
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Machine-Assisted Proofs of
Properties of Avalon Programs

Jeannette M. Wing and Chun Gong
24 August 1989

CMU-CS-89-171 z

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Proving the correctness of programs by hand is hard and error-prone. How can mechanical
theorem proving aids such as the Larch Prover (LP) help in the proofs of complex programs?
We address this question by applying LP, a proof checker based on rewrite-rule theory, to the
proof of an Avalon/C-H- program. Avalon/C++ is a programming language that supports
concurrency and fault-tolerance through transaction-based computations. Since reasoning about
an Avalon/C++ program requires reasoning about histories, i.e., sequences of operations, and not
just initial and final states, proofs of correctness are non-trivial. For the Avalon/C++ queue
example, we present a formal Larch Shared Language specification, which we also used as input
to LP. We discuss the LP-assisted proofs we performed of the representation invariant and the
queue's key correctness condition, give detailed statistics of our proofs, and draw some
conclusions based on our experience with LP.

© 1989 J.M. Wing and C. Gong

This research was sponsored by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 4976, monitored by the Air Force Avionics Laboratory Under Contract No.
F33615-87-C-1499. Additional support was provided in part by the National Science
Foundation under grant CCR-8620027.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency, the National Science Foundation or the U.S. Government.

Machine-Assisted Proofs of Properties of Avalon Programs

Jeannette M. Wing and Chun Gong

August 24, 1989

1 . INTRODUCTION

Many people have argued the importance of mechanical theorem-proving for reasoning about programs. Proving
the correctness of programs by hand is usually hard and error-prone. One often misses boundary cases or forgets
to state hidden assumptions. On the other hand, can current mechanical theorem provers deal with a wide scope
of non-trivial problems? Here, the question of scale is in diversity of problems as well as in complexity of each
problem. Some provers are more suitable for one class of problems than others and all provers have space and
time bounds that set practical limits on the size of an individual problem that can be handled.

The specific purpose of this paper is to report on our experience using the Larch Prover (LP) [8] as a mechanical
aid for proving properties of Avalon/C++ programs. Avalon/C-H- is a programming language [6] that deals with
concurrency and faults. Its semantics are based on a client/server model of distributed transactions. The Larch
Prover is a proof checker based on rewrite-niie theory. It is more than a rewrite-rule engine, but not quite a
general-purpose first-order logic theorem prover. 1

We view our application of LP to Avalon/C-H- from two ways. From the Avalon/C++ viewpoint, we consider
how LP can help in the proofs of non-trivial properties like ^omicity {q.v. Section 2.1.). From the LP viewpoint, we
consider how LP fares on a non-trivial example like an Avaion/C-H- program. Our example is different from those
which LP-like checkers are traditionally good at or designed for (e.g., groups, sets, and other algebraic structures),
and from those drawn from domains, such as hardware and operating system kernels, addressed before by LP and
other checkers such as Gypsy [11], LCF [13], HOL [12], and Clarke's model checker [3].

Thus, we began this specification and proof exercise with the following general goals in mind:

1. To see how amenable Avalon-like properties are to specification and proof within the Larch framework;

2. To see what can be gained in our understanding of Avalon through the use of machine aids; and

3. To determine the limitations of one of the state-of-the-art mechanized proof checkers.

As a quick summary, we conclude that the Larch specification language is best suited for describing theories
of underlying Avalon/C-H- data types, but less suited for describing global properties of Avalon/C-H- computations.
Though we did not gain a deeper understanding of Avalon/C-H- with our use of LP, we were forced to be extremely
explicit about Avalon/C-H-'s model of computation and, sometimes more than we felt necessary, about certain
equality and membership relations among objects. Finally, LP's only major technical limitation is its inability to
handle explicit existential quantification. Its pragmatic limitation is that its users still have to be fairly sophisticated.
In its favor, LP is a robust, efficient and well-engineered proof checker.

1 WE HAVE IMPLEMENTED AVALON/C++ AT C M U AS AN EXTENSION OF C + + [22] . USING THE CAME LOT TRANSACTION FACILITY [2 1] FOR ITS RUNTIME SYSTEM.
THE LARCH PROVER WAS IMPLEMENTED AT MIT.

1 Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

One concrete result from this work is a fonnal specification of the well-won, Avalon/C-K- queue example 2 This
spec i f ica ta mcludes an encoding of Avalon/C+Vs history-based mode, of computation specialized for L queue
Another concrete result is a set of proofs of properties, ranging from simple, but general properties about sequences
to more complex and very specific properties about the queue implementation. We stress both specification and
verification in this paper.

We assume the reader has some familiarity with formal specifications, proof checkers, and some of their
underlying theory. Though LP is based on rewrite-rule theory, the reader, just as LP's users, need not have a deep
understanding of it. We do not assume the reader is familiar with Avalon/C++, so we will review its main ideas.
In Section 2 we present informally some background on the specificand domain, our verification technique, and the
Larch language and tools. Where appropriate we cite other papers that give more formal and complete descriptions.
Section 3 gives the Avalon/C++ code for the queue example. Section 4 walks through the Larch specification of
the queue representation and properties of the abstraction function that are needed to prove the key correctness
condition for the queue. Section 5 walks through proof steps of one of the representation invariants, one helping
lemma, and the basis case for the correctness condition; it also shows the entire proof outline for this condition.
Section 6 presents some performance statistics about the proofs and compares LP with two other proof checkers.
Finally, we state some general conclusions and point to future work in Section 7.

2. Background

2.1. Speciflcand Domain: Reliable Distributed Systems

To build a reliable distributed system, a widely-accepted technique for preserving consistency in the presence of
failures and concurrency is to organize computations as a set of sequential processes called transactions. A
key property of a transaction is atomicity, that is, serializability and recoverability [6]. Serializability means that
concurrent transactions appear to execute in some sequential order, and recoverability means that a transaction
either succeeds completely or has no effect. A transaction's effects become permanent when it commits, its effects
are discarded if it aborts, and a transaction that has neither committed or aborted is active.

Objects contain the state of the system. Each object has a type, which defines a set of possible values and a set
of operations that provide the only means to create and manipulate objects of that type. Typically, a transaction
executes by invoking an operation on an object, receiving results when the operation terminates, then invoking
another operation on a possibly different object, receiving results when it terminates, etc. After performing a
sequence of such operation executions, a transaction then commits or aborts.

Atomicity is a global correctness property of the entire system. There are, however, restricted versions of
atomicity that are "local" properties. If each object in a system satisfies a local atomicity property, then the entire
system is guaranteed to be atomic [23]. Hence, to achieve atomicity, languages like Avalon/C++ provide atomic
objects, which are typed objects that satisfy a local atomicity property, thus guaranteeing the atomicity of the
transactions that access them.

The local atomicity property, i.e., the fundamental correctness condition, that all Avalon/C++ objects must satisfy
is called hybrid atomicity [23]. Hybrid atomicity requires that all transactions must appear to execute sequentially
in the order they commit. In Avalon/C++, when a transaction commits, it is assigned a logical timestamp [19].
These timestamps determine the transactions' serialization order. Avalon/C++ moreover supports a "pessimistic"
variation of atomicity: an active transaction with no pending operation invocation is always allowed to commit.
Operations are delayed when necessary to ensure this property.

Avalon/C-H- provides ways to enable programmers to define abstract atomic types. For example, if one were
to define an a t o m i c - a r r a y type, one would define a new class, a t o m i c - a r r a y , which perhaps provides
f e t c h and s t o r e operations. (Syntactically, a class is a collection of members, which are the components

2 WC promise the community that this paper will be the penultimate word on the queue example.

2

of the object's representation, and a collection of operation implementations.) The intuitive difference between
an A T O M I C - A R R A Y type and a conventional A R R A Y type is that objects of A T O M I C _ A R R A Y type will ensure
serializability and recoverability of the transactions that access them, whereas objects of A R R A Y type in general
will not. However, the programmer who defines the abstract atomic type must prove that the new type is "correct,"
i.e., that all objects of the newly defined type are (hybrid) atomic. By providing language support for constructing
atomic objects, we gain the advantage that this proof is done only once per class definition, not each time an object
is created or accessed.

We present other details of Avalon/C++ as necessary. See [23] for formal definitions of our model of computation
and of global and local atomicity properties. See [6] for a more complete description of Avalon/C++.

2.2. The Verification Method

To show the correctness of a user-defined atomic type implementation, we generalize techniques from the sequential
domain. Our method requires that the user provide: (1) a representation invariant, (2) an abstraction function, and
(3) a type-specific correctness condition. The representation invariant defines the domain of the abstraction function.
The abstraction function maps a representation value to a set of sequences of abstract operations. The type-specific
correctness condition determines which of those sequences are legal. The only unusual aspect of any of these
provisions is the range of the abstraction function: it is not a set of abstract values as in the sequential domain, but
a powerset of sequences of abstract operations.

Let Rep be the implementation object's set of values, Abs be the set of values of the abstract data type being
implemented, and OP be the abstract object's set of operations. The subset of Rep values that are valid values
is characterized by a predicate called the representation invariant, I : Rep — bool. The meaning of a valid
representation is given by an abstraction function, A : Rep — 2 0 P \ defined only for values that satisfy the
invariant.

Our verification method requires one to show inductively that the following properties hold:

1. VS € A(r), S is a legal sequence of abstract operations, and

2. The set of possible serializations is contained in A(r). (Any active transaction can commit.)

This paper will focus on showing only the first property for the queue example. The second property, though trivial
to show, requires defining many terms (like serialization) that would distract the reader from the focus of this paper.
See [24] for more details and justification of this verification method, and in particular for a hand-proof of both
properties for the queue example we present herein.

2.3. The Specification and Verification Tools: LSL and LP

Traditional syntax-directed program verification requires that one annotate the program text with assertions, e.g.,
loop invariants, and use the programming language's proof rules to generate verification conditions (VC's) that must
be shown to hold. VC's are typically expressed in the same assertion language as one's specification language and
moreover, in the proof checker's language. However, we do not have formal proof rules for Avalon, C++, nor C;
we doubt devising them would even be a worthwhile exercise.

Thus, to carry out a program proof with a proof checker, we take the approach of "encoding" an Avalon program
into a high-level specification language that we can also use as an assertion language and proof checker language.
We use the Larch Shared Language (LSL) for these purposes [14]. Syntactically, an LSL specification, called a
trait, looks like a traditional algebraic specification; semantically, it defines a first-order theory. LSL provides ways
to construct a large and complex theory from some smaller and simpler theories either by combining those small
theories together or by adding induction rules.

3

To a first approximation, LSL specifications serve as input to the Larch Prover 3, and thus LSL serves as a subset
of the proof checker's language. A proof of correctness amounts to stating a theorem in LP's language and proving
it given the specification, i.e., the encoding of the program text. Roughly speaking, what we are really showing is
that we have encoded enough in an LSL theory to prove some theorem, e.g., a correctness condition.

Given an Avalon program, there is by no means an obvious encoding scheme that determines an LSL trait. The
specification that we present in Section 4 is a result of a long series of attempts, some of which led us astray, got too
complicated for us to understand, or were unsuitable for LP to handle. The resulting specification is a compromise
between being "user-friendly" and "machine-friendly." In short, it is what we were able to use in order to get the
proof to go through in a reasonably natural way.

A note on LSL exprèssibility

Our most constraining limitation in using LSL as our specification language was in not having explicit exis
tential quantification. Having to express first-order assertions in equational logic makes some of our specifications
look awkward. In principle, LSL has the expressive power of full first-order predicate logic plus induction schema.
However, all variables in LSL equations are implicitly universally quantified and all function symbols are implicitly
existentially quantified. In order to express an existentially quantified variable, we have to use one of two skolem-
ization techniques [7], depending on which side of the universal quantifier the existentially quantified variable
appears.

Suppose / a n d g are functions symbols and jcl xn are variables. An LSL equation that appears as:

f(xl xm) == g(xl xm)

means:

3f. g VJC 1 xm f(xl xm) = g(x 1 xm)

So, if one needs to say:

3d cn 3 / . gVjcl xm f(xl xm.cl en) = g(xl xm, cl cn)

then the ci cn are Skolem constants. In LSL, c l cn can be introduced as miliary functions, and hence,
treated like any other function symbols in LSL. LP can handle Skolem constants; in the specifications below, we
use "c_" to prefix "variables" that are Skolem constants; all other user-declared regular variables are prefixed by

"x" or "y" 4 .

On the other hand, if one needs to say:

3f.g V* l xm 3hl hn f(xl xm.hl. ...hn) = g{x\ xmJtl hn)

then the hi hn are Skolem functions, each over xl xm. In LSL, hi hn would have to be declared as
m-ary functions, and hence be treated as the other existentially quantified function symbols (hi hn are "carried
over" the universally quantified xVs and get captured by the implicit existential quantifier).

We give other details about LSL and LP as needed; see [15] for a more complete description of LSL and [9]
for another example use of LP.

3To some LSL terms, we needed to add signature information to disambiguate operator names.

4 LP actually lets the user declare whether a symbol is a variable or constant, and thus the prefix convention is unnecessary. We adhere to
this convention as an aid to the reader.

4

3. The Code for the Queue Example

We now present the Avalon/C++ code, taken from [16], for a highly concurrent atomic FIFO queue implementation.
Our implementation is interesting for two reasons. First, it supports more concurrency than commutativity-based
concurrency control schemes such as two-phase locking. For example, it permits concurrent enqueuing transactions,
even though enqueuing operations do not commute. Second, it supports more concurrency than any locking-based
protocol, because it takes advantage of state information. For example, it permits concurrent enqueuing and
dequeuing transactions while the queue is non-empty. Most other transaction-based systems use read-write locking
protocols for synchronizing access to shared data, thereby precluding concurrent enqueues and concurrent enqueues
and dequeues (both enqueue and dequeue would be classified as "writers").

To support such high degrees of concurrency, Avalon/C++ provides programmers the means to test the serial
ization order of transactions at run-time. Indeed, one of Avalon/C-H-'s novelties is its built-in class t r a n s . i d ,
used for creating and comparing transaction identifiers. For any two transaction identifiers tl and t2 a successful
comparison of tl < tl implies that 77, the transaction that generated tl, is committed and serialized before T2, the
transaction that generated t2. If tl and t2 were generated by the same transaction, then tl was generated first. If
the comparison evaluates to false, then the t r a n s - i d ' s may have the reverse ordering, or their ordering may be
unknown (e.g., because their associated transactions are both active).

3.1. Representation

We record information about each e n q operation in the following s t r u c t :

struct e n t r e e {
int item;
trans_id enqr;
anq__rec(int i, trans__id&

{item « i; enqr » en;}

// Item enqueued.
// Who enqueued it.

en) // Constructor.

The i t e m component is the enqueued item. The e n q r component is a new transaction identifier generated
by the enqueuing transaction. It is used for uniquely tagging each e n q operation. The last component defines a
constructor operation for initializing the s t r u c t .

We record information about d e q operations similarly, where the d e q r component is a new transaction identifier
generated by the dequeuing transaction:

struct deq_rec {
int item; // I t e m dequeued.
trans_id enqr; / / who enqueued it.
trans_id deqr; / / who dequeued it.
deq_rec(int i, trans_id& en, trans_id& de); // Constructor,

{item • i; enqr - en; deqr - d e ; }

We represent the queue itself as follows:

class atomic_queue : public
deq__atack deqd;
enq_heap enqd;

public:
at orni c_queue() {};
void enq(int item) ;
int deq () ;

subatomic {
// Stack of dequeued items.
// Heap of enqueued items.

// Create empty queue.
// Enqueue an item.
// Dequeue an item.

5

void coninit (trana_id& t) ; // Called on commit.
void abort(trana_ID4 t); // Called on abort.

};

The d e q d component is a stack of d e q . r e c ' s used to undo d e q operations of abor d transactions. The
e n q d component is a partially ordered heap of enq.rec's ordered by their e n q r fields. A partially ordered heap
provides operations to enqueue an enq.rec, to test whether there exists a unique oldest enq_rec, to dequeue it
if it exists, and to discard all e n q _ r e c ' s inserted by (aborted) transactions.

Recall that in Avalon/C++ a transaction's effect is determined only after it has committed and we must serialize
transactions according to their commit time. Thus, while there are active transactions, we cannot get a totally
ordered queue. However, we can test whether there is a unique "oldest" element in the heap component; if so, a
concurrent dequeue in g transaction can be permitted to proceed, subject to other constraints discussed below.

3.2. The Operations

Besides the constructor, the queue has four operations: enq, deq, c o m m i t , and a b o r t . The queue has control
over the operation-level synchronization of transactions that desire access to it. These synchronization conditions
are encoded in the boolean test of the Avalon when statement. The when (TEST) B O D Y statement is a conditional
critical region: B O D Y is executed only when TEST evaluates to true. Avalon associates a short-term lock with
each object to guarantee mutual exclusion between transactions entering and exiting their critical regions. TEST
typically contains a comparison (<) between two t r a n s - i d ' s .

If £ is an active transaction, then we say A is committed with respect to B if A is committed, or if A and B
are the same transaction. Enq and deq must satisfy the following synchronization constraints to ensure atomicity.
Transaction A may dequeue an item if (1) the most recent transaction to have executed a deq is committed with
respect to A, and (2) there exists a unique oldest element in the queue whose enqueuing transaction is committed
with respect to A. The first condition ensures that A will not have dequeued the wrong item if the earlier dequeuer
aborts, and the second condition ensures the- -here is something for A to dequeue. Similarly, A may enqueue an
item if the last item dequeued was enqueue^ a transaction committed with respect to A.

Given these conditions, here is the code ^nq:

void atomic_queue: :enq(int item) {
trana_id tid • trana_id();
whan (deqd.ia_empty() || (deqd.top()->enqr < tid))

enqd.insert(item, tid); // Record enqueue.
}

Enq checks whether the item most recently dequeued was enqueued by a transaction committed with respect
to the caller. If so, the new t r a n s-id and the new item are inserted in e n q d . Otherwise, the transaction releases
the short-term lock and tries again later (guaranteed by the implementation of the when statement).

Here is the code for d e q :

int atomic_queue::deq() {
trana_id tid « tran»_id();
when ((deqd.is_empty() || deqd.top()->deqr < tid)

6 6 enqd.min_exiata() £ 6 (enqd.get_min()->enqr < tid)) {
enq_rec* min_er — enqd.delete_min();
deq_rec dr(*min_er, tid); // Move from enqueued heap...
deqd.puah(dr) ; // to dequeued atack,
return xnin_er->item;

}
>

6

Deq tests whether the most recent dequeuing transaction has committed with respect to the caller, and whether
enqd has a unique oldest item. If the transaction that enqueued this item has committed with respect to the caller,
it removes the item from enqd and records it in deqd. Otherwise, the caller releases the short-term lock, suspends
execution, and tries again later.

The queue also manages the commit and abort processing of transactions as it learns of their commit or abort
status. This processing is done through the commit and abort operations. The Avalon/C-H- run-time system
calls the commit (abort) operations of all objects a transaction accesses after it commits (aborts). The commit
operation looks like:

void a t o m i e n q u e u e : : coirmit (trana_id& committer) {
when (TRUE) // Always ok to commit.

if (!deqd.is_empty() && descendant(deqd.top()->deqr, committer)) {
deqd.clear(); // Discard all dequeue records.

>

}

When a transaction commits, the queue discards deq_rec's no longer needed for recovery. The implementation
ensures that all deq_rec's below the top are also superfluous, and can be discarded. We state this property formally
when giving the representation invariant in Section 5.1.

The abort operation looks like:

void atomic_queue :: abort (trans__id& aborter) {
when (TRUE) { // Always ok to abort.

while (!deqd.is empty() // Undo aborted dequeue by...
&& descendant(deqd.top()->deqr, aborter)) { // aborting transaction.
deq__rec* d « deqd. pop (); // Undo aborted dequeue,
enqd.insert(d->item, d->enqr); // Put it back.

}
^ enqd.discard(aborter); // Undo aborted enqueues.

>

Abort undoes every operation executed by a transaction that is a descendant of the aborting transaction. It
interprets deqd as an undo log, popping records for aborted operations, and inserting the items back in enqd heap.
Abort then flushes all items enqueued by the aborted transaction and its descendants.

4. The Specification of the Queue

Recall that our verification method required that we give a representation invariant, abstraction function, and type-
specific correctness condition. In the following two subsections, we give a specification of the representation,
which suffices to state the representation invariant given in Section 5.1, and a specification of the properties of the
abstraction function that are necessary to prove the type-specific correctness condition.

Informally, the correctness condition for the queue is:

Correctness Condition (informal): For all queues, the sequence of items dequeued must be a prefix of the sequence
of items enqueued.

This condition intuitively captures the FIFO property of queues. We refer to it as the "prefix" property and state
it formally in Section 5.2.

7

4.1. Queue Representation

We begin by defining the theory of the queue representation. In what follows, we make use of some basic traits,
Pair, Triple, Set, and Stack, all given in Appendix A.

First we build a tiny theory about trans-id 's, introducing only the partial order, <, and a Skolem constant cjct,
which we will find useful in subsequent specifications. In LSL U A => B " stands for the equation "A => B == true."

TransID(Tid): trait
introduces

< : Tid, Tid -> Bool
c_xt: -> Tid

asserts for all(xt, xtl, xt2: Tid)
((xt < xtl) & (xtl < xt2)) -> (xt < xt2),
((xt < xtl) & (xtl < xt)) -> (xt - xtl)

end

Next, we build theories about enq jec ' s and deqjec ' s in terms of pairs and triples.

Enq_Rec(EL, entree) : trait
includes TransID, Pair (EL, Tid, enq__rec, element for first, enqt for second)
introduces

e_before: enq_rec, enq__rec -> Bool
asserts «nq_rec partitioned by (element)
for all(x, xl: enq_rec)

e_before(x, xl) »— enqt(x) < enqt(xl)
end

Deq_Rec(EL, deq_rec): trait
includes TransID, Enq_Rec,

Triple (EL, Tid, Tid, deq__rec, what for first,
enqr for second, deqr for third)

introduces
d_before: deq__rec, deq_rec -> Bool
convert: deq_rec -> enq__rec

asserts for all (x, xl: deq__rec)
d_before(x, xl) deqr(x) < deqr(xl),
convert(x) pair(what(x), enqr(x))

end

LSL's includes clause lets one build theories from other theories. For example, the Enq_Rec trait includes
the Pair trait with a renaming of sort and function identifiers. The first three identifiers rename the sorts for the
first component of the pair, the second component, and the pair itself. The other two identifiers (element and enqt)
rename the two selector functions for pairs, e-before is an ordering between two enq jec ' s defined in terms of the Tid
(trans-id) ordering (<) and the enqt components (Tid's) of each. dJyefore is similarly defined for deqjec ' s . The
convert function simply ignores the deqr component of a deq_rec and returns a corresponding enq_rec. Enq_Rec's
partitioned by clause asserts that two enq_rec's with the same element components are indistinguishable. This
rather strong assertion simplifies the proof of correctness of the queue implementation by letting us assume that all
elements in a queue are distinct. 5

The heap and stack components of the queue representation are defined using set and stack theories.

5Herlihy and Wing make the same assumption in their hand-proof [16], though the correctness of the Avalon/C++ code does not depend on
it It can be relaxed by tagging each item in the queue with a time stamp.

8

Enq_Heap (enq_heap) : trait
includes Enq__Rec, Set (enq_rec, enq_heap)
introduces

in_heap: enq_rec, enq__heap -> Bool
•_in_heap: EL, enq_heap -> Bool
least: enq__rec, enq_heap -> Bool
is_top: enq_rec, enq_heap -> Bool

asserts for all (xp: enq_heap, y, yl: enq__rec, xt: Tid, xe: EL)
in_heap(y, xp) — in(y, xp),
e_in_heap (xe, emptyset) false,
e_in_heap (xe, insert (xp, y)) (element(y)*xe) | e_in_heap(xe, xp)
least(y, emptyset) »• true,
least(y, insert(xp, yl)) (enqt(y)<enqt(yl)) & least(y, xp),
is_top(y, xp) »• in_heap(y,xp) & least(y, xp)

end

Deq^Stack(deq_stack): trait
includes Deq_Rec, Stack(deq_rec, deq_stack)
introduces

deq_before: deq_rec, deq_rec, deq_stack -> Bool
in_stack: deq_rec, deq_stack -> Bool
e__in__stack: EL, deq_stack -> Bool

asserts for all (xk: deq^stack, y, yl, y2: deq_rec, xt: Tid, xe: EL)
deq_before(y, yl, new) — false,
deq_before(y, yl, push(xk, y2)) «- ((yl«y2) & (in_stack(y, xk))) |

deq__before (y, yl, xk) ,
in_stack(y, new) —» false,
in_stack(y, push(xk, yl)) »• if y • yl

then true
else in_stack(y, xk) ,

e_in_stack (xe, new) false.

end
_in_stack(xe, push (xk, y)) -« (what(y)-xe) | e_in_stack (xe, xk)

The Enq_Heap trait introduces functions that test if an enq_rec is in an enqJieap (inJteap), if an element has
been enqueued (eJnJieap), and if a given enq jec is the minimal in an enqJieap (isJop via least). The Deq.Stack
trait introduces functions that test the relative ordering between two deqjec ' s that are in the stack (deqJbefore), if
a deqj-ec is in a deq^stack (instack), and if an element is in a deq_stack (eJnstack).

The State trait in Figure 1 defines a theory about the representation states of the queue. St is the sort name
for queue states; the queue itself is a sequence of operations, each applied to some state to yield a new state, init
stands for some actual initial state. Every state has two components: enqd and deqd, just as in the implementation.
There are four functions (operations) with range St: enq, deq, commit, abort. enq(xstfxtfxe) represents the state
after transaction xt enqueues an element xe in state xst; deq(xstjctjcr), the state after xt dequeues enq_rec xr in state
xst, commit and abort are defined similarly, when.enq and wheti-deq are two boolean functions that capture the
conditions under which the e n q and d e q operations can proceed to change the state of the queue.

The clause St generated by (init\deq,enq,commit,abort) means that if xst is a term of St then either xst-init or
xst is produced by applying one of enq, deq, commit, and abort to a term xst* of St. Each term represents a history
of operations, e.g., deq(enq(enq(init,...)f...),...) represents two e n q operations followed by a d e q . Defining a set of
generator functions implicitly defines a structural induction rule. Thus, we can easily prove some properties about
queue states using structural induction over terms of sort St. To prove V * : St.P(x), we need to prove only the
following:

P(init)A {P(xSt) =>

(P(enq(xst,xt. xe)) A P(deq(xst. xt.xr)) A P(commit(xst.xt)) A P(abort(xst,xt)))}

LP can prove such theorems automatically for any given property P.

The clause St partitioned by (deqd,enqd) adds the following theorem to the theory:

9

Vx,x\ : St.(x = x\) (enqd(x) = enqd(x\) A deqd(x) = deqd(x\))

Thus, we define a queue state JC of sort St by its two components, enqd(x) and deqd(x). Two states are equal if and
only if they are component-wise equal.

The State trait is an instance of a more generic theory about Avalon/C-H-'s model of computation. In general,
we specify an Avalon/C-H- operation by specifying the changes it causes on a state (e.g., the queue representation's
stack and heap components) and the condition (e.g., when.enq) that must be satisfied before the operation can
proceed to effect those changes. Here we exploit our knowledge that each operation in Avalon/C-H- is guaranteed
to occur indivisibly; hence, since transactions can call operations only one at a time, we need only be concerned
about those states before or after an operation.

Moreover, assuming that Avalon/C-H-'s implementation of the when statement is correct, (in particular, that
short-term locks are obtained and released properly), not all the states defined by a State trait stand for "reachable"
states, states that would occur in the execution of the program. For example, if a given state cjcst does not satisfy
the condition when.enq, then enqfcjcst, xt, xe) denotes a state that is not reachable. When trying to prove a property
about an Avalon/C-H- program, we need be concerned with proving it for only the reachable states. Assuming that
the when statement's condition is met, as encoded in when^enq and when.deq for the queue, is analogous in
sequential programming to assuming an operation's pre-condition is met.

4.2. Abstraction Function

We define an abstraction function af which maps a representation of queue to a set of sequences of operations, i.e.,
set of histories. For any valid, reachable representation value r we want to prove that for every history H in af(r),
H is legal, namely H is a behavior of a FIFO queue.

The following traits define a theory about Avalon/C-H-'s history-based model of computation, and describe some
properties of the abstraction function. We start with a theory about sequences:

Sequence (EL, Seq): trait
introduces

null: -> Seq
cons: Seq, EL -> Seq
append: Seq, Seq -> Seq
prefix: Seq, Seq -> Bool
sub: Seq, Seq -> Seq

asserts Seq generated by (null, cons)
for all (xs, xsl: Seq, xe, xel: EL)

cons(xs,xe)-cons(xsl,xel) «• (xs»xsl) & (xe-xel),
append(xs, null) » xs,
append(null, xs) »- xs,
append(xs, cons(xsl, xe)) «* cons(append(xs, xsl), xe),
prefix(null, xsl) — true,
prefix(cons(xs, xe), null) false,
prefix(cons(xs, x e) , cons(xsl, xel)) — ((xe«xel) & (xs-xal)) | prefix(cons(xs, xe), xsl),
sub(null, xs) — null,
sub(xs, null) — xs,
sub(cons(xs, xe), cons(xsl, xel)) if ((xs-xsl) £ (xe-xel))

then null
else cons(sub(xs, cons(xsl,xel)), xe),

-(null « cons(xs,xe))
end

Null and cons as the constructors. Append concatentates two sequences together, prefix detemines whether its
first argument is a prefix of its second; sub returns the subsequence of its first argument with elements in its second
removed.

An event is the execution of an enq or deq operation:

10

State (St): trait
includes Deq__Stack, Enq__Heap
introduces

init: -> St
deqd: St -> deq_stack
enqd: St -> enq__heap
when_enq: St, enq_rec, deq_rec, Tid, EL -> Bool
enq: St, Tid, EL -> St
when_deq: St, deq_rec, Tid, enq_rec -> Bool
deq: St, Tid, enq_rec -> St
commit: St, Tid -> St
abort: St, Tid -> St

asserts St generated by (init,deq,enq,commit,abort)
St partitioned by (deqd, enqd)

for all (xst: St, xt : Tid, xe: EL, xk: deq_stack, xp: enq_heap,
x, y, w: deq__rec, xl, 2 , xn: enq_rec)

deqd (init) —— new,
enqd(init) —— emptyset,
when_enq(xst,z,w,xt,xe) -- ((deqd(xst)-new) j (enqr(top(deqd(xst)))<xt)) £

(~(in_heap(z, enqd(xst)) £ (element(z)-xe))) £
(~(in_stack(w, deqd(xst))£(what(w)-xe))),

deqd(enq(xst, xt, xe)) — deqd(xst),
enqd(enq(xst, xt, xe)) — insert(enqd(xst), pair(xe, xt)),
when_deq(xst,x,xt,xn) — ((deqd(xst)-new) | ((deqr(top(deqd(xst))) < xt) £

(enqr(top(deqd(xst))) < enqt(xn)))) £
ia_top(xn, enqd(xst)) £ (enqt(xn) < xt) £

(~(in_stack(x,deqd(xst)) £ (what(x)-element(xn)))),
deqd(deq(xst, xt, xn)) — push(deqd(xst),trip(element(xn),enqt(xn),xt)),
enqd(deq(xst, xt, xn)) — delete(enqd(xst), xn),
deqd(commit(xst,xt)) — if (~(deqd(xst)-new)) £ (deqr(top(deqd(xst))) < xt)

then new
else deqd(xst),

enqd(commit(xst, xt)) — enqd(xst),
in__stack (x, deqd (abort (xst, xt))) -- in_stack (x, deqd (xst)) £ (~ (deqr (x) -xt)) ,
deq_before (x,y, deqd (abort (xst, xt))) «> deq_bef ore (x, y, deqd (xst)) ,
in_heap(xl,enqd(abort(xst,xt))) -> ((~(enqt(xl)-xt)) £

(in_heap(xl, enqd(xst)) |
(in^stack(trip(element(xl),enqt(xl),xt),deqd(xst))) £
-(in_stack(x,deqd(abort(xst,xt))) £
(what(x)-element(xl))))))

end

Figure 1: State Trait

11

Event (Ev): trait
includes Enq_Rec, Deq__Rec,
introduces

E: enq_rec -> Ev
D: deq__rec -> Ev

asserts Ev generated by (E, D)
enq_rec partitioned by (E)
deq_rec partitioned by (D)

for all (x,xl: enq_rec, y,yl: deq_rec)
(x«xl)~>(E(x)=E(xl)) ,
(y y D - X D (y) - O (y l)) ,
~(E(x)«D(y))

end

A history is simply a sequence of events:

History (H): trait
includes Event, Sequence, Sequence(Ev, H)
introduces

c_hl: -> H
c_h2: -> H
DEQ: H -> Seq
ENQ: H -> Seq
max: Tid, H -> Bool
min: Tid, H -> Bool
ordered: H -> Bool
discard: Tid, H -> H

asserts for all (xh: H, u:enq__rec, v:deq_rec, xt: Tid)
ENQ(null) «* null,
ENQ(cons(xh, E(u))) « cons(ENQ(xh), element(u)),
ENQ(cons(xh, D(v))) — ENQ(xh),
DEQ (null) ••«• null,
DEQ(cons(xh, E(u))) — DEQ(xh),
DEQ(cons(xh, D(v))) « cons(DEQ(xh), what(v)),
max(xt, null),
max(xt,cons(xh,E(u))) » max(xt,xh) & (~(enqt(u)<xt)),
max(xt,cons(xh,D(v))) max(xt,xh) & (~(deqr(v)<xt)),
min(xt, null),
min(xt,cons(xh,E(u))) min(xt,xh) & (~(xt<enqt(u))),
min(xt,cons(xh,D(v))) min(xt,xh) & (-(xt<deqr(v))),
ordered(null),
ordered(cons(xh,E(u))) » ordered(xh) & min(enqt(u), xh),
ordered(cons(xh,D(v))) ordered(xh) & min(deqr(v), xh),
discard(xt, null) null,
discard(xt, cons(xh,E(u))) if enqt(u)»xt

then discard(xt,xh)
else cons(discard(xt,xh),E(u)),

discard(xt, cons(xh,D(v))) — if deqr(v)«xt
then discard(xt,xh)
else cons(discard(xt,xh),D(v))

end

Note the two uses of the Sequence trait in the includes clause. The first brings in the theory of sequences with
sort Seq for sequences of items (in the queue); the second brings in the theory of sequences, introducing the sort
H for histories, i.e., sequences of events. c_/il and c-hl will be used as two Skolem constants. ENQ(h) is the
sequence of items enqueued by the subhistory of enq events in h and DEQ(h) is the sequence of items dequeued
by the subhistory of deq events. ENQ and DEQ will be used to define the type-specific correctness condition. The
events in a history are partially ordered by their invoking transaction. discard(t, h) is the subhistory of events of h
with all events associated with transaction t removed. It will be used to define the effects of an abort event.

The abstraction function maps a queue representation state into a set of histories:

12

Abstraction (A): trait
includes State, History, Set(H, A)
introduces

in_state: H, St -> Bool
af: St -> A

asserts for all (xst: St, xh: H, xn,ue: enq^rec, xd,vd: decree, xe: EL,
xt: Tid)

in_state(null, xst) -- true,
in_atate (cons (xh, E (ue)) , xst) -> in__state (xh, xst) & (in_heap (ue, enqd(xst)) |

in_stack(trip(element(ue), enqt(ue), c_xt), deqd(xst))),
in__atate (cons (xh, D (vd)) , xst) -> in__atate (xh, xst) & in_stack (vd, deqd (xst)) ,
in(xh, af(xst)) -> (ordered (xh) & in__state (xh, xst)),
in(xh,af(enq(xst,xt,xe))) »> (in(append(c_hl,c_h2), af(xst)) &

(xh«append(cons (c_hl,E (pair (xe,xt))) , c__h2))) ,
in (xh, af (deq (xst, xt, xn))) *> (in (append (c_hl, c__h2) , af(xst)) &

(xh—append(cons(c_hl,
D(trip(element(xn),enqt(xn),xt))), c h2)) &
(DEQ(c_h2)-null:->Seq)),

in(xh,af(commit(xst,xt))) -> (DEQ(xh)-null:->Seq),
in(xh,af(abort(xst, xt))) -> (in(c_hl, af(xst)) & (xh-discard(xt,c_hl))),
(prefix(DEQ(append(xhl,xh2)),ENQ(append(xhl,xh2)))&in(append(xhl,xh2),af(xst))£
not(prefix(DEQ(append(xhl,xh2)),ENQ(append(cons(xhl,E(pair(xe,xt))),xh2))))
£ ordered (append (cons (xhl,E (pair (xe,xt))) ,xh2))) ->

not(enqr(top(deqd(xst)))<xt),
(in(xh,af(xst))^prefix(DEQ(xh), ENQ(xh))£in(xn,enqd(xst))fileast(xn,enqd(xst)))

-> prefix(cons:Seq, EL->Seq(DEQ(xh), element(xn)),ENQ(xh))
end

For any queue state xst, af(xst) is a set of histories. The first three equations define a helping function for in
which determines when a history is in af(xst). instate "parses" a term representing an arbitrary history and checks
that it represents a history in which items have been enqueued and dequeued and are in the appropriate components
of the queue representation. Note that inMate(xh, xst) does not imply in(xh,af[xst)). The fifth equation illustrates
how we use "constant" histories to introduce existentially quantified variables in our equations. It states that xh is a
history in af(enq(xstjctjce)h*he state after a transaction xt enqueues an item xe in state xst-if there are two histories
cJ\l,cJ\2 such that appendfcJil ,cJi2) is a history in af(xst) and xh is the result of inserting the enqueue event in
between cJil and cJi2 (xh=append(cons(c.hl E(pair(xejt))), cJi2)). The sixth equation is similarly defined for a
dequeue event. These two equations (the fifth and sixth) capture the property that determines when it is legal to
insert an operation in the middle of a legal history, or more precisely, when two operations commute. The seventh
and eighth equations respectively capture the effects of applying a commit and abort operation to the queue state:
committing reinitializes the sequence of pending dequeued items to the null sequence, and aborting discards all
effects of the aborting transaction. The equation for abort uses the discard function from the Abstraction trait.

The second-to-last equation captures the conditions under which it is not safe to let an enqueue operation
proceed If the prefix property would not hold of the history with the new enqueue operation, then the transaction
must wait. The last equation states that if there is a least element in the heap then dequeueing it will preserve the
prefix property of the corresponding history.

5. Verification of the Queue

We translate the Larch traits, all checked by the Larch Checker (LC), into input acceptable to LP, which LP calls
"theories." The translation from an LSL trait to an LP theory is mechanical. Once a trait has been transformed into
an LP theory, users can use the trait name to access the corresponding theory. We used the boolean theory given
in Appendix B. The proof procedure is sensitive to the boolean theory that one uses; with a weaker one, we would
be unable to prove certain obvious theorems about booleans.

13

5.1. Representation Invariant

Given the queue specification of the State trait, we first prove that the queue operations preserve the following
representation invariants. For all representation values r:

1. No item is present in both r 's deqd and enqd components;

2. Items are ordered in r ' s deqd component by their enqueuing and dequeuing trans Jd ' s ;

3. Any dequeued item must previously have been enqueued.

which are formally expressed in LP's input language as:

% V reachable xst 6 State Vx G deq^rec^y € enq_rec.
lnv\(xst.x. v) = = (in_stack(x. deqd(xst))&in_heapiy. enqd(xst))) => not(what(x) = element{y))

% V reachable xst 6 State Vx.xl 6 deq^rec.
Inv2(xst.x.xl) ~ deq-before(x.xl.deqd(xst)) => (enqrix) < enqr(xl))&(deqr(x) < deqrixl))

% V reachable xst £ State.Vx £ deq_rec
Inv3(xst.x) == in_stack(x.deqd(xst)) => (enqr{x) < deqr(x))

Now let's see how we use LP to prove one of these theorems, the second invariant, Inv2(xst, x, xl). In the
following proof session, all lines preceded by - > are user-given LP commands. All others are LP-generated output.
A line preceded by [] (read "box") is generated whenever LP discharges a proof step. As a hint to the reader
who wants only a cursory view of the proofs, look for lines that begin with - > and [] , and skip to our discussion
following each proof transcript fragment. To save space, we present here only that output of LP that indicates what
has been added to the system. See [10] for complete transcripts of all proofs.

-> thaw Inv
-> set name thm2
-> prove Inv2(xst,x,y) by induction xst St

The basis step in an inductive proof of Conjecture thm2.1
Inv2(xst, x, y) -> true

involves proving the following lemma(a):
thxn2.1.1: Inv2(init, x, y) -> true

[] Proved by normalization
The induction step in an inductive proof of Conjecture thm2.1

Inv2(xst, x, y) -> true
uses the following equation(a) for the induction hypothesis:
Induct.2: Inv2(c_xat, x, y) -> true
The induction step involves proving the following lemma (s):
thm2.1.2: Inv2(deq(c_xst, vil, vi2), x, y) -> true

which reduces to the equation
((deqr(x) < deqr(y)) & (enqr(x) < enqr(y)))

| not(((trip(element(vi2), enqt(vi2), vil) - y)
& in_stack(x, deqd(c_xst)))

| deq__bef ore (x, y, deqd (c_xst)))
-> true

thm2.1.3: Inv2 (enq (c__xst, vil, vi2) , x, y) -> true
[] Proved by normalization

thm2 .1.4: Inv2(commit(c_x«t, vil), x, y) -> true
[] Proved by normalization

thm2.1.5: Inv2(abort(c_xst, vil), x, y) -> true
which reduces to the equation
((deqr(x) < deqr(y)) & (enqr(x) < enqr(y)))
| not(deq_before(x, y, deqd(abort(c_xst, vil))))
-> true

14

The thaw command makes the Inv theory be the "system" with which we are going to work. inv is the name
of the theory corresponding to the State trait plus the three equations for the invariants. The set name command
gives a name (thm2) to the working system plus what will be added later. The third command tells LP to prove
Inv2 by induction over the induction variable xst of sort St. In general, to prove an equation "e" by induction, LP
first generates a set of equations to prove as the basis of the induction by substituting each basis generator of sort
" S " for all occurrences of variable "x" in "e" (new variables are introduced, if necessary, as the basis generators'
arguments). In this case there is only one basis generator (with no arguments), init, and its associated instantiated
equation is normalized to true. After LP has proved the basis case (see the first boxed line), it generates a set of
equations to serve as the induction hypothesis, substituting new constants (0-ary operators) for "x" in "e"; it then
generates a set of equations to prove in the induction step by substituting each non-basis generator of " S " (applied
systematically to these constants and to new variables) for "x" in "e." Since we have four non-basis generators (deq,
enq, commit, abort), we need to prove four lemmas, two of which are proven automatically (by normalization). LP
gives names with root "Induct" to the equations arising from the induction bases and induction hypothesis.

Now let's see how to prove thm2.1.5. Notice that LP rewrites the implication (P => Q) of Inv2 to the logically
equivalent (Q v -.p).

-> resume by case deq_before(x,y,deqd(abort(c_xst,vil)))

Case.3.1
deq_before (c_x, c__y> deqd(abort(c_xst, c_vil))) — true

involves proving Lemma thm2.1.5.1
Inv2 (abort (c__xst, c_vil) , c_x, c —y) -> true

Lemma thm2.1.5.1 in the proof by cases of Lemma thm2 .1.5
Inv2 (abort (c_xst, c_vil) , c__x, c_y) -> true
Case. 3.1: deq__bef ore (c__x, c__y, deqd (abort (c_xst, c_vil)))

is NOT provable using the current partially completed system. It reduces to
the equation

(deqr(c__x) < deqr(c_y)) & (enqr(c_x) < enqr(c__y)) -> true
Proof of Lemma thm2.1.5.1 suspended.
-> critical case with State

deq^bef ore (c__x, c_y, deqd(c_xst)) =»• true
-> crit thm2 with Induct

(deqr(c__x) < deqr(c_y)) & (enqr(c_x) < enqr(c_y)) •» true
Lemma thm2 .1.5.1 in the proof by cases of Lemma thm2.1.5

Inv2(abort(c_xst, c_vil), c^x, c_y) -> true
Case.3.1: deq^before(c_x, c_y, deqd(abort(c_xst, c_yil)))

[] Proved by rewriting.

The resume command takes a proof method (e.g., case) and continues work on the current proof-in-progress
using the specified method. The method case splits the proof into two cases (Case.3.1 above and Case.3.2 below)
according to whether or not deqJbefore(x,y,deqd(...)) is true. To prove something by case t\. t i L P will first
try to prove that (t\\t2....\tn) = true, or simply (t\\not(t\)) == true if n=l .

For the first case above, we first assume that deqJ>efore(x,y,deqd(...)) is true. Under this assumption, LP
tries to prove thm2.1.5 by proving the lemma lnv2(abort(cjcst, c-vil), c j c , c.y)~true, where cjcst, c.vii, CJC,
c.y are new LP-generated constants. Note that for each case, LP generates new constants not already in use and
creates a specific instance of the general case by substituting the constants in for the variables (as in the third line
above). We guide LP in proving the lemma by invoking the command critical 6 which causes an explicit use of
the theory State and die induction hypothesis. Informally, critical theory 1 with theory2 tells LP to try to prove
that the theorem in progress is a consequence of theory 1 plus theory2. More formally, critical will find all critical
pairs [18] between the two rewrite-iule theories given as its arguments. Doing critical case with State, LP finds
deq_before(c-x. c_y, deqdic^xst)) = true, which when added to Induct.2, implies thm2.1.5.

Let's continue with the proof:

'LP understands unambiguous prefixes of command names so u* also use crit in our proof,.

15

C a s e . 3 . 2
n o t (d e q _ b e f o r e (c _ x , C _ Y / d o q d (a b o r t (c _ x s t , c _ v i l)))) t r u e

i n v o l v e s p r o v i n g Lemma t h m 2 . 1 . 5 . 2
I n v 2 (a b o r t (c _ x s t , c _ j v i l) , c _ x , c _ y) - > t r u e

Lemma thm2 . 1 . 5 . 2 i n t h e p r o o f b y c a s e s o f Lemma thm2 . 1 . 5
I n v 2 (a b o r t (c _ x a t , c__v i l) , c _ x , c _ y) - > t r u e
C a s e . 3 . 2 : n o t (d e q _ b e f o r e (c _ x , c — y , d e q d (a b o r t (c _ x s t , c _ v i l))))

[] P r o v e d b y r e w r i t i n g (w i t h u n r e d u c e d r u l e s) .

Lemma t h m 2 . 1 . 5 f o r t h e i n d u c t i o n s t e p i n t h e p r o o f o f C o n j e c t u r e t h m 2 . 1
I n v 2 (a b o r t (c _ _ x s t , v i l) , x , y) - > t r u e

[] P r o v e d b y c a s e s
d e q _ b e f o r e (x , y , d e q d (a b o r t (c _ x s t , v i l)))

| n o t (d e q _ b e f o r e (x , y , d e q d (a b o r t (c__xs t , v i l))))

For the second case, LP tries to prove the lemma assuming:

not(deq-before{C-X. c_v. deqd(abort(c-XSt, c_vil))).

The proof goes through immediately since lnv2 becomes vacuously true (it is the "false" case for the antecedent of
an implication). The last boxed line shows that the proof for the abort case for the second invariant (thm2.1.5) is
completed.

The proof for thm2.1.2 follows a proof procedure similar to that for thm2.1.5; the proc)r the other invariants
(Invl and lnv3) follow procedures similar to that for Inv2.

5.2. Correctness of Queue

Combining the theories of the queue representation and the abstraction function, we now prove the following
correctness condition, what we have been calling the "prefix" property for the queue example:

% Vxh : H.Vxst: St.

Correctness Condition: in(xh. af(xst)) => prefix(DEQ(xh), ENQ(xh))

To simplify the proof procedure, we first prove three groups of lemmas shown in Figure 2.

Most of the lemmas in Lemma 1 are basic properties of sequences and queue histories. Some of them are so
obvious that we believe LP should have had them as built-in theorems. For example, LP could have a built-in
meta theorem like (x = y) => op(x) = op(y) where op is any user-defined function, thereby giving us lemma 1.10 and
l emmal . l l "for free." Since LP maintains a proof stack, we must prove all lemmas before we can use them.

The lemmas in Lemma2 and Lemma3 state the conditions under which one can conclude that the prefix property
holds for a given history xh. Lemma 2.3 handles the case for when an enqueue operation is performed; Lemmas
3.2 and 3.3 inductively handle the case for when a dequeue is performed.

The following is the proof session for lemmal.3, where theory is the theory consisting of State, Abstraction
and the invariants.

- > t h a w t h e o r y
- > s e t name l e m m a l
- > p r o v e p r e f i x (x , c o n s (y , z)) - > (p r e f i x (x , y) | x - (y , z)) b y i n d u c t i o n x S e q

The b a s i s s t e p i n a n i n d u c t i v e p r o o f o f C o n j e c t u r e l e m m a l . 3
p r e f i x (x , c o n s (y , z)) - > ((c o n s (y , z) * x) | p r e f i x (x , y)) - > t r u e

i n v o l v e s p r o v i n g t h e f o l l o w i n g l e m m a (s) :
l e m m a l . 3 . 1 : p r e f i x (n u l l , c o n s (y , z)) - > ((c o n s (y , z) • n u l l) | p r e f i x (n u l l , y))

- > t r u e
[] P r o v e d b y n o r m a l i z a t i o n

The i n d u c t i o n s t e p i n a n i n d u c t i v e p r o o f o f C o n j e c t u r e l e m m a l . 3
p r e f i x (x , c o n s (y , z)) - > ((c o n s (y , z) - x) | p r e f i x (x , y)) - > t r u e

16

Leinmal :
lemma1.1 :
lerranal. 2 :
lemma1.3 :
lemmal.4 :
lemmal.5 :
lemmal.6 :
lemmal.7 :
lemmal.8 :
lemmal.9 :
lemmal.10 :
lemmal.11 :
lemmal.12 :
lemmal.13 :
lemmal.14 :
lemmal.15 :
lemmal.16:
lemmal.17 :

Lemma2 :
lemma2.1 :
lemma2.2 :
lemma2.3 :

append(append(x, y) , z) — append(x, append(y, z))
prefix(x, y) -> (append(x, aub(y, x)) - y)
prefix(x, cona(y, z)) -> (cons(y, z) - x) | prefix(
append (ENQ (x) , ENQ (y)) -»
append(DEQ(x), DEQ(y)) -«
ENQ(append(cons(x, E(y)),
ENQ(append(cons(x,
DEQ(append(cons(x,
DEQ(append(cons(x,
(X - y) -> (DEQ(x)
(x - y) -> (ENQ(x)
in_state(x, init))

ENQ(append(x,
DEQ(append(x,

y>>
y>)

y))

z))
z))
z))
z))

append(cons(ENQ(x) ,
ENQ(append(x, z))
DEQ(append(x, z))
append(cons(DEQ(x) ,

D(y))
E(y))
D(y))
- DEQ(y))
- ENQ(y))
-> (x - null)

prefix(x, y) »> prefix(x, cons(y, z))
prefix(cons(x, z) , y) ~> prefix(x, y)
in__state (cons (xh, we), xst)) *> in__state (xh, xst)
prefix(x, append(x, y))
(in_state(xh, xst) & prefix(DEQ(xh), ENQ(xh))) ->

prefix(DEQ(discard(xt, xh)), ENQ(discard(xt, xh)))

element(y)), ENQ(z))

what(y)), DEQ(z))

((deqd(xst) - new) & in_state(xh, xst)) -> (DEQ(xh) - null)
(xh - xhl) *> (ordered(xh) <*> ordered(xhl))
((append(cona(xhl, E(pair(xe, xt))), xh2) - x h)
& (ordered(xh)

& (prefix(DEQ(append(xhl, xh2)), ENQ(append(xhl, xh2)))
& (in(append(xhl, xh2), af(xst)) £ (enqr(top(deqd(xst))) < xt)))))

*> prefix(DEQ(xh), ENQ(xh))

Lemma3 :
lemma3.1 :
lemma3.2 :

lemma3.3 :

(DEQ(append(xh, xhl)) * null) -> ((DEQ(xh) - null) & (DEQ(xhl) - null))
((append(cons(xhl, D(trip(element(xn), enqt(xn), xt))), xh2) - xh)

& ((DEQ(xhl) - null)
& ((DEQ(xh2) - null)

& (in(append(xhl, xh2), af(xst))
& (in(xn, enqd(xst)) & least(xn, enqd(xst)))))))

-> prefix(DEQ(xh), ENQ(xh))
((DEQ(xh2) - null)
&(append(cons(xhl, D(trip(element(xn),

& (in(append(xhl, xh2), af(xst))
& (in(xn, enqd(xst))

& (least(xn, enqd(xst))
& (prefix(DEQ(append(xhl,

6 (enqr(top(deqd(xst)))
ENQ(xh))

enqt(xn), xt))), xh2) - xh)

xh2))
< <

-> prefix(DEQ(xh) (

ENQ(append(xhl, xh2)))
.nqt (xn)))))))

Figure 2: Lemmas for Correctness Proof

17

uses the following equation(a) for the induction hypothesis:
Induct. 6: prefix (cjc, cons (y, z)) -> ((c_x - cons(y, z)) | prefix (c_x, y))

-> true
The induction step involves proving the following lemma(s) :
lemmal.3.2: prefix(cons(c_x, vil), cons(y, z))

«•> ((cons(c_x, vil) - cons(y, z)) | prefix(cons(c_x, vil), y))
-> true
[] Proved by normalization

Conjecture lemmal.3
prefix(x, cons(y, z)) *> ((cons(y, z) « x) | prefix(x, y)) -> true

[] Proved by induction over *x' of sort *Seq'.

Here, we need only tell LP to prove the lemma using induction. LP is then able to prove the theorem
automatically because we have defined the predicate prefix over Seq recursively and through structural induction,
LP considers all possible terms of sort Seq.

Now let us look at the proof session for the Correctness Condition, where theory3 is theory plus L a l ,
Lemma2, and Lemma3:

->thaw theory3
-> set name sync
The name prefix is now Async'.
-> prove in(xh,af(xst))»>prefix(DEQ(xh),ENQ(xh)) by induction xst St
The basis step in an inductive proof of Conjecture sync.l

in(xh, af(xst)) -> prefix(DEQ(xh), ENQ(xh)) -> true
involves proving the following lemma(a):
sync.1.1: in(xh, af(init)) -> prefix(DEQ(xh), ENQ(xh)) - > t r u e

which reduces to the equation
(false <*> in(xh, af(init))) | prefix(DEQ(xh), ENQ(xh)) -> true

Proof of Lemma sync.1.1 suspended.

sync.l .1 is the base case for the initial state init.

-> resume by case in(xh,af(init))
Case.1.1

in(c_xh, af(init)) » true
involves proving Lemma sync.1.1.1

in(c_xh, af(init)) -> prefix (DEQ (c_xh) , ENQ(c_xh)) -> true
Lemma sync.1.1.1 in the proof by cases of Lemma sync.1.1

in(c_xh, af(init)) «> prefix(DEQ(c_xh), ENQ(c_xh)) -> true
Case.1.1: in(c_xh, af(init))

is NOT provable using the current partially completed system. It reduces to
the equation

prefix(DEQ(c_xh), ENQ(c_xh)) -> true
Proof of Lemma sync.1.1.1 suspended.
-> crit case with Abstraction

sync.2.1: in_state(c_xh, init) — true
sync.2.2: ordered(c_xh) — true

-> crit sync with lemmal.12
sync.3.1: c_ x h null

Lemma sync.1.1.1 in the proof by cases of Lemma sync.1.1
in(c_ x h , af(init)) -> prefix(DEQ(c_xh), ENQ(c_xh)) -> true
Case.1.1: in(c_xh, af(init))

[] Proved by rewriting.

Recall that in the Abstraction trait, instead of defining afixst) explicitly, we just stated properties of histories in
aflxst) for all xst. For LP to use t h e s e properties we need to assume the case in(xh&f(imt)) and tell LP to find the
critical consequences of the case h Abstraction and lemmal. 12. After both crit 's LP proves the positive case
easily by rewriting.

Now we have to consider the n e r e (not(...)) case, which, as before, goes through automatically because it
is vacuously true:

18

Case.1.2
not(in(c_xh, af(init))) — true

involves proving Lemma sync.1.1.2
in(c_xh, af(init)) -> prefix (DEQ (c_xh) , ENQ(c_xh)) -> true

Lemma sync.1.1.2 in the proof by cases of Lemma sync.1.1
in(c_xh, af(init)) -> prefix(DEQ(c_xh), ENQ(c_xh)) -> true
Case.1.2: not(in(c_xh, af(init)))

[] Proved by rewriting (with unreduced rules).

Lemma sync.1.1 for the basis step in the proof of Conjecture sync.l
in(xh, af(init)) -> prefix(DEQ(xh), ENQ(xh)) -> true

[] Proved by cases
in(xh, af(init)) | not(in(xh, af(init)))

We are now left with the inductive steps. LP generates the induction hypothesis, and the four inductive cases:

The induction step in an inductive proof of Conjecture sync.l
in(xh, af(xst)) -> prefix(DEQ(xh), ENQ(xh)) -> true

uses the following equation(s) for the induction hypothesis:
Induct.1: in(xh, af(c_xat)) -> prefix(DEQ(xh), ENQ(xh)) -> true
The induction step involves proving the following lemma(s):
sync.1.2: in(xh, af(deq(c_xat, vil, vi2))) -> prefix(DEQ(xh), ENQ(xh)) -> true

which reduces to the equation
(false <«> in(xh, af(deq(c_xst, vil, vi2))))
I prefix(DEQ(xh), ENQ(xh))

-> true
sync.1.3: in(xh, af(enq(c_xat, vil, vi2))) -> prefix(DEQ(xh), ENQ(xh)) -> true

which reduces to the equation
(false 0 > in(xh, af (enq (c_xst, vil, vi2))))
| prefix(DEQ(xh), ENQ(xh))

-> true
sync.1.4: in(xh, af(commit(c_xst, vil))) •> prefix(DEQ(xh), ENQ(xh)) -> true

which reduces to the equation
(false <•> in(xh, af(commit(c_xst, vil))))

I prefix(DEQ(xh), ENQ(xh))
-> true

sync.1.5: in(xh, af(abort(c_xst, vil))) -> prefix(DEQ(xh), ENQ(xh)) -> true
which reduces to the equation
(false 0 > in(xh, af(abort(c_xst, vil))))
| prefix(DEQ(xh), ENQ(xh))

-> true
Proof of Lemma sync.1.5 suspended.

The proofs of each case follow a familiar pattern. For each case, a number of crit 's are performed, peihaps
with some extra equations added to the working theory. Figure 3 shows the outline of the entire proof. One of
LP's user amenities is a command for logging all user input (the "->"'s do not appear in the figure) and boxed lines
into a file during a proof session, thus saving a proof outline, which can be used to replay a proof.

6. Discussion

6.1. Experimental Statistics

We used the 0.9 Beta Test (June 28, 1989) version of LP running on a DEC Microvax-3 with 16 megabytes of
primary memory. We used a 2 megabyte heap size for LP.

Tables 1,2, and 3 summarize some of the statistics taken from our usage of LP. The first table indicates how
much user input to LP was required in specifying each of the theories. Declarations refer to the variable, constant,
and non-generator function declarations. Since theories are built from previously defined ones, as one goes down
the column, we indicate only the new declarations that each theory makes. The Generators and Equations columns

19

thaw theory3
set name sync
prove in(xh, af(xst)) - prefix(DEQ(xh), ENQ(xh)) by induction xst St
resume by case in(xh, i r(init))

crit case with Abstraction
crit sync with lemmal.12

[] % rewriting for case in(c__xh, af(init))
[] % rewriting (with unreduced rules) for case not(in(c_xh, af(init)))

[] % cases in(xh, af(init)) | not(in(xh, af(init))) for basis step
resume by case in(xh,af(abort(c_xst,vil)))
crit case with Abstraction
crit induct with sync
crit sync with lemmal.17
crit sync.5.2 with Abstraction.5
crit sync with sync

[] % rewriting for case in(c_xh, af(abort(c_xst, c vil)))
[] % rewriting (with unreduced rules) for case not(in(c_xh, af(abort(c_xst, c_vil))))

[] % cases in(xh, af (abort (c__xst, vil))) | not(in(xh, af (abort (c_xat, vil)))) for
induction step
resume by case in(xh,af(commit(c_xst,vil)))

crit case with Abstraction
[] % rewriting for case in(c_xh, af(commit(c_xst, c_vil)))
[] % rewriting (with unreduced rules) for case not(in(c_xh, af(commit(c_xst, c_vil))))

[] % cases in(xh, af(commit(c_xst, vil))) | not(in(xh, af(commit(c_xst, vil)))) for
induction step
resume by case in(xh,af(enq(c_xat,vil,vi2::EL)))
add when_enq (c__xst, z, w, c_vil, c_vi2)
crit case with Abstraction
resume by case deqd (c_xst) «»new
crit case with lemma2.1
crit sync with lemmal.8
crit sync.16.2 with Abstraction.5
crit sync with sync

[] % rewriting for case deqd(c_xst) • new
crit induct with sync.16.2
instantiate xhl by c_hl,xh2 by c_h2,xh by c_xh,xe by c__vi2,xt by c_vil,xst by c_xst in lemma2.3

[] % rewriting for case not(deqd(c_xst) • new)
[] % cases (deqd(c_xst) « new) | not (deqd (c_xst) - new) for case in (c. :h, af (enq (c_xst,

c_vil, c_vi2)))
[] % rewriting (with unreduced rules) for case not (in(c__xh, af(enq (c z, c_vil, c_vi2))))

[] % cases in(xh, af (enq (c_xst, vil, vi2))) | not(in(xh f af (enq (c_xst, .1, vi2)))) for
induction step
resume by case in(xh,af(deq(c_xst,vil,vi2::enq_rec)))
crit case with Abstraction
add when__deq (c_xst, x, c_vi 1, c_vi2)
crit induct with sync

resume by case deqd(c_xst)-new
crit case with lemma2.1
crit sync.25.3 with Abstraction.5
crit sync.30.1 with sync.29
crit sync.31.1 with lemma3.1
instantiate xhl by c_hl,xh2 by c_h2,xn by c_vi2,xt by c_vil,xh by c__xh,xat by c_xst in lemma3.2

[] % rewriting for case deqd(c_xat) - new
instantiate xst by c__xst, xh by c_xh,xhl by c_hl,xh2 by c_h2,xn by c_vi2,xt by c_vil in lemma3.;

[] % rewriting for case not(deqd(c_xst) ™ new)
[] % cases (deqd(c__xst) • new) | not (deqd(c_xst) - new) for case in(c__xh, af (deq(c_xst,

c^vil, c_vi2)))
[] % rewriting (with unreduced rules) for case not (in (c__xh, af (deq(c_xat, c_vil, c_vi2))))

[] % cases in(xh, af (deq(c__xst, vil, vi2))) | not(in(xh, af (deq(c_xst, vil, vi2)))) for
induction step
[] % induction over %xst::St' of sort *St'
q

Figure 3: Entire Proof Outline for Correctness Condition

20

Theory Declarations Generators Equations Deduction rules
Bool 10 0 21 4
TransID 3 0 2 0
Enq_rec 3 1 3 2
Deq_rec 0 1 5 1
Deq_Stack 1 2 10 0
Enq_Heap 1 2 17 1
State 1 5 13 0
Invariant 0 0 3 0
Event 0 2 3 2
Sequence 3 2 11 0
History 6 2 29 0
Abstraction 5 2 21 1

Table 1: User Input

Proofs
Number of rules

in system
Number of commands

used during proof
Number of rules
produced by LP

Invariant 1 72 25 10+3+10
Invariant 2 72 20 5+16
Invariant 3 72 9 7
sync 176 31 3+12+5+15+20

Table 2: Numbers of Rules and Commands Used in Proofs

are self-explanatory. Finally, for each LSL partitioned by clause, LP defines a deduction rule, a general kind of
a logical inference rule that gives one way for LP users to introduce implicit universal quantification. Applying a
deduction rule will yield a set of equations and/or rewrite rules.

For proofs of the three invariants and the correctness condition (sync), Table 2 indicates how many input rules
and commands we used and how many rules LP generated The first column indicates the total number of user-
defined rewrite rules and deduction rules. The third column shows the number of rules LP generated. Since a proof
can be divided into several stages, e.g., by case analysis or induction steps, the notation n+m+... expresses the
maximum number of rules produced by LP during each of the different stages. To save space, LP discards rules
once an equation is proven; hence, when proving one theorem LP may actually recompute rules it discarded during
the proof of another.

Table 3 indicates the time and space usage by LP. The first column shows the number of successful supplications
of rules and the total amount of CPU time (in minutes.seconds) taken to perform the applications. The second
column indicates the number of attempted (not successful) applications, and corresponding time. Given a set of
rules, LP will go through the entire set, perhaps adding more rules in the process, and apply each rule in an attempt
to reduce an equation. It will go through this modified set of rules multiple times, hence the reason that the total
number of applications of rules far outnumber the actual number of rules. The heap size is the amount of space in
bytes taken up at the end of each proof, and not the total amount taken during the proof, since garbage collection
may occur during the proof. In fact, LP did 19 garbage collections during the proof of Invariant 1; 10 for Invariant
2; 4 for Invariant 3; and 111 for sync. The fourth column indicates the total amount of CPU time taken for the
entire proof session. Of course, in real time, the first attempt at proving, say sync, was more on the order of hours;
once the proof is known, re-running it takes about 20 minutes of real time.

Appendix C contains versions of Tables 2 and 3 for all proofs, including those of all the lemmas shown in
Figure 2. We computed all time and space numbers using LP's statistics command.

21

Proofs

Number of
successful applications

of rules, time

Number of
attempted applications

of rules, time

Heap
size

(bytes)

Total
time

(min: sec)
Invariant 1
Invariant 2
Invariant 3
sync

505, 1:20.62
280, 17.60

88, 5.53
387, 3:22.64

8811, 38.94
5878, 18.79
2197, 6.01

30672, 2:15.45

351,312
347,528
341,240
623,804

2:49.77
1:16.06
24.77

14:06.52

Table 3: Time and Space Statistics on Proofs

6.2. Comparison between LP and Other Mechanical Proof Checkers

Mechanical theorem-proving tools can be divided into two categories: automatic theorem provers and proof check
ers. The first kind have general built-in proof strategies, e.g., resolution, that find proofs without user intervention.
The second kind largely depend on the user to guide the proof. In this section we compare LP with two other
proof checkers, the Boyer-Moore System (BMS) [2] and LCF [13]. Since all three systems are interactive, they all
provide both a meta-language for defining the proof strategy and a language for defining the theory of the problem.
In the case of BMS, the distinction between these two languages is subtle. Below, we consider four dimensions of
comparison.

Expressibility of Theory: Since LP limits the use of the existential quantifier, its expressibility is weaker than
that of LCF which has the expressive power of full predicate calculus. What make LP more attractive is its support
for modularity, i.e., the ability to let users construct a large theory from some smaller ones. BMS also limits the
use of the existential quantifier. All three systems emphasize the role of recursively-defined functions.

Were we to define af over St recursively, LP (in theory) would be able to prove theorems using of automatically.
However, such a definition would look unnaturally complex because it would depend on numerous existentially-
quantified variables all of which would have to be skolemized in the ways described in Section 2.3. This complexity
is inherent to the abstraction function, af, since its range is expressed in terms of mathematical concepts like sets
and sequences. A term-rewriting system is best at manipulating syntactic representations of these concepts, yet such
terms would would be hard to read and presumably bring LP "to its knees." So instead defining af in a direct,
constructive way 7 that would completely define all the elements in the set, we resorte mst stating properties
that these elements satisfy.

Expressibility of Strategy: By providing a meta-language, ML, for users to define u vn proof strategies,
LCF is the most powerful and most flexible of the three. LCF designers claim that in pr ie one can program
almost any style of proof [6]. In contrast, LP provides some built-in proof strategies, i.e., t; >et of LP commands
such as case and critical, all of which have fixed meanings. Users are free to choose among these strategies, and
indeed must wisely choose some sequence of commands to push a proof to completion.

BMS is more general than LP since it lets users define "shells," which are like meta-theories with induction
schemata. By defining a theory through the "instantiation" of a shell, one simultaneously gets a proof strategy (in
particular, an induction rule). Unlike LP, an induction rule can be defined over more than one variable (thus, one
can perform simultaneous inductions in BMS instead of having to do nested inductions) and one can choose to do
the inductive cases before the base cases.

Finally, LCF goes even further than LP and BMS by providing the ability to glue smaller strategies (called
"tactics") together to construct a complete strategy.

Validity of Proof Strategy: While LCF has more flexible ways for devising proof strategies, it cannot guarantee
the validity of a user-defined strategy. With LCF, it is possible for a user to prove something which is nonsense.
The user is responsible for proving the validity of his or her strategy. To alleviate this problem, LCF encourages
users to adopt a preferred style that uses only valid tactics. LP and BMS do not face this problem since everything

7For example, as given in [24].

22

proved must be a consequence of the defined theory.

Pragmatic Aspects: LCF supports any style of proof, though this expressibility is not achieved without cost;
users themselves must go through the trouble and tedium of defining the proof strategies. At the other extreme,
some argue that BMS is almost an automatic theorem prover since it has some well-defined built-in proof strategies,
called heuristic searches, many of which it invokes without user intervention. In most cases, however, the user still
guides BMS to find a proof with BMS providing some possible strategies from which the user can choose. During
a proof session, if a choice point is encountered, BMS will propose a number of possible next steps and list the
lemmas the user would need to prove in order to get to each of those next steps. Between these two extremes is
LP, which provides a fixed set of proof strategies and leaves it up to the user to know when to invoke which as
well as what additional lemmas are needed. The user also has more freedom moving around BMS's proof tree than
LP's proof stack.

Using any of these three systems requires that one have a clear proof outline in mind. Using a prover like LCF
requires not only having the theorem's proof outline in mind but also the particular proof strategies one would use
in the proof itself. In this sense, LCF users need to be logicians.

7. Conclusions and Future Directions

When we began, we were familiar with and knowledgeable about both the specificand domain, Avalon/C++, and
the specification language, Larch; one of us (JMW) was involved in the design of both. Our knowledge of LP
at first was only superficial, but not naive. As our experiment progressed, one of us (CG) became much more
proficient in using LP. Based on our experience, we conclude the following.

The specificand domain is complex. We knew this from the start. Going through the exercise of formally
specifying a model of computation for Avalon/C++ and the specific queue example down to the level of detail that
can be used as input to a proof checker made Avalon/C++'s intricacies painstakingly clear. Yes, the specificand is
complex and no amount of machine assistance is going to make that less complex.

The prover is complex. We used only a small subset of the full functionality of LP. To use LP at its fullest
and perhaps more effectively than we have illustrated here, the user needs to understand concepts from rewrite-rule
theory, e.g., confluence, termination, convergence, termination orderings 8. The user needs to know the theoretical
and practical implications of invoking each of the related commands. For example, given a set of equations
and rewrite rules, the complete command will attempt (by computing all critical pairs) to find a convergent set
of rewrite rules that decides the equational theory of the original system. Instead of naively applying complete
to our specifications, which would certainly exhaust heap space and probably not terminate, we chose the more
conservative and more manageable strategy of computing specific sets of critical pairs at "critical" instances in our
proofs.

Proving is like programming. Using LP is like programming since the user designs a proof and lets LP execute
it. Getting a proof to go through requires iterations through specification (of the specificand), design (of the proof),
and "implementation" (checking the proof). Debugging occurs at all phases. One changes the specification because
not enough has been stated for the proof to go through. One changes the proof design because the proof path leads
nowhere or because the specification has changed.

Using a proof checker requires forethought, patience (human cycles), and machine cycles. Given mechanical
tools for theorem proving, users may easily be lured into thinking or hoping that the tool will find the proof for
them. A proof checker does not decrease the amount of thinking required on the user's part; it can alleviate some
of the bookkeeping and symbol pushing, but no more.

These conclusions may all sound like platitudes, and are certainly familiar to those who have worked with proof
checkers, but they are worth repeating. Harder questions to answer are how far has theorem proving technology

8 There arc nine commands alone that deal with orderings.

23

gone, where is it going, and where should it go? To what use can we put mechanical theorem proving tools in
practice?

Although we have no definitive answers to such questions, from our experience using LP, we believe that current
mechanical theorem proving tools can be used today for medium-sized, well-defined, domain-specific problems,
e.g., hardware circuits [9,4], microprocessors [17,5], operating systems kernels [1], and secure systems [20]. We
suggest two areas of research to push against our current technological limits:

1. To build parallel systems that exploit parallel architectures and parallelized versions of standard theorem-
proving algorithms (like Knuth-Bendix [18]). In theory, it would have been more convenient to invoke the
complete command to have LP produce all consequences by computing all the critical pairs of our entire
Avalon/C++ queue specification. In practice, we would have paid significant performance penalties. A
parallel proving system could instead support a proof strategy in which relatively independent calculations
are performed in parallel, e.g., computing critical pairs in parallel with executing the main proof.

2. To build a library of theories that are relevant to computer science. We had to start from scratch (booleans,
sets, sequences, stacks, etc.) before we could even state the queue's correctness condition. With the exception
of the Larch Handbook of Traits [15], there is a lack of pre-defined reusable theories for standard mathematical
concepts that programmers use or assume. Ideally such a library of theories would be reusable across different
theorem-proving tools, but they at least should be general enough for a variety of applications. They should
also be extensible so that users can specialize the general theories as well as add their own application-specific
theories, as we did with the History trait for Avalon/C++.

Though it may be a long time before a powerful enough mechanical theorem proving tool is built such that
software engineers can use it in practice, pursuing the above two lines of research may help get us there quicker.

Acknowledgments

We thank members of the Larch Project at MIT and DEC/SRC, in particular Steve Garland, John Guttag, and
Jim Homing, for providing us with LP. All three were extremely helpful and - nt in providing guidance and
answering questions as we used LP. We also thank members of the Avalon Proje realizing Avalon/C++, and
Maurice Herlihy for his work with us on the hand-proof of the queue example. we thank David Detlefs,
Rick Lemer, and Amy Moormann Zaremski for their comments on this paper.

24

References

[1] W.R. Bevier. A Verified Operating System Kernel. Technical Report 11, Computational Logic, Inc., March
1987.

[2] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, 1979. ACM monograph
series.

[3] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM TOPLAS, 8(2):244-263, 1986.

[4] E.M. Clarke and O. Grumberg. Research on automatic verification of finite-state concurrent systems. Ann.
Rev. Comput. 5c/., 2:269-290, 1987.

[5] W.J. Cullyer. Implementing safety-critical systems: the viper microprocessor. In VLSI Specification, Verifica
tion and Synthesis, Kluwer, 1987.

[6] D. L. Detlefs, M. P. Herlihy, and J. M. Wing. Inheritance of synchronization and recovery properties in
Avalon/C-H-. IEEE Computer, December 1988.

[7] Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

[8] S.J. Garland and J.V. Guttag. Inductive methods for reasoning about abstract data types. In Proceedings of
the 15th Symposium on Principles of Programming Languages, pages 219-228, January 1988.

[9] S.J. Garland, J.V. Guttag, and J. Staunstrup. Verification of vlsi circuits using Ip. In Proceedings of the 1FIP
WG 102, The Fusion of Hardware Design and Verification, North-Holland, 1988.

[10] C. Gong and J.M. Wing. Raw Code, Specification and Proof of the Avalon Queue Example. Technical
Report CMU-CS-89-172, CMU School of Computer Science, August 1989.

[11] D.I. Good, R.L. London, and W.W Bledsoe. An interactive program verification system. IEEE Transactions
on Software Engineering, l (l) :59-67, 1979.

[12] M. Gordon. Hoi: a proof generating system for higher-order logic. In VLSI Specification, Verification and
Synthesis, Kluwer, 1987.

[13] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF. Volume 78 of Lecture Notes in Computer
Science, Springer-Verlag, 1979.

[14] J.V. Guttag, J.J. Horning, and J.M. Wing. The larch family of specification languages. IEEE Software,
2(5):24-36, September 1985.

[15] J.V. Guttag, J.J. Horning, and J.M. Wing. Larch in Five Easy Pieces. Technical Report 5, DEC Systems
Research Center, July 1985.

[16] M.P. Herlihy and J.M. Wing. Reasoning about atomic objects. In Proceedings of theSymposium on Formal
Techniques in Real-time and Fault-tolerant Systems (LNCS 331), pages 193-208, Springer-Veriag, 1988.

[17] W.A. Hunt. The Mechanical Verification of a Microprocessor Design. Technical Report 6, Computational
Logic, Inc., 1987.

[18] Knuth and Bendix. Simple Word Problems in Universal Algebras, pages 263-297. Pergamon Press, Elmsford,
NY, 1970.

[19] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM,
21(7):558-565, July 1978.

[20] A.P. Moore. Investigating formal specification and verification techniques for com sec software security. In
Proceedings of the 1988 National Computer Security Conference, October 1988.

25

[21] A.Z. Spector, R. Pausen, and G. Bruell. Camelot: a flexible, distributed transaction processing system. In
Proceedings of Compcon 88, San Francisco, CA, February 1988.

[22] B. Stroustrup. The C + + Programming Language. Addison Wesley, 1986.

[23] W.E. Weihl. Local atomicity properties: modular concurrency control for abstract data types. Transactions
on Programming Languages and Systems, l l(2):249-283, April 1989.

[24] J.M. Wing. Verifying atomic data types. In Lecture Notes in Computer Science: Proceedings of the REX
Workshop on Stepwise Refinement of Distributed Systems: Models, Formalism, Correctness, Springer-Veriag,
Berlin, 1989. CMU Technical Report CMU-CS-89-168.

26

Appendix A. Auxiliary TVaits

Set (EL, C) : trait
introduces

emptyset: - > C
insert: C , EL -> C
in: EL, C - > Bool
notin: EL, C -> Bool
U : c , c - > c
insect: C , C - > C

- : C , C - > C
delete: C , EL -> C
subseteq: C , C -> Bool
isEmpty: C -> Bool

asserts C generated by (emptyset, insert)
C partitioned by (in)

for all (y, yl: C , x, xl: EL)
~(in(x, emptyset)),
in(x, insert (y, xl)) (x xl) | in (x, y) ,
notin(x, y) » ~(in(x, y)),
in(x, U(y, yl)) -« in(x, y) | in(x, yl),
in(x, insect (y, yl)) in(x, y) & in(x, yl) ,
in(x, (y - yl)) M in(x, y) 6 notin(x, yl),
in(x, delete(y, xl)) » (x \-» xl) & in(x, y) ,
subseteq(emptyset, yl),
subseteq (insert (y, x) , yl) »«• subseteq(y, yl) & in(x, yl)
isEmpty(emptyset),
~isEmpty(insert(y, x))

end

Stack (EL, C) : trait
introduces

new: -> C
push: C , EL -> C
top: C -> EL
pop: C - > C
isNew: C -> Bool

asserts
C generated by (new, push)
for all (x: C , y: EL)

top(push(x, y)) — y,
pop(push(x, y)) — x,
isNew(new),
- isNew(push(x, y))

Pair (TI, T2, T) : trait
introduces

pair: TI, T2 -> T
first: T -> Tl
second: T -> T2

asserts
T generated by (pair)
T partitioned by (first, second)
for all (x: Tl, y: T2)

first(pair(x,y)) — x,
second(pair(x,y)) y

end

Triple (Tl, T2, T3, T) : trait
introduces

trip: Tl, T2, T3 -> T
first: T -> Tl
second: T -> T2
third: T -> T3

asserts
T generated by (trip)
T partitioned by (first, second, third)

27

for all (x: Tl, y: T2, z: T3)
first(trip(x,y,z)) — x ,
aacond(trip(x,y,z)) — y,
third(trip(x,y,z)) — z

and

28

Appendix B. Boolean Theory

set name bool
declare

true :->bool
false :->bool
& :bool,bool->bool
I :bool,bool->bool
<=>:bool,bool->bool
«>:bool,bool->bool
not :bool->bool
b: :bool
bl::bool
b2::bool

op ac <=> & I
op prec <=> &
op prec <=> I

add
true & b -> b
false & b -> false
b & b -> b
not(b) -> false <-> b
true <=-> b -> b
not(b) & b -> false
true I b -> true
false I b -> b
b I b -> b
not(b) I b -> true
b »> bl -> not(b) I bl
(b I bl) & b -> b
% not(b) & not(bl) -> not(b I bl)
not(b I bl) -> not(b) & not(bl)
% not(b) I not(bl) -> not (b & bl)
not(b & bl) -> not(b) I not(bl)
b & (not(b) I bl) -> b & bl
(b I bl) & not(b) & not(bl) -> false
(b I bl) & (b I not(bl)) -> b
(b & bl) I not(bl) -> b I not(bl)
(b & bl) I (b & not(bl)) -> b
b I (not(b) & bl) -> b I bl
b I (b & bl) -> b
(b <-> bl) I (bl <-> b2) | (b <*> b2) -> true

add-ded
when (b <«> false) « false
yield b -> true
when b <-> bl ~ b <-> b2
yield bl ~ b2
when if(b, bl, b2) « true
yield b -> bl

b I b2
when if(b, bl, b2) — false
yield bl -> not(b)

b2 -> b

29

Appendix C. LP Usage and Performance Statistics

In the following two tables, Lemma. 1, Lemma.2, and Lemma.3 refer to the following three (simple) lemmas that
we also need to prove:

1. (x-pair(y, z))->((element(x)«y)&(enqt(x)»z))
2. (x-trip(u,v,w))=>((what(x)*u)&(enqr(x)=v)&(deqr(x)»w))
3. in_stack(x,y)»>(deq__before(x,top(y) ,y) | (x*top(y)))

The first two were proven use the case command; the third by induction.

30

Proofs
Number of rules

in system*
Number of commands

used during proof
Number of rules

produced by LP** Invariant 1
Invariant 2
Invariant 3
lemma. 1
lemma.2
lemma.3

72
72
72

147
148
149

25
20

10+3+10
5+16

lemmal. l
lemmal.2
lemmal.3
lemmal.4
lemmal.5
lemmal.6
lemmal.7
lemmal.8
lemmal.9
lemmal.10
lemmal. l 1
lemmal. l 2
lemmal.13
lemmal.14
lemmal.15
lemmal.16
lemmal. l 7

150
151
152
153
154
155
156
157
158
159
160
161
162
150
164
165
166

1
4
1
2
2
2
2
2
2
9
9
6
6
5
6
2
8

3
2
3
5
3

5+5
2
7

lemma2.1
lemma2.2
lemma2.3

167
168
169

9
4
8

344
2
13 lemma3.1

lemma3.2
lemma3.3

172
173
175

3
11
9

2
17
13

sync 176 31 3+12+5+15+20

A proof
n+m+..

Includes rewrite rules and deduction rules.

can be divided into several stages (e.g., by case analysis or induction steps),
expresses the maximum numbers of rules produced by LP during each stage.

Table 4: Numbers of Rules and Commands Used in Proofs

31

Number of Number of Heap Total
successful applications attempted applications size time

Proofs of rules, time of rules, time (bytes) (min: sec)
Invariant 1 505, 1:20.62 8811, 38.94 351,312 2:49.77
Invariant 2 280, 17.60 5878, 18.79 347,528 1:16.06
Invariant 3 88, 5.53 2197, 6.01 341,240 24.77
lemma. 1 20, 0.34 210, 0.53 320,460 6.96
lemma.2 24, 0.74 212, 0.61 333,816 6.26 1
lemma.3 19, 0.49 372, 1.11 337,276 3.85
lemmal. l 6, 0.04 640, 1.72 560,096 9.98
lemmal.2 101, 9.93 1338, 4.16 522,084 22.99
lemmal.3 19, 0.53 648, 1.73 526,022 5.71
lemmal.4 13, 0.15 ^56, 1.59 529,004 5.61
lemmal.5 13, 0.16 660, 1.63 331,804 5.67
lemmal.6 16, 1.02 990, 2.99 535,352 9.06
lemmal.7 21, 0.24 668, 1.74 538,396 5.90
lemmal.8 21, 0.24 672, 1.79 541,444 6.18
lemmal.9 14, 0.16 676, 1.83 545,340 6.16
lemmal.10 162, 9.34 2836, 11.38 '52,412 42.01
lemmal. l 1 162, 10.35 2850, 14.10 558,616 46.47
lemmal.12 66, 3.80 2152, 7.76 563,484 21.88
lemmal.13 116, 11.77 2912, 16.69 899,696 50.68
lemmal.14 216, 15.87 4444, 20.06 573,348 1:38.07
lemmal.15 40,0.77 3580, 12.22 578,244 30.67
lemmal. l 6 11,0.24 1048, 2.50 579,336 7.22
lemmal.17 239, 21.98 3327, 12.57 587,612 57.25
lemma2.1 119, 4.59 3331, 14.19 566,048 46.44
lemma2.2 48, 2.13 1474, 9.40 570,752 20.22
lemma2.3 81, 12.56 6381, 32.50 586,236 1:35.90
lemma3.1 32, 4.93 1088, 3.79 579,592 14.42
lemma3.2 139, 39.83 7712, 59.31 597,828 3:08.25
lemma3.3 101, 1:31.66 6923, 4:02.78 619,916 6:45.95
sync 387, 3:22.64 30672, 2:15.45 623,804 14:06.52

Table 5: Time and Space Statistics on Proofs

32

