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In this report the approach developed by the authors, for systematically studying the

acceleration capabilities and acceleration properties of the end-effector of a planar 2 degree-of-

freedom manipulator, is extended to the general spatial manipulator with three degrees-of-freedom.

A central feature of this report is the determination of the properties of the quadratic mapping

between the "joint-velocity" space and the acceleration space of P which then makes it possible to

obtain analytical solutions for most acceleration properties of interest. We show that a fundamental

way of studying these quadratic mappings is in terms of the mapping of (input) line congruences

into (output) line congruences.



1 Introduction

In this paper, we apply the approach developed in (Desa and Kim, 1989-1) to the problem of determining

the acceleration capability and acceleration properties of (a reference point on) the end-effector of a spatial

three degree-of-freedom manipulator.

An informal statement of the problem is as follows:

Consider the general three degree-of-freedom revolute-joint manipulator shown schematically in Figure

1. We are interested in studying the acceleration of a reference point P on link 3, (P is typically a point

on the joint axis of the end-effector, the acceleration of P is therefore often referred to as the end-

effector acceleration). The usefulness of studying the acceleration of the end-effector has been discussed

in (Yoshikawa, 1985; Khatib and Burdick, 1987; Graettinger and Krogh, 1988; Desa and Kim, 1989-2;

Kim, 1989).

As shown, for example, in (Desa and Kim, 1989-l)>the acceleration capability of the point P under

various conditions is best described by certain acceleration sets. Two properties which are used, in general,

to characterize these sets are the maximum possible magnitude of the acceleration of P and the maximum

magnitude of the acceleration of P which is available in all directions. The former property is amply

called the maximum acceleration of P and the latter the isotropic acceleration of P (Khatib and Burdick,

1987). .

Acceleration properties of the end-effector have also been studied by (Yoshikawa, 1985; Khatib and

Burdick, 1987; Gracttinger and Krogh, 1988)- The approach of each of these researchers has been

discussed and compared with our approach in the paper (Desa and Kim, 1989-1) and we will not repeat

that discussion here. We will however repeat the fundamental hypothesis underlying our approach which

is as follows. By decomposing the functional relationships between the inputs (actuator torques and

joint variable rates) and the output (acceleration of F) into two fundamental mappings, a linear mapping

between actuator torque space and the acceleration space of point P and a quadratic (nonlinear) mapping

between the "joint velocity** space and the acceleration space of P, and by deriving the properties of these

two mappings, it is possible to determine the properties of all acceleration sets which are the images of

the appropriate input sets under the two fundamental mappings.

The contributions of this paper are as follows:



1. The central contribution of this paper is the determination of the properties of the quadratic mapping

between the joint vdodty space and the acceleration space of P which then makes it possible to

obtain analytical solutions for the isotropic acceleration. We show that a fundamental way of

developing the properties of the quadratic mappings of interest is in terms of the mapping of (input)

line congruences into (output) line congruences.

2. Closed-form analytic expressions are obtained relating important acceleration properties of manip-

ulators to all the manipulator parameters and input variables (torques, joint variable rates or "joint

velocities") of interest (The only exception is the maximum local acceleration which is specified

in terns of tight lower and upper bounds in section 6.)

3. Necessary and sufficient conditions for the existence of isotropic acceleration have been determined.

(Earlier studies seem to implicitly assume that isotropic acceleration always exists.) These conditions

ire stated explicitly in terms of manipulator parameters and input variables.

4. Analytical expressions are derived for detennining the maximum and isotropic acceleration of the

end-effector at any ("local") configuration of the manipulator.

We will demonstrate the application of lite theory to a particular three degree~of-freedom spatial

manlpiilsfor. The application of acceleration theory to problems in manipulator design has been dealt

with in CDesa and Kkt91989-2). The next section, which describes our approach, also provides the dual

function of being a "road-map" of the paper



2 Description of the approach

The approach for studying the acceleration of (a reference point P on) the end-effector, given in (Desa

and Kim, 1989) is as follows:

1. Define the input variables and output variables of interest (subsection 3.1). The output of interest

is the acceleration of the reference point P.

2. Define the input sets of interest (subsection 3.1).

3. Define the input-output functional relations. These are obtained from the dynamical and kinematical

equations of the manipulator (subsection 3.2).

4. Define fundamental mappings from these functional relations (subsection 3.3). There are two

fundamental mappings, a linear mapping and a quadratic mapping.

5. Define the image sets of the input sets under the mappings obtained in step 4 (subsection 3.4).

These image sets are the acceleration sets of interest.

6. Define general properties which can be used to characterize ("measure'1) acceleration sets (subsection

3.5).

7. Determine the properties of the mappings defined in step 4 (section 4).

8. Detennine the acceleration sets defined in step 5 using the properties of the mappings obtained in

step 7 (section 4).

9. Detennine the specific properties of the acceleration sets determined in step 8 using the **measuiesM

or general properties defined in step 6 (section 5).

10. Detennine the local acceleration properties for any configuration q of the manipulator using the

properties of the acceleration sets obtained in step 9 (section 6).
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Figure 1: Schematic diagram of a general three degree-of-freedom manipulator

3 Definition of the acceleration sets

3.1 Manipulator input and output variables

Cczs;tzr±z ftapfal spalial three defmHgMteedQm manipulator with three revolute joints shown schemat-

ically — figure L It Ms subsscden, we define the Imlr parameters* tbe input variables, the input sets,

±t D̂ ::p-«: varfafcka md the output sets for this general spatial manipulator. The manipulator is assumed

to 'be ng:c ~r± negl:g:b:c ;cir:l friction.

7;;t r^-r.:^::r ^ i ; be ̂ K i t e i by a sci of geometric and inertia parameters, which will depend

te Tte g^rr.r :̂c mt inertia p«M^ers for the spatial three degree-of-fteedom

11» alto shc^ fe Hgire 9 are aME^raiial in the Appendix.

Nea» i » ^ t e At ^ ^ ^^iA«» te i^«tt '«»rtrai«s and the corresponding iqmt s^s of the

aftaB^potat Ltt 411 fj f md fj lion^e die ^^raliasal coordinates of the



manipulator (see Figure 9), q\, qz and qi being the joint variables, respectively, at joints 1, 2, 3. Define

12 (1)

to be the vector of joint variables; the corresponding vector space of all q is called the joint space. If

QiL<qi<qiU, *= 1,2,3 (2)

represents the constraint on joint variable i, the workspace W of a manipulator is defined as

W* {q\qiL < qi < qa/, i = 1,2,3}. (3)

Let q\, $2, and fa denote the joint variable rates. Define

02

to be the vector of the joint variable rates. If

I * ! < * . , * =1,2,3

denotes the constraints on the joint variable rates, then we can define

^ = {q| \qi\<qu>, i= 1,2,3}

(4)

(5)

(6)

to be the set of all the possible joint variable rate vectors, represented by regular parallelopiped J\K\L\M\J%Kzh]M\

in Figure 2. (We will refer to this parallelopiped as the parallelopiped F for short)

Let n, TI, and 73 denote the actuator torques, respectively, at joints 1, 2, and 3, and

(7)

denotes the vector of actuator torque vectors. Let

\n\<rm, 1=1,2,3 (8)



f t fwc 2: Set of the joint variable rates of & three degree-of-freedom manipulator



Figure 3: Set of the actuator torques of a three degree-of-freedom manipulator

denote the constraints on the actuator torques at joints 1, 2, and 3. Define

(9)

as the set of the allowable actuator torques, represented by regular parallelopiped ABCDEFGH in Hgure

3. (We will refer to this parallelopiped as the parallelopiped T for short.)

The vectors q, q and r will be referred to as the input variables (more precisely the input variable

vectors) of the manipulator We will also refer to the vector q as a configuration of the manipulator.

Let (xi, JCI, xs) denote the coordinates, in a reference frame fixed to the base, of a reference point P

on link 3 (see Hgure 1) and define

XI (10)

as the vector of task coordinates; the corresponding vector space of all W is caled the task space.



The velocity

X\

; tP and the acceleration x' of the point P of the manipulator arc, respectively, given by

(ID

and

Xl
(12)

The acceleration of P, *?. is the output variable of interest in the present work. The corresponding vector

space A of all possible x' is called the acceleration space, expressed by

3.2 Functional relations between the inputs q, r and the acceleration V

Use nexx «ep is to obtain the functional relations between the acceleration X* and the inputs q and r

for a given configuration q. In this subsection, we show how the necessary functional relations can be

obtained from the manipulator dynamic equations and the (so-called) manipulator Jacobian relationship.

The dynamic behavior of the most general three degree-of-freedom rigid spatial manipulator (Figure

1) cm be written ui the following symbolic form (Craig, 1985):

m + W% q) + P-r , (14>

«lMt D i$ the w-calied mass matrix of the manipulator, V(q, q) is the vector consisting of all terms

*hsdj an mrAkmx in the products of the joint variable rates ft, (i = 1, 2, 3), and p is a vector of all

irnsi due *«s gravity.

We fscxt *%p?ess son-linear terms V(q, q) as products of a matrix and a vector. To understand how

r, * t Tim write V(q, q) in its most general expanded form.



Defining the two matrix operators,

and

1*21 "22 U23

U31 U32 U33

W12 W13

>V31 W32 W33

and two vector operators

(q)2

and

[q]2

we can decompose the non-linear term V(q, q) as follows:

V(q, q) =

"12 "13

"21 "22

"31 "32

= U<q>2+W[qf.

W22 W23

W31 W32 W33

(16)

(17)

(18)

(19)

(20)

(21)

Substituting equation (21) into (14), we can express the dynamic equation of a general spatial manipulator

by

Dq + U < q > 2 + W [ q ] 2 + p = r. (22)

This is the most general expression of describing the dynamics of a three degree-of-freedom spatial

manipulator in the joint space. The matrix D is the mass matrix of the manipulator and the vector p

denotes the gravitational terms which influence the dynamic behavior.



The relationship between the velocity, xp, of point P, and the joint variable rate vector q is well known

(Desa and Roth, 1985):

* . « <23)

wh re J Is a (3 x 3) matrix called the manipulator Jacobian. The detailed expression of Jacobian matrix

is given in the Appendix.

To obtain the expression for the acceleration xp of the point P, we differentiate equation (23),

**«Jq + Jq. ( 2 4 )

The second term in equation (24), jq, can be written in the form (see the Appendix)

J q » - F < q > 2 - G [ q ] 2 . (25)

Substituting equations (25) into (24), we obtain

tf«Ji|-F<4>2-G[412. (26)

the quantities,

A - JD- ! , . (27)

i * - A . U - F . (28)

N m - A W - G , (29)

(30)

s « -Ap, (31)

sn sajiiy >ia3w iha: flic tascterttioa W of point P, obtained by combining equation (22) with equations

* * • < , • # - 3 1 U £ S g i v e n b y

r » A * * B < q>2*NtqJ2 + s (32)

^ \ B S . I B crrSgsratoB depeadesi aai have the omponents %,, b$, Bij, Jj, (i, j * 1,2,3).

10



Equation (32) expresses the required (Input-Output) functional relation between the input variables,

q and r, and the acceleration xp of the point P (the output variable) at a given configuration q. It is

important to note that the definition of the matrix "operators" U, W, F and G and the vectors < q > 2 and

[q]2 enables us to write the dynamic equations in the compact form (32) which is critical in the sequel.

3.3 Mappings

In this subsection, we define two fundamental mappings between the input variables and the acceleration

x* of the point P (the output variable).

It is convenient to regard the functional relation (32) as a mapping between the input variables q and

r and the output variable 1& for a given configuration q of the manipulator. Furthermore, defining

and

<*1T

<*2T

<*lq

<*2q

Ar (33)

= B<q>2+N[q]2 (34)

equation (32) can be written as

(35)

It is convenient to think of the vector x£ as the contribution of the torques to the acceleration of

the reference point P, and the vector x£ as the contribution of the joint variable rates and gravity to

the acceleration of P. Equation (35) expresses the fact that the sum of these two vectors gives us the

acceleration of P for a three degrec-of-frecdom manipulator.

Equation (33) can be viewed as a linear, configuration-dependent, mapping between the toique vector

T and its contribution x? to the acceleration of P. Similariy, equation (34) can be viewed as a quadratic,

configuration-dependent, mapping between the joint velocity vector q and its contribution X^ to the

acceleration of P for a given configuration q. These are the two mappings of interest in this section.

11



3-4 Manipulator acceleration sets

Having defined two fundamental mappings of interest, we are interested in the image sets of the input sets

under the mappings (33) and (34) at a given configuration q of the manipulator. There are three image

sets of interest,

3.4.1 Image set Sr of the actuator torque set T under the linear mapping

For a given set T of the actuator torques r described by equation (9) and represented graphically by a

regular parallelepiped in the r - space (see Figure 3), we define the image set 5 r of T under the linear

mapping (33) as

(Note that ST lies in the acceleration space A.)

3.4.2 Image set Sq of the joint variable rate set F under the quadratic mapping

For a given set F of the joint variable rates q described by equation (6) and represented graphically by a

regular parallelopiped (see Figure 2), we define the image set Sq of F under the quadratic mapping as

5q = {%JlxJ = B<q> 2 +N[q] 2 + s , q 6 F } . (37)

(Note that S§ lies in ihe acceleration space A.) From equation (34) and the above definition (37), we see

that the image set S% represents the set of all possible accelerations (the acceleration capability of the

manipulator) when ^ e actuators are turned off (r = 0) in any configuration q.

3.43 State acceleration set

When i manipulator is in motion, the dynamic state of a manipulator can be specified by the joint variables,

(f I* ft), and Joan variable rates (ft, ft). The state vector n which characterizes the dynamic state of the

mmipiittor is defined as follows:

(38)

12



For a specified dynamic state of a three degree-of-freedom manipulator, The second term of the

acceleration xp in equation (32) is a constant vector, which we denote by k(u) and define as follows:

k(u)

= B < q > 2 + N [ q ] 2 + s.

Equation (32) can then be written as follows:

(39)

(40)

For a given dynamic state u of the manipulator, we define the state acceleration set S^-as the image set

of T under the linear mapping (40):

x*|x* = AT T}. (41)

Su is therefore the set of all possible accelerations at any given dynamic state u of the manipulator. Since

the dynamic state u of the manipulator essentially specifies the velocity if of the point P in (11) in any

configuration, we can also interpret the state acceleration set Su (the set of available accelerations) as the

acceleration capability of the manipulator when the manipulator is moving with the velocity xp in a given

configuration q.

3-5 Properties of the acceleration sets

The definitions of the acceleration sets in the previous subsection will be used in section 5 to determine

them. Once these sets have been determined, one would like to characterize them.

Consider an acceleration set S in the acceleration space i> and two spheies C\ and Cj: C% is the

smallest sphere centered at the origin which completely encloses the acceleration set and Cj h the largest

sphere centered at the origin which lies inside the acceleration set The radius n of Urn sphere C\ is the

13



to S. * » <*ta -, of sph«* 2 •cprssen* to la-sea (magnitude of)

available in all directions.

We therefore define the following two properties of 5:

. the maximum acceleration of S: a^iS) = n .

. tbe isotropic acceleration of S: <*o(S) = n-

The isctropic and maximum

ic average acceleration, since they can

acceleration are particularly attractive for characterizing set 5, in contrast

-JS" Cor by appropriate bounds). The average

the description of tbe acceleration sets given in the next section.

be readily extracted from the dynamic equations in "closed-

acceleration, if required, can be numerically determined

14



Figure 4: Image set Sr of a three degree-of-fieedom manipulator

4 Determination of the acceleration sets

Analytic expressions for the determination of the three sets ST, Sq and Su are presented, respectively* in

section 4.1, 4.2 and 4.3. The determination of Sr and the state acceleration set Su follows directly from

well-known properties of linear mappings while the determination of the set S§ requires the derivation of

the properties of quadratic mappings which arc new The approach for determining the set S^ undo: the

quadratic mapping is more fundamental than that given in (Desa and Kim, 1989),

4.1 Determination of the image set Sr

The set Sr is the image set of the actuator torque set T under the linear mapping (33). We determine the

image set ST of the linear mapping of a three degree-of-freedom manipulator in the x - space. Additionally,

we identify the boundaries of set ST. which arc planes in the x - space.

15



1:
« , * , of ft. a c m a t o r ^ M T . * r * . ^ m a p p i n g (34) i,<<*

as follows;

A

B'

d
D

E

G

H'

, «nn. +flan.+ *»»*.

n , - ^ + * » * * , oan. -

, -«an.-flan.+*»»*, -

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

, - ottru - anno, oun« — 0 2 2 ^ — flaarw, tf3in* —

, — OaTSa — OUT}*, —O2iT\* — 422?^ —

whefe d̂ v (ij * lf 2, 3X ^e the elements of the matrix A. The centroid of the parallelopiped

jCsl ...flf m the aigin of the 5t-plaEDe (^e Figure 4).

Itosadt 2: Tte ^ taas) ^ t o of i » prdlelqi|^d. ST .are givoi by the following equations:

B'C'G'F'

A'B'C'D'

n» det(A)

T^ dc^A),

(50)

(51)

(52)

(53)

(54)

(55)

where <tat(A) is the detenoainaiit of the matrix A.

following are wtU4ai0vni

L A plane to the r- iptw will map

of a linear mapping:

m plane to the feffaaie. in pyrtioil̂ ar, ̂ anespi in 9 0), |?i ( ^

UiMD i t a ^ i ^ * ! ^ 1 1 ^ ! 1 ! ' 1 1 * 1 ^ ^piM»B are as i^llows:

0f (56)

0t (57)
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All three planes p\9 p2 and pz pass through the origin of the x-plane.

2. Any plane g\ parallel to p\ maps into a plane g\ parallel to p\.

3. Any plane gi parallel to pi maps into a plane g2 parallel to p2.

4. Any plane g3 parallel to pz maps into a plane £3 parallel to p'z.

Proof of result 1:

By regarding the rectangular parallelepiped AB...H (set T) as a set of planes parallel to p\, p2 and P3

one can easily show the well-known fact that the image of AB...// is a parallelopiped A'B' .. .H\ The

vertices A',B\ ...9tf are the images, respectively, of the vertices A, S, . . . , H which are as follows:

B

-T\o

f \

T\O

no

\-rto j

F

/ \
Xo

\ -1* J

G

/ \

-no

\ -**• /

H

-no 1

no

{-no ,
(59)

into equation (33), we obtain the coordinates of the vertices A\ B \ ..., i / as given in equation (49).

From (49), we see that the vertices A' and G* are ^uidi^sa^ from the origin and so are the pairs (B\ i/) f

(d t E?) and (D', F1). Thorefbre, the origin of the x~space is the centroid of the parallelopiped A*B*...//.

Proof erf result 2:

We next need to determine the equation of the planes A'i

A'B'dD' and ^F^G'lit which form the boundary of the parallelopiped A'B' .. . i / in the t-space- The

plane A'B'F'^ in the%-space is the image of the plane ABFE whose equation is T\ = na in the r-si»cc;

to obtain the equation of A'B'F^E!* substitute the equation of ABFE (n - no) into (33) to obtain the

following parametric equations in TJ and 13:

(60)

17



+ 023^

*3 = 031X1^ + ^ 2 ^ + 03373.

Eliminating tlic parameter 7% and 15 between equations (60), (61) and (62), we obtain the equations of

the plane A'B'F'E' as given by equation (50). In a similar fashion, we obtain the equations of planes

D W j / , / l> ' f / £ \ a'dtiF*, A'B'cfD', and tiftilt as in equations (51) through (55).

42 Determinatioii of the image set S4

The set 5q is the image set of the joint rate set F under mapping (34) for a three degree-of-freedom

manipulator. We decompose the set F (Figure 5 (a)) into 3 subsets F\, F2 and F3 described as follows:

Definition 1: The set F% is the truncated line congruence (Semple and Kneebone, 1952) consisting of

the doubly infinite set of line segments passing through the origin with one endpoint on the plane

J\K\M%La and the other endpoint on the plane M\L\J2K2. A typical member of F\ is the line

segment g\ shown in Figure 5 (b).

Definition 2: The set F% is the tnmcated line congruence consisting of the doubly infinite set of line

segments pissing through the origin with one endpoint on the plane /1L2K2M1 and the other

eodpolM CM the plane JSTiMi/î i. A typical member of F% is the line segment gi shown in Figure

5 (c).

Definition 3: The set F3 is the tnmcated line congruence consisting of the doubly infinite set of line

segments passing through the origin with one endpoint cm the plane J\K\L\M\ and the other

eodpoini on tfae pime ioMa/i^i- A typical member of F3 is the line segment g$ shown in Figure

5

We o a new mmt tm useftit results which analytically describe S<|» the image of F.

Remit I:

Every Kne of the type f 1 bdonging to set Ft n a p into t line g[ in the t-space (Figure 6 (a))» one

erf which is the point S wk»e a » n i M t o su I » 1» % 3 tie §NOX by (40) and the other

18



(b)

Figure 5: Image set 5^ of a
manipulator

19



M2 (a)

M,

X

"* (e)

figure i: Quadratic r^nr.

(b)

(d)

of a thr« degree-of-freedom manipulator

20



endpoint of which lies on the quadratic surface patch (Figure 6 (b)) whose parametric equation (in

q2 and £3) is:

£2 (63)

where

l.(b) The set Fi maps into a set (S^h in the x-plane which is a doubly-infinite system of line segments,

one endpoint of which is the point S with coordinates S; (i = 1, 2, 3), given by (31) and the other

endpoint of which lies on the quadratic surface described by (63).

Result 2:

2.(a) Every line of the type gi belonging to the set Fz maps into a line g^ in the x-space (see Hgure 6

(c))t one endpoint of which is the point S and the other endpoint of which lies on the quadratic

surface patch (Figure 6 (d)) whose parametric equation (in q$ and q\) is:

(64)

where

1*1 <

2*(b) The set Fi maps into a s^ (5^)2 in the x-plane which is a doubly-infinite system of line segments,

one endpoint of which is the point S and the other endpoint of which lies on the quadratic surface

described by (64).

21



Result 3:

34a) Every line of the type & belonging to the set F3 maps into a line g3 in the it-space (see Figure 6

(e))t one end of which is the point 5 and the other end of which lies on the quadratic surface patch

(Figure 6 (f)) whose parametric equation (in q\ and qi) is:

X2
(65)

where

3.(b) TTie set F3 maps into a set (S^)3 in the I-plane which is a doubly-infinite system of line segments,

mm endpolnt of which is the point S aad the other endpoint of which lies on the quadratic surface

described by (65).

Rt$iitt4:

The Image set of \ of the joint variable rate set F is the union of the sets (Sq)i, (S^h, (Sq>3 described

tbow*

We will first derive certain useful properties of the quadratic mapping defined by equation (34):

22



The above equation can be written in the expanded form

(66)

Consider the (input) ^-space. It is convenient to think of this space as being generated by the

continuous doubly-infinite set of lines (also called a line congruence) passing through the origin with

parametric equations

m\t ; —oo < mi < oo, —oo < mi < oo. (67)

Each value of m\ and mi gives us a member of the line congruence, a typical member of which is

the line I shown in Figure 7, The image / in the x~space of the line I is obtained by substituting (67) into

(66) and is described by the following parametric equations,

X\

3C3

(68)

where

From equaticm (67) and (68), one can infer the following facts:

Fad 1. The image of U viz. / , is a straight line

Fart 2. The origin of the q-space maps into die point S of the x-space.
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(a)

(b)

Figure?: Properties of the quadratic mapping few a three degree-of-fireedom manipulator
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Fact 3. Two points with coordinates (q\9 £2, <h) and (—q\, — <?2» —£3) map into the same point of the

x-space.

These results are shown graphically in Figure 7.

Fact 1 follows from the fact that (68) is the equation of a straight line in the parameter f2. Fact 2

follows from the fact that the point (0, 0, 0) in the q-space, represented by the parameter t = 0 in (67),

maps into the point (s\9 52, $3) in the x-space. If t is the parameter corresponding to the point (<?i, qi>

£3) in the q-space, then, from (67), - r is the parameter of the point (-<?i, -qi* -<?3). From (68), we see

that points with parameters t and -t will map into the same point in the x-space. This proves Fact 3.

The following two important properties of the quadratic mapping (33) (or (66)) follow directly from

the above facts:

Property 1: The image of a line I passing through the origin of the q-space is the half-line / , one endpoint

of which is the point 5(?i,JI, ^3) of the x-space (see Figure 7 (a)).

Property 2: Consider a line segment g passing through the origin of the q-space and with endpoints

Piiqir&i fe) and P2(— Q\i -<&, —to) corresponding, respectively, to parameters t and —1> g maps

into a line segment g in the x-plane, with cue endpoint at £(fi,£i,^) and the other endpoint at Q

whose coordinates are given by (68) (see Fig 6 (b)). Q is the image of both points P\ and P2.

Property 1 is basically a statement of the fundamental "folding" property of the quadratic mapping.

Property 2 is more useful for our purposes.

We now determine the image, under the mapping (34)t of the set F\ which consists of the doubly-

infinite system of line segment of the type gu (see Figure 6 (a) ) t which passes through the origin and

which has endpoints Pi and F2, respectively, on planes J1K1M2L2 and MxLiJjKz (Figure 6 (a) ).

The plane J\K\M%L2 is described by

*i«fo# (69)

and the plane M1L1J2K2 is described by

ft--4k- • (70)
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Therefore, if Pi lying on J\K\M2La has coordinates (<?i,<?2><?3)> then P2 lying on M\L\J2K2 has

coordinates (-qu* -<R» - # ) • By property 2 of the quadratic mapping, the line segment g\ with endpoints

Pi and P2 will map into a line segment with one endpoint at S(s\, s2,sz) and the other endpoint at Q

(Figure 7), which is the image of both Pi and P2 and which we need to determine next. For every

point P\(qu,q2, fa) lying in the plane J\K\M2L29 there is a point P2(-q\o, - f t , - f t ) tying in the plane

M\L\J2K2 which, by Fact 3 established above, has the same image as Pi. Therefore, planes J\K\M2La

and M\L\J2K2 have the same image. It is sufficient therefore to determine the image of plane J\K\M2L2.

Since plane J\K\M2L2 is the set of all possible Pi, the image of J\K\M2Li is the set of images of all

possible Pi. Tb obtain the image of/1-K1M2L2, we substitute its equation (69 ) into (66) to obtain (63)

which, because it is quadratic in the parameters q\ and ft. represents a quadratic surface in the x-plane.

The quadratic surface (63) is the image of the plane M\L\J2K2 as well as the image of the plane

J1K1M2L2. Any point Pi of MiLi/ifo with coordinates (q\o, qi* fa) and any point P2 of J\K\M?JL2 with

coordinates {-q\m - f t , - f t ) will have the same image Q with coordinates (xi, x2, X3) given by (68).

We have thus shown that the line segment with the endpoints Pi and P2 will map into a line segment

in the I-plane with one endpoint at 5(ffi,si,i3) and the other endpoint Q lying on the quadratic surface

(63). His completes Result l(a).

1 k sow a simple matter to determine the image (Sq)i of F%. By Result l(a), the doubly-infinite set of

liae ispaubi F\ of the type g\ with endpoints P\(qu, ft, ft) and P2(-qu, -<&<> -q$) lying, respectively,

in the planes M1L1J2K2 and J\K\M^JI will map into the douWy-infinite set of line segments (S^)i with

ciae caipew^ (always) tt S and the other eadpoint on the quadratic surface (63). This completes the proof

ofResiiil l(bX
m exacily similar fashion, we can show Results 2(a) and 2(b) and Results 3(a) and 3(b).

Staaite IMIPIQCFt ,F i n d F s «e,fespactivdy, (%)i» (S^b. andl C%)3. the image of F = F1UF2UF3

to S | » C%)i y | % k U (S^h* (S^)iv C%k « i CS ĥ htve bem defined, respectively, in Results l(b), 2(b),



Figure 8: State acceleration set of a three degree-of-fieedom manipulator

and 3(b). This completes the proof of Result 2.

Comment:

The analytical description of (Sq) by means of («Sq)i, (Sqh and (Sq)s is sufficient for the extraction

of the acceleration properties which we are interested in.

43 Determination of the state acceleration set Sm

The state acceleration Sm corresponding to a state u = (q,4) r of the spatial manipulator was defined by

equation (41) and is the image set of the actuator torque set T under the mapping (40). We obtain the

following results for the state acceleration set Su.
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l: ttr cvoy dc=» . « « of *e

state acceleration set Su. given by

se. Sr. * . is a correspond** «&> o, a.

(71)

where

* 2

(72)

Rtsalt 2: The state acceleration set Su, corresponding to a state u = (q, q ) r of the spatial three degree- f

of-freedom manipulator is the parallelepiped A"B"C"D"E"F"G"H" shown in Figure 8 obtained by

translating the set ST by the vector k(q, q) in the x-space. The centroid of 5U is (*i, kj, ki).

Proof of Result 1:

Ths results 1 and 2 are straightforward.

From (36), a mtmber ICSV) of Sr is given by

VS.)« AT. ' (73)

Frr.-?S3 i-41:, a member i(5«) of SB is given by

(74)

(75)

*henr k ;s gives ^ equaiics (72). Combining (73) and (74), we obtain
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From equation (71), we sec that if we take a vcaor x(Sr) of Sr and add the vector k to it we obtain

the corresponding member x(Su) of 5U. Therefore, if we add the vector k to every vector in the set Sr we

obtain the required set Su. Therefore, Su is the parallelopiped A"B"(?'D"E!'F"G"H" (Figure 8) obtained

by translating the set Sr (the parallelopiped A'B'C'D'&F'G'H' in Figure 8) by the vector k. The centroid

of Sr is x(ST) = (0, 0). From (75), we see that the corresponding centroid of Su is

x(5u) = 0 + k = k.

This completes the proof of Result 2.



5 Properties of the acceleration sets

to this section, we explain how to characterize the image set, 5T, Sq9 and the state acceleration set, Su.

using the results in section ??.

5 J Properties of the acceleration set Sr

We characterize the image set ST of the linear mapping as follows.

Result 1: The maximum acceleration of the acceleration set Sr is denoted by flmaxGSV) and is given by

U S T ) = maxt<KOA\ d(OB\ d(pd), d(0D')] (77)

wine

4{OA) m

d(OC ) =

Remit 2: The Isotropic accelerarion of the acceleration set ST is denoted by a\so(Sr) and is given by

% - IKA#5Wx ptfD'tfti\ ptfB'dD'yi (78)
where

* $ i # I de<A) I
y/(an<*n -

- Oaain)2 + (aiian - auan)2 + (OII«B -

Proof of Result 1:

The maximum acceleration of Sr is the distance from the origin to the furthest vertex of the par-

alltlopiped A'B'C'D'^F'CrH'. Letting d(O'A') through d (O'H1) denote, respectively, the distances of

vertice* A' through ff from the origin in the £-space, fl^CSr) is given b y

(79)

30



A and G' are equidistant from the origin O\ Also, s ' and / / , C' and £', and £>' and F* are equidistant

from the origin. So, OmaxCSr) is given by

<W(ST) = max^O'A'), d(0'B'), dCtf'C), d(0'z>')]. (80)

Using (33) and the well-known "distance** formula, the distance d(OA') from the origin O to the point A'
is given by

d(OA ) = y/(auno + tfnTi* + anr^f- + (anno + aian* + azan*)2 + tein* + 032^0 + a-^r^f-. (81) I
I

In exactly analogous fashion, we obtain !

d(OB ) = \Z(aiiT\0 — onTio + OtoT^f' -»- (onTi* — 022Ti« + ̂ isrio)2 + (fl3ino — <*nn* + flsarso)2 (82)

/ ( 8 3 )

and

d(OD ) = y/i—axiTifi + <2i2*s* + flun*)2 + (—anno + ann* + <ton«)2 + (—aan* + 032^* + a&no¥. (84)

Equations (80), (81), (82), (83) and (84) ccmprise Result 1.

Proof off Result 2:
The isotropic acceleration of Sr is the shortest distance from the origin to the sides of the parallelopiped

A'B'dD'tfF'G'H'. Letting p ( A'BYE' ), p ( D'dG'ti ), p ( A'D'H*]? ), p ( S'^Gy ), p ( A'B'dD*
) and p ( Efp'G'JHt ) denote, respectively, the distances from O' to each plane, Otso(ST) is given by

OteiS^^mkilpVLBFE'x p(DCGH\ p(ADHE\ p(BCGF\ p(ABCD), p(EFGH)l (85)

Since the origin is the centroid of the parallelopiped ST3 parallel faces of the parallelopiped ^

must be equidistant from the origin. Therefore, we can write the following relations:

' (86)

(87)

(88)

Using (86), (87) and (88), (85) can be written as

Sr)« min[p(A#B W ) ? ptfo'lftf), fitfB'dD')]. (89)
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The distance p from the origin to a plane

well-known equation:

- space is given by the

Using equation (90) and equations (50), (52) and (54), we obtain

V(021433 -

BCD)

(91)

(92)

(93)

Substituting (91), (92) and (93) into equation (89), we can obtain the required result (78) fot the isotropic

acceleration %©(ST).

52 Properties of the acceleration set Sq

Since each element of the set S^ represents the total non-linearity, we characterize the set Sq by the

mtximum mtgwtate element wMch denote the maximum non-linearity. Also, we calculate the maximum

dfatsnces from direction planes m subsection 4.1 to measure the effects of the non-linearity on the state

mxtkmkm set

Similar to i two degree^f-fitedom manipulator, we illustrate the steps to the analytical expression of

the ftmhett poiat of set % and the steps to the analytical expression of the furthest point from direction .

planes,

P t l a f t t e 1: Lai/*, i « lf 2. 3 denote, respectively, the following cubic functions in the joint variable
fc. i * U 2, 3;

/;%, fc,
M l

(95)
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Equations

fliqio, ft, ft) = 0 and/3(<7io, ft, ft) = 0

Mqi, qzo, ft) = 0 and/i(ft, ft*, ft) • 0

Mqi, qz, ft*) = 0 and/2(ft, ft, ft*) = 0

/l(<7i, ft*, ft*) = 0

Mq\, -ft*, ft*) = 0

fz(.qio, ft, ft*) = 0

Hqu, qi, -ft*) = 0

fi(q\o, ft*, ft) = 0

Mqio, -ft.,, ft) = 0

Variables

ft. ft

ft. ^i

qu ft

ft

ft

ft

ft

Notation used to denote solutions

4?}. * }

#. «P
rf>. #

qf
q?

Table 1: Solutions of cubic equations

0. (96)

[ sr l t 2t 3) is cubic in qu qi and q$.

Definition 2: It is usefiil in our derivaions to be able to refer to the solutions of certain equations which

play an important role in obtaining the maximum acceleration of S^ anuutC^X Each equation or

equation pair of interest is given in column 1 and the corresponding variables are indicated in

column 2. All equations in column 1 are cubics in the variables in column 2. The notation used to

denote the solution of each equation or equation pair is given in column 3.

Definition 3:
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DeBntfon 4: Let fe i « U 2, 3 denote, respectively, the following linear equations 1B the joint variable

$* 4i» i * 1» 2» 3;

t <fe* <B) * + Kite. +

(99)

(100)

where *,(fo, #^ *>• Ct - 1* 2,3) is linear m^n^

S; It it alio wetit in our iterivtiws to be Me to refer to the solutions of certain

which plif m inpoitHtt wie ift otaWng ^(t{S4) fpi), i • !• 2, 3S defined below. In table

etch aquttkw or ^ P ^ I » p»f of iiiaot is pvffl in oottnist 1 and the conwix»iiiiig variables

sad-.cttod a «hnm 1 All (Mpaikai ta obhvn 1 we Hoar hi the v«M>!a in mlwm 2.

uaed » ^ ^ to tcMim of each ^ m ^ ^ or equation ptir is givra in mlmm 3.

§:

It)

•.mm



Equations

hz(.Q\o, 92, qi) - 0 and hiiqu, 92, 93) = 0

faiqx, 92«, 93) = 0 and *i(ft, $20, 93) = 0

hiiqi, qi, foo) = 0 and kziqi, 92, 93*) = 0

hi(q\, qio, <?3o) = 0

h\{q\, -klo, <?3o) = 0

foOji*, 92, qzo) = 0

^2(4flo, <?2, ~<?3o) = 0

A3(4io , 42o, qi) = 0

A3(4io> -92o , qi) - 0

Variables

<?2. 93

43,4ri

4i. 92

qi

q\

?2

92

93

93

Notation used to denote solutions

41". 9311

# . 9?1

q?\ 9231

9l41

qf

Table 2: Solutions of linear equations

— On^to)2 + (aia^n — ana»)2-*-(onai3 — anas)*! ^

^jfl3i)2 + (anon - ^ l f l n f + (011022 -

+ ̂ u4l + 2mi^i§2 + + si)
(103)

Definition 7: Let p(x($$),pi), p(x(Sq),p2) and p(x(Sq),p3) denote, respectively, the distance of any point

x(Sq) of Sq from the planes pi, pi and P3.

^ « , „ . , ( 1 0 4 )

(105)

(106)

,Pi), for example, represents the distance of that point of Sq fuithest from plane pw
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and are neccssary for detennining the local isotropic

acceleration in subsection 5.4.

Result 1: For a general three degree-of-freedom spatial manipulator, the maximum acceleration of the

acceleration set S4 will be denoted by <w(S<i) and is given by

(107)

where

hi

IK?, -

1(75

Umult 2: For a g e e r a l three degree-ef-fssedoss manipuJaior, fee aaxirsura distance from an element « l

£si so the rtferecce plains p i , pz m& p j arc, respectively, gsvea fey

KA&i • 1.2,1

fata* ••••C îJttal



where

((Tt)[5]

^ )

where
« l . fo « 0 = 1. 2, 3) are defined by equations (101). (102) and (103).

squared of to

.axi .un, . a ^ t . d e squared of * . acceleration fox tne set S,. denoted by ^ , ) . is given by

(HI)
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where F is shown in Figure 2 and is specified by the constraints

It. i s * . (112)

IfeBte- ' <113)

IfclSte- < 1 1 4 )

The maximum of (110) will occur at q € F which is either inside F or on the boundaries of F

where one, two or three constraints might be active. In section 5.1.2, we showed that "opposite" pairs of

bounding planes have the same set; Using very similar arguments to those used to demonstrate the result,

we can show that

1. The following pairs of bounding edges of F,

C/2M2X V1M1)

(L2M2I (LiAfi)

btve ±t sane image set

2L Tie folowkg pks of votioes of F

Ju h

1mm the sme i

Thotfoit, u> o^ma the mixmwa of (110) mxfcr the constraints (112), (113) and (114), we should

iiief the following posabliics:

3S



1. Neither of the constraints is active, i.e., the max[P(qi, qz, &)] occurs at a point q inside F.

2. One of the constraints (112), (113) and (114) is active, i.e., max[P(£lu 02* &)] occurs at a point q

lying on the plane J1K1M2L2 or J1L2K2M1 or LoMihKi of F.

3. Two of the constraints (112), (113) and (114) are active, i.e., max[/2(^i, 42, £3)] occurs at a point

<J lying on the edge K2L2, J2M2* L2M2, J\Ku J\La and K1M2 of F.

4. All of the constraints are active, i.e., max[P(q\, q?)] occurs at vertex L2, vertex J\, vertex K\% or

vertex M2.

To obtain the conditions for each one of the above cases to jaeld a maximum, we first differentiate

Qi, #3) with respect to qu £2 and q$ to obtain

difz

(115)

(116)

~£T- — -V3\Hli HZJ H^J (117)

dq3

whtmfi(qu qi, ^)» G = 1. 2, 3), were defined in (94), (95) and (96).

Now, we consider each case-

Case 1

To obtain the maximum of / for the case where all of the constraints are inactive, we set the right-hand

side of (115), (116) and (117) to zero, TTiis gives us the equations
fiiqu fe, fe)«0, fl - 1,2,3) (118)

and the solution

of which actually corresponds to the minimum value of /*(#i, ft, $j)» v«» zero. Theiefoie, maxC/2) dots

net occur at a point «| inside F which is to be expected*

Case 2



Consider the case in which one of the constraints (112), (113) and (114) is active. When constraint

(112) is active on the plane J\K\M%1* of the F, we have

q\ = qu (constant). ^ '

To obtain the maximum of Z2, we set both dfi/dq2 = 0 and dl2/dfr = 0. We therefore set the

right-hand sides of both (116) and (117) to zero to obtain the following cubic equations:

h ( *i« k . &> = 0 ' ( 1 2 1 )

h ( iio, fc, fc) = 0. ( 1 2 2 )

!&i < <fe«. 143i ̂  foe whose real solution, if it exists, is denoted by $? and $'.

Therefore, max/(ft, fc, qz) for this case is given

(4i, fc, fc)] = Kqu, $?\ tfV (123)

Using simple arguments fircm algebraic geometry (Semple and Roth, 1949), we can show that if the

cubics (121) and (122) with cmstraints \qi\ < itio and \q*\ < qso have real points of intersection, then

they can at most one real point of intersection. If P(qu <ti, <&) does have a maximum 4nax» then the

omditois dffdqi » 0 MM dffdifa = 0 for obtaining r**, and'therefore the pair of equations (121) and

(122) which follow from than, are essentially conditions for the quadratic surface which is the image, in

the I-spee, of the place JiKiMjLi to have a common tangent plane with a sphere of radius l(q\, £2, #3).

A sphere and t quadratic e n haw at most two points of tangency. Therefore, the simultaneous solutions

of (121) and (122) can have at most two xeal roots. However, since (121) and (122) are equations of

cuMc curveSt they will h*ve» in general, nine points of intersection. If equations (121) and (122) had only

two real tmts in oonunon* the innaMng seven common roots would have to be imaginary, which is not

possible. Tb€ttfi»€f (121) and (122) will have exactly one root, if we do not impose any constraints on

4a *ad ^ to tic caae where £l and ^ Bit oxistrainai the real root might lie outside the region specified

by the ocmscratats.

la m mdogmm fashion, we obtain ite following maximum for I when constraint (113) is on plane
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where qf\ iffi is the real solution of the following two cubic equations,

/l ( <?i, too, to)«0, (125)

fe) = 0. (126)

We also can obtain the following maximum for / when constraint (114) is active on plane L2M7J2K2:

max[/(to, to, to)]«/(4f\ 4? \ <73o). (127)

where <?f \ ^ p is the real solution of the following two cubic equations,

/l ( t o , <72> «3*) = 0, . (128)

h ( to, to, <fe*) = 0. . , (129)

Case 3

Consider the case in which two of the constraints (112)> (113) and (114) are active. When constraints

(113) and (114) are active on the edge K2L2 of F, we have the followig conditions,

ifi = qio (constant), (130)

q% = $&, (constant). (131)

Tb obtain the maximum* we set df/d^i = 0. We therefore set the right-hand side of (115) to zero

and set i& = qio and <& » ifa> to ol^ain the aMc:

Mil, to* ^o) = 0. Itot < to* (132)

Using arguments similar to those used above, we can show that (132) can have at most one real solution

which we denote by if** The conwpooding value of I is as follows:

to, & ) ] - l « f \ itic, &*)• 033)

In an analogous fashion, we can obtain the following maximum for I when constraints (113) and (114)

are active on edge /2M2:

P (134)
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where q{? is the real solution of the following cubic equation,

n (135)
A ( to, -fe»

For the case when constraints (112) and (114) are active on edge LZM2, we obtain

( 1 3 6 )

where qf is the solution of the following cubic equation:

For the case when constraints (112) and (114) are active on edge J\K\t we obtain

' ( 1 3 8 )

h ( to. fe. -to*) = o.
For the case when constraints (112) and (113) are active on edge J\L%, we obtain

where $ is the real solution of the following cubic equation:

" ( 1 3 9 )

where qf' is the real solution of the following cubic equation,

A ( to., to*, to) = 0. (141)

For the case when constraints (112) and (113) on edge KiM2, we obtain

where 4jP is the real solution of the following cubic equation:

A ( to«» -to*, to>»0- <143)

Case 4
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Consider the case in which all of the constraints (115), (116) and (117) are active. When all three

constraints aie active, and if max[/2(£i, ft, ft)] occurs at L2(<?i<» 4TO, fto)» then

$i, ft, ft)] = 2($io, ft*, &,). (144)

If the maximum of I2 occurs at J\(qio> <tio, -fto)» then

max[Z($i, ft, ft)] = /(<?i*, qio, -too).

If the maximum of Z2 occurs at K\(q\o, -qio* -Q3o\ then

max[/(<?i, ft, to)] = '(?i^ ~ ^ , -too)-

If the maximum of f occurs at Mz(qio* -qio* <bo\ then

max[/(4ri, ft, to)] « /(fto, - f e , too). (W7)

Therefore, Omax^q) (= max[l(^if ft, #3)]) is obtained as the maximum of thirteen quantities defined

by equations (123), (124) (127), (133), (134), (136), (138), (140), (142), (144), (145), (146) and (147).

Thus we have demonstrated Result 1.

Proof of Result 2:

The distance of any point x(JS^) of Sq from the line pu i=l, 2, 3, is given by

= *i(fc, ft, to) (148)

T(? ft, to) (149)

<n, ft, to)- (150)

We first wish to determine pm*x(*(5q)j?i) the distance of p\ from that point of Sq furthest away from it

(Pi).

nMKi(*if to* to) (151)
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wfaero F k shown in Figure 2 and is specified by the constraints

l*l<fe. (I53)

i ^ i<r ^ (154)

The maximum of (101) which is required in (151) will occur at point q € F which is either inside F or

on the boundaries of F where one or two or three constraints might be active. Using the same arguments

as in Result 1 above, to obtain the maximum of (101) under the constraints (152), (153) and (154), we

should consider the following possibilities:

L Neither of the constraints is active, i.e., the max[<7i(£i, q2> ft)] occurs at a point q inside F.

2. One of the constraints (152), (153) and (154) is active, i.e., maxfcKft, &, ft)] occurs at a point

4 lying cm the plane J1K1M2L2 or plane J1L2K2M1 or plane L2M2J2K2 of F.

3. Two of the constraints (152), (153) and (154) are active, ie . , maxfoCft, £2, ft)] occurs at a point

4 lying cm the edges JSTiLi* /2W2. £2^2, iiATi, /1L2 and K1M2 of F .

4» All of the constraints ait acdvtt i.c, max[<ri(^iy <ft, ft)] ocoirs at a point q lying on the vertex

bg% vetcx J\% votoc JTi or vzitcx Mt}

To zz\~z. ±t :c:i~~-2zs for c^ch cue of tic above cases to yield a maximum, we first differentiate

u4l» ft) ^ ^ respect to $i» ft and ft to otain

- f
• 7

whoe A», (i - 1, 2.3), have been defined in (98), (99) and (100) and

2 • yWoss - ttnasiP + (flia^s - a32aa^ + (anazs - anctnp- (158)

'Since, by vmae of Faa 3 of jubweaoa I.IX the m t k o ij aod / z have the sane image, we only need to consider other

or/j we will cboo»e / j So are the verae** JTi and ft and vertices Mi and M2.
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Now, we consider each case.

Case 1

To obtain the maximum of pi for the case where all of the constraints are inactive, we set the right-hand

side of (155), (156) and (157) to zero. This gives us the equations

hi(gu <&, to) = 0 , ( i= l , 2, 3),

and the solution

to = to = & = 0 (159)

of which actually corresponds to the minimum value of piO?i, <ft, £3), viz, zero. Therefore, max(pi)

does not occur at a point q inside F.

Case 2

Consider the case in which one of the constraints (152), (153) and (154) is active. When constraint

(152) is active on the plane J\K\M2Li of F, we have

£i = q\o (constant). . (160)

To obtain the maximum of pu we set both dpxjdqi = 0 and dpi/dfo = 0. We therefore set the

right-hand side of both (156) and (157) to zero to obtain the following two linear equations,

h ( to*, fe, to) = 0, (161)

% < qu, ft, to) = 0. (162)

Ifei < fro, Itol < *••

Denoting the solution in and to of (161) and (162) by 4*1* 4 " » i h c maximum of I for this case is given

by

max[pi(fc, to, to)l « Pi(*u» 4P» ̂ ] >- (163)

In an analogous fashion, we can obtain the following maximum for p% when constraint (153) is active CM

plmm J1L2K2M1:
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where cff\ iffl is the solution of the following two linear equations,

hi ( qu qio, 93) = 0, (165)

*3 ( qu fro, $3) = 0. (166)

We also can obtain the following maximum for p\ when constraint (154) is active on plane L2M2J2K2:

max[pi(?i, q2, q3)] = piO??1, <$\ fe*). (167)

where iff\ ijp is the solution of the following two linear equations,

hi ( qu qi, to*) = 0, (168)

0. (169)

Case3

Consider the case in which two of the constraints (152), (153) and (154) are active. When constraints

(153) and (154) are active cm the edge K2L2 of F, we have the following conditions,

ifi = ifio (constant), (170)

(constant). (171)

Tb obcam die maximum, we set dfjdqi = 0, "We therefore ^ t the right-hand side of (155) to zero

sod set qi « ifi® Mid q$ = q^, to obtain

0, |4rm| < fto- (172)

Frwn ecptaikn (172)f we c*Hni the solution which is denoted by $h The corresponding value of p\ is

as folows:

m«bi(4i» 4a, to)]*Aitti41, 4z#, *•) . (173)

In an mMopxii fa^ucmt we can obtain the following maximum for pi uribea ccmstraints (153) and

(154) are active en edge J2M2
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where cfp is the solution of the following linear equation,

0 (175)

For the case when constraints (152) and (154) are active on edge L4M2, we obtain

[6] fe) (176)

where ffl is the solution of the following linear equation,

h. ( qu, 4a, 43*) = 0. (177)

For the case when constraints (152) and (154) are active on edge J\K\, we obtain

(178)

where ^ is the solution of the following linear equation:

hi ( qio, &, - 4 J . ) * 0 . - (179)

For the case when constraints (152) and (153) are active on edge J\Lit we obtain

(180)

where ffl is the solution of the following linear equation,

h ( <7ia, ^ , 4s) = 0. (181)

For the case when constraints (152) and (153) on edge K1M2, we obtain

where ^ is the solution of the following linear equation:

Case 4

(183)
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Consider the case in which all of the constraints (152), (153) and (154) are active. When all three

coDtfnrims arc active, and if max[p\(qi, fa &)] occurs at L2(q^ qio, teo\ then

<tioi * « ) • ( 1 8 4 )

If the maximum of p\ occurs at J\(q\o* <tio* -<?3<?)» then

If the maximum of p\ occurs at K\(q\o* -fao* -(fto)* then

( 1 8 6 )

If the maxmum of p\ ocairs at Mzifiio* -ft^t <fco\ then

Therefore, Awa(S(^4)«Pi) i s obtained as the maximum of thirteen quantities defined by equations

(163), (164) (167), (173), (174), (176), (178), (180), (182), (184), (185), (186) and (187). In exactly,

analogous fashion, pmaWS^jpi) and Pm*x(*(S<i),P3) arc obtained as in (109). thus we have demonstrated

Result 2*

5 J Properties of the state acceleration set

Definition:

K : oeotrakl of the acceleration mi in the f-space with cooidinates ku kz and £3 given by (40).

t pt): i iaaKe ftwa point IT to the reference plane p\.

pa) : disi^ce fe»a point K to the reference plane p%.

p$): i t o iKc horn p©kt iC to the lefeztnoe plane p$.

Ytf). p(AmBmF"Yi ...; Msumm &cm the origin to plane A'B'ftf. AmBmF*tf*...
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Result 1: The maximum acceleration corresponding to any dynamic state u of the manipulator is denoted
by amBX(Su) and is given by

d{OD'), d(OE'), \ d(OH")] (188)

where
/ / , I • I . .1 • II I

dip A ) a v W n * + fli2^» + <*un* + kiP + (a^n* + oa7^

) u - anno + <*nrs, + fe)2 + (031 n , - a^r^ + 333*3*

d(OC ) = y/{a\iTu + a a n * - ai3t^» - fa)2 + (<Jnn<> + 022TL, -

)

d(OF

- fe)2 +
- 023n« -

+ fa)2 + (fl3in» - + fa)*

— fa)2

~ fa)2 ~ fa)2 + (031 *l« — — fa)2

Result 2: The necessary and sufficient conditions for the existence of the isotropic acceleration are
following:

>o,
>o,
>0.

(189)

(190)

(191)

Result 3: The isotropic acceleration corresponding to any dynamic state m of the manipulator is denoted

by a-tsoiSn) and is given by

min (192)

Proof of result 1:
Let d(0A") through <MjDHt') denote, respectively, the distances of vertices Am through li* from the

origin O in the x-space. Thai amai{S^) is the di^anexs. of the furthest vertex of the set Sm which is the

parallelepiped A"BM (f D"ETF^ (f if. Therefore* Om»x(Sm) is given by

(193)
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Using (49), the coordinates xi(A"), h!A") and x3(A") of vertex A" in the x-space are given by

+ 4»*2* +033*3*

" iThe distance d(0A*) from the origin O to the point A" is given by

(197)

In exactly analogous fashion, we obtain

+ floT^ + hf + (flan. -

>/(OIITW - flon» - â T3« +*iJ1 + tern*• - flan* - o»n» + fa)2 + (fl3in* - 032*2* - O&TU + fa&02)

G ) « V^C îin* + «i2^# + noi> — Jfci)1 + tan, + ̂ 22*%̂  + aasn* — fa)2 + (asm* + 0321^ + 033*10 —

/ - feP + (oaru -

EquattOBS (193) aad (197) through (204) canprises Iteult 1.

Proof of reaft 2 and 3:

The sttie «xcicmi{M set Sr is the parallelepiped caiteied at k(u) = (*i,fe,fe), shown in Figure 8.

Tbc centioids of ST md Sm am, respectively, by O md JC.

Using ^sMk»f <J»)» (72) and (56) through (58), the distance from J5T to the planes pu Pi and ps arê

given by

The # « « « € pUC% pt) btm the mittold JC of S t to the plane p\ is equal u> the perpendicular distance

Mmm plane 4 ¥ / ^ nd plmc Antfftf and dao between the plane D'cfG'ff and plane ti'
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The distance p(K, jn) is equal to the perpendicular distance between plane A'D'^E* and plane K

and also between plane B'dG'F' and plane B" d'G"?'. The distance p(K,pj) is equal to the perpendicular

distance between plane E'FGrH1 and plane E?F"G"H" .

The state isotropic acceleration aisoCSu)IS the maximum acceleration which is available in all direc-

tions. It is therefore equal to the minimum of the distances from the origin O (of the acceleration plane)

to the six planes of A B C D E F G H (the set Su).
Now, we can write the following expression for

)\ (208)

where P(A"B"F"£") is the (perpendicular) distance from O to plane A!'B"F"E!' and similarly for

Y W ) , ^ ' ^ G V ) , piD"d'G"rf\ /KB"C"GV'), p(A"£"c"D"), all assumed positive by

definition. From the geometry, we can write,

p(A"B"F"E"), p(p"c"G"H") = ftAB'F"E") ± (*K, Pl). (209)

(Comment: For example, p(A"B"F"E") = p(A'fi'F"£") + p(^,pi) and p{D"cf'G"H") = p(D'C'G"H")-

p(IC,pi); the correct choice of signs will depend on the direction of the translation but as will be shown

below we do not have to worry about the correct choice of signs.)

Similarly,

(210)

(211)

(The above comment holds for (210) and (211), too.)

Combining equations (208), (209), (210) and (211), we obtain

flU£u) « mm[p(ABlF E ) i p(K; piX p(ADHE ) ± K^» Pi)* fKEFGH*) ± (K, p»)]. (212)

Since all distances pQ in the above equation arc positive by definition, we can rewrite the above equation
is

D H E') - p(K, H - (213)
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Substituting equations (56) through (58) and (205) through (207) into (213), we obtain the required

result (192).

Equation (213) clearly demonstrates that the isotropic acceleration atJ0(Su) for any state u f 0 is less

than aizoiSr) = mxn[p(A'BYE^yp(A'DtH/E'\p(E'F'G'H')l In fact, if p(tf, px), p(K, pz) and p(K, p3)

are sufficiently large (equivalently, the ''nonlinearities" Jfci, kz and k-$ are sufficiently "large")* we may not

have any isotropic acceleration. The necessary and sufficient conditions for the existence of the isotropic

acceleration can be obtained either from (213) or (192). From (192), we obtain the following three

necessary and sufficient conditions for the existence of the isotropic acceleration:

71*1 *t (A) | > I(a22033 - aB<*32)*l + (013032 ~ ^12^33^2 + (^12^23 - ^22^13)^1 (214)

T^| <kt(A)| > |(O2l433 - ^23^31)*! + (an053 ~ 0l3*3l)*2 + (̂ 11^23 - ^21^13^31 (215)

(216)

are exactly the necessary and sufficient conditions expressed in (189), (190) and (191) of result 2.



5.4 Local acceleration properties

At any given (local) configuration q in the workspace, the following questions are of theoretical and

practical importance.

• Magnitude of the maximum acceleration at any configuration q in the workspace

• Magnitude of the isotropic acceleration at any configuration q in the workspace

Result 1: The local maximum acceleration amax,iocai of a spatial three degree-of-freedom manipulator at

a given configuration q is specified by

where (atnaxa©cii)ib is given by (188) with *i(q,q), *2(q,q)> and *3(q,q) evaluated at that joint

variable vector q which maximizes I(qi, £2, q$) in equation (107), and

i) + <W(Sr) . (218)

where Om^iSq) is given by (107) and Om^Sr) is given by (77).

Result 2: The local isotropic acceleration 0̂ ,100*1 at a given configuration q is specified by

= min p(A'D'H'Ef)-pmtx(x(Sn),P2)

KA'B'CfD') - p^QLiS&Pz)

where piA'B'F1^), p(A'D'H>Ef) and p(A'B'dD') are given, respectively, by equations (56) through

(58), and where pm«(*(S<i),pi), Pm*x(x(Sn),p2), and ftmx(x(S^),p3) are given by equation (109).

Proof of result 1:

The local maximum acceleration Omu is the maximum acceleration over all possible state acceleration

sets Su at a given position q in the workspace. Therefore, Onm can be written as

(220)
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It is not possible to find an exact analytical expression for OmaxAocai- However, we can find an upper

bound and lower bound which are very good approximations to Omâ iocai-

Corresponding to every point P of the set S<j, we have a state acceleration set SU(P). Let P' be the

furthest point (from the origin) of Sq, and let SU(P') be the corresponding state acceleration set Let the

set Sji(P') obtained by rotating the set Su(/*) about P' till the longest diagonal of 5U is coUinear with the

line OP' joining the origin to the furthest point p' of Sq. A lower bound for Onu îocai is given by the

distance of the furthest vertex of Su from the origin, viz

m*x[d(OA"), d(OB" ), d{OC"), d(OD" ), d{OE ), d{OF" ), d(Od'), dipH")], (221)

and an upper bound for tfiso,iocai is given by

d(OP') + d(4 V ) , (222)

ntt(54> + 4ntt(Sr). (223)

Combining (221) with equation (197) through (204)r we obtain equation (188). The values of Jfci, ki

and k% in (188) correspond to the furthest vertex P' of Sq from the origin, Le., to that joint variable vector

q which maximizes l(q\, ifi, fe) in equation (107). This is simply a matter of computing J(£i, qi, q$) at

the thirteen vectors defined in subsection 52 and determining which of these thirteen vectors maximizes

K$i, Qz-i ft)- This completes the determination of the lower bound (flmax,iocai)/i>-

Substituting for OmaxC q̂) and 4mx(Sr) from equations (107) and (77), respectively, we obtain equation

(218) for the upper bound (o^xjocii)^. Th*is, Result 1 is proved.

Proof of result 2:

The local isotropic acceleration is obtained in the following steps.

1. The maximum possible isotropic acceleration is obtained when q =* 0 and is equal to a\so(Sr) as

given by equation (78).

2.. Every state acceleration set will have an isotropic icceleration which is less than that given by

(78) because the **nonlinearitiesw effectively reduce the isotiopic acceleration. The resulting state

isotropic acceleration is mm(Su) which is given by equation (213).
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3. The local isotropic acceleration tfiSOtiocai is the magnitude of the smallest state isotropic acceleration

at a given local configuration q, i.e.

a iso,iocai» min auoCSu). (224)
q€F

4. Using equation (213) and (224), we can express the local isotropic acceleration a^ jo^ as

minmin[pG4 B F E ) — p{K^p\)1 p(A D H E ) — p(K>pz\ p(JE F G H ) — p(£,p3)]

i)}, min{p(A'D'//'£/)-p(£,p2), min{p(£F GH ) -

5. Since ptABF^E?), piA'Dl^E*) and />(£FG'i/) are constants for a given manipulator and given
actuator constraints, (225) can be written as

D H E ) ( K % (E F G Hp(E F G H ) - max p(Kr m)l (226)

where mzx[p(K,pi)] is the distance from the plane p\ to the element of Sq furthest away from p\

which we denoted in subsection 5.2 by Pmax(x(Sq),̂ 2), max[p(AT,p2)] is the distance from the plane

P2 to the element of S^ furthest away from pz which we denoted in subsection 5.2 by Pm*x(X(£<i),j>2)

and maxO(lir,p3)] is the distance from the plane p$ to the element of Sq furthest away from p$

which we denoted in subsection 5.2 by Aaax^Sq),^), We can therefore write

(227)

(228)

q (229)

Combining (226), (227), (228) and (228), we obtain the required result (219), (Note that all

quantities in (219) have been analytically determined earlier.)

55



6 Example:

To demonstrate the ease of applicability of the general acceleration set theory for spatial

manipulators developed in the previous sections, we have written simple computer codes to generate the

acceleration properties of the various acceleration sets for a common type of 3 d.o.f. spatial manipulator

which is shown in Figure 9 and whose o kinematical and dynamical equations are given in the Appendix.

(The axis of joint 1 in Figure 9 is vertical). The actual geometric and inertia parameters used in the example

are given in Table 3. The dynamical equations have been derived using Kane's dynamical equations (Kane

and Levinson 1983; Kane and Levinson 1985; Desa and Roth 1985).

The configuration chosen was qi = o, q2 = 45* and q3 = 45*

The joint variable rate ("joint velocityw) constraints are

% £ q*» « 1 rad/s ; i » 1,23 .

The torque constraints are

Xi £ tio , i • 1 A3 .

%> may be thought of as the size (or maximum torque rating) of the actuators; the numerical values of xio»

(i * 1,23). are given in Table 3.

The properties of the state acceleration set were computed al qi = o »qz = 45* and q$ = 45*;

qi = 1 nd&cb* 1 rad^% = -1

In order to show tow the theory might be used for design purposes we have determined the

acceleration properties for three cases (Table 4). Five acceleration propeities have been determined in each

case: the maximum and isotropic acceleration of the set Sx» the maximum and isctropic acceleration of the

state sccdemicm srt aid tte (local) femi^

In all thi^e cases the siz^ of the first two actuators remain constant (tio * 35 N-m and ^ * 8.2

Nm) and the size of Urn third actuator (driving Uric 3) is varied. In Case 1 of Table 4 (tjo = 0.17 N-m), the

end-effector does not have either i stale or local Isotropic acceleration). When the size of actuator 3 is

increased to 0.4 N-m (Giro 2), we obtain a stale botiopic acceleration of 0.93 m/s2 but the local isotropic

acceleration is very smal 0.03 m/s2. TleiefcMtforghrari^oMid1^ f%omiM be greater thai 0.4 N-m m

order that we may i»ve a local isotropic acceleration at the specified cmfigniitkm q. Case 3 shows that far



reference point P

j o i n t 1

j o i n t 2

Figor.9: Schema* diagram of a three deg«e^-&eedom manipulator
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actuator size 'So of 0.6 N-m we have a local isotropic acceleration of 1.61 m/s2. The designer must then

decide (from past experience) whether this magnitude of isotropic acceleration is reasonable.

Comments:

1. These computations can be repeated for various configurations in the workspace after which

decisions can be made regarding actuator sizes.

2. Algorithms for the determination of minimum actuator sizes to achieve a desired isotropic

acceleration are given in (Desa and Kim 1989-2) for die planar case. The extension to the spatial

case is relatively straightforward.

ftl = 0.0

ai = 0.0

mi = 3.5

II • 1.2

12 = -129

13 = .003

m;

h

j 3

= 0.303

« 0.196

> = 2.259

= .129

= .003

&3 = 0254

«3 = 0.094

m 3 = 1.129

Ki =

K2 s 0

K3 = 0

(m) !

(fa)

(kg)

(kg-m2)

(kg-m2)

(kg-m2)

Table 3: Parameters for the spatial manipulator (see Figure 9 and the Appendix).

-

Case

1.

2.

3.

Actuator Torques

X,
35

35

35

T20 t3O
(N-m) (N-m)

8.2 0.17

8.2 0.4

8.2 0.6

AmaxO
(m/s2)

20,3

25.06

30.3

Aooderatioii

(m^2)

1.35

3.16

4.75

(m/s2)

23.7

• 29.1

33.9

(m/s2)

0

0.93

2.51

1 r i# Cju*#4r*m iC

Properties

1) Aiso% local
(m/s2)

0

0.03

1.61
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Conclusions:

In this paper, we extended the acceleration set theory for planar manipulators, developed in (Desa and Kim,

1989-1). to spatial manipulators. As in the 0anarc^se we have accomplished the following:

• Given the kinematical and dynamical equations of a manipulator, we have defined the image set S%

corresponding to the set T of actuator torques, and the image set Sq corresponding to the set F of the

joint variable rates. We have also defined the state acceleration set S^ at a specified point u in the

state space.

• We have determined the image sets, $t and Sq, and the state acceleration set Su.

• We have characterized the image sets S% and the state acceleration set Su by their maximum and

isotropic acceleration. The image set Sq has been also characterized by its maximum acoderaiiOTL

• At a configuration or position, q, in the workspace, we have established two local acceleration

properties: die local maximum acceleration and the local isotropic acceleration. The local maximum

acceleration specifies the magnitude of the maximum acceleration of (a reference point cm) the end-

effector. The local isotropic acceleration specifies the magnitude of the maximum available

acceleration of the end-effector in ail directions.

We then demonstrated the application of the acceleration set theory for spatial manipulator to ite 3

d.o.f. spatial manipulator shown in Figure 9.

We have, therefore, demonstrated the hypothesis which we stated in the introduction, le.v tat the

analytical properties of acceleration sets cm be ddenniaed from the properties of the linear a i l quadnoic

mappings which define them (the acceleration sets), ftathennoie, the acceleration properties of fanciest •

especially the isocropic acceleration - have beat determined in toms of the maiipilMwr pmmtmmv the

torque limits aid joint variaMe m e ("joint velocity") limits. These results can therefore be applied m

manipulator design problems as demonstrated in (Desa and Kim, 1989-2).
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• 1 • «2» * 3 :

» *3 :

Appendix: Furarional rdationships for tte

a: (SeeFIgine9)
dextral orthogonal set of unit vectors fixed in link 1 and parallel to
the central principal moments of inertia of link 1.
dextral orthogonal set of unit vectors fixed in link 2 and parallel to
the central principal moments of inertia erf link 2-
dextral orthogonal set of unit vectors fixed in link 3 and parallel to
the central principal moments of inertia of link 3.

length of link 2
length of link 3
distance from joint axis of link 2 to center of mass of link 2
distance from joint axis of link 3 to center erf mass of link 3
mass of link 1
mass of link 2
mass of link 3

central principal moments of inertia of link 1 for axes parallel to
ai , a2 and a3 respectively.1

central principal moments of ineitia of link 2 far axes parallel to
bl,l*2 and h$ respectively.
central principal moments of inertia of link 3 for axes parallel to
ex, €2 and cj respectively.

(The input and output variables are as defined in section 3.1)

matrix

a3:
mi

I3* J3# K3

The joint velocity is related to the velocity t of the point P in Cartesian space by the relation

The Jaeobtan matrix J for a spatial three degree-cf-freedom manipulator in Figure 9 is the following:

in in Jn
0 Jn Jn
hi Jn Jm

wione

Mi -

Jn «

Ja *

jb -

JForImk 1, since the ftrstjotntixis is parallel to • ] , only the prindpol moment Ii is of importance in
the dynamic equations.
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When the above Nation is d i l a t e d wi^

whereF.G axe matrices with the foUowing elements:

0 0 /is

0 fa 0

/32 /33

where

fa -

fa -
fa s -SmftC&COSft'

/3 2 = sin<7i(/2cosft + /3cos(ft + ft))

A3 =

and

0 «S2 0

where

$12 « COS?iJ3COS(ft + ft)

(230)



2. Dynamic equation

The dynamic behavior of the manipulator is described by the following equation:

4 >2
r. (231)

The components of matrices D, U, and W arc as follows:

dn 0 0

where

d\\

0 0 0

021 0 U23

«31 «J2 0

whot

H31 -

n| _̂

8 i3C

« M23

' w i i

0

0

OS f̂t

0

0

Wi3

0

0
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where

The nonlinear vectors, < H>2 m& [ t f areas follows:

jn

where

3. Accdtratlon equation



where

A « JD"1

B = -AU+F

M - -AW+G
(233)

s = -Ap
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