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Abstract 

This article discusses visualizing performance of parallel and sequential computations using the 
Programming and Instrumentation Environment (PIE) as an example. First, the importance of being able 
to visualize the performance of a computation is demonstrated. Secondly, an easy guide to one way, the 
PIE way, of his visualization process is presented. This is followed by examples of concrete uses of the 
environment. Finally, some of the pressing issues concerning measuring performance are discussed. 

Three issues are stressed in this article: 

1. Visualization of program performance is necessary for fast, correct performance debugging. 

2. PIE is a powerful and useful implementation for supporting visualization. It is also a 
dramatic teaching assistant in that it visually shows actions like forking, scheduling, etc. 

3. PIE provides complete support for visualization. The system is aware of issues like 
program replay, suitably presenting performance data, compensation for perturbation by the 
measurement facility and support for multiple architectures and languages . 
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Errata: 

On page 7 of the text: 

• The textual references to "yellow rectangles" are shown in Figure 2-4 as dotted rectangles. 

• The textual references to "green rectangles" are shown in Figure 2-4 as slashed rectangles. 
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1. Introduction: Visualizing Performance 
Designing computations to perform efficiently is usually an iterative task in which programmers alternate 
between measuring and modifying the performance of successive computation prototypes. This iterative 
performance tuning is called performance debugging and can be done in several ways. Perhaps at the 
start, programmers may gather general statistics on metrics such as the average amount of parallelism in 
their computations. Averages are large grain reports of what computations do and, as such, often reveal 
only the hints of trouble. An average parallelism of, say 2.1, in a computation intended to have eight 
processes running simultaneously probably suggests a problem. The average, however, does not point 
directly to where the problem lies. It can be misleading for it may have remarkably little to do with 
"reality." There is no guarantee that a value was measured that equals the average and it may not even 
be possible for such a value to ever occur. Embellishing averages with other statistics such as measures 
of spread is an improvement but may raise more questions than they answer. The additional statistics 
may suggest that the degree of parallelism exhibited by a computation is not only small but also varies 
widely, raising the specter of erratic performance. Does the computation occasionally hit synchronization 
barriers, forcing some of its processes to wait? When does it do this and how often? These are 
questions statistical information can raise, but is hard pressed to answer. 

Because of the limited information contained in averages and other statistics, programmers must pry into 
the collection of data that yields the statistics. They must sift through the records, searching for 
suspicious data that might indicate anomalous instances of exceptional or degenerate performance. 
They must look at individual cases of scheduling and communication costs. If they have not collected the 
proper data, additional experiments must be run. All in all, a time consuming and tedious endeavor. The 
tedium arises because of the human limitations in conceptualizing relationships between mountains of 
raw numerical data and the objects they characterize; in this case, computational constructs. It is 
essential that this tedium be eliminated if performance debugging is to be a productive activity. The raw 
numerical data must be distilled into a form that is readily grasped by programmers. In order to 
productively debug the performance of their computations, programmers must be able to visualize that 
performance. 

Just as measuring performance can be done in a number of ways, visualization of performance takes on 
several forms. For example, the histogram in Figure 1-1 shows the distribution of the degrees of 
parallelism in our hypothetical eight-process computation. It is more revealing than straight numerical 
statistics in alluding to the possibility of a performance problem. It is fairly clear, for example, that the 
computation never even comes close to eight-way parallelism. The histogram does not tell, however, 
when the various degrees of parallelism occur or what the rest of the computation is doing at those times. 
Trying to answer the question of "when", the performance view shown in Figure 1-2 further sharpens the 
debugging scalpel by plotting the amount of parallelism versus time during an important period in the 
computation. The edge which this kind visualization has over the histogram is clear. A programmer 
immediately sees how much parallelism the computation is able to muster at different moments in its 
execution. This is the primary advantage of presenting performance data in a visual form: programmers 
interpret performance data more quickly. It is quite obvious, for example, that at the start of the measured 
period the computation manages to get parallelism of about four or five but quickly plummets to a fairly 
steady level of around two. Even though this time-line helps to answer the question of when parallelism 
occurs, a problem remains: the programmer needs more information in order to determinine precisely 
where this behavior occurs. 
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Figure 1-2: Parallelism versus Time 

Statistical plots, such as histograms, help to guide programmers to the presence of lackadaisical 
performance by revealing subtle hints of the underlying problems. Histograms, however, cannot lead 
programmers directly to where the performance difficulties lie. Plotting the data on a time-line helps to 
focus the suspicions generated by statistical data, but several must be studied together so that 
programmers see a more global picture of what is going on. If one time-line reveals an anomaly, several 
may help programmers isolate not only what happens when the anomalies arise, but also the succession 
of events that leads up to them. In order for programmers to debug for performance they need to be able 
to visualize executions on the level they program in. Because programmers know their programs by the 
constructs and abstractions with which they designed them, a vital characteristic of the presentation of 
performance data must be a visual mapping which vividly draws the connection between the data and the 
computational constructs which are responsible for them. 



3 

R a w àmtm, » graphics » mapping magic « visual icons « program text 

As is diagramed here, if programmers are to visualize the performance of computations, not only must the 
performance data have visual representations, but so must each construct in the corresponding 
programs. The remainder of this paper focuses our arguments for performance visualization by 
examining a special software development environment, called the Parallel Programming and 
Instrumentation Environment (PIE). PIE is meant for developing performance efficient parallel and 
sequential computations1. Following an explanation of the general features of PIE, we reveal that the 
hypothetical eight process computation we have been discussing is actually a real one and we use PIE's 
visualization tools to isolate and repair its parallelism problem. After showing how valuable PIE is in fixing 
the computation's parallelism problem, we discuss two other, more difficult examples of using PIE. The 
two examples use slightly modified versions of the repaired computation executing under different 
circumstances. The first focuses its examination on the behavior of a uniprocessor's kernel running under 
two different scheduling algorithms. The second is an instructive glimpse of how two simultaneously 
executing computations behave on a multiprocessor after they spawn more parallel processes than there 
are processors to run them. We then round out our discussion of performance visualization by remarking 
on some of the issues involved in correctly presenting visual information. 

J*J?*ZTanCe e f f Ì C Ì e n t c o m P u t a t i o n « a computation which decomposes onto a target set of computing resources in such a wav that that the resources are matched to the functions of the computation. resources in sucn a way 
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2. A Visual Programming Environment: The PIE example 
Automatic assistance for visually projecting performance data onto programming constructs is practically 
necessary if visualization is to quicken the performance debugging task. Bringing together programs and 
their performance data is best done by systematic software development environments which integrate 
different data analysis tools into one package providing a "computational laboratory" in which 
programmers can easily design experiments to test the behavior of their computations. A software 
development environment for performance debugging is not an effective one if it compels its users to 
vigorously search for problems, especially for problems that could be easily revealed by automatic 
techniques. On-the-other-hand, an environment should not attempt to second guess a designer by 
reporting that a certain set of performance data represent a problem. An environment which impudently 
makes qualitative judgements about a computation's performance without the user's permission may 
annoy and mislead the user. The proper role of an environment, then, is to present the information it 
retrieves about computations in forms that assists users in making their own qualitative judgements about 
how their computations behave. The Parallel Programming and Instrumentation Environment (PIE) [16] is 
a software development environment for performance debugging which gives programmers ways to 
observe how computations execute by making use of special development and run-time visualization 
tools. PIE is not just a programming environment, as defined by Dart and others [6], which supports only 
the development of program coding. PIE supports a software development methodology extended to the 
analysis, verification and validation of a computations performance. 

Where does the environment begin to assist a programmer? Well, let us assume the programmer has a 
problematic parallel matrix multiplier computation executing on a 16-processor shared-bus architecture 
that exhibits a parallelism problem like that described earlier. The. programmer wants some performance 
information on it; specifically, why is the computation's average parallelism only 2.1 especially since eight 
multiplier sub-processes are spawned, each of which operate on well partitioned parts of the matrices. 
Each of the computation's sub-processes examines the size of the parts of the two matrices it is passed 
and decides whether the parts are small enough for it to operate on without partitioning them further and 
passing them on to another sub-process which it spawns. Upon making the decision, the sub-process 
iterates through its part of the matrices, multiplying each pair of row and column and writing its result out 
to shared memory. 

Figures 2-1 and 2-2 showcase how PIE implements visualization of programming constructs. Figure 2-1 
depicts parts of the text of the computation via three windows of a special PIE editor. The program is 
written in an extended C-language, called MPC[19], which supports parallelism using constructs that 
implement actions such as sharing of global memory and spawning of parallel processes. It is not 
important to fully understand the semantics of the text but some elucidation of the unconventional parts 
will be helpful. 

Briefly, the top window shows a section of the definition of the computation's multiplier procedure, 
multproc. It includes a variable declaration of the type multiply which is an instance of what MPC 
calls an activity or act as shown in the middle window. Activities can be thought of as process-like units 
of parallel work which, when spawned from the same program, are able to enjoy such luxuries as sharing 
and operating on global memory. Notice that multiply contains a call to multproc. Multproc 
implements the basic matrix partitioning and multiplying functions described above. After the value of an 
element of the result matrix is calculated, it is written out using put, shown in the lowest window, which is 
an instance of an MPC function type called opr. Entities of this type may be shared by several activities 
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Figure 2-1: Part of a Matrix Multiply Program Text 

and are used to operate on global memory. The only feature of put that needs to be appreciated here is 
the sync function, which is a special MPC function that enforces mutual exclusion on global operations. 
Here, sync ensures that only one result may be written back to global memory at a time. 

Figure 2-2 is another PIE window showing the visualization of the matrix multiplier's principal constructs. 
Each box in Figure 2-2 has a corresponding textual entry shown in Figure 2-1. In fact, when a box is 
touch-selected by a mouse, as is shown by the enlarged border surrounding the box labeled [c] 
multproc, the editor window automatically moves its cursor to the head of the corresponding textual 
construct, in this case, a call to the multproc procedure. 

Having had the program's constructs automatically mapped onto a visual representation, it is time for the 
programmer to gather performance information. Let us assume that the programmer has run some tests, 
either using PIE or other methods, and already knows that the parallelism in the computation is 
disappointing. PIE can generate performance views like the histogram and timeplot shown in Figures 1-1 
and 1-2, but these are ancillary to a grander, more informative format which will be shown shortly. Since 
the programmer wants to improve the parallelism of the computation, it is important to look at what each 
multiplier process does when it executes. The programmer knows that if the computation has eight 
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Figure 2-2: Part of Visual Representation of Program 

processes eligible to run in parallel but only two or three ever seem to be able to do so, then the others 
must be blocked and waiting for some event to occur. The programmer thus decides to examine the 
behavior of any program construct that might force a multiplier to wait, namely the sync just discussed 
and the j<*in (an example is shown in the top window in Figure 2-2) which a multiplier executes after 
finishing its part of the matrices and moves to join its children. To get this information with PIE is simple. 
Figure 2-3 shows a number of darkened boxes, [ A ] multiply, [S] Sync and several cases of [ j] 
Join. The [ A ] multiply represents the multiplier processes and [S] Sync is the synchronization 
function in the put operation discussed earlier. Each [j] Join represents in instance of a join 
function. The darkening of these boxes indicates that the programmer, using a mouse, has selected 
them to be automatically observed when the computation runs. 

We have only completed half of the mapping of the program constructs onto performance data. Before it 
is completed, of course, the programmer must run the program to get some data. PIE ensures that when 
a selected construct executes, information is collected which identifies the construct, the process in which 
it executed and how long it executed. For example, time stamps are retrieved at the beginning and 
ending of each multiplier process (multiply). The time stamps are then married to other information 
uniquely identifying each multiply instance. As noted earlier, PIE presents the performance 
information in a variety of ways including histogram and time-line formats. Although formats like those 
shown 1-1 and 1-2 are incomplete and imprecise representations of the behavior of computations, they 
allow the wealth of performance data to be distilled into visual forms for quick and tractable detection of 
performance problems. More precise identification of what those performance problems are is better 
done using the upper view shown in Figure 2-4, PIE's principal format for visualizing performance data 
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Figure 2-3: Using the Visual Representation to Enable Sensors 

In this view, time is measured in milliseconds on the horizontal while the processes of the computation 
are ordered on the vertical. This particular view shows only the part of the execution from 5.590 to 6.543 
seconds. The execution of each process is depicted by a concatenation and occasional overlap of 
several rectangular patterns, each representing a particular episode in the process's history. Waits due to 
a sync, for example, show up as yellow rectangles lying on top a dark, extended rectangle representing 
the generic body of the associated process. Green rectangles represent periods when processes are 
waiting to join a child. If one entity is contained within another, its rectangle overlaps the rectangle of the 
other. For example, since sync-waits execute within processes, all yellow sync-wait rectangles overlap 
their corresponding process rectangles. When any of the rectangles is selected by the mouse, the cursor 
in the PIE editor is automatically moved to the head of corresponding construct in the program text. Here 
for example, the join rectangle in main has been clicked on (as shown by the "Join" message in the 
bottom of the small text window immediately beneath the rectangular patterns). The cursor in the 
corresponding PIE editor window, shown in the bottom view of Figure 2-4, is moved to the head of the 
appropriate join definition. The programmer can now analyze the performance based on data 
automatically projected onto the computation's structures. The mapping of performance data onto 
program constructs is complete! 

What does the upper view in Figure 2-4 depict? It represents a small section of the computation's 
execution when only some of all the row/column multiplications performed by the entire computation are 
executing. The initial process of the computation, main, shown in green here, is waiting to join the other 
processes. Before entering this stage of the computation, it performs the I/O for the computation as well 
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Figure 2-4: 

Top: Part of a Parallel Execution of the Computation on 16-processor Machine 
Bottom: A PIE editor window 

as forks off the first multiply process. The multiply processes, numbered in the order they are 
forked off, execute the multproc procedure. A special process, one used in gathering performance data 
on the computation, has been left out of the view in order to simplify this example (it would have been 
numbered as "1"). Just as expected, the figure shows that, at any given time, several of the processes 
are waiting. Cutting a vertical swath through a view at any point, for example, slices through only two or 
three black rectangles indicating that only those processes are doing useful work. Obviously, the source 
of the performance degradation is the sync function in the put operation. 

What the programmer does to remedy this is up to him or her. Is the sync really necessary? Each time 
the put operation is called, after all, it only fills a single location in the result matrix. Since the matrices 
are well partitioned, no other call to put will touch that location. Consequently, the sync is not 
necessary. Figure 2-5 shows the executions of the original and a corrected version of the computation. 
The top view shows the entire multiplying section of the original computation. The bottom view shows the 
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corresponding section in the corrected computation without the sync. The "squiggles" in the top view 
represent moments of insufficient resolution on the part of the display, but are otherwise unimportant. 
Without the sync, not only is the average parallelism of the computation greater, but the execution time 
has been cut from about nine seconds to just under one second. Figure 2-6 is a PIE generated 
parallelism plot for the corrected computation. 
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Pieicope view: executiorrtoerscope 
experiment title: 940weys.u 

mul t ip ly l8i 
mul t ip ly | : Ш 1 ! ̂ TH " " И W_|>H 'If JJ Ш=3*3 5^ЙЮ1—3«DD0CO CES 

mul t ip ly J ; Ю Е З О Е 
» № 11 | И ili I :pQQQ$QQ Di—ĴtTTb: • • ч ; 
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Figure 2-5: Parallel Executions of the Computation with and without the sync 

This example was simple and perhaps contrived; the programmer's error of enforcing mutual exclusion on 
the matrix writes is probably a mistake only a novice would make. Never-the-less, it has shown the value 
of being able to visualize what a computation is doing. Our next two examples are more rigorous and 
detailed illustrations of the value PIE brings to both designing and understanding computations. Unlike 
our introduction, they are not examples of using PIE to find performance bugs in computations. Instead, 
the thrust of their attention is devoted to examining and explaining the behavior of kernels on a 
uniprocessor and a shared-bus multiprocessor. The first discusses scheduling performed by two versions 
of the same operating system running on identical machines. The second describes one instance of what 
happens when two parallel computations running on a multiprocessor spawn more processes than there 
are processors on the machine. Together they are dramatic demonstrations of the luxurious advantage of 
being able to visualize the performance of computations. 
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Figure 2-6: Parallelism versus Time for Corrected Computation without sync 

3. Visualization Examples: Its Analytical and Pedagogical Uses 
The simple example just discussed is not a particularly exciting instance of using the PIE environment. 
The next examples focus on kernel activity because kernel behavior has accounted for some of the most 
graphic illustrations of how a significant component of either a program, kernel or system state can affect 
a computation's behavior. In the first example, the component is a modified kernel scheduler. In the 
second, it is a system state marked by too many processes. These examples should be of interest to a 
wide audience because kernel performance impacts the performance of every computation. 

The first example analyzes what effect a change in a kernel's scheduling algorithm has upon a 
computation. The computation is a matrix multiplier similar to the corrected version just discussed. The 
kernel is Mach [1], an operating system under development at Carnegie Mellon University for supporting 
parallelism. The computation and kernel both execute on a micro-Vax II is booted in single user mode in 
order to reduce the number of processes that compete with the computation for the machine's processor. 

The second example is most difficult one we present. It is a dramatic illustration of what happens when 
two parallel computations compete for the same processors on a shared-bus multiprocessor machine. 
The selected PIEscope views of the example are pedagogic glimpses of what a multiprocessor scheduler 
does when the number of schedulable, parallel processes 2 is greater than the number of available 
processors. 

In order for the discussion of the examples to be clear, however, it may be prudent to peruse some 
summary remarks about Mach and its unique context-switch monitor as well as a brief tutorial on basic 
scheduling issues. Of course, if these topics are already familiar, the remarks can be skipped in favor of 
studying the two examples. 

2Shortly, we will define another term, "thread," to replace "process" as the term designating a schedulable entity. 
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3.1. M a c h : A n operat ing sys tem fo r d ist r ibuted comput ing env i ronments 
The Mach kernel integrates support for networks of uniprocessors and multiprocessors while presenting a 
Unix style software environment. The basic Mach primitives support Unix functionality by placing it 
outside the Mach kernel. Although Mach has a number of abstractions for supporting networks and 
multiprocessors, only the task, thread, port and monitor abstractions need to be discussed here in order 
to more clearly understand the upcoming examples. 

3.1.1. Tasks, Threads, Ports and Monitors 
A task is an address space and a set of system resources (eg. file descriptors) while threads are the basic 
units of execution. Each thread can be thought of as a program counter and register set. Each task has 
at least one thread associated with it (a Unix process can be emulated as a single thread executing within 
a task), although a task may have several threads may threads sharing its resources in parallel. A port is 
the Mach communication abstraction for for sending and receiving typed messages between Mach 
entities such as tasks. A port is basically a protected queue with associated send (enqueue) and receive 
(dequeue) rights. The port abstraction supports intertask communication across network boundaries It is 
by means of the task, thread and port abstractions that Mach implements much of its support for parallel 
computing. Specially equipped versions of Mach permit the creation of kernel monitors for detecting and 
recording the context-switches of selected threads [11]. By "monitor," we mean a data collection facility 
for retrieving run-time information about the execution of computations. These monitors perform 
observational functions rather the mutual exclusion errands typically ascribed to objects referred to as 
"monitors." 

3.1.2. Other Abstractions 
In addition to the task, thread and monitor abstractions, Mach has other primitives for supporting networks 
of uniprocessors and multiprocessors including portable virtual memory support. For information 
concerning Mach, see [7], [10], [15], [21]. 

3.2. Schedu le rs 

Schedulers are operating system functions which assign processes (threads) to processors. They make 
their assignments using algorithms rooted in polices like first-in-first-out, round-robin, shortest-job-first and 
others [8], [18]. The policy which a scheduler uses depends upon which computing goals wish to be 
supported. A scheduling algorithm that helps a single computation perform superbly often has little in 
common with one that attempts to keep every processor busy in a multi-programming environment. A 
common desire of all schedulers, however, is reducing the number of context switches. As will be seen 
shortly, meeting every scheduling goal is not always easy. 

3.3. E x a m p l e s of Kernel V i sua l i za t ion : Unders tand ing the F igures 
Visualization, especially visualization of kernel behavior, is useful for comparing performance' of 
architectures or operating systems. Different versions of the same kernel using different scheduling 
algorithms, for example, frequently yield markedly dissimilar visual views. 

Figures 3-1 through 3-5 are selected PIEscope views of a matrix multiplier computation executing on 
three similar, but slightly different versions of Mach. The PIEscope views show a layer of performance 
information, the kernel layer, not included in the introductory example. It also shows an additional thread, 
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Figure 3-1: Old Kernel: Entire view of matrix multiplication 
the collector, which, as part of PIE, records user and kernel events belonging to the computation. 
Although spawned by main, its creation and termination are accomplished independently by special 
libraries linked with the computation at compile time. The collector was not shown or mentioned in 
the earlier example because it would only have cluttered the presentation. 
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Hgure 3-2: New Kernel: Entire view of matrix multiplication 

The addition of kernel events to the views needs to be explained. Shaded rectangles represent periods 
when threads are running. White rectangles represent the periods when threads are switched out. 
Because the figures depict uniprocessor executions, cutting a vertical swath through a view at any point 
would slice through only one running thread ... only a single dark rectangle. In parts of some of the views, 
in Figure 3-1 for example, there are slightly confusing sets of consecutive white rectangles. Between 
these apparently contiguous periods are comparatively shorter episodes when the associated thread is 
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actually running but the view does not have the resolution to show this3. 

3.3.1. Time Sharing on three Mach kernels 

Figure 3-1 depicts micro-Vax II execution of the matrix muitipler on a kernel officially labeled as XF29 but 
which we refer to as Old. Figure 3-2 depicts the the same computation on on a newer kernel designated 
as CS3c, hereafter referred to as New. Figures 3-3 and 3-4 are "zoom" views showing greater detail of 
each computation. Figure 3-5 is a zoom view of the computation executing on a kernel very similar to 
New but with an improved thread priority evaluation policy. Each higher resolution view also contains a 
pair of "metering" lines which measure the time between them. Although the two kernels are dissimilar in 
a number of respects, our comparison concentrates only on the difference between their scheduling 
policies. 
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x Figure 3-3: New Kernel: A Zoom view of matrix multiplication 

As can be seen in Figures 3-1 and 3-2, the computation does not behave identically on the two kernels. 
Figure 3-1 shows that Old's scheduler generally gives short, uniform time slices to its threads (here main 
is waiting for its children to terminate and is not rescheduled until that time). Old uses a simple 
scheduling algorithm which usually switches threads every 100 milliseconds. On-the-other-hand, Figure 
3-2 shows that New occasionally gives scheduled threads execution time slices of several seconds as 
evidenced by the initial time slices allocated to main and the collector. New's scheduler uses a 
progressive algorithm which gradually increases the length of the execution time slices it allocates 
causing fewer context-switches per unit time than the old scheduler. This experimental algorithm tracks 
the history and load on the machine for deciding whether execution time slices can be extended. Figure 
3-3 vividly shows this allocation of gradually longer time-slices. During the first moments after the 
multiply threads are spawned, there is regular and frequent context-switching among all the threads, 
much like the behavior of the threads on Old. After some time, the new kernel's scheduler gradually 
schedules each thread for longer and longer periods before switching them out. Because there is no 
significant competition from other threads during the computation's execution, the scheduler determines 
that each thread may run for longer periods without being unfair to any of them. 

^Squiggles" are not used in those cases because the number of events beneath the resolution is small. 
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Rgure 3-4: Old Kernel: A Zoom view of matrix multiplication 

In addition to the advantages New enjoys over Old. there are some drawbacks as well. Threads running 
on the new kernel seem to suffer from context-switch "flutter" where a thread frequently context-switch to 
itself as shown in Figure 3-2. The most pronounced episode occurs in the first time slice allocated to 
main and in several of the smaller time slices allocated, to the multiply threads as evidenced by the 
"squiggles" in those slices. Such behavior has been seen in other views of executions on New. The New 
kernel also suffers some problems in equitably time sharing threads. Examining Figure 3-3. it can be 
seen that just before the first multiply thread is forked off, New switches out the collector and does 
not run it again until nearly all the other children terminate. Alternately, Figure 3-4 shows that Old time 
shares the collector with,the freshly spawned children. 

3.3.2. Comparing Forking Behavior On Old and New 
How threads are scheduled after they are running is not the only difference between the old and new 
kernels. There is also a difference in the forking performance of the schedulers. Figures 3-3 and 3-4 
show quite clearly that New successively spawns the first three multiply threads more quickly than Old. 
They also show that the new kernel eliminates the context-switch "flutter" that occasionally occurs in Old 
just as a thread is forked off. Figure 3-4, for example, shows multiply threads 2, 3, and 4 undergoing 
considerable context-switching soon after they are spawned by Old. The collector undergoes similar 
behavior. Interestingly, much of the context-switching is of the thread to itself, much like the behavior 
described earlier for the collector on New. There is a difference, however. In the case of Old, threads 
usually context-switch to themselves only for a short time after having been spawned. Threads running 
on the new kernel, however, context-switch to themselves in an unpredictable, seemingly random fashion. 

As might be expected, the improved spawning performance of New is not without some undesirable 
baggage. Recall that the first multiply thread is forked off by main, not by the collector. After 
spawning the thread, main does a join and switches out waiting for its children to finish. As was noted 
earlier, once the new kernel's scheduler gets around to forking off the multiply threads, it does so more 
quickly and with less flutter than does Old's. But Figure 3-3 shows that New does not do this until after 
giving the collector an execution time-slice of over six seconds. Old, in contrast, forks the first 
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Figure 3-5: Improved Kernel: Zoom view of matrix multiplication 

multiply thread after about four-fifths of second, negating the spawning advantage New has over it. So 
it seems that while the new kernel spawns threads more efficiently than the old it occasionally delays the 
actual creation of threads because its scheduler does not de-schedule running threads quickly enough. 
Figure 3-5 shows part of the execution of the matrix multiply computation on a kernel with an improved 
thread priority evaluation policy. As can be seen, the improved kernel reduces the amount of time given 
to the collector before the multiply is first allowed to run by about three seconds. 

It is plain from these views that although New's scheduler has advantages over Old's scheduler, it can be 
improved even further. To the designer of the new scheduler4, the views like those shown here confirmed 
that the changes perform as he specified. New's problem of thread's being descheduled for long periods 
is primarily due to a starvation bug which causes threads to occasionally get stuck at low scheduling 
priorities. The improved kernel shown in Figure 3-5 also fixes the starvation bug that is present in New. 
Using a progressive scheduling algorithm similar to the one in New, the improved kernel time shares the 
collector with the multiply threads instead of switching it out for several seconds. The curious 
problem of context-switch flutter detected in these views was unexpected and will be addressed and 
monitored in future tests. 

Before moving on to our next example, it is important to note the utility of these PIE visualizations. Being 
able to see scheduling activity as these figures depict it is excellent assistance in analyzing and verifying 
the performance of scheduling functions. This kind of analysis of scheduling would not have been 
possible without the kind of performance visualization provided by PIE. These schedulers ran on a 
uniprocessor machine, however, and the central aim of PIE is support for the development and analysis 
of parallel computations. We now go onto an example dealing with the parallel execution of the matrix 
computations. 

im^SSS^
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3.4. Saturating a Mul t ip rocessor 
Multi-threaded computations like the matrix multiplier execute differently on multiprocessors than on 
uniprocessors. Obviously, a fundamental source of the difference lies in how many processors the 
threads time-share. On a uniprocessor, only one thread may run at a time, each waiting its turn as 
decided by the scheduler. In spite of anything a scheduler might do, however, the single processor holds 
the latent parallelism of a multi-threaded computation in abeyance. Although all multiprocessors support 
some form of parallelism, often it is not easy to match the parallelism demanded by a computation with 
that available on a particular system. Loosely-coupled and tightly-coupled machines, for example, 
efficiently support different kinds of parallelism. The architecture of a system is not the only factor 
affecting available parallelism. It is not remarkable that an otherwise desirable target system may have 
several users running computations simultaneously, encroaching upon the parallelism available to each of 
them. The performance of a multi-threaded computation thus depends as much on how it is scheduled as 
on how the user designs it. 
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Figure 3-6: Matrix Multiplier: First computation 

Figures 3-6 and 3-7 are PIEscope views showing parts of two matrix multiplier computations executing 
simultaneously on a 16-processor shared-bus computer. There is much happening in these figures but 
our interpretation of them is restricted to the kernel's behavior; specifically, how the kernel's scheduler 
reacts to the periods when the two parallel computations together spawn many more threads than there 
are processors available to run them. Although our discussion contains some fairly detailed analysis, it is 
not intended as an exhaustive critique of the scheduler's performance. Rather, we mean it only as an 
another illustration of how a scheduler's behavior is observable using the PIE environment. 
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Figure 3-7: Matrix Multiplier: Second computation 

3.4.1. Interpreting the Figures 

As in the previous examples, the computations are matrix multipliers, but here they execute on a 16-
processor shared-bus computer. As before, the colored rectangles represent periods when threads are 
running while white rectangles represent the periods when threads are switched out. Because the views 
depict executions on sixteen processors, cutting a swath vertically through a view at any point may slice 
through as many as 16 running threads instead of just one as was the case in the uniprocessor 
executions. The kernel schedules the threads using a simple, non-discriminating algorithm with a goal of 
assigning equal time-slices to competing threads. To facilitate the comparison of the views, the time-
stamps of the computations are normalized to each other. That is, a time-stamp of 26.300 seconds in 
one computation, for example, is simultaneous with a time-stamp of 26.300 seconds in the other. The 
time stamps at the beginning and end of the PIE views in Figures 3-6 and 3-7 are almost identical5, 
indicating that the views are snapshots of roughly the same period in time. A similar pairing of time 
stamps is done in Figures 3-8 and 3-9. 

The two computations spawn several threads expecting that the scheduler will run them in parallel. By 
the time they terminate, each will have created 33 logical threads, but only 17 physical threads. In PIE, 
invisible user level run-time parameters limit the number of physical threads each computation may 
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execute in parallel based on considerations such as the architecture of the target system. Thus even 
though the computations may ask for 33 logical threads in parallel, they receive only 17 physical ones 
from the kernel. As will be shown shortly, the surplus logical threads must wait to execute until a physical 
thread becomes available (upon the termination of another logical thread, for example). 

3.4.2. General Scheduling Behavior 
Our discussion is restricted to the periods when the matrices are actually multiplied since these periods 
exhibit the most interesting behavior. The vertical metering lines in Figures 3-6 and 3-7 mark the 
approximate moment when the second computation commences multiplying its matrices. It is quickly 
seen in both views that especially in the later stages of the computations some threads run without ever 
being switched out. Other threads occasionally suffer some context-switch flutter, as clearly shown by the 
scattered periods of dense "squiggles," or are switched out for long periods before being allowed to run, 
as in the case of thread number 13 in the first computation in Figure 3-6. Unfortunately several of these 
scheduling phenomena not are explainable without intimate knowledge of the kernel's scheduling policy 
and what other tasks, if any, are running on the machine. In the discussion that follows, however, it is 
important to know only a few basic characteristics of the kernel. First, on this particular machine, the 
kernel designates one processor as a master processor on which all thread creation and other special 
work, such as certain disk accesses, is done. If all processors have been allocated and a new thread is 
spawned, the scheduler occasionally will not run the thread right away, apparently waiting to see if 
another thread finishes before adding the thread to the run-queue. Also, if at any time there are more 
threads than processors eligible to run, the scheduler will usually first context-switch threads that have 
been executing for long times. Knowing only these characteristics as wellas the approximate number of 
threads vying for processors, we will be able to discern the cause of several of the more general 
phenomena like the context-switch thrashing occurring immediately after the PIE metering line in Figure 
3-6. 

Let's begin examining some general features by looking at the period immediately after the computation 
in the top view of Figure 3-8 starts spawning its multiply threads. Here, for about a second or two, several 
of the threads are executing unencumbered by context-switches, while others are either switched out, the 
collector and the number 13 multiply thread for example, or switching repeatedly as in the case of 
threads 14 and 15. For the most of this time, the first computation is executing fourteen threads while the 
bottom view in Figure 3-8 shows the second computation executing two threads, its own main and 
collector. Together, the two computations saturate the sixteen processors of the computer. As more 
processors are given work, it becomes more difficult for the scheduler to make equitable assignments. As 
shown in the top view, thread 13 of the first computation actually does run for a brief time, on the master 
processor, but the scheduler immediately removes it to run on another processor because there is 
probably some work queued up for the master. Each of the other processors is occupied, however, so 
the scheduler hangs the thread. Whether or not the scheduler is doing a good job here is a question we 
address later. 

Back to the computations. We are examining the point immediately after the first computation spawns its 
multipiers when there is a total of roughly sixteen threads actively vying to run on sixteen processors. 
Shortly, however, the scheduler resumes running collector and thread 13 of the first computation. 
Here, instead of switching another thread out for a long period, the scheduler iterates through the threads, 
switching one or two out at a time, keeping the number of running threads at sixteen. This decision 
causes more frequent context-switching among the other threads, but might be a more equitable way to 
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Figure 3-8: 

A closer look at the multipliers 
Top: First computation 

Bottom: Second computation 

assign processors if, for example, the threads frequently communicate among themselves. As shown in 
Figure 3-8, the first computation's initial group of multiply threads finish executing before the second 
computation spawns its multipliers. Since the second computation has not begun vigorously competing 
for processors, the scheduler quickly begins assigning a new group of the first computation's multipliers to 
processors. Although the logical threads associated with these new multipliers were created about the 
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same time as the initial group of multipliers, each has been waiting all this time for one of the original 
logical multiply threads to relinquish the physical thread it is tied to. Not many of the first 
computation's physical threads are relinquished and reassigned because several of the original multipliers 
are parents refusing to relinquish their physical threads until their respective children terminate. Retaining 
their physical threads, several of the original multipliers switch out here. Later, they briefly switch back in 
once or twice to join a child or to exit themselves. The parents' reluctance to relinquish their physical 
threads until after all respective children have been joined coupled with the run-time thread limits can 
potentially lead to a form of dead-lock where no new threads can be created. These PIE views led to a 
modification of both the program and the run-time support code in order to permit as much parallelism as 
the machine could provide. 

Looking at Figure 3-8 it is seen that shortly after the first computation's new group of multipliers begins, 
the second computation suddenly starts spawning the physical threads of its own multipliers (just after the 
first metering lines in top and bottom views) until it reaches the limit of 17 physical threads. It can be seen 
in the bottom view that several of the second computation's threads are not immediately assigned a 
processor. Rather, they are switched out for rather long periods before they commence running. Despite 
this, there are still more threads vying for processors than are available to run them. At this point the 
scheduler begins imposing a context-switching toll on the first computation, leaving a number of the 
second computation's threads alone. After a while, however, both computations begin to thrash quite 
heavily just after the second metering line in both views in Figure 3-8. The term "thrash" is appropriate 
because it calls to mind the thrashing that occurs in virtual memory systems when there are too many 
users demanding too many pages. Such scenarios often confound, paging algorithms and cause them to 
repeatedly swap pages to and from disk. The heavy context-switching occurring here is consists of three 
dominant occurences: 1) switching reminiscent of the "flutter" described in the uniprocessor executions, 
2) interprocessor exchanges of threads where two processors simply swap the threads they are running 
and, 3) "genuine" descheduling where a thread is switched out for a period of time. Eventually, the 
number of threads contesting for the processors diminishes and the scheduler is able to assign the 
threads without thrashing them. 

PIE supports an execution view, called the cpu-wew, that shows the behavior of processors during the 
execution of a computation. Figure 3-9 shows cpu-views of the first and second computations during 
roughly the same block of time as shown in Figure 3-8. As in the previous views, time is measured in 
milliseconds on the horizontal but here the machine's processors are ordered and arbitrarily numbered on 
the vertical. Opposite each cpu are alternating dark and white rectangles. A dark rectangle represents 
an identifiable executing thread while a white rectangle is a period when none of the respective 
computation's threads are running on the associated cpu. Each figure shows only those processors used 
by one of the computations. Only processor actions corresponding to threads belonging to the first 
computation are shown in the top view of Figure 3-9, for example. Examining the distribution of dark 
rectangles in both views, it is immediately obvious that before the second computation begins spawning 
its multipliers, the first computation has almost exclusive use of the 16 processors on the machine. After 
the spawning, however, the respective processor views show that at many times, only a fraction of the 
processors are allocated to each computation illustrating their competition for those resources. 
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Figure 3-9: 

Selected cpu views of the computation 
Top: First computation 

Bottom: Second computation 

3.4.3. The scheduler's performance 

Did the kernel do a "good" job scheduling these competing computations? The answer is probably that it 
could have done better. How to improve its performance is a difficult issue and is the subject of 
considerable research. See [12] [3] [14] [4] [17] [13] for examples of some of the issues. It is not always 
clear what the goals of a multiprocessor scheduler should be. Should it strive for high performance of 
isolated computations or high processor utilization for multi-programming support? The demands of 
parallel computations often conflict when they are executed on the same parallel machine. For example, 
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let's say there is a computation consisting of several sets of threads that, because of communication 
dependencies, must be scheduled as sets is the desired speedup is to be obtained. A scheduler whose 
first priority is to keep all its processors busy may never schedule those threads appropriately, especially 
if the machine is loaded. In the case of the two simultaneously executing computations just discussed, 
there were no special requirements for scheduling them. This was fortunate because the kernel had no 
way of handling special scheduling requirements of computations. 

These PIE examples have shown the value of visualization in evaluating the performance of user-level 
computations and kernel behavior as well. We now conclude our discussion of performance visualization 
by remarking on some of the issues involved in correctly presenting visual information. 
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4. Improving the Environment 
PIE is not just an environment for debugging performance. Underlying the architecture of the PIE system, 
is a theoretical framework for predicting, detecting and avoiding performance degradation. The basic 
ideas of this framework, enunciated in [16] [9] [20] and [19] are not rehashed here. Instead we discuss 
some of the issues of suitably retrieving and presenting performance information. 

The experience of designing PIE has shaped our ideas on how to detect and isolate performance 
problems in a performance debugging environment. First, there is a question of whether there is a 
preferred methodology for monitoring performance in a visualization environment. Is there a best way to 
use performance debugging environments like PIE? What environment features do frequent users ask 
for? How must performance data be filtered and presented in order to accomodate these requests? 
Secondly, there is question of reporting accurate performance information. How does collecting 
performance data affect computations and what can be done to diminish the effects? Finally, the 
demands on an environment are different if performance data is collected only while developing a 
computation or whether data collection continues as an ancillary but permanent part of a computation 
after it is released for use. 

4.1. Performance Monitoring Scenarios 
Monitoring scenarios can be roughly divided into two broad categories: 1) design phase monitoring and, 
2) design and deployment phase monitoring. In the first case, designers use performance debugging to 
sculpt and tune performance of computations before deploying them, unmonitored, for production uses. 
In the second case, computations are monitored not only during their design, but also after they have 
been deployed for use. The two cases place different demands on their respective monitors. For 
example, if a computation is to be released unmonitored, the most important characteristic of the 
programming environment is that it report the computation's performance as if monitoring perturbation 
were absent. It is occasionally desirable, however, to include monitoring as part of a deployed 
computation. For a computation that is monitored while it is deployed, it is more important that any 
performance penalty caused by the presence of a monitor is acceptable and that the monitor maintain a 
subservient, low-priority role with respect to the primary functions of the computation. 

4.2. User Control of the Environment: Handling Changing Demands 
Programmers usually do not know apriori where performance problems will arise. Realizing this 
ignorance, a programmer might begin measuring performance by monitoring only the high-level behavior 
of a computation. As the environment reports what the computation is doing, the programmer might 
decide to direct attention to more detailed behavior. For short computations, this step-by-step analysis 
may be spread over several successive executions, each one monitored differently. This is impractical for 
continuously executing computations (industrial control programs, for example) or those which require 
such a long time to execute that the turn-around time until the next observable execution is unacceptable. 

4.2.1. Interactive Run-time Capabilities 

Environments with interactive run-time capabilities let programmers probe computations as they execute. 
They allow programmers to peruse the execution of computations, moving their attention to different parts 
or asking for greater detail as the computations proceed through the different stages of their execution. 
For example, a programmer may initially wish to know only how long it takes the iterations of some loop to 
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execute. After examining the iterations for a while, the programmer may decide either to probe deeper 
into the loop or divert his or her attention to some other part of the computation ... all during run-time. In 
order for an environment to be able to adapt to the run-time vicissitudes of a programmer it must have an 
interactive interface. More ambitious environments might support dynamic changes to the object code of 
a computation while it executes so that programmer can conveniently test coding changes during run-time 
instead of resorting to time consuming recompilation [2]. The PIE environment allows programmers to 
observe computations while they execute but has only limited interactive features. These capabilities are 
being extended to support more versatile interaction with executing computations. 

4.2.2. Tailoring a Monitor to a Computation 
In cases where computations are monitored after having been deployed, programmers might be 
interested in adjusting monitoring characteristics in hope of improving its performance and thus the 
performance of the entire computation. A programmer might decide, for example, that monitoring uses 
more I/O bandwidth in an application than it ought to. Because the monitor is supplied by the 
programming environment, however, programmers can not modify the monitor as freely as they would 
computations without risking the integrity of the montoring code. In order to assist programmers in 
improving monitoring performance, environments should carefully provide means by which designers can 
tailor the characteristics of the monitor in order to better meet the performance requirements of their 
computations. The environment, however, must restrict the kinds of changes that are permitted so as to 
ensure that programmers can not introduce any bugs into the monitor. When tailoring a monitor to the 
performance goals of a computation, programmers have to balance the demands of the computations 
against how much and what kind of information is desired from a monitor. If capturing every selected 
event is important, programmers must estimate parameters like the maximum rate at which the monitor 
has to record events. Currently, PIE permits a programmer to modify only a few selected monitoring 
parameters. As part of'ate effort to improve the interactive nature of PIE, however, more options are 
promised for customizing it's monitoring system. 

4.3. Per tufb lng a Computat ion 
Performance monitoring which significantly alters the component execution times of a computation and 
reports only the corrupted times back to programmers compromises their ability to discern performance 
bottlenecks. Consistently and grossly corrupted performance information can be useless or even harmful 
in attempting to improve a computation. Monitors corrupt performance measurements by competing with 
computations for hardware and software resources like processors, co-processors, schedulers and I/O 
drivers. The principal measure of this competition is time. When a monitor takes time away from a 
computation ... when it delays or lengthens a computation ... it perturbs the computation. Time penalties 
are only "first order perturbations. Lengthening the execution times of the individual components of a 
computation might eventually distort the order of parallel events and change what kind and how much 
work the computation does. Direct distortion of event order and general computation behavior via artificial 
sequentialization, for example, is a risk because monitors communicate with computations. 

4.3.1. Measuring Perturbation 
Unfortunately, monitoring run-time performance almost always perturbs a computation. A problem 
confronting programming environments like PIE is how to report accurate performance information 
despite monitoring perturbation. Since monitoring perturbations cannot be completely eliminated, they 
must be compensated for by measuring them in order to be able estimate how the computations would 
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perform without the perturbations. Perturbation measurements consist of calculating where and how 
much a monitor slows a particular computation, whether the monitor artificially sequentializes the 
computation and whether the workload is affected. 
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Figure 4-1: Uncompensated and Compensated Views of Part a Matrix Multiply 
Executed on a microVax II (XF29 Kernel) 

4.3.2. Measurement Based Compensation for Perturbation 

Currently, PIE attempts to compensate for perturbation from the sensor firings on micro-Vaxes and other 
uniprocessors using a fairly simple compensation algorithm where the timestamp of each event is 
adjusted in accordance with how many have events occurred before it. The algorithm compensates for 
each event by subtracting from its time stamp a quantity corresponding to the sum of all the sensor firing 
times of previous events. The top view in Figure 4-1, for example, shows the tail end of a matrix 
multiplication executing on a microVax II running an XF29 kernel (the old kernel in the uniprocess 
scheduling example). The bottom view in the figure shows the same computation after compensation by 
PIE. As can be seen, the computations appear identical except that their termination times and the 
metering line point to their differing execution times. Even without compensating for the sensor firings, 
the execution times of computations executing on micro-Vaxes with and without kernel monitoring are 
generally within one percent of each other. Although the algorithm is fairly successful at compensating 
uniprocessor executions, it does not attempt to modify the total number of context-switches counted in a 
computation even though it is reasonable to expect that shorter computations should suffer fewer context 
switches. 

There is risk of reordering of events using such a simple compensation algorithm. Although this is a 
danger in compensating uniprocessor executions, this inadequacy is particularly severe for 
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multiprocessor executions. More than just sensor firing times need to be taken into consideration before 
a realistic adjustment of the views can be done. Certain types of information about the computation, 
synchronization points arising from communication and thread creation for example, is required if 
compensation is to be attempted. In addition to the computation information, knowledge is required about 
monitor parameters such as sensor firing times, points where the monitor may introduce synchronization 
overhead and how monitor threads are scheduled with the computation. By knowing firing times, the 
relative delay caused by monitor sensors can be determined at any time in the computation. By knowing 
when and where the monitor and computation are scheduled, any significant time-slices when the monitor 
preempted the computation can be accounted for. Because monitors and computations might compete 
for resources other than processors, such as I/O bandwidth, the monitor's use of these resources should 
be known. PIE is investigating how these these factors affect compensation techniques as well as how to 
detect unrecoverable perturbation. 

4.4. Monitor Pr ior i t ies 
Which is more important, the computation's execution or the information about it? This question does not 
have a single answer for it depends on whether the computation is under development or in use. In either 
case, not all information about the computation is interesting, and what is interesting information may 
change as the computation progresses. 

4.4.1. Measuring the Entire Computation.. . 
When developing a computation, a programmer wants to ensure that it performs correctly and 
adequately. During the run-time observation of a computation, the designer is usually examining its 
behavior quite closely. In the initial development stages it is important that very little performance data, if 
any, is lost by the monitor. Failure to record performance data can happen if, for example, buffers for 
caching performance information fill before they can be read. A programmer who is examining the 
synchronization behavior of a computation would be ill served if a monitor begins losing events when 
synchronization occurs. Environments must guarantee that every selected event is recorded, otherwise 
the ability of programmers to discern what their computations really do is compromised. To do so, it may 
be necessary for monitors to occasionally pause computations in order to flush a number of previously 
recorded events to monitor files before resuming them. 

4.4.2. ... versus Maintaining a Performance Level 
The perturbation of a monitor that is part of both the design and deployment phases of a computation is 
no longer perturbation per se, but merely part of the overall behavior of the computation. The real 
behavior of the computation is that of both the monitor and the primary functions of the rest of the 
computation. In most cases, performance data about a computation does not need to be adjusted for the 
monitor's perturbation. Indeed, what is important is not monitoring perturbation, but monitoring 
performance. In such cases, the most important requirement of a monitor is that it never pause a 
computation using high-level synchronization barriers. Such barriers risk delaying the execution of 
important operations. For example, a monitor used in an airflight control application would be used not 
only to ensure the computation's integrity but also as a means to retrieve information about what the flight 
controller and computation were doing when a pathological condition arises (a plane crash, for example). 
During normal operation it is important that the monitor interfere as little as possible with the computation, 
but it would be highly undesirable, for example, if the monitor stopped the computation (and, therefore, 
the flight controller) in order to "catch up" on recording events. No matter how unappetizing losing events 
may be it is more important that the computation continue unperturbed. 
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5. Conclusions 
Visualizing the behavior of computations, as is done in PIE, is a suitable way to study and improve their 
performance. Although PIE is a successful, useful research effort aimed at assisting programmers in 
developing better computations by visually matching performance data onto programming constructs, it is 
not limited to merely improving computations. It is also a valuable educational tool for revealing the 
complexities of both sequential and parallel programming. It helps to remove the veil of mystery 
surrounding the execution of computations on complex systems. Even an operating system's scheduling 
behavior, a seemingly esoteric activity over which the programmer frequently feels and is powerless, is 
revealed simply and elegantly in PIE. PIE is currently available for most workstations and tightly coupled 
parallel computers running Mach. It supports programming in C, MPC, C-threads [5], Fortran and Ada. 
As we complete the work described earlier, the power and value of visualization offered by PIE will help to 
remove additional shrouds of complexity from sequential and parallel computations and the systems that 
run them. 
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