
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Decision Procedure for the Subtype Relation
on Intersection Types with Bounded Variables

Benjamin C. Pierce

10 A u g u s t 1989

CMU-CS-89-169s

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We introduce an extension of the intersection type discipline in which types may contain variables with
upper and lower bounds, present an algorithm for deciding the subtype relation in the extended system,
and prove that the algorithm is correct.

Aein^°(rDODf ffifo^iflKo^ t h e ^ R e s e a r cV n<i the Defense Advanced Research Projects Agency (UUU), AKPA Order No. 4976, monitored by the xxxxxxx under Contract No. N00014-84-K-0415.

IhnrJie^fn^K C°lLcl^ion?. contained in this document are those of the author and should not be interpreted as
°?Cial ^^'jfS^ e x P r e s s e d o r ^pHed, of the Office of Naval Research, the Defense Advanced

Research Projects Agency or the U.S. Government.

A Decision Procedure for the Subtype
Relation on Intersection Types

with Bounded Variables

Benjamin C. Pierce
CMU-CS-89-169
August 8, 1989

School of Computer Science
Carnegie Mellon University
Pi t tsburgh, PA 15213-3890

A b s t r a c t

We introduce an extension of the intersection type discipline in which types
may contain variables with upper and lower bounds, present an algorithm for
deciding the subtype relation in the extended system, and prove that the algo­
rithm is correct.

This work was supported in part by the Office of Naval Research and the Defense Advanced
Research Projects Agency (DOD) under contract number N00014-84-K-0415. The views and con­
clusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of DARPA or the U.S. Government.

1 INTRODUCTION

1 I n t r o d u c t i o n

The intersection type discipline [CDV81] is a simple, yet powerful language for describing
the behavior of programs. Beyond its intrinsic theoretical interest [BCD83,CDV80], it
appears to be an attractive foundation for the type systems of practical programming
languages [Rey88,Rey89].

Although the usual formulations do not allow quantification over types—there is no
V type constructor—intersection types do provide a form of polymorphism. For example,
the identity function

Ax. x

has among others the intersection type

(int—•int) & (real—•real) & (bool—•bool).

In a theoretical sense, this kind of polymorphism is extremely powerful. For example,
it can be shown that every strongly normalizing A-term has an intersection type of a
particular form. However, from a practical standpoint this "finitary" polymorphism is
somewhat cumbersome. Type inference for intersection types is undecidable [RdRV84], so
to obtain a typechecking algorithm programs must be annotated with some explicit type
information. In Forsythe [Rey88], for example, function definitions must be annotated
with an exhaustive list of the types of the arguments to which the function will be applied:

Ax : int , real, boo l . z

It is natural to ask whether a type system based on the intersection type discipline can
be extended to include infinitary (parametric) polymorphism as well:

Va. Ax : a—*a. x

In fact, since intersection types are given a subtype ordering, it makes sense to consider
bounded quantification [CW85], where the type parameter to a polymorphic function is
constrained to lie between specified upper and lower bounds:

V(int < a < c o m p l e x) . At : a. t + 5

(In Cardelli and Wegner's formulation, bounded quantifiers are given only an upper bound;
we give both upper and lower bounds.)

As a step toward this extension, we consider the somewhat simpler problem of adding
bounded variables to a system of types based on the intersection types discipline. That is,
we do not allow type quantification, but types may contain free variables, which are given
upper and lower bounds by an auxiliary constraint list:

At : a. t + 5 [int < a < complex]

(Adding variables but not explicit quantifiers is reminiscent of the form of polymorphism
found in ML [Mil78], where all type variables in a type expression are implicitly universally
quantified at the outside.)

In designing a typechecking algorithm for a programming language with types of this
form, one major difficulty lies in deciding whether a type a is a subtype of r—intuitively,

University Libraries
Carnegie Melicn University

Pittsburgh, Pennsylvania 15213

2 TYPES AND SUBTYPES 2

whether an instance of a may be safely used wherever an instance of r is expected. The
standard formulation of intersection types provides a perfectly unambiguous definition of
the subtype relation, and it is not hard to see how the definition should be extended to types
with bounded variables. But the most convenient definition of this relation, as the set of
all judgements of the form a < r that can be proved from a certain set of inference rules, is
hopelessly non-effective. Although a straightforward algorithm exists for the case without
bounded variables (see Section 5.1.3), it does not appear to generalize. The presence of
both intersections and variables complicates the situation significantly.

This paper presents an algorithm for deciding the subtype relation on intersection types
with bounded variables. Section 2 describes the type system and the subtype relation in
more detail. Section 3 introduces some notational conventions and presents the formal
definitions of < Q (the subtype relation as a set of inference rules) and leQ (the algorithm).
Section 4 gives a detailed proof of the equivalence of < g and leQ. Section 5 discusses the
algorithm and proof, sketches some alternative approaches, and points out directions in
which our work should be extended.

2 T y p e s a n d S u b t y p e s

This section describes the intersection type discipline and its extension with bounded
variables in more detail. (See [Rey88] for a more thorough presentation.)

2 . 1 T h e I n t e r s e c t i o n T y p e D i s c i p l i n e

Intersection types are built from primitive types like int , real, and bool ; the —• (arrow)
type constructor, the & ("intersection," or "conjunction") constructor; and the special
type n s ("nonsense," "top," or a;).

The exact set of primitive types chosen does not affect any properties of the type
discipline. All that matters is that there be some relation < p r defined on the primitive types
and that this relation be a preorder (i.e., that it be transitive and reflexive). For example,
we might choose the set { int , real , c o m p l e x , b o o l } , with int < p r real < p r c o m p l e x and
b o o l unrelated to the other three.

The type <T\—describes functions from <?i to <72- The rule for subtyping of arrow
types is the usual contravariant one:

o x — < T\—>T2 if T\ < o\ and <j<l < r^.

For example, real—•int < real—>real and complex—•real < real—•real, while
int—•int and real—»real are not related by < .

The type alir describes values that have both type a and type r. The term "intersection
types" is generally preferred over "conjunctive types," though the latter is also used. In
the < preordering, alir is axiomatized as a greatest lower bound of a and r. This leads
to three rules:

<7<kr < a

o< < r

a < T1&T2 iff o < ri and a < T2-

2 TYPES AND SUBTYPES 3

(The left side of the third rule implies the right side by the first two rules and the transitivity
of < . The other direction must be stipulated separately.)

The interaction between the subtyping relations for arrow types and those for intersec­
tion types is captured by the rule:

(r 1 ^ r 2) & (r 1 - ^ r 3) < g r i - + (r 2 & r 3) .

(Note that the converse of this rule follows from the rules already given.)
Finally, n s is a type of any expression whatsoever, including "untypeable" ones. It is

a maximal element in the subtype ordering. For every type r,

t < ns .

Also, we do not distinguish between untypeable values and functions whose result is unty-
peable:

n s < r—•ns.

2 . 2 B o u n d e d V a r i a b l e s

Adding bounded variables to the system just described is actually quite easy. We simply
assume the existence of a countable set of type variables {a , j9, . . . } . Whenever we write
down a type involving variables, we do so in the context of a list of upper and lower bounds
(constraints) for the variables:

a-+(int&/9) [int < a < c o m p l e x , (int->int) < p < (b a t o n s)] .
Such a type represents a set of types (generally infinite) in which the variables are instan­
tiated with all types satisfying the given constraints. To ensure that this makes sense, we
stipulate that the bounds on a variable a must not mention a (directly or indirectly).

We extend the subtype relation to a family of relations indexed by constraint lists,
writing "a- is a subtype of r under constraints Q" as a <Q r.

The subtyping rules for type variables are the expected ones: under a given set of
constraints in which a variable a is bound, a is a supertype of its lower bound and a
subtype of its upper bound. (Of course, like any type, a is also a subtype of itself.)

Extending a constraint list with bindings for fresh variables should not alter the subtype
relation for types involving only existing variables. In particular, if a < r does not hold
under constraints Qy it should never be the case that a < r under constraints Q1 D Q.
To prevent this, we restrict our attention to "well-formed" constraint lists, in which each
variable's lower bound is a subtype of its upper bound (under the portion of the constraint
list in question giving bindings for the variables mentioned in the upper and lower bounds).

A less important restriction is that constraint lists are only allowed to list a given
variable once. To constrain a variable a to be less than both a\ and 0 2 , w « use the
constraint a < ai&az. Similarly, although there is no explicit "least upper bound" type
constructor, it can be shown that any two types have a least upper bound, which can be
used in place of two separate lower bounds for a variable.

3 DEFINITIONS 4

3 Def in i t ions

3 . 1 N o t a t i o n a l C o n v e n t i o n s

Finite lists are written inside square brackets and are normally denoted by variables with
bars, e.g., <f> = [int,real,real—•real]. Since we do not use nested lists, we identify an
element <f> with the singleton list [<f>] and extend the square bracket notation to list ex­
tension and concatenation, e.g., [<j>, <j>], [<f>, <f>f], [<f>, <j>], etc. Also, since list concatenation is
associative, we normally drop nested brackets, writing both [[4>,<(>'],<f>"] and [̂ , [<£', as

n
We will occasionally treat a list as if it were a finite set, writing, for example,

int € [bool , int] .
The length of a list <f> is written length($).

We write A = B to mean that A and B are textually identical. Often, the expression
B will contain one or more metavariables that are "unbound" in the current context.
In this case, A = B is read as "A has the form B," and in the following text the new
metavariables are understood to be bound to the corresponding subphrases of A. For
example, "r = ns—•tr and a <Q real" is a true statement when r is ns—•int.

P&n{S) is the set of finite subsets of a set 5 .

3 . 2 T y p e s a n d C o n s t r a i n t L i s t s

We begin by defining type expressions (hereafter called simply "types") and the lists of
constraints that specify bounds for type variables, as well as some auxiliary notions (like
the size of a type) that are used in the proofs.

Def in i t ion 1: P is the set of primitive types. The metavariable p ranges over elements
of P . (When we need to talk about more then one primitive type at once, we use p with
primes and/or subscripts.)

De f in i t ion 2: V is a countable set of type variables, ranged over by the metavariable
a.

De f in i t ion 3: T is the set of types, defined by the following grammar:

r ::= n s | tIlt \ t—*t \ p \ a

The metavariables r, a, 9, <f>, and tp range over elements of T.
The set of type variables occuring in a type t is denoted by fv(r). If V is a set of type

variables, then T[V] = {r € T | fv(r) C V}.
If r is the list [ri, r 2 , . . . , r n] , then r—•r abbreviates rx—•(r2—•(... (*>»—*r))).

De f in i t i on 4 : A constraint q consists of a type variable a, a lower bound <t>, and an
upper bound tp, written <f> < a < \p.

Def in i t i on 5 : A constraint list Q is a list of constraints [qi,... ,qn] in which:
1. the constrained variables a i , . . . , a „ are pairwise distinct;
2. every type variable occurring in or tpi is the constrained variable of qk for some

k < i.

3 DEFINITIONS
5

Each a t is said to be defined in Q\ its rank, written ranAr g(a t), is t ; its lower and upper
bounds, written / 6 g (a t) and u 6 g (a t) , are fa and fa.

The domain of < 2 , written rfom(Q), is the set of variables defined in Q.

Def in i t ion 6: Let Q = [q\,... ,qn] be a constraint list and a e dom(Q). Then Q\a is
the prefix [g i , . . . , of < 2 , where t = ranfc g(a).

Def in i t ion 7: Let Q be a constraint list. The size of a type r e T[dom(Q)]y written
sizeQ(r), is defined inductively as follows:

size Q(na) = 0
sizeQ(ri&£T2) = sizeQ(ri) + s t z e g (r 2) + 1
sizeQ(Ti-+T2) = 8izeQ(ri) - h 5 t 2 : c g (r 2) + 1
sizeQ{p) = 0
sizeQ{ot) = a ; • ranA;g(a)

The size of a list of types, 8izeQ([ri,... , r n]) , is £ i < t - < n s « r e g (r f) .

3 . 3 T h e S u b t y p e R e l a t i o n

We now define the conditions under which one type is a subtype of another.

Def in i t ion 8: We assume that a reflexive, transitive relation < p r is defined on the
elements of P .

Def in i t ion 9: Let Q be a constraint list. The subtype relation < g is the least relation
closed under the rules in Figure 1.

Formally, < g is the least fixed point of a monotone function—the function / that, given
a relation < g * , adds the immediate consequences of rules A-UB to produce < g

, ~ l ~ 1 . In fact,

< « = U (< « ') •

0 < i < o o

This means we can think of rules A - U B as a proof system, with rules A, B, D, E, G, H,
REFL, LB, and UB as axioms, and C, F, and TRANS as rules of inference. If a <Q r,
there is a finite proof tree whose conclusion is a <Q t. In arguments involving < g , we often
reason by induction on the structure of such proof trees.

De f in i t ion 10: The empty constraint list [] is well formed. If Q is well formed,
a $ dom(Q), and <f> < g l a tj>, then [Q> <f> < a < tp] is well formed.

The predicate wf(Q) is true iff Q is well formed.

3 . 4 T h e D e c i s i o n P r o c e d u r e

Next, we define an algorithm, leQ, for testing whether a type a is a subtype of r. Intuitively,
we intend uleQ(a, r, r)n to be equivalent to "a <Q f—•r" when Q is well formed.

DEFINITIONS

(A) rikr2 <Q ri

(B)

(C)

(D) t <Q n s

(E) 9 < p r 9'

9<q9'

(F) (F)

(G) (r 1 -»r 2)Ac(r 1 -+r 3) < Q TX-*(T2b.Ts)

(H) n s <Q t—>ns

(REFL) T <Q T

(TRANS)

(LB)

(UB)

o<Q9 9<qt

a <Q t

(<t> < a < ij>) e Q

<j><qa

(<t> < at < *l>) € Q

a <Q tp

Figure 1: Rules for < Q

4 CORRECTNESS OF THE DECISION PROCEDURE
7

Def in i t ion 11: Let Q be a constraint list. The predicate

leQ e (T[dom{Q\a)] x List(T[etom(Q| a)]) x T[dom{Q\a)]) - B o o l
is defined inductively by the rules in Figure 2.

It is important that leQ perform a complete analysis of r—descending into both sides
of i^s, into the right sides of —•'s, and into the lower bounds of variables, until it reaches
a primitive—before looking at a at all. This is the reason for / e g ' s middle argument: the
left sides of —*'s are pushed onto a queue as they are encountered and popped off again
later, outermost to innermost, as —>'s are encountered in a.

The treatment of variables in rules 9-13b is probably the least transparent aspect of
the algorithm. Intuitively, a <Q a can hold either because a is a subtype of the lower
bound of a, or because a is identically equal to a. So when leQ encounters a variable a as
its third argument, it both descends into the lower bound of a and begins to analyze the
first argument, leaving the variable itself as the third argument.

To see that leQ is well defined, note that when the value of leQ{(r\ r4, r') depends
recursively on leQ(<T, r, r), it is always the case that sizeQ(a) + 8%zeQ(7) + sizeQ(T) is
strictly less than sizeQ(af) + 8izeQ(Tt) + 5 i>c Q (r ') . Because the set of sizes is well-ordered,
no infinite sequence of recursive calls is possible.

Also, since leQ is deterministic, enlarging Q does not affect its results:

L e m m a 12: Let Q be a constraint list, a € rfom(Q), <t,t e T[dom(Q)]y and 7 e
List(T[rfom(Q)]). Then

4 C o r r e c t n e s s o f t h e D e c i s i o n P r o c e d u r e

We show the implications

<t<qt => leQ(a, [] , r)

and

separately. First, we must go to some trouble to show that leQ considered as a relation (that
is, the restriction of leQ to empty middle arguments) is both reflexive (Corollary 18) and
transitive (Corollary 23). With these out of the way, it is easy to show the first implication
(Theorem 24). The other implication is much more straightforward (Theorem 28).

4 . 1 R e f l e x i v i t y

The proof that the relation computed by leQ is reflexive, though much shorter than the
proof that it is transitive, is not entirely trivial. The difficulty comes from the fact that
leQ is asymmetric: it does a complete analysis of its third argument before ever looking at
its first argument. Thus, a straightforward argument using leQ(ry [] , r) as the induction
hypothesis breaks down immediately. We need to strengthen the induction hypothesis by
introducing the notion of a set, ti g((r), of "reflexive supertypes" of <J.

CORRECTNESS OF THE DECISION PROCEDURE

(1) leQ(a, r, ns) = true
(2) leQ(a, r, r!<kr2) =

A
UQ(<T, T, Tl)

leQ(a, r, r 2)

(3) leQ(a, r, tx-^t2) = / c q (< t , [t,ti], t2)

(4) /(? g(ns, r, p) false
(5) leQ(<Ti&(T2, r, p) —

V
/c g(<ri, r, p)
/cg(«r2, r, ?)

(6a) /cQ((Ti->(72, [r a , f i] , p)
A

' « g (» " a , [] , <n)

leQ(ff2, Tb, p)

(6b) fcg(*l->*2, []> />) = false
(7a)

fcg(*l->*2, []> />)
— false

(7b) leQ(p, [], />') = P<,rP'

(8) / c Q (a , r, />) = UQ(ubQ{a), r, p)

(9) /cg(ns, r, a) = leQ(ns, T, lbQ(a))

(10) fcg(<7l&<72, ^, <*)
V
V

leQ(<TU 7, a)

leQ(cr2, T, a)

leQ(<Ti&ccr2, r, lbQ(a))

(11a) /eg(ai->(7 2 , [r a , r 6] , a) —
V

[]» A fcg(<r2) Tb, a))
leQ(<ri^KT2, [r 0 , r 6] , lbq(a))

(l i b) leQ(ai-+a2> [] , a) Uq(<ti-^<t2, [] , lbQ(a))

(12) / c Q (p , r, a) = leQ(p, t, lbQ(a))

(13a) Ze g (a, [] , a')
V
V

(a = a')
/ e g (u 6 Q (a) , [], a')
/ e Q (a , [] , / 6 g (a '))

(13b) / e g (a , [r a ,r 6], a') —

V
/ e Q (u 6 g (a) , [r«,rt], a')
/ e 0 (a , [ra,r»], W Q (a'))

Figure 2: Rules for /e

4 CORRECTNESS OF THE DECISION PROCEDURE 9

Def in i t ion 13: Let Q be a constraint list. Define

t i g e T[dom{Q)} - MT[rf<>m(Q)])
as follows:

U g (n s) = { n s }
t i g (r i < k r 2) = t i g (r x) U t i g (r 2) U {r!<kr2}
^ Q (r i - ^ r 2) = {ri-^02 | 92 € t i g (r 2) }

Uq{p) = {/>}
u q (q :) = t i g (u 6 Q (a)) U { a } .

We need to establish a few technical lemmas about properties of uQ.

L e m m a 14: <t€uq(<t).

Proof: By induction on the structure of a. If a = ns , cr i&<7 2 , p, or a, the result is
immediate from Definition 13. If a = e r i — t h e n by the induction hypothesis, <7 2 €

t i g (c r 2) , hence < 7 i - * < 7 2 € {<7i—>0 2 | 0 2 € U q (< t 2) } . (£n(f o/Proof)
L e m m a 15: a € uQ(9) =>• uQ(or) C uQ($).

Proof: By induction on the structure of a. (End of Proof)

L e m m a 16: r->rt- e uQ(T—• (ri&r 2)) for t = 1,2.

Proof: By induction on /cn^*A(7).

Baac r = []
Immediate from Definition 13 and Lemma 14.

Induction step: T = [r a , f i] ?&-*rt- € tig(fa—•(r1<fcr2))
By Lemma 15,

T- a -*(n-*(ri&r 2)) € t i g (r - > (r i & r 2))

=» ^ (^ ^ (^ (r x f c ^))) C tig(r->(r x<kr 2))
=> V0 2 6 U g (r 6 - ^ (r 1 ^ r 2))) . ra-+92 e t i Q (f - * (r i & r 2))
=> r a -> (r 6 -*r t) € t ig (r— (r!<kr2)).

(£nc/ of Proof)

Now we are ready for the main proof, from which it follows immediately (Corollary 18)
that leQ is reflexive.

P r o p o s i t i o n 17: r — » r € t i g (c r) leQ(a, r , r) .

Proof: By complete induction on

$ « z e g (< r) + 8%zeQ(r) + s ize Q (r) .

Let

A = T-+T e t i g (a)
£ = leQ(a, r, r).

Case t : r = n s

By rule 1 of Definition 11, B always holds, and so the implication is immediate.

4 CORRECTNESS OF THE DECISION PROCEDURE 10

Cast it: r = t\Ilt2

A => r—>r\ e uq{(t) A r—•r2 € uQ(<r) (Lemma 16)
=• leQ{cr, f, tx) A / e g (< 7 , r, r 2) (IH)
=» B. (rule 2)

Case Hi: r = t\—>t2

A = [t,ti]-+t2 e uQ(a)
=> leQ{*,[rtri],T2) (IH)
=> B. (rule 3)

Case iv: r = p a = n s
By Definition 13, f—>p £ u Q (ns) , so A cannot hold and the implication is trivially true.

Case v: r = p a = <j\Il<j2

A => t—>p € uQ{<ri) V F—>p e uQ(a2) (Definition 13)
=> leQ(au7, p)vleQ{a2y T, p) (IH)
=> B. (rule 5)

Case vi: r = p a = g\-+<j2 T — [rA,R$]

A => (<j\ = r a) A r&—>p € Uq{<t2) (Definition 13)
=» cri 6 u Q (r a) A ffc-^p e uQ(a2) (Lemma 14)
=> leQ(ra, [] , <ri) A /e g (er 2 , Tb, p) (IH)
= B. (rule 6a)

Case vii: r = p a = a\-^a2 r = []
By Definition 13, A cannot hold and the implication is trivially true.

Case viii: r = p1 a = p f = []

A =• p= p' (Definition 13)
=> P<PrP' (reflexivity of < p r)
=> B. (rule 7b)

Case ix: r = p' a = p r ^ []
By Definition 13, A cannot hold.

Case x; t = p a = a

A => r — € u g (u6g(a)) (Definition 13)
=> /e g (t i6g(a)) , r, p) (IH)
=> B. (rule 8)

Case xi: r = a <r = n s
By Definition 13, A cannot hold.

Case sit: r = a a = g\Ilg2

A => ?"—•<* 6 tig(a-i) V f—•a € t i g (a 2) (Definition 13)
/ e Q ((7 i , r , a) v / e g (a 2 , R, a) (IH)

=> B. (rule 10)

4 CORRECTNESS OF THE DECISION PROCEDURE 11

Cast ziii: r = a

A :

a = < 7 i — a 2 T= [rA,R 6]

(ai = Ta) A f&—>a € t i g (< 7 2)

*l € u g (r a) A R&->a 6 ttg (cr2)
fcg(ra, [], <t\) A / e g (a 2 , f6, a)
B.

Case xiv: r = a a = <j\-^ai f =

By Definition 13, A cannot hold.

Case xv: r = a cr = p

By Definition 13, A cannot hold.

(Definition 13)
(Lemma 14)
(IH)
(rule 11a)

Case xvi: r = a'

A

a = a
=» (a = a') V a' € « Q (u 6 g (a))

V leQ(ubQ(a),[},a')

M«,[],a')v/c Q (a,[] ,a')
= B.

(Definition 13)
(rule 13a)
(IH)
(rule 13a)

Case xvii: r = a1

A ••

<r = a

r-fa' e « g (u6 g (a))
leQ(«*«(<*)> r, a')

(Definition 13)
(IH)
(rule 13b)

(End of Proof)

From Lemma 14 and Proposition 17 it immediately follows that leQy considered as a
relation, is reflexive.

Coro l lary 18: leQ(ay [],<?).

4 . 2 T r a n s i t i v i t y

In proofs of correctness of decision procedures for transitive relations, the proof of tran­
sitivity is the hardest single piece. Here, the main induction hypothesis is quite tricky.
Moreover, the fact that the statement of Proposition 22 involves three types, the analysis
in the proof must consider a very large number of cases.

First, it is convenient to introduce a way of abbreviating an indeterminate number of
similar invocations of leQ.

Def in i t ion 19: Let

g ([R ! , . . . , R N] , [<ru . . . , < 7 n]) = leQ(ru [] , * I) A . . . A / e Q (r n i [] , CRN).

Next, for the proof of transitivity to go through, we need to be able to talk about well-
formedness (which was defined in terms of < g) in terms of leQ. If leQ is correct, then the
two alternatives are equivalent. Our proof of correctness therefore proceeds by induction

4 CORRECTNESS OF THE DECISION PROCEDURE 12

on Q, proving the transitivity of leQ (and hence its correctness) from the assumption that
leQi is correct when Q1 is a prefix of Q.

Def in i t ion 20: Let Q be a constraint list. We say that "property S holds for Q" if for
all <r,r e T[dom(Q)},

<r<Qr o leQ(<r,[],'r).

One lemma takes care of a common case analysis:

L e m m a 2 1 : leQ(<r, r, lbQ(a)) => leQ(<r7 r, a).

Proof: Immediate from rules 9-13. (End of Proof)

Now we are ready for the main theorem, from which the transitivity of leQ follows directly
(Corollary 23).

P r o p o s i t i o n 22: Let Q be a well-formed constraint list. Assume that for each
a € T[dom(Q)], property S holds of Q\a. Then

Mr, 7 1 , r') A *0(f", f1) A leQ(r\ F", r")

implies

Proof: By complete induction on

$izeQ{r) + 8tzeQ{j') + sizeQ(r') + sizeQ(T") + sizeQ{r").

Let
A = /eQ(r, F*. r')
B = *Q{T"', ?)

C = leQ(r',T",r")

D = / E G (R , [F " ' , F «] , R ") .

Since f9 and f111 always have the same length, we assume throughout the proof that
whenever T9 = [] , ?" = [] , and whenever ? = [r f̂j], 7919 = [CfJ'].
Case i: r" = n s

By rule 1 of Definition 11, D is always true, so the implication AABAC=>Dis

immediate.

Case it: r" = r{'&r£
AaBaC =

A

A

(A A B A L ^ ^ f i))
(A A £ A /e Q (r ' , f", r£)) (rule 2)
/eQ(r, [F * , N R F)

M M ^ W) (IH (twice))
£>. (rule 2)

4 CORRECTNESS OF THE DECISION PROCEDURE

Caae Hi: r" = r,"-

AABAC = AaBa /eg(j-', [f", t"\, rj')
=• / e < , (M ? ' ») f V »]) r £)

D.

Case iv: r" = p"

(rule 3)
(IH)
(rule 3)

t' = n s
By rule 4, C cannot hold, so the implication is trivially true.

&ct'2

leQ(r, t4, r[)AleQ(T, f1, r^)

Case v: r" = p'

A ABAC =
A B

A (^Q(r[,T",p")vleQ(ri,f",p"))
(/eg(r, 7,,T[)ABAleQ{r[,T", t"))

V (/ e 9 (r , f ' 1 ^) A B A / e Q (r ; , f « , r "))
DVD.

Case vi: r" = p"

AAB AC

r' = r>

A B

A leM, [] , r {) A / e g (r i , f y , /)
M ' . M . r , *)

A ^ (r ' . O . ^ ^ D A / e g ^ , ^ , /)

Case wit: r" = p" r' = r' f = []
—

By rule 6b, C is always false, so the implication holds trivially
Case viii: r" = p" t' = p' r = n s

By rule 4, A never holds, so the implication is trivially true.
t" = p" Case ix:

AAB AC

T1 = p' T = Ti<i

(/eg(r 1 (F*, p') ABAC)

leQ(n,lr»',7"],p»)

V M r 2 , [F " ' , F "] , /)
Z?.

(rule 5)

Case x: t" = p"

A A S A C

(IH)
(rule 5)

t = ri->r 2 f* = [r'a

' « « K . [] , n) A/eg(r 2 , f* 4 , p')

A C

M ' i . l U l A M ' f . l W .)

(rule 2)

(rule 5)

(IH)

(rule 3)

(rule 6a)

(IH)

(rule 6a)

(IH)
(rule 6a)

[] . 1)

4 CORRECTNESS OF THE DECISION PROCEDURE 14

Case xi: r" = p" r' = p' r = ri—*T2 T1 = []

By rule 6b, A never holds, so the implication is trivially true.

Case xii: r" = p" r' = p' r = p 7* = [} T» = []

A A B A C = {p <pr p1) A (/>' <pr p") (rule 7a)
P < P r p" (transitivity of < p r)

= D. (rule 7a)

Case xiii: t" = p" r' = p' r = p T* £ [] V T" £ [}

By rule 7b, either A or C is false, so the implication holds trivially.

Case xtv: r" = p" t' = p' r = a

A ABAC = leQ(ubQ(a), f*, p') A B A C (rule 8)
=• leQ(ubQ(a),[r"',7"},p») (IH)

D. (rule 8)

Case xv: r" = p" r' = a' r = n s

A ABAC = leQ(ns, f*, lbQ(a')) (rule 9)
A B

A ltQ{ubQ{a'),T", p"). (rule 8)

From the well-formedness of Q, we have

lbQ(a') < g l o , ubQ(a').

Property S gives us

leQlJlbQ(a'),[],ubQ(a')).

Lemma 12 then gives

leQ(lbQ(a'),[], ubQ(a')).

Now, since sizeQ(na) + 8%zeQ(a!) > 8izeQ(lbQ(at)) + 8izeQ(ubQ(a1)), the IH applies, giving

/ e g (n s , ?, lbQ(a')) A B A / e g (/ 6 g (a ') , f", /) .

Since Mzc g (a') > «tzcQ(/6Q(a')), the IH applies again, giving D.

This pattern of reasoning arises in most of the proof cases involving variables, and since
the applicability of the induction hypothesis does not depend on the form of r, we need
not repeat the argument when we come to it again. Let

E = / e Q (r , f1, / 6 g (a ')) A B A leQ(ubQ(a!)y r", p").

To indicate that E => D by the well-formedness of Q and two applications of the induction
hypothesis, we write simply

E => D. (wf{Q) + IH x 2)

It will also be convenient to define temporary abbreviations for expressions that appear
several times. Our convention is that these temporary abbreviations are assigned letters in
the middle of the alphabet, while abbreviations whose scope is the entire proof are assigned
letters from the beginning of the alphabet.

4 CORRECTNESS OF THE DECISION PROCEDURE

Case xvi: r" = p" r' = a' r = ri&tr2

AAB AC = Mi V M2 V E, (rules 10 and 8)
where

Mi = leQ{ri, 7*, a!) A B A C

M2 = leQ(T2) T1, a') A B A C.

Now,

M X V M 2 => leQ(ru [r"',f"], p")
V leQ(r2, [?",?'}, p») (IH)

=> D. (rule 5)
E => D. (wf(Q) + I H x

Case xvii: r" = p" r' = a' t = ti—*t2 7* = []

A A B A C = E (rules l i b and 8)
=» £>. (w/(Q) + IH x 2)

Case xviii: r" = p" r'= a' r = t\—>t2 f* = [r^,fj]

A A B A C = MVE, (rules 11a and 8)

where

M = UQ{r'a, [] , n) A / e 0 (r a , T*T, a')

A M r * [],r»)A* 0(rr,rJ)
A C.

Now,

•W =» fcg(C[],n)
A MTi , [fJ f ' , f*] ,p») (IH)

D. (rule 6)
£ => D. (V (Q) + IH x 2)

Cose zti: r" = p" t' = a' t = p

AAB AC - E (rules 12 and 8)
=>• ZX (w / (g) + IH x 2)

Case xx: t" = p" t'= a' r = a T* = []

A A B A C = LvMv E, (rules 13a and 8)

where

£ = (a = a') A B A / e Q (u 6 Q (a ') , p")
M = / e 0 (u 6 Q (a) , 7*, a') A B A C.

Now,

(rule 8)
flW.r.n/') (IH)

(rule 8)
(«;/(Q) + IH x 2)

L Z>.

M / C g

— D.

E D.

4 CORRECTNESS OF THE DECISION PROCEDURE 16

Case xxi: r" = p" r' = a' r = a T1 £ []

AABAC = M V E, (rules 13b and 8)
D. (as in case xx)

Case xxii: r" = a" r' = ns

A A B A C = AaBa leQ(ns, T4', lbQ(a")) (rule 9)

(IH and rule 9)

Case xxiii: r" = a" r' = r{&72

A A B A C = LvMv N, (rule 10)

where
L = A A B A / « g (r { , f " , a ")

Now,

M = AaBa Icq(t2, f", a")

JV = A A B A / e Q (r i & r ^ , 7 " , / 6 g (a ")) .

L => / e g (r , f ' 1 r {) A f l A f e Q (r { 1 f" ,a") (rule 2)

M => L>.
=• / e Q (r , [f" ' , f«] , /6 g (a ' '))
=> D.

(IH)
(similarly)
(IH)
(Lemma 21)

Again, the pattern of reasoning by which N => D appears several times in the remainder
of the proof. So we let

F = A A B A / e g (r ' , ^ , / J g (a "))

and write simply

F => D. (IH + Lemma 21)

Casexxiv: r" = a" r1 = r{-*rj r" = ft',^']
A A B A C = L v F , (rules 11a and 3)

where

L = leQ(T,[T,,rl],T2')ABAleQ(r2,[},r{)AleQM,r't,a").

Now,

L = > M M * " . * *] . " ") (i h)

(IH + Lemma 21)

Ca«zzt>: r" = a" r ' = r j ^ r j f" = []

AaBaC = F (rule l i b)
j D . (IH + Lemma 21)

4 CORRECTNESS OF THE DECISION PROCEDURE

Case xxvi: r " = a" r' = p'

AABAC = F (rule 12)
D. (IH + Lemma 21)

Case xxvii: r" = a" r' = a' t = ns = []

A A B AC = LV EV F, (rules 13a and 9)

where

Now,

L = A A B A (a' = a").

L => / e g (n s , f*, a") A B A / e g (a" , [], a")
=> / e g (n s , f*», a")

£>.
£ =• D.
F => D .

Case xxviii: t" = a" r' — a'

(Corollary 18)
(IH)

(f / (Q) + IH x 2)
(IH + Lemma 21)

t = n s t" ^

A A B A C = S V F (rules 13b and 9)
=> Z?.

Cose zzi i : r" = a" t' = a' r = ri&r 2 f* = []

A A B A C = Z, V Mi V M 2 V £ V F , (rules 13a and 10)

where L is the same as in case xxvii, and

Mi = / e Q (r i , f*, a') A B A C
M2 = / e g (r 2 , 7*, a') AB A C

Now,

X => D.

Mi => /e g (n, [r"',r"],<*")
=> Z X

M 2 =• Z? .

£7 => Z? .

F =• D.

(as in case xxvii)

(IH)
(rule 10)
(similarly)
(w/(Q) + IH x 2)
(IH + Lemma 21)

Cose z iz : r" = a" r' = a' r = Tlicr2 f" []

AAB AC = Mi V M 2 V Ev F

=> D.

where Mi and M 2 are the same as in case xxix.

(rules 13b and 10)
(as in case xxix)

4 CORRECTNESS OF THE DECISION PROCEDURE

Case xxxi: r" = a" r' = a ' r = t^t2 t" = [] T9 = [rj , r*]

A A f l A C => LvMvEvF, (rules 13a and 11a)

where L is the same as in case xxtm, and

M = feQK,[],fi)A/eQ(Ti,Ti,a')ABAC

Now,

L => D. (as in case xxvti)
M => fcg(r«M],n)

A M f i , [f r /] y) (IH)

=> D . (rule 11)
E => 2?. (u//(Q) + IH x 2)
f =>• D . (IH + Lemma 21)

Case xxxii: r" = a" r' = a' r = tx-+t2 t" [] T* = [r'a, f[]

A ABAC = MvEvF (rules 13b and 11a)
=^ D , (as in case xxxi)

where M is the same as in case xxxi.

Case xxxiii: r" = a" r1 = a' r = t\-*t2 f" = [] T9 = []

A A B A C = L V EW F (rules 13a and l i b)
^ D, (as in case xxxi)

where L is the same as in case xxxt.

Case xxxiv: r" = a" r9 z = a! r = tx->t2 t" ^ [] T* = []

A A f l A C = EvF (rules 13b and l i b)
=> D.

Case xxxv: r" = a" r1 = a' r = p = []

A A f l A C = LV EV F (rules 13a and 12)
=> D. (as in case xxvit)

where L is the same as in case xxtm.

Case xxxvi: r" = a19 r9 = a9 r = p r" ^ []

AABAC = £ v F (rules 13b and 12)
=> D.

4 CORRECTNESS OF THE DECISION PROCEDURE 19

M
N

III
III

(a = a') A B A leQ(ubQ(a'),
leQ(ubQ(a), f*, a') A B A C.

L => Z).
M

=>
M « * g («) , »*, a")
Z>.

N =>•

=>
l?",r"],a")

D.
E => D.
F => D.

Case xxxvii: r" = a" r' = a' r = a r" = [] 7* = []

A A S A C => LvMvNvEvF, (rule 13b)

where £ is the same as in case xxvii, and

Now,

(as in case xxvii)
(IH)
(rule 13)
(IH)
(rule 13)
(wf(Q) + IH x 2)
(IH + Lemma 21)

Case xxxviii: t" = a" r' = a' r = a r" ^ [] f9 = []

A A S A C = M V i V v S v F , (rules 13b and 13a)
D, (as in case xxxvii)

where M and iV are the same as in case xxxvii.
Casexxxix: r" = a" r'= a' r = a r" = [} 7* £ []

A A f l A C = L V i V v E v F , (rules 13a and 13b)
=> Z?, (as in case xxxvii)

where L and N are the same as in case xxxvii.
Casexl: r" = a" r ' = a' r = a 7 " £ []

A A B A C = NvEvF, (rule 13a)
Z?, (as in case xxxvii)

where N is the same as in case xxxvii. (End of Proof)

From Proposition 22, it now follows directly that the relation computed by leQ is transitive:

Corol lary 23 : leQ(ry [] , r') A leQ(r\ [], r") =• leQ(r, [] , r»).

4 . 3 M a i n P r o o f o f C o r r e c t n e s s

With transitivity and reflexivity now in hand, it is a simple matter to complete the proof
that the relation computed by leQ is contained in the relation < Q whenever Q is well
formed.

T h e o r e m 24: Let Q be a well-formed constraint list. Assume that for each a e
T[dom(Q)], property S holds of Q\a. Then

<t<qt => leQ(<ry [] , r).
Proof: By the comments in Section 3.3, it suffices to show that if there exists a proof of
a <qt from rules A-UB, then leQ(cry [] , r) = true. We may therefore argue by induction
on the structure of this proof. We proceed by cases on the last rule used.

4 CORRECTNESS OF THE DECISION PROCEDURE

Case A: ri<kr2 <qt\

ti e uQ(Tl)

/eQ(ri<kr 2, [], ri).

(Lemma 14)
(Definition 13)
(Proposition 17)

Case B: ri&r 2 < Q r 2

Similar.

Case C:
a <Q T\ a <q r 2

leQ(<r, [], tx) A leQ(a, [] , r 2)
^ q (^ []) ^ 1 ^ 2) .

Case D: r < g n s
By rule 1, leQ(r, [] , ns) holds for all r.

(IH)
(rule 2)

Case E:
P<yrP

P<qP'

By rule 7b, p <pr p' leQ{p, [],

Case F.

leQ(ri, [] , « t i) A / e G (< 7 2 , [] , r 2)

leQ(<Ti-KT2> [], r i - ^ ^) .
(IH)
(rules 6a and 3)

Case G: (ri—•r 2)<k(ri-»r 3) < Q r i -*(r 2 &r 3)
Let T = (ri-^r 2)&(ri-^r 3) . Then

RI-*R 2 G ttG(RI-^R2) A RI->R 3 € ttG(RI->R3)

=> RI-^R 2 E ttg(T) A Ti-+TZ € tig(T)
= > fcg(r, [R I] , R 2) A / E g (7 \ [RI], R 3)

=• / c g (T , [n] , r 2 &r 3)
= > M ^ , [] , n ^ ^ & r s)) .

(Lemma 14)
(Definition 13)
(Proposition 17)
(rule 2)
(rule 3)

Case H: n s < Q r- •ns
By rule 1, / e Q (n s , [r], ns) . By rule 3, / e Q (n s , [r], r-»ns) .

Case REFL: t < q t

By Corollary 18, leQ(r, [] , r).

T
Case TRANS:

<t<q9 9<Q

— Q

leQ{v, [I 9) A leQ{9,[], r)

leQ(ay j] , r) .
(IH)
(Corollary 23)

4 CORRECTNESS OF THE DECISION PROCEDURE 21

Case LB: ^ » ^
<t><Q<X

M M *) . [}, lbQ{a)) (Corollary 18)
M M t t) . []» <*)• (Lemma 21)

Case UB:
a < g 0

ubQ(a) e uQ(ubQ(a)) (Lemma 14)
=> t i6 g (a) e tig(a) (Definition 13)
=> leQ(a, [] , u6 Q (a)) . (Proposition 17)

(End of Proof)

Our last task is to prove that the relation computed by leQ contains < g . It is convenient
to begin by establishing some simple properties of < g .

L e m m a 25: n s < g r—•ns.

Proof: By induction on length(t).

Baat step: f = []

By rule REFL, n s < g ns .

Induction step: T= [ra,Tb} n s < Q Tb—•ns

ra—•ns < Q r a — • (r f t - v n s) (IH and rule F)
n s < g r 0 -+ns (rule H)
n s < g Ta-*(Ti->ns) (rule TRANS)

L e m m a 26: (T->ri)k(r-+T2) < Q 7 p ->(r 1 fcr 2) .

Proof: By induction on length(r).

Base step: r= []

By rule REFL, t\Ilt2 < g ri&r 2 .

Induction step: T = [r a, r&] (n—*ri)&(r6—^r2) < g r&—•(r1&r2)

^a^((r6-*ri)<k(n-^r2))
< g ^-• (r 6 - -^(r i&r 2)) . (rules REFL and F)

(End of Proof)

<Q *a' K f o - ^ J & f a - ^ a)) . (rule G)
(r«-^(r6-»ri))&(ra-^(r6^))
< g r a —(r 6 ^(r!<kr 2)) . (rule TRANS)

L e m m a 27: T—• / 6 q (o 0 < Q F—>a.

Proof: By induction on /cn^A(r).

(£ V i d of Proof)

4 CORRECTNESS OF THE DECISION PROCEDURE 22

Base step: T=[]
By rule LB, lbQ{a) <Q a .

Induction step: r=[r a,r&] >lbQ(a) <Q f&—>a

r a < g ra (rule REFL)
=• r«->0v->Z6g(a)) < g ra-+{rb-+a) (rule F)

(End of Proof)

T h e o r e m 28: Let Q be a constraint list, a,r € T[dom(Q)]y and r e List(T[<fom(<3)]).
Then

/e g ((T, r, r) => (7 < g r—*r.

Proof: By induction on the recursion depth of the computation of leQ(a> f, r). We argue
by cases on the outermost invocation of leQ.

Case 1:
leQ(a, r, ns)

=> n s < Q r—•ns (Lemma 25)
= > ^ < q r->ns. (Rules D and TRANS)

Case 2:

Case 3:

Case 4:

Case 5:

leQ(<T, T, rikr2)
leQ(cr, r, n) A leQ(a, r, r 2)
<r <Q r—•ri A (7 < g r—>r2 (IH)
* < Q (r-^ri)&(r-^r 2) (rule C)
a < g r->(ri<kr 2). (Lemma 26 and rule TRANS)

/<?g(<7, r, r i - ^ r 2)
/ c g (a , [f , r i] , r2)
<r<g[T,Ti] - .T» (IH)
< 7 < g r - > (r i - * r 2) .

/ e Q (n s , r, p)
false
n s < Q r—>p. (trivially)

/ e g (^ i & a 2 , r, p)
/<5g(<Ji, r, p) V leQ(a2,r,p)

< g >p V (7 2 < Q f—•p (IH)
<ri<k<72 < g r-*p V (7i<k<72 < g r->p. (rules A, B, and TRANS)

4 CORRECTNESS OF THE DECISION PROCEDURE

Case 6a:

Case 6b:

Case 7a:

Case 7b:

Case 8:

Case 9:

Case 10:

leQ(<Ti-+a2> [raJb]> p)

leQ{Tai [], <ti) A leQ((T2, 7b, P)

Ta<Q<7\ A (72 <q Tb-+p (IH)
^ 1 - ^ 2 < g ra-+(Tb-+p). (rule F)

/e g(<7i-MT 2, Hp)

false
a\—><T2 <q P- (trivially)

leQ{p, [ra9Tb], P1)
false
P <Q [ray n]->p'. (trivially)

^g(/>, []> P1)
P < P r P1

P <Q />'• (rule E)

/ e g (a , r, p)

leQ(ubQ(a), r, />)

uI>q(<x)<qT->p (IH)

a < g r->p. (rules UB and TRANS)

teg(ns, r, a)
/ e g (n s , r, /6g(a))
n s < g /6g(a) (IH)
n s < Q r->a. (Lemma 27 and rule TRANS)

/ e g (< 7 i & a 2 , 7", a)

leQ{ai, ry a)

V fcQ(cr2, T9 a)

V / e g (^ & (T 2 , f, /6g(a))

V g2 < g r->a
a i & (7 2 < g r-> / 6 Q (a) (IH)
ai&c<T2 <q t—kx (rule A)
<7i<ktr2 < g r—•a (rule B)
<Ji<ka 2 < g r->a. (Lemma 27 and rule TRANS)

V

V
V

4 CORRECTNESS OF THE DECISION PROCEDURE 24

Case l i b :

Case 12:

Case 13a:

Case 11a:

- (M r a , [U i) A /e g(<7 2, r 6 , a))
V /eg(<7i-x7 2, [ra,Tb], lbQ(a))

= > (^ a ^ g ^ l A (T2<QTb-^a)

V (7 ! - ^ (7 2 < g [r a , r 6] ^ / 6 g (a) (IH)
=> ai-+a2 <Q [TG,7b]->a (rule F)

V a\—><T2 < g [Ta,Tb]—>a. (Lemma 27 and rule TRANS)

leQ(ai-+a2, [],<*)

leQ(<Ti-><T2> [] , lbQ(a))

<t\^<T2 <Q U>q{<x) (IH)
<ri-><T2 <q (Lemma 27 and rule TRANS)

leQ(p, f, a)

leQ{p, 7> lbQ{a))

p<QT-^lbQ(a) (IH)
p <Q r->a. (Lemma 27 and rule TRANS)

leQ(a, [] , a')
(a e e a')

V fcg(ti6Q(a), [], a')
V fcg(a,[],Z6g(a'))

a < g a ' (rule REFL)
V u 6 g (a) < g a ' (IH)
V a < g / 6 g (a ') (IH)

a <Q a1

V a <Q a' (rules UB and TRANS)
V a <Q a'. (Lemma 27 and rule TRANS)

leQ(a, [r a ,r 6] , a')
= leQ(ubQ(a), [r a , r 6] , a')

V leQ(a, [ra9Th], lbQ{ct))

=> ti6 g(a) < g [r a , r *] - > a '
V a < g [r a , n H / t g (a ') (IH)

=> <* < g [*a,nj->a' (rules UB and TRANS)
V a < g [r a i (Lemma 27 and rule TRANS)

(End of Proof)

Together, Theorems 24 and 28 assure us that the algorithm leQ does indeed compute
the same relation as < g :

Coro l lary 29: Let Q be a well-formed constraint list and <t,t e T[dom(Q)].

Then
<t<qt O leQ(a9 [] , r) .

Proof: By induction on the length of Q. (End of Proof)

Case 13b:

5 DISCUSSION
25

5 D i s c u s s i o n

5 . 1 A l t e r n a t i v e D e c i s i o n P r o c e d u r e s

The algorithm in Definition 11 is the only one that we have been able to rigorously prove
correct. But there are several others that seem intuitively plausible, and whose proofs of
correctness, if they exist, might turn out to be considerably more tractable than the one
in Section 4.

The most obvious difficulty with the formulation of leQ is that the cases for variables
and for primitives on the right are extremely similar—each variable case is simply the
corresponding primitive case with an extra disjunct where the variable is replaced by its
lower bound. Both algorithms presented in this section attempt a "tighter'' factoring of
the problem.

Another unfortunate property of our existing formulation of leQ is its (lack of) efficiency.
Not only must the left argument be completely analyzed for each primitive encountered
on the right, potentially duplicating significant work (especially when T is nonempty),
but worse yet, many nearly identical subcomputations will be generated when a variable
appears on the right, because it will be replaced by its lower bound at every step of the
analysis of the left argument. Again, both algorithms in this section attempt to reduce
duplication of work. (The second one introduces some additional inefficiency of its own,
however.)

All three algorithms (the one in Definition 11 and the two about to be discussed) are
variants of an algorithm le> consisting just of rules l - 7 b from Figure 2. It is not hard to
show that le is a decision procedure for the relation <—the least relation closed under
rules A-TRANS of Figure 1.

5 .1 .1 F r o z e n Var iab les

In the rules in Figure 1, there are three ways that a variable a can be a supertype of a
type a:

1. By rule TRANS or LB;
2. By rule A, B, or REFL;
3. By rule UB.

Let us assume that the first case will take care of itself. (We know that le is transitive.
If we extend it to handle variables in such a way that the second and third cases work
properly, then there should be nothing about the presence of variables that makes the first
case any more problematic than it was to begin with. Of course, this reasoning is not
strictly valid, since, for example, the middle term 0 in rule TRANS can be a variable; this
situation can actually be quite delicate.)

In the second case, a behaves exactly like a primitive type: the fact that a leQ a has
nothing to do with the bounds of a.

In the third case, a behaves exactly like its lower bound.

These observations lead to the following idea: when a variable is encountered as the
third argument, we try both replacing it with its lower bound, and replacing it with
freeze(a), which is a supertype of a and nothing else. Figure 3 defines an algorithm lef

Q
r

5 DISCUSSION 26

(1) le'Q

T{a, r, ns) true
(2) le'Q

r{a, T, n & n) = lef

Q

r{<?, r, n) (2) le'Q

r{a, T, n & n)

A Icq r, r 2)

(3) leQ

r(a, r , 7 - ! ->r 2) =
(4) / e £ (< 7 , f, a) = r, ttg(a)) / e £ (< 7 , f, a)

V T> freeze(a))

(5) / e £ (n s , f, 5) = false
(6) leQ

r(aik.<T2, r, S) (6) leQ

r(aik.<T2, r, S)
V le'Q'{*2,r9 S)

(7a) leQ
T(<Ti^<T2, [Ta,Tb], S) = lef

Q

r(ray []9ai) (7a) leQ
T(<Ti^<T2, [Ta,Tb], S)

A lef
Q

r{<T2, rb9 5)
(7b) /e£(<ri^<r 2, [] ,*) = false
(8) fc£(a, T, 6) = / e £ (u 6 Q (a) , r, 5) fc£(a, T, 6)

V lef

Q

r(freeze(a), r, 5)

(9a) le'Q'(6, [r.,r,],*') false
(9b) = (6 = p A 8* = p1 A p < p r p')

V (5 = /reeze(a) A S' = /rcezc(a))

Figure 3: Rules for Ze£

based on this idea. (The metavariable 5 ranges over both primitive types and frozen
variables.)

This algorithm is intuitively very plausible, but we have not been able to show that
it is equivalent to < g . For every induction hypothesis that we have been able to come
up with, the proof of transitivity breaks down at the case r < Q r{&r 2 < Q p". Indeed, for
the most straightforward definition of "transitivity," where frozen variables are taken to
belong to the set P of primitive types, le% is not transitive. Here is the counterexample.
Let

Q = [int < a < real] .

Then

/ e £ (i n t , [] , a)

and
leq{<x> [], freeze(a))9

but

-We£(int, [] , freeze{a)).

5.1 .2 M a r k e d Var iab les
Another idea is to completely discard variables appearing as the third argument to leQ,
replacing them by their lower bounds and continuing until a primitive is reached on the

5 DISCUSSION
27

(1) le^{a,r,V_,ns,V)
(2) / ^ (o r . f . V . r x & r j . V)

(3) / e J ^ . r . r . n - r j . V)
(4) le"(<T,7,V^a,V)
(5) /«3(ns, f, V, P±V)
(6) /e2(ffi&(r2) r, V, p , V)

(7a) fc-(cri-.<r2, [r.,r 4], [V . , F 6] , p, V) =

(7b) Ze - fa -xra , [] , [] , />, V)
(8) / e - (a , r , V , p , V)

(9a) te3(/»,[r.,ri],[V.>r»]>p',V)
(9b) Ze5(p,[],[LV,V)

A

V

V

true
U$(<r, r, V, n , V)
It-{a, r, V, t2iV)

[TMAV,V\,r2,V)
le-(a,r,V,lbQ(a),Vu{a})
false
U^ffu r> V, P, V)

r, V, P , V)

Wra, [], [l o-u {})
le%(<r2> r», Vb, P t V - Va)
false
le%(ubQ(a), r, V,j, V)
{aeV A V f f € 7 . a € [/)
false
{p = PAp' = p'A p<„p')

Figure 4: Rules for le%

right without ever looking at the first argument. Later, when a variable is enountered on
the left, we simply notice whether that variable was passed through during the analysis
of the third argument, succeeding immediately if so. The extra parameters of le™ in
Figure 4 keep track of the variables that are marked as "already seen on the right." (The
metavariable V ranges over finite sets of variables.)

Again, the intuition behind the algorithm is quite simple (though not as simple as the
others), and its proof of correctness (if there is one!) ought to be shorter and more elegant
than the one in Section 4. We have tried Itg on several examples and even sketched a
proof of reflexivity, but, as always, the proof of transitivity raises serious difficulties. The
problematic case is the same as for le{j. The solution almost certainly involves finding a
clever induction hypothesis.

5 .1 .3 C a n o n i c a l s e t s of t y p e s

One other promising direction lies in trying to directly extend a proof technique that gives
a very simple proof of the equivalence of < and It. We define a notion of (stta of) canonical
typts, and show that the rule of subtyping for these is equivalent to both < and It.

Let the function (-) * be defined as follows:
m * = { }
(< 7 i < k o r 2) * = C T 1 * U a 2 *
(< 7 l - K 7 2) * = { < 7 l - » 7 2 | 72 € < 7 2 * }

P* = {P>.

Now define the relation <* simultaneously on canonical types and sets of canonical
types as follows (7 ranges over canonical types; r ranges over sets of canonical types):

5 DISCUSSION 28

P < V
P r { - 7 ^

r i - * 7 2 p ' .

iff
iff
iff
iff

VVef. 3 7 €f. 7 < * 7 '

P<pr p'

The central difficulty in extending this approach to types with variables is that whereas
here the set of canonical types on the left of <* represents a disjunction and the set of the
right represents a conjunction, the need to replace variables on the right with either their
lower bounds or with something like frozen versions of themselves leads to disjunctions on
the right as well.

5 . 2 E x t e n s i o n s

This section briefly mentions some of the ways in which the work presented in this paper
should be extended.

5 .2 .1 B o u n d e d Quantif iers

The present formulation of types and subtyping was always intended to be a step toward
working with types containing bounded quantifiers. This "easy first step" turned out to
present sufficient challenge that we have not yet thought seriously about the general case.

Two directions of study seem worth pursuing:

P r e n e x b o u n d e d quant i f i cat ion stands in the same relation to the pure system of in­
tersection types as ML's prenex quantifiers to the system of simple types. We know
of no current research into extending this system of types with bounds on the quan­
tifiers or into combining it with intersection types, but believe that both may be
profitable.

Ful l b o u n d e d quant i f i ca t ion has recently become an object of considerable interest in
the theoretical research community. Our ultimate goal is to show how this system
may be combined with intersection types.

5 .2 .2 R e c o r d T y p e s

Conjunctive types allow records and record inheritance to be treated in a very elegant
way. For each field label t, we add a unary type constructor "t :" taking, for example,
the type int to the type of records with a single field labeled t, of type int . The types of
records with multiple fields are just conjunctions of single-field record types. If we assume
that i : is monotone, then the usual subtyping rule for records [Car84,CW85] falls out
automatically.

Adding record types to the definitions, algorithms, and proofs presented in this paper
should be a straightforward process.

6 A CKNO WLEDGEMEN TS 29

5.2 .3 A v o i d T y p e

Having to specify both upper and lower bounds for every variable makes it impossible
to use bounded quantification in one of the ways that is most often proposed. In the
literature, a bounded quantifier is normally used with the intended interpretation, "For
any type a that is a subtype of r.. ."—for example, "For every record type with at least
the fields a and b " But there are an infinite number of these, of which none is the
"smallest." (Records are not crucial to this problem. It is also possible to construct infinite
descending chains of types in the system without records.)

The solution here is to add a "bottom" element to the preorder of types, perhaps called
v o i d because it has no instances. We have not examined this possibility in depth, but we
know of no immediate difficulties that would arise.

5 .2 .4 D i s j u n c t i v e T y p e s

Another infelicity of the present formulation of bounded variables is that it is only possible
to declare a single upper bound and a single lower bound for each variable. This is not
so bad in the case of upper bounds, since two upper bounds can simply be combined into
one using &. But two lower bounds must be combined by explicitly calculating their least
upper bound (which always exists, fortunately).

The most obvious solution is to introduce "disjunctive" types. Some of the difficulties
arising from attempts to do this are discussed in [Rey88].

6 A c k n o w l e d g e m e n t s

John Reynolds suggested the problem of proving the equivalence of leQ and < g , and
provided valauble advice and guidance toward its solution. Bob Harper and Peter Lee
gave thoughtful comments on a previous draft of this paper.

R e f e r e n c e s

[BCD83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. Journal of Symbolic Logic, 48(4),
1983.

[Car84] Luca Cardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen,
and G. Plotkin, editors, Semantics of Data Types, pages 51-67, Springer-Verlag,
1984.

[CDV80] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and
lambda calculus semantics. In To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus, and Formalism, pages 535-560, Academic Press, New York,
1980.

REFERENCES 30

[CDV81] Mario Coppo, Maria Dezani-Ciancaglini, and B. Venneri. Functional character
of solvable terms. Zeitschrift fur mathematiache Logic und Grundlagen der
Mathematik, 27:45-58, 1981.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstraction,
and polymorphism. Computing Surveys, December 1985.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348-375, August 1978.

[RdRV84] S. Ronchi della Rocca and B. Venneri. Principal type schemes for an extended
type theory. Theoretical Computer Science, 28:151-169, 1984.

[Rey88] John C. Reynolds. Preliminary Design of the Programming Language Forsythe.
Technical Report CMU-CS-88-159, Carnegie Mellon University, June 1988.

[Rey89] John C. Reynolds. Syntactic Control of Interference, Part 2. Report CMU-CS-
89-130, Carnegie Mellon University, April 1989.

