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Introduction

Methods for the solution of optimal control problems are well covered in many

textbooks {e.g., Athans and Falb, 1966; Kirk, 1970; Sage, 1977; Lewis 1986). Typically,

the necessary condition of optimality for a constrained optimal control problem is

formulated as a two-point boundary-value problem (TPBVP) using Pontryagin's minimum

principle. However, the solution for such a TPBVP is usually difficult, and in some cases

not practical, to obtain. In general, variational methods such as Pontryagin's minimum

principle are not effective for solving constrained optimal control problems.

In contrast to variational methods, trajectory parameterization approaches offer an

alternative means for solving optimal control problems. In general, these techniques

convert an optimal control problem into a mathematical programming (MP) problem where

a near optimal solution can be obtained via various well developed numerical algorithms.

Studies of the relationship between MP and optimal control theory are found in (Canon,

Cullum and Polak, 1970; Tabak, 1970; Tabak and Kuo, 1971; Luenberger, 1972; Kraft,

1980; Evtushenko, 1985).

Based on the idea of state parameterization, Nagurka and Yen (1989) developed a

Fourier-based method that converts a general optimal control problem into a nonlinear

programming (NP) problem. Unlike previous trajectory parameterization algorithms which

parameterize control variables, the Fourier-based approach approximates each state variable

by a Fourier-type series superimposed on a polynomial. Due to the inverse dynamic nature

of the state parameterization approach, the Fourier-based approach does not require

integration of the state equations and is thus usually more efficient than control

parameterization approaches. Another advantage of the Fourier-based state

parameterization method is its ability in handling problems with fixed final states.

The Fourier-based approach was specialized by Yen and Nagurka (1988, 1989) to

solve unconstrained time-invariant LQ problems where the condition of optimality is

formulated as a system of linear algebraic equations. Simulation results show that the

Fourier-based approach is more efficient than standard LQ problem solvers in handling

high order systems. This report further demonstrates the utility of the Fourier-based

approach and extends it by developing a computational tool for the solution of linearly

constrained optimal control problems. In particular, the Fourier-based approach is applied
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to convert linearly constrained LQ problems into linear constrained mathematical

programming problems which can be solved by well developed routines.

In this report the following mathematical notation is employed. Scalar quantities

(values) are denoted by plain lower case letters. Scalar variables are denoted by italic lower

case letters. Vectors are denoted by boldface lower case letters. Boldface upper case letters

are used to represent matrices. The only exception is Y which is used to represent the state

parameter vector. The superscript T denotes the transpose of a vector or matrix. Vectors

are assumed to be column vectors by default. Matrix inverses are denoted in the usual way

by superscript -1 . The inverse transpose is denoted by superscript -T.

Problem Statement

The derivation that follows considers linear systems described by the state space

model:

with known initial condition x(0) = x0 where x is an N x 1 state vector, u is an / x 1

control vector, AisanNxN system matrix, and B is anNx J control matrix. For now,

it is assumed that / = N, i.e., the number of control variables is equal to the number of state

variables. (The case J <N will be addressed later). Furthermore, it is assumed that the

control matrix B is invertible. As a result, every state variable can be "actively" controlled.

The design goal is to find the optimal control u(t) and the corresponding state

trajectory x(f) in the time interval [0,7] that minimizes the quadratic performance index, L,

L = L\ + Li (2)

where

Li = xTHx + hTx (3)

[xTQx + uTRu+ xTPu + aTx + bTu) dt (4)

without violating the linear inequality constraints:

Ei(r)xU) + E2(f)u(f) ^ e(r) (5)

In this report, superscript T denotes transpose and T (italic) represents the final time which

is assumed known.
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Fourier-Based State Parameterization

This section describes the basic idea of the multiple-segment Fourier-based state

parameterization approach. The first step of the approach is to divide [0,71 into / intervals

[*o, h]9 [tu '2L • • •» [*i-i> U1 w h e r e r0 = 0 and r/ = T. (Later in this report it is shown that

for many problems 7 = 1 , i.e., a single segment parameterization is appropriate). In the

time interval [t^Ji] 0' = 1>2 ,..., I) the n-th state variable xn(t) is approximated by the sum

of a third-order auxiliary polynominal din(t) and a K term Fourier-type series, i.e., for i =

1,..., /, n = 1,..., N,

xn(t) = <*«« + Z, ***cos

where

(7)

Compared to a standard Fourier series expansion, this representation assures high speed of

convergence and differentiability as described in (Nagurka and Yen, 1989).

If Xino, xino, xinr, and xinT are the values of the state variable xn and its derivative at

the boundaries of the time segment [t^Ji], i.e.9

*ino = Xn(ti-\) *ino=Xn(ti-i) *inT - Xn(U) XinT = Xn(U) (9d-d)

then the four coefficients of the auxiliary polynominal ^ ( r ) can be written as functions of

the boundary values of the segment [tu,tj\ and the coefficients of the Fourier series, i.e.t

K 2^ K
= *ino " jLGink > d'in\ = X^ X k bink (10a,l0b)

A

din! = 3(xinT - Xino + 4* X * *mJk) A//2 - 2(xino + X^j) A^1 (10c)

din3 = 2(xinT -

Substituting these expressions into equation (6) gives
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= Pil*ino '
*=1

where

= cos (2**7;) -1 f A* = sin

with

The terms p,-i,...f p/4, ct/jk, pit are functions of time t. Equation (11) can be written in
compact form as

xnit) = p7(0Jin for tiA<t<ti (14>

where

Pi (0 = [ p n p a pi3 pi4 an ... aiK pix ... Ax ] (15)

Jin = [ X i ^ Xino Xinj XinT d\n\ • • • QMC *inl • • • ClinK Y

= [y«il Jm2 ••• y/nAf]1 (16)

are vectors of dimension M = 4 + 2/if. Note that the bold face letter pg is a vector and the
italic letter p^ represents a scalar variable. The first four elements of jin are the values of
xn and xn at the boundary of [rf-.lf f/]; the remaining elements are the coefficients of the
Fourier-type series. Vector yxn can be viewed as a state parameter vector which
characterizes the actual trajectory of xn over the time interval fa.;, f,]. The design goal is to
search for the optimal values of the elements of y^ for i = 1,..., /, n = 1,..., N9 such that
the performance index is minimized. This goal is achieved by first writing the state vector,
its rate and the control vector as functions of the state parameters.

The state vector x(r) can now be written as

x(r) = p,(r)Yi fortiA<t<ti (17)

where
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p;

o

0
Pi

Y

' ya "
yi2

. y«w.

By direct differentiation of equation (17), x(r) can be written as:

x(r) = a/(r)Yi for tiA<t<ti

where

(19)

(20)

(21)

(22)

(23)

Thus, using the Fourier-based state parameterization approach, all the variables appearing
in the state equation (including the state vector, state rate vector, and control vector) can be
represented as functions of the state parameter vector. By employing this representation,
the LQ problem can be reformulated as a quadratic programming (QP) problems with the
state parameters as new variables.

Note that since it is assumed that B"1 exists, equation (1) can be rewritten as:

u = B 4 + V x

where

V = -B !A

Substituting equations (17) and (19) into equation (21) gives

u = (B'lCi(t) + VpKO) Y,- for tiA <t<U

Unconstrained LQ Problems

The first goal of this section is to demonstrate the conversion process from a LQ
problem to a QP problem via the Fourier-based state parameterization approach. The
second goal is to develop a solution approach for the converted QP problem. It will be
shown that the converted QP problem can be formulated as an unconstrained optimization
problem with a quadratic objective function.
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The first step in the conversion is to rewrite the performance index as a function of

state parameter vectors Y,\ The performance index L\ can be written as a function of Y/ by

noting that the terminal state vector can be represented as:

(24)

where 0 is a transformation matrix with elements

a - /* m = (/i-l)Af+ 3 for n = l , . . . , N
Unm " 10 otherwise

Substituting equation (24) into equation (3) gives

Li = Yj(0TH0)Y/ + hT0Y7 (26)

Similarly, the performance index Li can be written as a function of Y,- although the process

is somewhat more complicated. Substituting equation (21) into the integrand of equation

(4) gives:

xTQx + uTRu+ xTPu + aTx + bTu = xTFix + xTF2x + xTF3x + cix + c2x (27)

where

F1 = Q + VTRV + PV (28)

F 2 = B^RB"1 (29)

F3 = 2BTRV + B TP (30)

Ci = a + VTb (31)

c2 = B-Tb (32)

By substituting equations (17) and (19) into equation (27), the integrand of the

performance index can be expressed as a function of parameter vector Y, such that

xTQx + uTRu+ xTPu + aTx + bTu = YTAfYff vTr,- for tiA <,t<t{ (33)

where
\

A,- = p/p7 • Fi + G/aJ • F2 + Gip] ® F3 (34)

Ti = pi ® ci + Ci ® c2 (35)

In equations (34) and (35), ® is a Kronecker product sign. Note that the elements of p/ and

a,- are functions of time t and time interval Ar,-.
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Using the results of equation (33), the integral part of the performance index can be

expressed as

*-2= X (Y7A/Yi +
i

(36)

where

A ! Aidt F* = F/dr (37),(38)

For time-invariant problems, upon substituting equations (34) and (35) into equation (36),

Fi, F2, F3, Ci, and C2 can be removed from the integral, and the remaining integral part of

A/ and F,- can be evaluated analytically. These evaluations have been summarized in tables

for the integrals of elements of p,- and a, and the products (and cross-products) of the

elements of pi and O;. The availability of such integral tables makes the approach

numerically integration-free in handling time-invariant problems.

By substituting equations (26) and (36) into equation (2), the performance index can

be written as a quadratic function:

L=

Equation (39) can be put into a more compact form as

where

(39)

(40)

(41)

A2

0

0

A/ + eTH0

, co =
r2

* T

17 + e

(42),(43)
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In minimizing this converted performance index, there are two types of constraints that

must be satisfied. The first set of constraints refers to the given initial conditions and can

be expressed as:

yini = Xno for n = 1 ,..., N (44)

where x«> is the initial value of the state variable xn. The second set of constraints refers to

the continuity requirements. That is, to ensure continuity between segments it is required

that:

*(i-l)nT = X/no » *(i-l)nT = *mo , far 1 = 1, ..., / , n = 1, ..., N (45)

These equations are equivalent to

y<i-l)n3 = yinl , y(i-l)n4 = Tml > far I = 1, ..., / , n = 1,..., N (46)

The optimization problem can now be formulated as the search for ;ylnm,, i =1,..., /, n =

1,..., N,m = 1,.~, M, that minimizes the performance index of equation (40) subject to

the equality constraints of equations (44) and (46).

The goal of the following part of this section is to develop a solution approach for this

equality constrained QP problem by converting it into an unconstrained QP problem. To

accomplish this goal, a new state parameter vector z is introduced, specified as

" II <«>
.Z4_

where

•••*?.,„• *(V]T w
- £ *IY <49>

T T T • T T IT
a7 b7 xXo xIT XJJ J (50)

with

%i\o %i2,o " * * ^iNo J \^~/

• __ r • • «̂  l T ^^^\
X/^ — [^ *,'i\o %i2o * *" Xfflo J W^/

' = [ *iir 0:/27 •" • *iNT ]T (54)



- 9 -

a;

bHK fr/21
biNK ] T

(55)

(56)

(57)b,= [ friii

Physically, z\ is a vector of the values of the state and state rate vectors at the beginning of

all but the first segment. Similarly, Z2 is a vector of the values of the state and state rate

vectors at the end of all but the last segment. The first part of Z3 is a vector of the Fourier

coefficients; the second part of Z3 is a vector of the unknown boundary values of the state

and state rate vectors at the boundaries of [0,71. In contrast, Z4 is a vector of the known

boundary values of the state and state rate vectors, i.e., in this case it is the initial value of

the state vector. From the definitions of z\ and Z2, it is clear that the continuity requirement

of equations (45) and (46) can be satisfied by equating z\ = Z2.

Based on the definitions of z and Y, a linear transformation relation between these two

vectors can be established as

Y = Wz (58)

The performance index of equation (40) can thus be rewritten as a function of z

L = zT£2z + zTco (59)

where

Q = W T S w (60)

co = WTG (61)

Using the definition of z from equation (47), the performance index of equation (59) can be

expressed as

Ql2 O13 Ql4

G22 G23 G24

Q42 "43 "44

Since z\ = z2, equation (62) can be collapsed to

Z 4

.[ZT_T_T T]
LZ1Z2Z3Z4J

©2

0>3

©4

(62)

Q41+Q42

"33

Q43

Q34

Q44
z4
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0)1+0)2

«% (63)
0)4

Decoupling the known vector Z4 from the rest of unknown part of the state parameter
vector gives

L = Z X11Z + Z \(A*i2 + A,2l)Z4 + T|/ +/Z (54)

where

23

" 3 3

©1+CD2

©3

= Z4 ^2224 + 24C04

(65)

(66)

(67)

(68)

(69)

(70)

Equation (64) is a quadratic function of the unknown part of the state parameter vector z.
For an unconstrained LQ problem, the necessary condition of optimal solution can be
obtained by differentiating the performance index with respect to z. This leads to

r| (71)(kn+\Tn)z = -

from which the unknown part of the state parameter vector, z, can be solved.

The same solution procedure can also be applied to problems with fixed terminal
states. The only modification required is to redefine Z3 and Z4 as

z 3 = [ aj a bj xjo (72)

T F
(73)

since the terminal value of the state vector is known. Similarly, problems with fixed initial
and/or final state rate vectors can also be handled by this approach.
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Linearly Constrained LQ Problems

The goal of this section is to develop the conversion process from a linearly
constrained LQ problem to a QP problem using the Fourier-based state parameterization
approach. In particular, the state space inequality constraints of equation (5) can be
converted into a system of linear algebraic constraints.

Recall the inequality constraints of equation (5)

Ei(f)x(0 + E2(0u(0< e(f) (74)

Substituting equation (21) into the above equation gives

Si(r)x(r) + S2(0*(r) ^ e(r) (75)

where
(76)

(77)

Substituting equations (17) and (19) into equation (75) gives

{Si(t)pi(t) + S2(t)Oi(t))Yi = G,<f)Y,-£ e(r) for ti.\<t<ti , i = l , . . , / (78)

where

G,(r) = Si(r)pi(r) + S2(r)aK0 for rM <> t < a , / = 1,.., / (79)

Note that the constraints of equation (78) are functions of time, a continuous variable.
Consequently, equation (78) represents an infinite number of constraints which need to be
satisfied along the trajectory. In order to convert these constraints into a finite number of
algebraic inequalities, these constraints are relaxed to be satisfied only at a finite number of
points (usually chosen to be equally spaced) in time. Consequently, equation (78) is
replaced by

GiYiZ e, for / = 1 , . . , / (80)

where

Std

» e

(Pi-l)8td
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with

(83)

where pi is the number of sampling points for the j-th segment. Equation (80) can be put
into the following compact from

GY £ e* (84)

where

G =

Gi

G2

0

0

•
G/ e/

(85),(86)

By using equation (58), these constraints can be rewritten in terms of z. This gives

where

(87)

(88)

Similar to equation (62), the inequality constraints of equation (87) can be represented as

r l l ^12 *»13

'21 G 2 2 G 2 3

r31 ° 3 2 ^33

With Zj = Z2, equation (89) collapses to

G l l + G 2 2 + G 1 2 + G 2 1 G 1 3 + G 2 3 <

G2*

G!

F Z I
Z2

[z4

e i

e 2
•

e 3

*
_e4_

(89)

G 3 1 + G 3 2

G 4 1 + G 4 2

r 3 3
G

G

34 Z3 (90)

r43 ^44

Since z4 is a known vector, the corresponding terms can be moved to the right hand side of

the equation. This gives

Gz < e (91)
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where

G =

and vector z is

-G

G

G

2 2 + G ; 2 -

3 > G ; 2

41+ G42

defined in

+G21 G13+G23

G33

equation (65).

*\
, e =

e!+ e2-(GH+ G24)24

e3 - G34z4

e*4 - G 4 4 z 4

(92),(93)

In summary, by applying the Fourier-based state parameterization approach, a linearly

constrained LQ problem can be converted into a QP problem where a quadratic function of

equation (64) is required to be minimized without violating a system of linear algebraic

inequalities of equation (91).

Fourier-Based Approach for General Linear Systems

The approach presented above is applicable only for systems with square and
invertible control matrices. This section generalizes the Fourier-based approach to the more
common case of general linear systems which have fewer control variables than state
variables. The system of is again has the linear structure described by equation (1). In this
case, the control matrix, B, is an N x J matrix where the number of state variables, N, is
greater than the number of control variables, /. It is assumed that the rank of the control
matrix B is equal to /.

To apply the Fourier-based approach, the state equation of equation (1) is first
modified as

B'u'(r) (94)

where

and

(95)

(96)

with the subscripts representing the dimensions of the matrices. By introducing an artificial
control vector, u, the new control matrix, B', can be inverted and the Fourier-based
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approach is thus applicable. In order to predict the optimal solution, the performance index
is modified as

ri (uTu)dt
Jo

L =L + rj [ulu)dt (97)
Jo

where L is the performance index of the original LQ problem and r is a weighting constant
chosen to be a large positive number. The integral term associated with r is used to
represent the contribution of the artificial control.

The advantage of using artificial control variables is that a non-actively controlled
system can be converted into an actively controlled system. Consequently, the Fourier-
based state parameterization becomes immediately applicable. The trade-off is that the
resulting solution will not, in a strict mathematical sense, satisfy the trajectory admissibility
requirement (see Yen and Nagurka, 1988) due to the existence of artificial control
variables. However, by penalizing the artificial control vector, the magnitude and influence
of the artificial control variables can be made insignificant and the solution of the modified
optimal control problem can become a near optimal solution of the original LQ problem.

Simulation Studies

For the simulation studies reported here, LQ problems are solved by the Fourier-based
approach and compared with closed-form solutions or solutions obtained by standard
numerical algorithms. Examples 1 and 2 are designed to the study the effectiveness of the
Fourier-based approach in solving unconstrained LQ problems. In particular, Example 1
considers a problem with an actively controlled structure. Example 2 investigates a general
linear system. Examples 3 and 4 are used to study the effectiveness of the Fourier-based
state parameterization method in handling linearly constrained LQ problems. In particular,
Example 3 considers a LQ problem with a linear state constraint and Example 4 examines a
problem with a bounded control variable.

To check accuracy, the values of the performance index from standard approaches and
the Fourier-based approach are compared. The computer programs used in the simulations
were written in the "C" language and compiled by a Turbo C compiler (Version 2.0).
Efforts were made to optimize the speed of the computer codes. The simulations were
executed on a 16 MHz NEC 386 PowerMate personal computer with a 16 MHz 80387
coprocessor.
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For the first two examples, the time (in seconds) required to execute the program was

recorded for each simulation and was used as an index of the computational efficiency. For

the first two examples, a transition matrix approach was applied to generate the state and

control variables at prespecified equally-spaced points in time for unconstrained LQ

problems. For the last two examples where the linearly constrained LQ problems are

converted into general QP problems, the numerical algorithm developed by (Gill and

Murray,1977), which is considered as to be one of the most efficient solution approaches

for QP problems, is implemented and applied to determine the optimal value for the

unknown state parameters.

Example 1: The goal of this example is to investigate the effectiveness of the Fourier-

based approach for solving high order LQ problems for systems with invertible control

matrices. Consider an N input N-th order system

x = A x + B u , xT(0) = [ 1 2- . .JV] (98)

where

x =
UN

The performance index is

L = xT(l)Hx(l) + I (xTQx +I (xT

Jo

0

0

1 -2

(99)

NxN

H = , Q = R = \NxN
 ( 1 0 0 )

Simulation results for N = 2, 3, . . . , 16 are summarized in Table I assuming a single-

segment, two-term Fourier-based approach (i.e. 7 = 1 and K = 2). The time histories of the

state and control variables of the case of N = 2 are plotted in Figures la and lb,

respectively. The results demonstrate that a single-segment Fourier-based approximation is

accurate (i.e., the error of the performance index value is always less than 1%) for all cases

studied and is especially efficient in solving optimal control problems for high order

systems.
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Table I: Summary of Simulation Results of Example 1

N

2
3

4
5
6
7
8

9
10

11
12
13

14
15

16

Transition-Matrix Approach

Performance Index

5.3591
44.0044

44.2499
164.3776
153.7563
399.9883
373.0219

788.1612
741.6136

1366.9437
1299.3828
2175.1952

2086.3916
3252.2758

3142.8478

Time

0.22
0.44

0.87
1.48
2.36

.40
5.16

7.15
9.51

12.96
16.64
20.81

26.91
32.62

41.08

Fourier-Based Approach*

Performance Index

5.3591
44.0045

44.2504
164.3884
153.7622
400.1103
373.0597

788.8568
741.7737

1369.5209
1299.8946
2182.3431

2087.7219
3268.4011

3145.8080

Time

0.39
0.66

1.05
1.59
2.37
3.29
4.56

6.04
7.85

9.99
12.58
15.44

18.73
22.52

26.97

Comparison

%Time*

177.3
150.0

120.7
107.4
100.4
96.8
88.4

84.5
82.5

77.1
75.6
74.2

69.6
69.0

65.7

A%LC

< 3.7 x 10-5

<5.9xl(H
< 1.1 x 10-3
< 6.6x10-3
< 3.9 x 10-3
< 3.1 x 10-2
< 1.1 x 10-2

< 8.9x10-2
< 2.2x10-2

<1 .9x lO 1

< 3.6x10-2
< 3.3 x 101

< 6.4xlO-2

< 5 . 0 x l 0 1

< 9.5 x 10-2

"With single segment two-term Fourier-type series
^Percent of execution time of Fourier-based approach relative to execution time of
transition-matrix approach

Percent difference of performance index of Fourier-based approach relative to performance
index value of transition-matrix approach
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Example 2: The goal of this example is to test the Fourier-based approach for designing
optimal trajectories of general linear systems. The state equation and initial condition are
the same as specified in Example 1 except that the control matrix here is a column vector
specified as

B T = [ O - . . O 1 ] (101)

and the performance index is

(TQ V H 10I Q l (102)|
Jo

This problem has been solved using both the transition matrix and a single segment, two-
term Fourier-based approach for N =2, 3, ..., 16. The weighting constant r of the artificial
control was chosen to be 105. The simulation results, summarized in Table II, show that
the Fourier-based approach is again computationally more efficient in handling high order
systems. The time responses of the state and control variables for the case N = 2 are
plotted in Figures. 2a and 2b, respectively. These figures show that the solutions from
both approaches are hardly distinguishable.
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Table II: Summary of Simulation Results of Example 2

N

2
3

4

5
6

7

00

9
10
11

12
13

14

15

16

Transition-Matrix Approach

Performance Index

27.358
195.033
705.569

1720.550
3460.001
6027.753
9578.606

14415.109
20308.134

281422.031

36881.498
48453.432
60525.689

76593.643

92466.982

Time

0.22
0.44
0.87
1.43
2.20
3.35
5.05
6.92
9.23

12.74

16.20
20.32
26.48
32.30

40.48

Fourier-Based Approach"

Performance Index

27.362

195.171
706.255

1721.381
3462.970
6030.865
9587.778

14443.140
20331.694
28176.018
36933.743
48537.693
60628.971
76772.657

92653.710

Time

0.38
0.66
1.04

1.54
2.31
3.24
4.45
5.98
7.80
9.89

12.41
15.22
18.45
22.19

26.70

Comparison

%Time*

172.8

150.0

135.1

107.7

105.0

96.7

88.1

86.4

84.5

77.6

76.6

74.9
69.7
68.7

66.0

A%LC

< 1.5xlO-2

< 6.6x10-2
< 9.8 x 10-2

< 4.9x10-2
< 8.6x10-2
< 5.2x10-2
< 9.6 x 10-2
< 7.8 x 10-2
< 1.2x10-1

< 1.3 x 10-1

< 1.5 x 10-1
< 1.8 x 10-1
< 2.8 x 10-1

< 2.4x10-1

< 2.1 x 10-1

*With single segment two-term Fourier-type series
^Percent of execution time of Fourier-based approach relative to execution time of
transition-matrix approach

Percent difference of performance index of Fourier-based approach relative to performance
index value of transition-matrix approach
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Figure 2a. State Variable Histories for Example 2
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Example 3: This example is adapted from (Evtushenko, 1985, p. 438). Here, a LQ
problem with a linear state constraint is considered. The system is described by

[ * i " L [ ° x | |*i U l u l » l - ^Y ' l - l Yl (103)

The performance index is given as

L
Jo

(104)

The optimal solution is required to minimize this performance index without violating the
following constraint

xi(t)<e(t) (105)

where

= 8(r-0.5)2-0.5 (106)

This problem was solved using a one segment Fourier-based approach. The resulting
response curves for x\(t) obtained with three, five, and seven term Fourier-type series are
plotted in Figure 3a, 3b and 3c, respectively. The solution computed by (Evtushenko,
1985) is also plotted in these figures for comparison. The minimum performance index
obtained by (Evtushenko, 1985) is 0.17114. The performance index values determined
from the Fourier-based approach are summarized in Table in. The seven term Fourier-
based solution provides the best results.

Table HI: Summary of Simulation Results of
Example 3 using Single Segment K Term

Fourier-Type Series
(Evtushenko's Solution gives 0.171140)

K

3

5

7

Performance Index

0.174797

0.171154

0.170692
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Figure 3a. State Variable xj History for Example 3

(With Three Term Fourier-Type Series)
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Example 4: This example is adapted from (Leondes and Wu, 1971). Here, the system is

described by

m e l (107)

The performance index is

(108)

The constraint is imposed on the control variable as

|a |<0.8 (109)

The optimal solution, as computed by (Leondes and Wu, 1971) has a bang-bang nature,

i.e.,

= -0.8 for 0<t< 1.275 f u(t) = 0.8 for 1.275 < f £ 5 . 0 (110),(lll)

The corresponding value of the performance index is 5.660.

This problem was first solved using a one segment Fourier-based approach. The

control variable response histories obtained using three, six, and nine term Fourier-type

series are plotted in Figure 4a. The values of the performance index obtained by a three to

nine term single segment Fourier-type series are tabulated in Table IV. From this table and

Table IV: Summary of Simulation Results of
Example 4 using Single Segment K Term

Fourier-Type Series
(Optimal Value is 5.660)

K

3

4

5

6

7

8

9

Performance Index

8.288

7.982

7.004

6.600

6.464

6.295

6.141
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Figure 4a. Control Variable Histories for Example 4
One Segment Fourier-Based Approach
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Figure 4a, it is seen that the near optimal solutions generated by the Fourier-based state

parameterization approach converge to the true optimal bang-bang solution as the number

of terms of the Fourier-type series increases. However, the speed of convergence is quite

slow. The principal reason for this slow convergence is due the instantaneous switch of

the control variable of the optimal solution at t = 1.275. In contrast, the Fourier-based

approach assumes continuity throughout the trajectory. Consequently, significant

discrepancies between the true and near optimal solution can be observed in the

neighborhood of the point of the finite jump.

One remedy of this slow convergence is the application of the multiple segment

Fourier-based approach. The idea here is to first estimate the locations of the instantaneous

jumps by using the single segment Fourier-based approach, and then represent each

continuous part of the trajectory by a unique Fourier-based representation. In this case, the

time interval [0,5] is divided into two intervals [0,1.3] and [1.3,5.0] and a three term,

double segment Fourier-based approach is applied. The resulting performance index value

is 6.027 which is less than the single segment solutions listed in Table IV. The control

variable response of the double segment solution is plotted in Figure 4b.

The quality of the Fourier-based solution can be improved further by increasing the

number of segments. For instance, in this example, the time interval can be divided into

three segments, [0,1.2],[1.2,1.3] and [1.3,5.0], where the point of the finite jump falls in

the second segment. In particular, includes the finite jumps in a unique segment enables

the close approximation of the instantaneous shift. The result is given in Figure 6 where

the optimal control trajectory and the near optimal control trajectory of a three term, three

segment Fourier-based approach are plotted. The performance index value of this Fourier-

based solution is 5.747 which has less than a 2% error compared to the true optimal value.
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Figure 4b. Control Variable History for Example 4
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Conclusion

Based on the idea of state trajectory parameterization, this technical report develops a

Fourier-based design tool for determining optimal trajectories of LQ problems. It is shown

how a LQ problem can be converted to a QP problem. In particular, for an unconstrained

LQ problem the necessary condition of optimality is obtained by differentiating the

converted quadratic performance index with respect to free state parameters. The

computational simplicity of the approach is due to the fact that the necessary condition of

optimality can be derived as a system of linear algebraic equations. Simulation results

indicate that the Fourier-based approach is more efficient than the standard transition matrix

approach in handling high order unconstrained LQ problems.

Simulation studies also show that, in many cases, a single segment Fourier-based

approximation provides sufficient accuracy when the optimal solution is continuous. A

multiple segment Fourier-based approximation is required only for problems whose

optimal solution has discontinuities which are not generally physically implementable. An

advantage of the Fourier-based approach is that it provides an accurate and continuous near

optimal solution. In summary, by relying upon well developed QP solution algorithms, the

Fourier-based state parameterization approach promises to be an effective and general

computational tool for designing trajectories of linearly constrained LQ systems.
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