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Abstract

This technical report considers the design of optima  trgectories of linearly constrained
linear quadratic (LQ) systems. It is shown that by applying a Fourier-based state
parameterization approach a linearly constrained LQ problem can be converted into a
quadratic programming problem. Simulation results show that the proposed approach is an
accurate and computationally efficient design tool for determining the optimal solution of
linearly constrained LQ problems.
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Introduction

Methods for the solution of optimal control problems are well covered in many
textbooks {e.g., Athans and Falb, 1966; Kirk, 1970; Sage, 1977; Lewis 1986). Typically,
the necessary condition of optimality for a constrained optimal control problem is
formulated as a two-point boundary-value problem (TPBVP) using Pontryagin's minimum
principle. However, the solution for such a TPBVP is usually difficult, and in some cases
not practical, to obtain. In general, variational methods such as Pontryagin's minimum
principle are not effective for solving constrained optimal control problems.

In contrast to variational methods, trgectory parameterization approaches offer an
alternative means for solving optimal control problems. In general, these techniques
convert an optimal control problem into a mathematical programming (MP) problem where
a near optimal solution can be obtained via various well developed numerical algorithms.
Studies of the relationship between MP and optimal control theory are found in (Canon,
Cullum and Polak, 1970; Tabak, 1970; Tabak and Kuo, 1971; Luenberger, 1972; Kraft,
1980; Evtushenko, 1985).

Based on the idea of state parameterization, Nagurka and Yen (1989) developed a
Fourier-based method that converts a general optimal control problem into a nonlinear
programming (NP) problem. Unlike previous trgectory parameterization algorithms which
parameterize control variables, the Fourier-based approach approximates each state variable
by aFourier-type series superimposed on apolynomial. Due to the inverse dynamic nature
of the state parameterization approach, the Fourier-based approach does not require
integration of the state equations and is thus usually more efficient than control
parameterization approaches. Another advantage of the Fourier-based state
parameterization method is its ability in handling problems with fixed final states.

The Fourier-based approach was specialized by Yen and Nagurka (1988, 1989) to
solve unconstrained time-invariant LQ problems where the condition of optimality is
formulated as a system of linear algebraic equations. Simulation results show that the
Fourier-based approach is more efficient than standard LQ problem solvers in handling
high order systems. This report further demonstrates the utility of the Fourier-based
approach and extends it by developing a computational tool for the solution of linearly
constrained optimal control problems. In particular, the Fourier-based approach is applied
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to convert linearly constrained LQ problems into linear constrained mathematical
programming problems which can be solved by well developed routines.

In this report the following mathematical notation is employed. Scalar quantities
(values) are denoted by plain lower case letters. Scalar variables are denoted by italic lower
case letters. Vectors are denoted by boldface lower case letters. Boldface upper case letters
are used to represent matrices. The only exception is Y which is used to represent the state
parameter vector. The superscript T denotes the transpose of a vector or matrix. Vectors
are assumed to be column vectors by default. Matrix inverses are denoted in the usual way
by superscript - 1. Theinverse transpose is denoted by superscript -T.

Problem Statement

The derivation that follows considers linear systems described by the state space
model:

@) = A@X() + B(u() 43

with known initial condition x(0) = X, where x isan Nx 1 state vector, uisan/x 1
control vector, AisanNxN system matrix, and B is anNx J control matrix. For now,
it is assumed that / =N, i.e., the number of control variables is equal to the number of state
variables. (The caseJ <N will be addressed later). Furthermore, it is assumed that the
control matrix B isinvertible. Asaresult, every state variable can be "actively" controlled.

The design goal is to find the optimal control u(t) and the corresponding state
trgectory x(f) in the time interval [0,7] that minimizes the quadratic performance index, L,

L =L\ +Li 2)
where
Li = x"Hx + h'x . 3)
T
Ly =j (X'Qx + u"Ru+x"Pu + a'x + b'u) dt %)
9

without violating the linear inequality constraints:

Ei(r)xU) + E2(F)u(f) ~ &r) (5)
In thisreport, superscript T denotes transpose and T (italic) represents the final time which
is assumed known.
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Fourier-Based State Parameterization

This section describes the basic idea of the multiple-segment Fourier-based state
parameterization approach. The first step of the approach isto divide [0,71 into/ intervals
[*0, hlg [tu'2L « ¢ e» [*i-i> U1"“ " ®r,=0and r/=T. (Later in thisreport it is shown that
for many problems 7=1, i.e., a single segment parameterization is appropriate). In the
timeinterval [t"\Ji] O'= 132 ,..., |) the n-th state variable x(t) is approximated by the sum
of a third-order auxiliary polynominal di,(t) and aK term Fourier-type series, i.e, fori =
1,..,/,n=1.,N,

where
din®) = dino + dimy (#-81.1) + dim (¢-001 + din3 (81 (7)
Al = 8- 1y (8)

Compared to a standard Fourier series expansion, this representation assures high speed of
convergence and differentiability as described in (Nagurka and Yen, 1989).

If Xino, Xino, X;nr, and X,T are the values of the state variable x, and its derivative at
the boundaries of the time segment [t"\Ji], i.eq
*ino = Xn(ti-)  *ino=X,(ti-)  *inT -X(U)  XinT = X,(U) (9d-d)
then the four coefficients of the auxiliary polynominal ”(r) can be written as functions of
the boundary values of the segment [tu,tj\ and the coefficients of the Fourier series, i.e.

K " K
N . . k b:
dino =*in0" jLGink > d\ = X*——X *ink (10a,10b)
k=1 Abi k=1
'S
din! = 3(Xinr - Xino + 4* X * *mkK) A//% - 2(Xino + X1j) AN (10c)
k=1
X
_ 3, . : 2
Gins = 2(XinT - Xino + 23!2 k bink) At + (Xing + XinT) At (10d)
k=1

Substituting these expressions into equation (6) gives
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X
Za(t) = Pil*ino '* PizKino + PidXinT + PiaXinT + Z (a'ik Bink + Bix bin) (11)
*=1
where
pn=1-37+28  po=(n-2¢+7)As (12a,6)
pa=37-20  pu=(+7)an (12c,d)
@ = cos (2*7;) -1 ¢ A* = sn (2kn5) - 2kag (1 - 35+ 27F) (12¢)
with |
=@ - 1;.1)/As; 13)

The terms p,-i,..¢ p/4, dfk, pit are functions of time t. Equation (11) can be written in
compact form as

Xpit) = p7(0Jin  for ta<t<ti (*>
where
3 (0= D < P o A a9
1(0=[pn Pa Pz Pu @ .. ak Pix ... AX]
Jn=[ Xi* Xipe Xinj XisT o\ ses QMC *inl ese ClinKY
=[y«il Jm2 e y/nAf]* (16)

are vectors of dimension M = 4 + 2if. Note that the bold face letter pyis a vector and the
italic letter p™ represents a scalar variable. The first four elements of ji,, are the values of
X, and X, at the boundary of [r+ f/]; the remaining elements are the coefficients of the
Fourier-type series. Vector yy, can be viewed as a state parameter vector which
characterizes the actual trajectory of x, over thetimeinterval fa.;, f;]. The design goal isto
search for the optimal values of the elements of y* for i'= 1,...,/, n = 1,..., Ng such that
the performance index is minimized. This goal isachieved by first writing the state vector,
itsrate and the control vector asfunctions of the Sate parameters.

The state vector x(r) can now be written as
X(r) =p;(n)Y; forta<t<ti — (17)

where




=

[ [yin
Cya "
yiz | _ [yiz1
. W
y« _[yﬂn

...y,'1u]T-
ym]T

R J’iNM]T_

By direct differentiation of equation (17), X(r) can be written as.
for ta<t<ti

[ o
|
a= .

0
x(r) =@(n)Yi
where

G (=90

Note that Sinceit is assumed that B"* exists, equation (1) can be rewritten as:

u=B4+Vx
where
vV =-B-'A

Substituting equations (17) and (19) into equation (21) gives

u = (B''Ti(t) + VPKO) Y;

for tja<t<U

(18a,b)

(19)

(20)

(21)

(22)

(23)

Thus, using the Fourier-based state parameterization gpproach, al the variables gppearing
in the state equation (including the state vector, saterate vector, and control vector) can be
represented as functions of the State parameter vector. By employing this representation,
the LQ problem can be reformulated as a quadratic programming (QP) problems with the

date parameters as new variaoles.

Unconstrained LQ Problems

The first god of this section is to demonstrate the conversion process from a LQ
problem to a QP problem via the Fourier-based state parameterization approach. The
second god is to develop a solution gpproach for the converted QP problem. It will be
shown that the converted QP problem can be formulated as an unconstrained optimization
problem with a quadratic objective function.
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The first step in the conversion is to rewrite the performance index as a function of
state parameter vectors Y;. The performance index L; can be written as a function of Y; by
noting that the terminal state vector can be represented as:

x(T) = 6Y; ' (24)
where O is a transformation matrix with elements

_[1 m=(n1)M+3 for n=1,..,N 25
Onm = 0 otherwise @)

Substituting equation (24) into equation (3) gives
L; = Y] (@ HO)Y, + hTOY; (26)
Similarly, the performance index L, can be written as a function of Y; although the process

is somewhat more complicated. Substituting equation (21) into the integrand of equation
(4) gives:

x"Qx + u"Ru+x"Pu +a"x + b"u =xTF;x + X Fox + X F3X + €1X + CoX (27)
where

F1=Q+ VTRV +PV (28)

F, =B TRB-! (29)

F3=2B TRV + B TP (30)

ci=a+VTh (31)

¢;=BTb | (32)

By substituting equations (17) and (19) into equation (27), the integrand of the
performance index can be expressed as a function of parameter vector Y; such that

x'Qx + u"Ru+x"Pu +a"x + b"u = YTA,-Y,+ YTI‘,' for t;1<t<y (33)
where
T T T
Ai=pipi ®F+0;0; ®F2+0ip; ®F3 34
Ii=pi®c1+0;%¢; (35)

In equations (34) and (35), ® is a Kronecker product sign. Note that the elements of p; and
o; are functions of time ¢ and time interval Ay; .




Using the results of equation (33), the integral part of the performance index can be
expressed as

I i | - L J
*9= X f ("7 YT;)dt YA Y YT (36)
i=1 /%] i=1
where
A= ' Ad  F5=] Fidr (37),(38)

For time-invariant problems, upon subgtituting equations (34) and (35) into equation (36),
Fi, F2, F3, Ci, and C2 can beremoved from theintegral, and the remaining integral part of
A/ and F- can be evaluated analytically. These evaluations have been summarized in tables
for the integrals of elements of p- and a; and the products (and cross-products) of the
elements of pi and O;. The availability of such integral tables makes the approach
numerically integration-freein handling time-invariant problems.

By subgtituting equations (26) and (36) into equation (2), the performance index can
be written as a quadratic function:

I-1
L= Y (YTA;Yi+YIT:)+ Y1 (8 HO+ A)Y,+ Y (s +68'h) (39)

i=1

Equation (39) can be put into a more compact form as

L=Y0v+¥% (40)
where
ST_[ T T T
— A‘l -
Ay Iy
~ o) r.*g
Q= coO=F :
. .
0 Aun L (42),(43)
h
. - 17 +e -
| Al +e"HO |




In minimizing this converted performance index, there are two types of constraints that
must be satisfied. The first set of constraints refers to the given initial conditions and can
be expressed as:

yini =Xno for n=1,.,N (44)

where x<> istheinitial value of the state variablex,. The second set of constraints refers to
the continuity requirements. That is, to ensure continuity between segmentsit isrequired
that:

*(i-)nT = Xho »'*(i-l)nT= *mo, far 1=1,..,/, n=1,..,N (45)

These equations are equivalent to
y<i-Dn3 =vyinl , y(i-Dnd=Tml > far 1 =1, .../, n=1,.,N (46)

The optimization problem can now be formulated as the search for ;yim, i =1,...,/, n =
1,...,Nm = 1,.~ M, that minimizes the performance index of equation (40) subject to
the equality constraints of equations (44) and (46).

The goal of the following part of this section is to develop a solution approach for this
equality constrained QP problem by converting it into an unconstrained QP problem. To
accomplish this goal, a new state parameter vector z isintroduced, specified as

z
I <&

where. _
2=l ik wD o ¥ (V] W
n=[s], L, 1 %

_[ .t T T T .T T TIT
z3-[31 by a4 b xe Xe X0 J (50)

with
Xio= %i\0 %i2,0" ** AiNoJ Anep
LI G . <& T /\/\/\\
XN — [ *'\o %i20 * * Xfflod WA/

X7 =[*iir 027 «" « *iNT]" (54)




xir=[ Xar %or --- fwr]T (55)
a;-= [ a1y - anrx ai21 s aizx ...... any - aM]T (56)
b,= [ friii ==« WK fr/21 =« bigx <>+ bivy -+ oiINK 17 (57)

Physically, 2 isavector of the values of the Sate and sate rate vectors at the beginning of
al but the first segment. Similarly, Z2 is a vector of the values of the state and Sate rate
vectors at the end of all but thelast segment. Thefirst part of Z3 isavector of the Fourier
coefficients; the second part of Z3 is a vector of the unknown boundary values of the date
and daterate vectors at the boundaries of [0,71. In contrast, Z4 is a vector of the known
boundary values of the sate and Sate rate vectors, i.e., in thiscaseit is the initial value of
the state vector. From the definitions of 2 and Z2, it isclear that the continuity requirement
of equations (45) and (46) can be satisfied by equating A = Z2

Based on the definitions of zand Y, a linear transformation reation between these two
vectors can be esablished as

¥ =wz (58)
The performance index of equation (40) can thus berewritten as a function of z

L=2'£2z+2"co (59)
where

Q=W'Sw (60)

®=W'G (61)

Using the definition of z from equation (47), the performance index of equation (59) can be
expressed as

— - -—

Q11 Q2 013 Ql4 z Wy
Q
L=[z¥z§z}z}] 21 G22 G23 G24 :2 +LZIFT2_Z'£ZAB] ©2 (62)
Q3 Q32 Q33 Q34 23 03
4
| Q41 Q42 "43 "44 ] | 04 ]

Since 2 = z,, equation (62) can be collapsed to
Q11 +Q+024822) Q13+ Q14+
_[,T.T.T
L= [21 Z z4] Q31432 "33 Q34
Q41+Q42 Q43 Q44

z
z3
Zy
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0)1+0)2
T.T,T
+[z1 Z, 24] «% (63)
0)a
Decoupling the known vector Z4 from the rest of unknown part of the state parameter
vector gives

L = 2Tx117 + Z1\(A%i2 + A%21)Z4 + T| +/Z ' (54)
where
=] )
et = Q1142224012401 Q134093
11= (66)
£231+Q3) "33
A [ Q14+Q2s
12=
| O (67)
A21 =[ Qa1 +Q42 Q34 ] (68)
ﬁ _ [ ©1+CD2]
03 (69)
T T
M= 7,02224 + 2,C04 (70)

Equation (64) is a quadratic function of the unknown part of the state parameter vector 7.
For an unconstrained LQ problem, the necessary condition of optimal solution can be
obtained by differentiating the performance index with respect toZ. Thisleads to

(keN\TN)Z™= - (hpz + A31)Z4 - 1 | (71)

from which the unknown part of the state parameter vector, Z, can be solved.

The same solution procedure can also be applied to problems with fixed terminal
states. Theonly modification required istoredefineZ3 and Z4 as

23=[ & bf . F b %o ik ] (72)
z4=[‘fr ";ro JF (73)

since the terminal value of the state vector isknown. Similarly, problems with fixed initial
and/or final staterate vectorscan also be handled by this approach.
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Linearly Constrained LQ Problems

The goal of this section is to develop the conversion process from a linearly
constrained LQ problem to a QP problem using the Fourier-based state parameterization
approach. In particular, the state space inequality constraints of equation (5) can be
converted into a system of linear dgebraic constraints.

Recall the inequality constraints of equation (5)

Ei(f)x(0 + E2(Ou(0< €f) (74)
Substituting equation (21) into the above equation gives

Si(r)x(r) + S2(0*(r) ™ €(r) (75)
where ,

S1=E; +E;V (76)

S;=E;B! (77)
Substituting equations (17) and (19) into equation (75) gives

{Sp) + SO0y = G<h)Y,-£ er) for tiltti o, 7= 1,..,/ (78)
where

G;(r) = Si(nNpi(r) + Sy(r)ak0 for ry<zt<a, /=1,..,/ (79)

Note that the constraints of equation (78) are functions of time, a continuous variable.
Consequently, equation (78) represents an infinite number of constraints which need to be
satisfied along the trgjectory. In order to convert these constraints into afinite number of
agebraic inequalities, these congtraints are relaxed to be satisfied only at a finite number of
points (usually chosen to be equally spaced) in time. Consequently, equation (78) is
replaced by

GiYiz € for /=1,..,] : (80)
where
i Gi(ti) i [ ei(ti) )
Gi(ti1 + Std e(tiq + &)
Gi= : » g= o (81),(82)
Gt + (0i-1)0) ¢;(ti.1 + (Pi-1)8td
| Gi(t) _ i et




-12-

with
An
§ Pi (83)

wherepi is the number of sampling points for the j~th segment. Equation (80) can be put
into the following compact from

GY £ & (84)
where
Gi 0 e,
G . &
G= . ce=1 (85),(86)
0O - -
] Gl e/ _

By using equation (58), these congtraints can berewritten in termsof z. Thisgives

G'z s ¢’ (87)
where
G'=GW (88)
Similar to equation (62), the inequality congtraints of equation (87) can berepresented as
— . - A
Gr|| N2 *»13 G14 ej
* * * * Z|_ »
G21 ©22 %23 Gag | 5] | <2
> 23 S . (89)
Ga1 =32 ~33 Gaa |[z,] |°3
. * ~ e *
| G4 Ga 44 | | °4_
With Zj =Z2, equation (89) collapsesto
- . - . » ] - . ] L
G|1*622%512%C21 ©13*623 <I14+Gyy e te,
Z)
©31+°32 a1, Gy [;i]s €3 (%0)
- > L
. C417°42 Gla VIR | e

Since z4 is aknown vector, the corresponding terms can be moved to theright hand side of
the equation. Thisgives
Gz<?@ (92)
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where
[ * . * * W [ e +e? G a2, |
G“*-G22+G,2-+621 G13+G23 17°2-(®*H"™24)°4
~ *\
G= G§>G 12 G§3 , €= e; - G*34Z4 (92)!(93)
| Garego Gy | @Gl

and vector Z is defined in equation (65).

In summary, by applying the Fourier-based state parameterization approach, alinearly
constrained L Q problem can be converted into a QP problem where a quadratic function of
equation (64) is required to be minimized without violating a system of linear algebraic
inequalities of equation (91).

Fourier-Based Approach for General Linear Systems

The approach presented above is applicable only for systems with square and
invertible control matrices. This section generdizes the Fourier-based gpproach to the more
common case of genera linear systems which have fewer control variables than state
variables. The system of isagain hasthe linear structure described by equation (1). Inthis
case, the control matrix, B, isan NxJ matrix where the number of state variables, N, is
greater than the number of control variables, /. It is assumed that the rank of the control
meatrix B isequd to/.

To apply the Fourier-based approach, the state equation of equation (1) is first
modified as

X = Ax()+ B'U(r) ()
where
’ * I
B =Byn= g:::l Bnxs ] (95)
and
’ ¢ ﬁ .
u'=uy, =[ e ] | (96)
L5351

with the subscripts representing the dimensions of the matrices. By introducing an artificia
control vector, U, the new control matrix, B', can be inverted and the Fourier-based
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approach is thus applicable. In order to predict the optimal solution, the performance index
is modified as

L'=L+r f (274) ar ©97)

where L is the performance index of the original LQ problem and r is a weighting constant
chosen to be a large positive number. The integral term associated with r is used to
represent the contribution of the artificial control.

The advantage of using artificial control variables is that a non-actively controlled
system can be converted into an actively controlled system. Consequently, the Fourier-
based state parameterization becomes immediately applicable. The trade-off is that the
resulting solution will not, in a strict mathematical sense, satisfy the trajectory admissibility
requirement (see Yen and Nagurka, 1988) due to the existence of artificial control
variables. However, by penalizing the artificial control vector, the magnitude and influence
of the artificial control variables can be made insignificant and the solution of the modified
optimal control problem can become a near optimal solution of the original LQ problem.

Simulation Studies

For the simulation studies reported here, LQ problems are solved by the Fourier-based
approach and compared with closed-form solutions or solutions obtained by standard
numerical algorithms. Examples 1 and 2 are designed to the study the effectiveness of the
Fourier-based approach in solving unconstrained LQ problems. In particular, Example 1
considers a problem with an actively controlled structure. Example 2 investigates a general
linear system. Examples 3 and 4 are used to study the effectiveness of the Fourier-based
state parameterization method in handling linearly constrained LQ problems. In particular,
Example 3 considers a LQ problem with a linear state constraint and Example 4 examines a
problem with a bounded control variable.

To check accuracy, the values of the performance index from standard approaches and
the Fourier-based approach are compared. The computer programs used in the simulations
were written in the "C" language and compiled by a Turbo C compiler (Version 2.0).
Efforts were made to optimize the speed of the computer codes. The simulations were
executed on a 16 MHz NEC 386 PowerMate personal computer with a 16 MHz 80387

COPTOCessor.
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For the first two examples, the time (in seconds) required to execute the program was
recorded for each simulation and was used as an index of the computational efficiency. For
the first two examples, a transition matrix approach was applied to generate the state and
control variables at prespecified equally-spaced points in time for unconstrained LQ
problems. For the last two examples where the linearly constrained LQ problems are
converted into general QP problems, the numerical algorithm developed by (Gill and
Murray,1977), which is considered as to be one of the most efficient solution approaches
for QP problems, is implemented and applied to determine the optimal value for the
unknown state parameters.

Example 1. The goal of this example is to investigate the effectiveness of the Fourier-
based approach for solving high order LQ problems for systems with invertible control
matrices. Consider an N input N-th order system

X=Ax+Bu, x'(0)=[ 1 2-..JV] (98)
where
— . -
.. O
x-l u-l .
' :Lv] “_L:N]' ' 0 1 T e
L1 -2 <. - (D' N

The performance index is

L= x"()Hx(1) + | (X‘IQx+uTRu)d: . H=10Iyzn , Q=R=\yy (%0
Jo

Simulation results for N =2, 3,..., 16 are summarized in Table | assuming a single-
segment, two-term Fourier-based approach (i.e. 7=1 and K = 2). The time histories of the
state and control variables of the case of N = 2 are plotted in Figures la and |b,
respectively. The results demonstrate that a single-segment Fourier-based approximation is
accurate (i.e., the error of the performance index value is always less than 1%) for al cases
studied and is especially efficient in solving optimal control problems for high order
systems.




-16-

Tablel: Summary of Smulation Results of Example 1

Trangtion-Matrix Approach | Fourier-Based Approach* Comparison

N |PeformanceIndex }| Time [Perfformanceindex | Time | %Timer | Awl®

2 5.3591 0.22 5.3591 039 | 1773 [<37x 109
3 44,0044 0.44 44.0045 0.66 | 1500 |<5.9xI(H
4 44,2499 0.87 44.2504 105 | 1207 [<11x 103
5 164.3776 148 164.3834 159 | 1074 |<6.6x10-3
6 153.7563 2.36 153.7622 237 | 1004 {<39x 103
7 390.9883 40 400.1103 329 | 968 [<31x102
8 373.0219 '5.16 373.0597 456 | 884 [<11x 107
9 788.1612 7.15 788.8568 6.04 | 845 [<8.9x10-2
10 741.6136 9.51 7417737 785 | 825 [<22x10-2
11 1366.9437 12.96 1369.5209 909 | 771 |<1.9xIO"
12 1299.3828 16.64 1299.8946 1258 | 75.6 |[< 3.6x10-2
13 2175.1952 2081 | 2182.3431 1544 [ 742 [<33x 10"
14 2086.3916 2691 | 2087.7219 1873 69.6 |< 6.4xI0-?
15 3252.2758 33262 | 32684011 22521 69.0 [<5.0x10

16 3142.8478 41.08 3145.8080 2697 | 657 |<95x 102

"With S ngle segment two-term Fourier-type series

Percent of execution time of Fourier-based gpproach relative to execution time of

trangtion-matrix gpproach

Percent difference of performance index of Fourier-based gpproach rdative to performance
index vaue of trangtion-matrix gpproach
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Example 2: The goal of this example is to test the Fourier-based approach for designing
optimal trajectories of general linear systems. The state equation and initial condition are
the same as specified in Example 1 except that the control matrix hereis acolumn vector
specified as

B"'=[0-..0 1] (101)
and the performanceindex is
rl
L= x"(DHx()+ | ®Qx+uV , H =10nzN, Q=INxN (102)
Jo

Thisproblem has been solved using both the trangtion matrix and a single segment, two-
term Fourier-based approach for N =2, 3, ..., 16. The weighting constant r of the artificial
control was chosen to be 10°. The smulation results, summarized in Table 1, show that
the Fourier-based approach is again computationally more efficient in handling high order
systems. The time responses of the state and control variables for the case N = 2 are
plotted in Figures. 2a and 2b, respectively. These figures show that the solutions from
both approaches are hardly distinguishable.
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Tablell: Summary of Smulation Results of Example 2

*With single segment two-term Fourier-type series
Percent of execution time of Fourier-based approach relative to execution time of

trangtion-matrix approach

Trangtion-Matrix Approach § Fourier-Based Approach” Comparison

N [PerformanceIndex | Time {Performanceindex | Time | %Time* A%L®

2 27.358 0.22 27.362 038 | 1728 |< 1.5xIO-
3 195.033 0.44 195.171 0.66 | 150.0 |< 6.6x10-2
4 705.569 0.87 706.255 104 | 1351 |<98x 102
5 1720.550 143 1721.381 154 | 107.7 |< 4.9x10-2
6 3460.001 2.20 3462.970 231 | 1050 | < 8.6x10-2
7 6027.753 3.35 6030.865 324 | 96.7 < 5.2x10-2
8 9578.606 5.05 9587.778 4.45 88.1 <9.6x 102
9 14415.109 6.92 14443.140 5.98 86.4 |<78x 102
10| 20308.134 923 §{ 20331694 7.80 845 {< 1.2x10-1
11 | 281422.031 1274 | 28176.018 9.89 77.6 (< 13x 101
12 } 36881.498 16.20 | 36933.743 1241} 76.6 < 15x 101
13 | 48453.432 20.32 | 48537.693 15221 749 1<18x 101
14 {1 60525.689 2648 | 60628971 18451 69.7 |<28x 101
15 76593.643 3230 | 76772.657 22.19 68.7 | < 2.4x10-1
16 { 92466.982 4048 | 92653.710 |_26.70 66.0 |<21x101]

Per cent difference of performance index of Fourier-based approach rdative to performance
index value of trangtion-matrix approach
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Fourier-Based &
Transition Matrix-Based xj

Fourier-Based &
Transition Matrix-Based x2

0.0 0.2 0.4 0.6 0.8 10

TIME

Figure 2a. State Variable Histories for Example 2
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| e Fourier-Based
Trangtion-Matrix Based

TIME

Figure 2b. Control Variable Histories for Example 2
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Example 3: This example is adapted from (Evtushenko, 1985, p. 438). Here, a LQ
problem with a linear state constraint is considered. The system is described by

x|_[0 1]Ix 0 x1(0) =[o]

[x'z]_[o -1][x2]+[1}“' [X2(0) 1 (103)
The performance index is given as

L =[ (xlz + x4+ 0.005u2) dt (104)

The optimal solution is required to minimize this performance index without violating the
following constraint

x1(0) <e(?) (105)
where
e(r) =8(t- 0.5)%-0.5 (106)

This problem was solved using a one segment Fourier-based approach. The resulting
response curves for x;(f) obtained with three, five, and seven term Fourier-type series are
plotted in Figure 3a, 3b and 3c, respectively. The solution computed by (Evtushenko,
1985) is also plotted in these figures for comparison. The minimum performance index
obtained by (Evtusher_xko, 1985) is 0.17114. The performance index values determined
from the Fourier-based approach are summarized in Table III. The seven term Fourier-
based solution provides the best results.

Table III: Summary of Simulation Results of
Example 3 using Single Segment K Term
Fourier-Type Series
(Evtushenko's Solution gives 0.171140)

Performance Index
0.174797
0.171154
0.170692

<N jw jw [
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- \\\ — Fourier-Based Solution ','
\ Evtushenko's Solution /l'
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Figure 3a. State Variable xj Higtory for Example 3
(With Three Term Fourier-Type Series)
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Figure 3b. State Variable xj History for Example 3
(With Five Term Fourier-Type Series)




VAR B8 W

1.0

-26-

\ A
\ : /
Y Tt State Constraint J
N ;
- \‘ Fourier-Based Solution /
&
A . f
\ Evtushenko's Solution !

TIME

Figure 3c. State Variable xi History for Example 3
(With Seven Term Fourier-Type Series)
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Example 4: This example is adapted from (Leondes and Wu, 1971). Here, the system is
described by

a]-18 R s ol e (o)

The performance index is

5 .
1
0
The congtraint is imposed on the control variable as
|a]<0.8 (109)

The optimal solution, as computed by (Leondes and Wu, 1971) has a bang-bang nature,
i.e,
u(r)=-0.8 for O<t< 1275 ¢ u(t) =08 for 1275 <f£5.0 (220),(111)

The corresponding value of the performance index is 5.660.

This problem was first solved using a one segment Fourier-based approach. The
control variable response histories obtained using three, six, and nine term Fourier-type
series are plotted in Figure 4a. The values of the performance index obtained by athree to
nine term single segment Fourier-type series are tabulated in Table V. From this table and

TablelV: Summary of Simulation Results of
Example 4 using Single Segment K Term
Fourier-Type Series

SOEi ma Vaueis 5.6602

Performance | ndex
8.288
7.982
7.004
6.600
6.464
6.295
6.141

©olo~Nlololslw |X
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Figure 4a. Control Variable Histories for Example 4
One Segment Fourier-Based Approach
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Figure 4a, it is seen that the near optimal solutions generated by the Fourier-based sate
parameterization approach conver ge to the true optimal bang-bang solution as the number
of terms of the Fourier-type seriesincreases. However, the speed of conver gence is quite
slow. The principal reason for this dow convergence is due the insantaneous switch of
the control variable of the optimal solution at t= 1.275. In contrast, the Fourier-based
approach assumes continuity throughout the trajectory. Consequently, significant
discrepancies between the true and near optimal solution can be observed in the
neighborhood of the point of the finitejump.

One remedy of this slow convergence is the application of the multiple segment
Fourier-based approach. Theidea hereistofirs estimate the locations of the ingantaneous
jumps by using the single segment Fourier-based approach, and then represent each
continuous part of the trajectory by a unique Fourier-based representation. In thiscase, the
time interval [0,5] is divided into two intervals [0,1.3] and [1.3,5.0] and a three term,
double segment Fourier-based approach is applied. Theresulting performance index value
is 6.027 which is less than the single segment solutions listed in Table IV. The control
variable response of the double segment solution is plotted in Figure 4b.

The quality of the Fourier-based solution can be improved further by increasing the
number of segments. For instance, in this example, the time interval can be divided into
three segments, [0,1.2],[1.2,1.3] and [1.3,5.0], where the point of the finitejump fallsin
the second segment. In particular, includes the finitejumps in a unique segment enables
the close approximation of the ingantaneous shift. Theresult is given in Figure 6 where
the optimal contral trajectory and the near optimal control trgjectory of a three term, three
segment Fourier-based approach are plotted. The performance index value of this Fourier-
basad solution is 5.747 which haslessthan a 2% error compared to the true optimal value.
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Figure 4b. Control Variable History for Example 4
Two Segment, Three Term Fourier-Based Approach
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Figure 4c. Control Variable History for Example 4

Three Segment, Three Term Fourier-Based Approach
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Conclusion

Based on theidea of gate trajectory parameterization, this technical report develops a
Fourier-based design tool for determining optimal trajectories of LQ problems. It isshown
how a L Q problem can be converted to a QP problem. In particular, for an unconstrained
LQ problem the necessary condition of optimality is obtained by differentiating the
converted quadratic performance index with respect to free state parameters. The
computational smplicity of the approach is due to the fact that the necessary condition of
optimality can be derived as a system of linear algebraic equations. Simulation results
indicate that the Fourier-based approach is more efficient than the sandard trangtion matrix
approach in handling high order uncongtrained LQ problems.

Simulation studies also show that, in many cases, a single segment Fourier-based
approximation provides sufficient accuracy when the optimal solution is continuous. A
multiple segment Fourier-based approximation is required only for problems whose
optimal solution has discontinuitieswhich are not generally physically implementable. An
advantage of the Fourier-based approach isthat it provides an accurate and continuous near
optimal solution. In summary, by relying upon well developed QP solution algorithms, the
Fourier-based state parameterization approach promises to be an effective and general
computational tool for designing trajectories of linearly congrained LQ systems.
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