheduler will usually first context-switch threads that have
been executing for long times. Knowing only these c;harécteristics as well-as the approximate number of
threads vying for processors, we will be able to discern the cause of several of the more general
phenomena like the context-switch thrashing occurring immediately after the PIE metering line in Figure
3-6.

Let's begin examining some general features by looking at the period immediately after the computation
in the top viaw of Figure 3-8 starts spawning its multiply threads. Here, for about a second or two, several
of the threads are executing unencumbered by context-switches, while others are either switched out, the
collector and the number 13 multiply thread for example, or switching repeatedly as in the case of
threads 14 and 15. For the most of this time, the first computation is executing fourteen threads while the
bottom view in Figure 3-8 shows the second computation executing two threads, its own main and
collector. Together, the two computations saturate the sixteen processors of the computer. As more
processors are given work, it becomes more difficult for the scheduier to make equitable assignments. As
shown in the top view, thread 13 of the first computation actually does run for a brief time, on the master
processor, but the scheduler immediately removes it to run on another processor because there is
probably some work queued up for the master. Each of the other processors is occupied, however, so
the scheduler hangs the thread. Whether or not the scheduler is doing a good job here is a question we
address later.

Back to the computations. We are examining the point immediately after the first computation spawns its
multipiers when there is a total of roughly sixteen threads actively vying to run on sixteen processors.
Shortly, however, the scheduler resumes running collector and thread 13 of the first computation.
Here, instead of switching another thread out for a long period, the scheduler iterates through the threads,
switching one or two out at a time, keeping the number of running threads at sixteen. This decision
causes more frequent context-switching among the other threads, but might be a more equitable way to

19

Frasconge uieu: moerof) Anek ar eroge

*TecInent title: o LIRe, pen

g a=]0 Lzl Yo fis Ymalcs 15 Jem]em]emenloes

f fm___wnl }
JL 254z I [~
! [17243 EL
= cleain 3 e ——
= csllestor EC:EQB"-DEM:DEB.:@BBC@D&:DC@HQD! SRR e TR]
= I milteply] _:‘E—_—_—__.*——'—m:_”—““
= Hmeltirlw :I;]:C:__ - T — ————————
= Ty e ——T e —] a—] —— — —— ———
= il F N— S TE— W G—
Oty I — e — Ta—] = .
s e | e — —— D ;
= 1l mulliela T—— — :
= s[mery | S ————— i — — A— D —
= 1i{mltiple ! E S ST —OA — !
S B reltipin [" — LI]
= 12| b tamin g o — | H
£ 14{maitirly I | N | T —— —
= S mltinla | S W S S—] .
S i mltiels Sy —— "7 a1 1 |] = bt |
= 1€ multiely I 1T S— | " | Com—
= 16 maitapie ==, = 1 N — A
S e mitiply SN 0N T 0T T STE o T T
9 {emltipiv T — £ AR o
= AT eale el S— w— o 7% {471 AT 1] 1 Jo——
= iiiealviele) tne} o O AR TR T
D A meltipin | | — — ———
o faditiely i SR RN N1 o (o T
CIlCh 1o INGILCELE FLIRT rand saze of nes rarge. of Tikd Cp TG aetwr
reComPutLng [raFnics. plesse waiT,.. [-1is N
click o Ledicate leFt Pand *dfe Of Inow range. or tupe Tp to abort.
click te ardicate right Fand HipE of P range. Or Tupe T ote anoet
{ Prepcors view: meCution-targcope -
P TEPErLmant LItle] na, i 128a,sen.u -
et e v TENEDER D (D FT EM ER O 0 55 hl ==
Co—— .)
m IE
= 10z | |
= S T) S—] P — e a—————
S Afiollsctor S st emem— e —— T IO T,
= it | BT Oy o T T
= iemntiets 3 m—
2 slwultarts i v
= A muitipie ER
2 5[eaitirly st
= CPegltiely k.
S S eultirly
S g mdririy
0 13| eulitipiw
S i raltipiw
= 1l muiltiely
L= T
S 15 maitiply
= S| malarla
a =il g
= 17 multaipiy i B
= 18| multiply] { EE
CAIGH 10 INGICATE ietT hard 8G1e G Coom CHUE. O T [TC MoorT . 1
3 cliel ve proicate right hana etze 2 rees rALE. Oor % e "; e s,
§ chich to anaicate left hara ®Ie OF Ioom range. or tuge ‘¢ to sport,
: 'l;“ﬂ Lo oindicate ripht hang FALE D rau ranie. O tues LOTC woowt
[

Figure 3-8:

A closer look at the multipliers
Top: First computation
Bottom: Second computation

assign processors if, for example, the threads frequently communicate among themseives. As shown in
Figure 3-8, the first computation's initial group of mult iply threads finish executing before the second
computation spawns its multipiiers. Since the second computation has not begun vigorously competing
for processors, the scheduler quickly begins assigning a new group of the first computation's multipliers to

processors.

Although the logical threads associated with these new multipliers were created about the

20

same time as the initial group of multipliers, each has been waiting all this time for one of the original
logical multiply threads to relinquish the physical thread it is tied to. Not many of the first
computation’s physical threads are relinquished and reassigned because several of the original muttipliers
are parents refusing to relinquish their physical threads until their respective children terminate. Retaining
their physical threads, several of the original muitipliers switch out here. Later, they briefly switch back in
once or twice to join a child or to exit themselves. The parents’ reiuctance to relinquish their physical
threads until after all respective children have been joined coupied with the run-time thread limits can
potentially lead to a form of dead-lock where no new threads can be created. These PIE views led to a
modification of both the program and the run-time support code in order to permit as much parallelism as
the machine could provide.

Looking at Figure 3-8 it is seen that shortiy after the first computation's new group of muitipiiers begins,
the second computation suddenly starts spawning the physical threads of its own multipliers (just after the
first metering lines in top and bottom views) until it reaches the limit of 17 physical threads. It can be seen
" in the bottom view that several of the second computation's threads are not immediately assigned a
processor. Rather, they are switched out for rather long periods before they commence running. Despite
this, there are still more threads vying for processors than are available to run them. At this point the
scheduler begins imposing a context-switching toll on the first computation, leaving a number of the
second computation’s threads alone. After a while, however, both computations begin to thrash quite
heavily just after the second metering line in both views in Figure 3-8. The term “thrash" is appropriate
because it calls to mind the thrashing that occurs in virtual memory systems when there are too many
users demanding too many pages. Such scenarios often confound. paging algorithms and cause them to
repeatedly swap pages to and from disk. The heavy context-switching occurriné here is consists of three
dominant occurences: 1) switching reminiscent of the "flutter” described in the uniprocessor executions,
2) interprocessor exchanges of threads where two processors simply swap the threads they are running
and, 3) "genuine” descheduling where a thread is switched out for a period of time. Eventually, the
number of threads contesting for the processors diminishes and the scheduler is able to assign the
threads withQut thrashing them.

PIE supports an execution view, called the cpu-view, that shows the behavior of processors during the
execution of a computation. Figure 3-9 shows cpu-views of the first and second computations during
roughly the same block of time as shown in Figure 3-8. As in the previous views, time is measured in
milliseconds on the horizontal but here the machine’s processors are ordered and arbitrarily numbered on
the vertical. Opposite each cpu are alternating dark and white rectangles. A dark rectangle represents
an identifiabie executing thread while a white rectangle is a period when none of the respective
computation’s threads are running on the associated cpu. Each figure shows only those processors used
by one of the computations. Only processor actions corresponding to threads belonging to the first
computation are shown in the top view of Figure 3-9, for example. Examining the distribution of dark
rectangles in both views, it is immediately obvious that before the second computation begins spawning
its multipliers, the first computation has almost exclusive use of the 16 processors on the machine. After
the spawning, however, the respective processor views show that at many times, only a fraction of the
processors are aliocated to each computation illustrating their competition for those resources.

21

P Festone visw] LpuTDA” AR
LR LI R LT S W VIE Bt TR

crtians: [FIR :
!
| (=]
' =
i = 3 ;
i = 247 T T ———— .
: — == ———— = i
i = CFLy - . _*—n_-—“-llll- i
. S e — —— — — e — —— — — 1
: = &lRU G S R A SR S —— . — '
i = = .
i = 1
7 = i
= i
= |
= .
' fe=)
P = T
'
1 = IR T i
= 5| fPu it }
i |
Lo Rlach W rdicate LeFY fana BOLE Of I00e Fage. OF Lupe [Lo aort, | 5
Do elier 0 et PRt Faed GURE OF Faed PEgE. O Tume [Lo dort, ‘ i
ol thies te indicate left rgra EOPE CY 200% Mg, OF tupe UL L0 MWt ;
Deligk woo1ndiIcate CLEME rEME eOfe OF Nee FPanpe. o Tus L TO et i
P — ;
(2o [hele T t] fege rerresh] [views) [Font] terote] preg p
: oy el Tonsn 8] [corey [revres 1 wote] p :
FLESLARS 180T CRu—KarIiope :
oowaperanent CoL1el Al S00a 560 :
!
Pooemtaonsl E. .
s .
; T I[N
i . - ! 53 : 3
) = e M i IR s
N i —— £ f o T B] :
. = T —
g e T OOk i oe—
; = e———T | " Tl T i 7 7T T :
¢ = VO N G D
i = — 1T BN IR
= /. L [T T [i] | jees——]
—— e — .
= ‘ I I S a—
—_—
= : o — — _.._.3.
=
i = .
-~ :
| =
i i
H i

[Tl L raicate rignt had UER O rSu THEE. Or Lape T MO aDOet,
o TLEht rand eare WUST fw rreater tran tre leit narm .ige,

Thieh 1o aricpte leet hane FdER OF IOUM ranze. OF Tme | o sl

H \ click te irdicate risht hard BAEE O T rANTe. Or tace “f Lo skt

Figure 3-9:

Selected cpu views of the computation
Top: First computation
Bottom: Second computation

3.4.3. The scheduler’s performance

Did the kernel do a "good" job scheduling these competing computations? The answer is probably that it
could have done better. How to improve its performance is a difficult issue and is the subject of
considerable research. See [12] (3] [14] [4] [17]1[13] for examples of some of the issues. it is not always
clear what the goals of a muitiprocessor scheduler shouid be. Should it strive for high performance of
isolated computations or high processor utilization for multi-programming support? The demands of
parallel computations often conflict when they are executed on the same paratiel machine. For exampie,

22

let's say there is a computation consisting of several sets of threads that, because of communication
dependencies, must be scheduled as sets is the desired speedup is to be obtained. A scheduler whose
first priority is to keep all its processors busy may never schedule those threads appropriately, especially
if the machine is loaded. In the case of the two simuitaneously executing computations just discussed,
there were no special requirements for scheduling them. This was fortunate because the kernel had no
way of handling special scheduling requirements of computations.

These PIE examples have shown the value of visualization in evaluating the performance of user-level
computations and kernel behavior as well. We now conclude our discussion of performance visualization
by remarking on some of the issues involved in correctly presenting visual information.

23

4. Improving the Environment

PIE is not just an environment for debugging performance. Underlying the architecture of the PIE system,
is a theoretical framework for predicting, detecting and avoiding performance degradation. The basic
ideas of this framework, enunciated in [16] [9] {20] and [19] are not rehashed here. Instead we discuss
some of the issues of suitably retrieving and presenting performance information.

The experience of designing PIE has shaped our ideas on how to detect and isolate performance
prablems in a performance debugging environment. First, there is a question of whether there is a
preferred methodology for monitoring performance in a visualization environment. Is there a best way to
use performance debugging environments like PIE? What environment features do frequent users ask
for? How must performance data be filtered and presented in order to accomodate these requests?
Secondly, there is question of reporting accurate performance information. How does collecting
performance data affect computations and what can be done to diminish the effects? Finally, the
demands on an environment are different if performance data is collected only while developing a
computation or whether data collection continues as an ancillary but permanent part of a computation
after it is released for use.

4.1. Performance Monitoring Scenarios

Monitoring scenarios can be roughly divided into two broad categories: 1) design phase monitoring and,
2) design and deployment phase monitoring. In the first case, designers use performance debugging to
sculpt and tune performance of computations before deploying them, unmonitored, for production uses.
In the second case, computations are monitored not only during their design, but also after they have
been deployed for use. The two cases place different demands on their respective monitors. For
example, if a computation is to be released unmonitored, the most important characteristic of the
programming environment is that it report the computation's performance as if monitoring perturbation
were absent. It is occasionally desirable, however, to inciude monitoring as part of a deployed
computation. For a computation that is monitored while it is deployed, it is more important that any
performance penalty caused by the presence of a monitor is acceptable and that the monitor maintain a
subservient, low-priority role with respect to the primary functions of the computation.

4.2. User Control of the Environment: Handling Changing Demands

Programmers usually do not know apriori where performance problems will arise. Realizing this
ignorance, a programmer might begin measuring performance by maonitoring only the high-level behavior
of a computation. As the environment reports what the computation is doing, the programmer might
decide to direct attention to more detailed behavior. For short computations, this step-by-step analysis
may be spread over several successive executions, each one monitored differently. This is impractical for
continuously executing computations (industrial control programs, for example) or those which require
such a long time to execute that the turn-around time until the next observable execution is unacceptable.

4.2.1. Interactive Run-time Capabillities

Environments with interactive run-time capabilities let programmers probe computations as they execute.
They allow programmers to peruse the execution of computations, moving their attention to different parts
or asking for greater detail as the computations proceed through the different stages of their execution.
For example, a programmer may initially wish to know only how fong it takes the iterations of some loop to

24

execute. After examining the iterations for a while, the programmer may decide either to probe deeper
into the loop or divert his or her attention to some other part of the computation ... all during run-time. In
order for an environment to be able to adapt to the run-time vicissitudes of a programmer it must have an
interactive interface. More ambitious envirgnments might support dynamic changes to the object code of
a computation while it executes so that programmer can conveniently test coding changes during run-time
instead of resorting to time consuming recompilation [2]. The PIE environment allows programmers to
observe computations while they execute but has only fimited interactive features. These capabilities are
being extended to support more versatile interaction with executing computations.

4.2.2. Talloring a Monitor to a Computation

In cases where computations are monitored after having been deployed, programmers might be
interested in adjusting monitoring characteristics in hope of improving its performance and thus the
performance of the entire computation. A programmer might decide, for example, that monitoring uses
more /O bandwidth in an application than it ought to. Because the monitor is supplied by the
programming environment, however, programmers can not modify the monitor as freely as they would
computations without risking the integrity of the montoring code. In order to assist programmers in
improving monitoring performance, environments should carefully provide means by which designers can
tailor the characteristics of the monitor in order to better meet the performance requirements of their
computations. The environment, however, must restrict the kinds of changes that are permitted so as to
ensure that programmers can not introduce any bugs into the monitor. When tailoring a monitor to the
performance goals of a computation, programmers have to balance the demands of the computations
against how much and what kind of information is desired from a monitor. [f capturing every selected
event is important, programmers must estimate parameters like the maximum rate at which the monitor
has to record events. Ctirrently, PIE permits a programmer to modify only a few selected monitoring
parameters. As part of «re effort to improve the interactive nature of PIE, however, more options are
promised for customizing it's monitoring system.

4.3. Pertutbing a Computation

Performance monitoring which significantly aiters the component execution times of a computation and
reports only the corrupted times back to programmers compromises their ability to discern performance
bottlenecks. Consistently and grossly corrupted performance information can be useless or even harmful
in attempting to improve a computation. Monitors corrupt performance measurements by competing with
computations for hardware and sofiware resources like processors, CO-processors, schedulers and /O
drivers. The principal measure of this competition is time. When a monitor takes time away from a
computation ... when it delays or lengthens a computation ... it perturbs the computation. Time penalties
are only "first orger” perturbations. Lengthening the execution times of the individual components of a
computation might eventually distort the order of parallei events and change what kind and how much
work the computation does. Direct distortion of event order and general computation behavior via artificial
sequentialization, for example, is a risk because monitors communicate with computations.

4.3.1. Measuring Perturbation

Unfortunately, monitoring run-time performance almost always perturbs a computation. A problem
confronting programming environments like PIE is how to report accurate performance information
despite monitoring perturbation. Since monitoring perturbations cannot be completely eliminated, they
must be compensated for by measuring them in order to be able estimate how the computations wouid

25

perform without the perturbations. Perturbation measurements consist of calculating where and how
much a monitor slows a particular computation, whether the monitor artificially sequentializes the
computation and whether the workload is affected.

G (eld) (5570 (s55s) [re¥rea] [vim) o) (FTA) i) (ped) ()
Piescops vieus swectien—barscepss
opar- vt titlet Ml 100 .50, sen,v

seleot by ture: B B0 VN P B0 T FX OB LN D9 £3 £ 61 o)

Suitohed from CFU O te OFU 0
Werrai ‘comtext switoh’, iname == 2P, Wikt S 1RTRIO, etlee = 1BBOXO, LUlee = 200
Switohed frem CPU ¢ te CPY O
nllcktolutwlmm*umr&;ﬂrm‘gmm.

[x05 (FS1A (ST} [scops) [F5#rah) [viows) 5} (pT69) [remctd [Frog) (o)
Piescope viaw: EeoUt | Orbar- S oo
oxporimevt. Litle: Wkoomp.u

selest vy v B 17N 8 8 O T8 53 M0 £0 OF 52 07 610 (=

[e]
= 157182 159030

= o main Wm ——
= 1|oollsctar) D) S —— — E
2 2 msdtipl __—_-—“
2 Feultipl . ——————
B 4 mltip) She—— | SSew (s e i]
=2 B multipl S AS—————— —— T S—— En— — —))

lorrel “otevtext switoh’, ineme = AZ90, btine == IN22TE, etime == 150498, ttime == §27%
Suitored from CPU ¢]
elxautuamlmmmvurm.wmAgum.

g

Figure 4-1: Uncompensated and Compensated Views of Part a Matrix Multiply
Executed on a microvax Il (XF29 Kernel)

4.3.2. Measurement Based Compensation for Perturbation

Currently, PIE attempts to compensate for perturbation from the sensor firings on micro-Vaxes and other
uniprocessors using a fairly simple compensation algorithm where the timestamp of each event is
adjusted in accordance with how many have events occurred before it. The aigorithm compensates for
each event by subtracting from its time stamp a quantity corresponding to the sum of ail the sensor firing
times of previous events. The top view in Figure 4-1, for example, shows the tail end of a matrix
muitiplication executing on a microVax Il running an XF29 kernel (the old kernel in the uniprocess
scheduling exampie) . The bottom view in the figure shows the same computation after compensation by
PIE. As can be seen, the computations appear identical except that their termination times and the
metering line point to their differing execution times. Even without compensating for the sensor firings,
the execution times of computations executing on micro-Vaxes with and without kernel monitoring are
generally within one percent of each other. Although the algorithm is fairly successful at compensating
uniprocessor executions, it does not attempt to modify the total number of context-switches counted in a
computation even though it is reasonable to expect that shorter computations shouid suffer fewer context
switches.

There is risk of reordering of events using such a simple compensation algorithm. Although this is a
danger in compensating uniprocessor executions, this inadequacy is particularly severe for

26

multiprocessor executions. More than just sensor firing times need to be taken into consideration before
a realistic adjustment of the views can be done. Certain types of information about the computation,
synchronization points arising from communication and thread creation for example, is required if
compensation is to be attempted. in addition to the computation information, knowledge is required about
monitor parameters such as sensor firing times, points where the monitor may introduce synchronization
overhead and how monitor threads are scheduled with the computation. By knowing firing times, the
relative delay caused by monitor sensors can be determined at any time in the computation. By knowing
when and where the monitor and computation are scheduled, any significant time-slices when the monitor
preempted the computation can be accounted for. Because monitors and computations might compete
for resources other than processors, such as /O bandwidth, the monitor's use of these resources should
be known. PIE is investigating how these these factors affect compensation techniques as well as how to
detect unrecoverabie perturbation.

4.4. Monitor Priorities :

Which is more important, the computation’s execution or the information about it? This question does not
have a single answer for it depends on whether the computation is under development or in use. In either
case, not all information about the computation is interesting, and what is interesting information may
change as the computation progresses.

4.4.1. Measuring the Entire Computation ...

When developing a computation, a programmer wants to ensure that it performs correctly and
adequately. During the run-time observation of a computation, the designer is usually examining its
behavior quite closely. [n the initial development stages it is important that very little performance data, if
any, is lost by the monitor. Failure to record performance data can happen if, for example, buffers for
caching performance information fill before they can be read. A programmer who is examining the
synchronization behavior of a computation would be ill served if a monitor begins losing events when
synchronization occurs. Environments must guarantiee that every selected event is recorded, otherwise
the ability of programmers to discern what their computations really do is compromised. To do so, it may
be necessary for monitors to occasionally pause computations in order to flush a number of previously
recorded evenis to monitor files before resuming them.

4.4.2. ...versus Maintaining a Performance Level

The perturbation of a monitor that is part of both the design and deployment phases of a computation is
no longer perturbation per se, but merely part of the overall behavior of the computation. The real
behavior of the computation is that of both the monitor and the primary functions of the rest of the
computation. In most cases, performance data about a computation does not need to be adjusted for the
monitor's perturbation. Indeed, what is important is not monitoring perturbation, but monitoring
performance. In such cases, the most important requirement of a monitor is that it never pause a
computation using high-level synchronization barriers. Such barriers risk delaying the execution of
important operations. For example, a monitor used in an airflight control application would be used not
only to ensure the computation’s integrity but also as a means to retrieve information about what the flight
controller and computation were doing when a pathological condition arises (a plane crash, for example).
During normal operation it is important that the monitor interfere as little as possible with the computation,
but it would be highly undesirable, for example, if the monitor stopped the computation (and, therefore,
the flight controiler) in order to "catch up” on recording events. No matter how unappetizing losing events
may be it is more important that the computation continue unperturbed.

27

5. Conclusions

Visualizing the behavior of computations, as is done in PIE, is a suitable way to study and improve their
performance. Although PIE is a successful, useful research effort aimed at assisting programmers in
developing better computations by visuaily matching performance data onto programming constructs, it is
not limited to merely improving computations. It is also a valuable educational toot for revealing the
complexities of both sequential and parallel programming. It helps to remove the veil of mystery
surrounding the execution of computations on complex systems. Even an operating system’s scheduling
behavior, a seemingiy esoteric activity over which the programmer frequently feeis and is powerless, is
revealed simply and elegantly in PIE. PIE is currently available for most workstations and tightly coupied
parallel computers running Mach. It supports programming in C, MPC, C-threads [5], Fortran and Ada.
As we complete the work described earlier, the power and value of visualization offered by PIE wili help to
remove additional shrouds of compiexity from sequential and parallel computations and the systems that
run them.

6. Acknowledgements
David Black, of the Mach Project, provided us with expert advise during our development of kernel
monitoring. Mark Russinovich and Glenn Schuster have been helpful in improving the run-time and
graphics capabitities of PIE.

1

(2]

(3]

[4]

(5]

€l

(81

(9

[10]

[11]

[12]

[13]

28

References

M. Accetta, R. Baron, W. Bolosky, D. Bolub, R. Rashid, A, Tevanian, M. Young.

Mach: A New Kerne! Foundation for Unix Development.

In Proceedings of USENIX 1986 Summer Conference, pages 93 - 112. Computer Science
Department, Carnegie Mellon University, Summer, 1986.

Ziva Aral, liya Gertner.
Non-intrusive and Interactive Profiling in Parasight.
Technical Report ETR 88-006, Encore Computer Corporation , 1987.

Shahid H. Bokhari,
Partitioning Probimes in Parallel, Pipelined, and Distributed Computing.
IEEE Transactions on Computers 37(1):48 - 57, January, 1988.

Timonth C.K. Chou, Jacob A. Abraham.
Distributed Control of Computer Systems.
IEEE Transactions on Computers C-35(6):564 - 567, June, 1986.

Eric C. Cooper, Richard P. Draves.

C Threads.

Technical Report CMU-CS-88-154, Computer Science Department, Carnegie Melion University,
June, 1988.

Susan B. Dart, Robert J. Ellison, Peter H. Feiler and A Nico Habermann.
Software Development Environments.
IEEE Computer 20(11):18 - 28, November, 1987.

R. Fitzgeraid, R. F. Rashid.
The integration of Virtual Memory Management and Interprocess Communication in Accent.
ACM Transactions on Computer Systems 4(2), May , 1986.

Daniel D. Gajski, Jih-Kwon Peir.
Essential issues in Multiprocessor Systems.
IEEE Computer 18(6):8 - 27, June, 1985.

Francesco Gregoretti, Zary Segall.

Programming for Observability Support in a Parallel Programming Environment.

Technical Report CMU-CS-85-176, Computer Science Department, Carnegie Mellon University,
November, 1985.

M. B. Jones, R. F. Rashid, M. Thompson.

MatchMaker: An Interprocess Specification Language.

in ACM (editor), ACM Conference on Principles of Programming Languages. Computer Science
Department, January, 1985.

Ted Lehr, David Black, Zary Segall, Daiibor Vrsaiovic.

MKM: Mach Kemel Monitor, Description, Examples and Measurements.

Technical Report CMU-CS-89-131, Department of Electrical and Computer Engineering and the
School of Computer Science, Carnegie Melion Univerity, April, 1989.

Virginia Mary Lo.
Heuristic Algorithms for Task Assignment in Distributed Systems.
IEEE Transactions on Computers 37(11):1384 - 1397, November, 1888.

John K. QOusterhout.

Scheduling Techniques for Concurrent Systems.

in IEEE Computer Society (editor), The 3rd International Conference on Distributed Computing
Systerns, pages 22 - 30. Electrical Engineering and Computer Sciences, Unwersuy of
Caiifornia at Berkeley, October, 1982.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

29

Constantine D. Polychronopoulos, David J. Kuck.
Guided Self-Scheduling: A Practical Scheduling Scheme for Parallel Supercomputers.
IEEE Transactions on Computers 36(12):1425 - 1439, December, 1987.

Richard Rashid, Avadis Tevanian, Michael Young, David Young, Robent Baron, David Black,

William Bolosky and Jonathan Chew.

Machine-independent Virtual Memory Management for Paged Uniprocessor and Multiprocessor
Architectures.

IEEE Transactions on Computers 37(8), August , 1988,

Zary Segall, Larry Rudolph.

PIE - A Programming and instrumentation Environment for Parallef Processing.

Technical Report CMU-CS-85-128, Computer Science Department, Carnegie Mellon University,
April, 1985.

J.A, Stankovic.
An Application of Bayesian Decison Theory to Decentralized control of Job Scheduhng
IEEE Transactions on Computers C-34(2):117 - 130, February, 1985.

C.R. Vick, C.V. Ramamoorthy, S.M. Jacobs (chapt. 28).

Electrical/Computer Science and Engineering Series. Handbook of Software Engineering.

Van Nostrand Reinhold, 135 West 50th St., New York, N.Y. 10020, 1884, pages 234 - 246,
Chapter 11: Operating Systems.

D. Vrsalovic, Z. Segall, d. Siewiorek, F. Gregoretti, E.Caplan, C. Fineman, S.Kravitz, T. Lehr,

M. Russinovich.

Perforrnance Efficient Parailel Programming in MPC.

Technical Report CMU-CS-88-167, Schoo! of Computer Science, Carnegie Mellon University,
July, 1988,

D. Vrsalovic, D. Siewiorek, Z. Segall, E. Gehringer.
Performance Prediction and Calibration for a Class of Multiprocessor Systems.
IEEE Transactions on Computers 37(11):1353 - 1366, November, 1988.

M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky, D. Black,

R. Baron.

The Duality of Memory and communication in the Implementation of a Multiprocessor Operating
System.

in Proceedings of the Symposium on Operating System Principles. School of Computer Science,
Carnegie Mellon University, November, 1987.

