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Abstragt

In this report the approach developed by the authors, for systematically studying the
acceleration capabilities and acceleration properties of the end-effector of a planar 2 degree-of-
freedom manipulator, is extended to the general spatial manipulator with three degrees-of-freedom.
A central feature of this report is the determination of the properties of the quadratic mapping
between the "joint-velocity" space and the acceleration space of P which then makes it possible to
obtain analytical solutions for most acceleration properties of interest. We show that a fundamental
way of studying these quadratic mappings is in terms of the mapping of (input) line congruences
into (output) line congruences.



1 Introduction

In this paper, we apply the approach developed in (Desa and Kim, 1989-1) to the problem of determining
the acceleration capability and acceleration properties of (a reference point on) the end-effector of a spatial
three degree-of-freedom manipulator.

An informal statement of the problem is as follows:

Consider the general three degree-of-freedom revolute-joint manipulator shown schematically in Figure
1. We are interested in studying the acceleration of a reference point P on link 3. (P is typically a point
on the joint axis of the end-effector; the acceleration of P is therefore often referred to as the end-
effector acceleration). The usefulness of studying the acceleration of the end-effector has been discussed
in (Yoshikawa, 1985; Khatib and Burdick, 1987; Graettinger and Krogh, 1988; Desa and Kim, 1989-2;
Kim, 1989).

As shown, for example, in (Desa and Kim, 1989-1),the acceleration capability of the point P under
various conditions is best described by certain acceleration sets. Two properties which are used, in general,
to characterize these sets are the maximum possible magnitude of the acceleration of P and the maximum
magnitude of the acceleration of P which is available in all directions. The former property is simply
called the maximum acceleration of P and the latter the isotropic acceleration of P (Khatib and Burdick,
1987).

Acceleration properties of the end-effector have also been studied by (Yoshikawa, 1985; Khatib and
Burdick, 1987; Graettinger and Krogh, 1988). The approach of each of these researchers has been
discussed and compared with our approach in the paper (Desa and Kim, 1989-1) and we will not repeat
that discussion here. We will however repeat the fundamental hypothesis underlying our approach which
is as follows. By decomposing the functional relationships between the inputs (actuator torques and
joint variable rates) and the output (acceleration of P) into two fundamc-:ntal mappings, a linear mapping
between actuator torque space and the acceleration space of point P aﬁd a quadratic (nonlinear) mapping
between the “joint velocity” space and the acceleration space of P, and by deriving the properties of these
two mappings, it is possible to determine the properties of all acceleration sets which are the images of
the appropriate input sets under the two fundamental mappings.

The contributions of this paper are as follows:
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1. The central contribution of this paper is the determination of the properties of the quadratic mapping
between the joint velocity space and the acceleration space of P which then makes it possible to
obtain analytical solutions for the isotropic acceleration. We show that a fundamental way of
developing the properties of the quadratic mappings of interest is in terms of the mapping of (input)
line congruences into (output) line congruences.

2. Closed-form analytic expressions are obtained relating important acceleration properties of manip-
ulators to all the manipulator parameters and input variables (torques, joint variable rates or “joint
velocities™) of interest. (The only exception is the maximum local acceleration which is specified
in terms of tight lower and upper bounds in section 6.)

3. Necessary and sufficient conditions for the existence of isotropic acceleration have been determined.
(Earlier studies seem to implicitly assume that isotropic acceleration always exists.) These conditions
licitl; hmofmmip\ﬂa'mrpmmctmmdinpmwﬁablm.




2 Description of the approach

The approach for studying the acceleration of (a reference point P on) the end-effector, given in (Desa
and Kim, 1989) is as follows:

1. Define the input variables and output variables of interest (subsection 3.1). The output of interest

is the acceleration of the reference point P.
2. Define the input sets of interest (subsection 3.1).

3. Define the input-output functional relations. These are obtained from the dynamical and kinematical

equations of the manipulator (subsection 3.2).

4. Define fundamental mappings from these functional relations (subsection 3.3). There are two
fundamental mappings, a linear mapping and a quadratic mapping.

5. Define the image sets of the input sets under the mappings obtained in step 4 (subsection 3.4).
These image sets are the acceleration sets of interest.

6. Define general properties which can be used to characterize (“measure’™) acceleration sets (subsection
3.5).

7. Determine the properties of the mappings defined in step 4 (section 4).

8. DetexminethcwecluaﬁonsasdcﬁnedhstcpSushgthcpmpczﬁesofmcmappingsobtainedin‘
step 7 (section 4).

9. Determine the specific properties of the acceleration sets determined in step 8 using the “measures™
or general properties defined in step 6 (section 5).

10. Determine the local acceleration properties for any configuration q of the manipulator using the
properties of the acceleration sets obtained in step 9 (section 6).
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Figure 1: Schematic diagram of a general three degree-of-freedom manipulator




manipulator (see Figure 9), ¢, g2 and ¢3 being the joint variables, respectively, at joints 1, 2, 3. Define

q1 '
A
Q= | q 1
q3
to be the vector of joint variables; the corresponding vector space of all q is called the joint space. If
2

qiL < qi S qiu, i= 1,2v3
represents the constraint on joint variable i, the workspace W of a manipulator is defined as

W={algz < ¢ < qw, i=1,2,3}. : -

Let 41, 42, and g3 denote the joint variable rates. Define

q
4| @ @)
/g
to be the vector of the joint variable rates. If
| ai IS Qios i= 1)2a3 (&)
denotes the constraints on the joint variable rates, then we can define
O]

F={4| |&|< q0, i=1,2,3}
to be the set of all the possible joint variable rate vectors, represented by regular parallelopiped J1 K1 LiM1J2K2L,M,

in Figure 2. (We will refer to this parallelopiped as the parallelopiped F for short.)
Let 1y, ™, and 73 denote the actuator torques, respectively, at joints 1, 2, and 3, and

denotes the vector of actuator torque vectors. Let

|7 |< 0y i=1,2,3 (¢:3)



Figure 2: Sex of the joint variable rates of a three degree-of-freedom manipulator
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Figure 3: Set of the actuator torques of a three degree-of-freedom mampulalor

denote the constraints on the actuator torques at joints 1, 2, and 3. Define
T={r]|n|< 70, i=1,2,3} ©)

as the set of the allowable actuator torques, represented by regular parallelopiped ABCDEF GH in Figure
3. (We will refer to this parallelopiped as the parallelopiped T for short.)

The vectors q, q and 7 will be referred to as the input variables (more precisely the input variable
vectors) of the manipulator. We will also refer to the vector q as a configuration of the manipulator.

Let (x1, x2, x3) denote the coordinates, in a reference frame fixed to the base, of a reference point P

on link 3 (see Figure 1) and define

X

1]+

Xp x2 (10)
| X3

as the vector of task coordinates; the corresponding vector space of all ¥ is called the task space.



The velocity ¥? and the acceleration ¥ of the point P of the manipulator are, respectively, given by

| X1 ] .
¥=|1n (11)
- i‘3 >

o |
F=|%|- (12)

X |
L §
The acceleration of P, ¥7, is the output variable of interest in the present work. The corresponding vector
onfanpossibiciPiscaﬂedthcaceclmﬁonspacc.cxpmsscdby

A={%|%e R’} (13)

32 Functiona

relations between the inputs g, 7 and the acceleration %?

mmwkbmmefumdomlmlaﬁmsmmmlemﬁmipandthcinputsc‘;and'r
for a given configuration q. In this subsection, we show how the necessary functional relations can be
obtained from the manipulator dynamic equations and the (so-called) manipulator Jacobian relationship.

mdmmoﬂhcmmdmmdewof-ﬁedmmngdspandmmpuhm(ﬁgum
1) can be written in the following symbolic form (Craig, 1985):

D§+Vig, @ +p=r1, (a4

where D is the so-called mass matrix of the manipulator, V(q, @) is the vector consisting of all terms
which are non-linear in the products of the joint variable rates g, (i = 1, 2, 3), and p is a vector of all
terms due 10 gravity.

We next express non-linear terms V(q, q)upmdmaftmmixmdavmr.mundmmdhow
this is done, we first write V(q, ) in its most general expanded form,
i + udd + usd + 2endnda + 2vainds + wodsdr |
Vo !l + ungd + undd + veninds + 2vndads + wonbsd | - as
L i + undd + usd + 2wninin + 2vniads + wdsdn




Defining the two matrix operators,
Uiy U2 W3
U= W21 W2 Uz
U3l U322 u33
and
Wil W12 wi3
W= wy wn wny
W31 W32 Ws3

and two vector operators
&

@ = | &],
&

and

242

[’ = | 225 |-
2514q1

we can decompose the non-linear term V(q, ) as follows:

il w2 ups & Wil Wiz wis
Va, @ = | uy uxn ux G| +| wa wn wp
usy Ui Us3 & Wil w2 w3

= U< q>*+W[q?.

2514
254
2q3q1

(16)

an

18)

(19

20)

@1

Substituting equation (21) into (14), we can express the dynamic equation of a general spatial manipulator

by

Di+U< q>>+W[qPP+p=r.

(22)

This is the most general expression of describing the dynamics of a three degree-of-freedom spatial
manipulator in the joint space. The matrix D is the mass matrix of the manipulator and the vector p

denotes the gravitational terms which influence the dynamic behavior.

9




The relationship between the velocity, X,, of point P, and the joint variable rate vector q is well known
(Desa and Roth, 1985):

# =14 23)
here J is a (3 X 3) matrix called the manipulator Jacobian. The detailed expression of Jacobian matrix

is given in the Appendix.
To obtain the expression for the acceleration ¥? of the point P, we differentiate equation (23),

¥ =J4+Jq (24)
The second term in equation (24), J4, can be written in the form (see the Appendix)
Jg=-F < ¢>* -Gg* (25)

(26)
@7
B = -AU-F, @8)
30
wd
§ = -Ap, 31
(28) thoough (31), is given by
FohreBag> +NgP+s (32)
m&‘a”&‘mmmmmm COmpOoncnls %ﬁ bﬁu By Sis ﬁnjs 1'13)-

10



Equation (32) expresses the required (Input-Output) functional relation between the input variables,
q and 7, and the acceleration ¥” of the point P (the output variable) at a given configuration q. It is
important to note that the definition of the matrix “operators” U, W, F and G and the vectors < ¢ >2 and

[q]? enables us to write the dynamic equations in the compact form (32) which is critical in the sequel.

3.3 Mappings

In this subsection, we define two fundamental mappings between the input variables and the acceleration
%P of the point P (the output variable).
It is convenient to regard the functional relation (32) as a mapping between the input variables q and

T and the output variable %7 for a given configuration q of the manipulator. Furthermore, defining

[ air ]
2| a | =Ar (33)
L as3r p
and
i o -
iﬁé azq | =B < q>% +N[q% +5, (34)
| 93¢

equation (32) can be written as
% =38+ %G, : 33

It is convenient to think of the vector ¥2 as the contribution of the torques to the acceleration of
the reference point P, and the vector xfl as the contribution of the joint variable rates and gravity to
the acceleration of P. Equation (35) expresses the fact that the sum of these two vectors gives us the
acceleration of P for a three degree-of-freedom manipulator.

Equation (33) can be viewed as a linear, configuration-dependent, mapping between the torque vector
r and its contribution 2 to the acceleration of P. Similarly, equation (34) can be viewed as a quadratic,
configuration-dependent, mapping between the joint velocity vector § and its contribution %7 to the
acceleration of P for a given configuration q. These are the two mappings of interest in this section.

11
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34 Manipulator acceleration sets

Having defined two fundamental mappings of interest, we are interested in the image sets of the input sets

under the mappings (33) and (34) at a given configuration q of the manipulator. There are three image
sets of interest.
3.4.1 Image set S, of the actuator torque set T under the linear mapping

For a given set T of the actuator torques T described by equation (9) and represented graphically by a
regular parallelopiped in the T - space (see Figure 3), we define the image set S, of T under the linear

mapping (33) as
S, ={Z|% =Ar,T € T}. (36)

(Note that S, lies in the acceleration space A.)

3.4.2 Image set Sy of the joint variable rate set F under the quadratic mapping ’

For a given set F of the joint variable rates q described by equation (6) and represented graphically by a
gular parallelopiped (see Figure 2), we define the image set Sq of F under the quadratic mapping as

Sq={¥%f =B < 4> +N[gI* +s,q € F}. €y

(Note that Sq lies in the acceleration space A.) From equation (34) and the above definition 37), we see
that the image set Sq represents the set of all possible accelerations (the acceleration capability of the

mic state of 2 manipulator can be specified by the joint variables,
(q1. mmmmmmmm The state vector u which characterizes the dynamic state of the

€29

12




For a specified dynamic state of a three degree-of-freedom manipulator, The second term of the

acceleration ¥ in equation (32) is a constant vector, which we denote by k(u) and define as follows:

-

ky
k(u) = ky
k3

[ b11q? + b12d3 + b13@3 + 2n11q142 + 2m124243 + 20134341 + 51
= | b2d} +bndh + b + 2m1q1d2 + 2n2d24s + 2134301 + 52
| 03141 + b2l + b33 + 2n14142 + 21324243 + 203331 + 53
= B< q>2+N[q’+s. (39)

Equation (32) can then be written as follows:
¥=Ar+k. 40

For a given dynamic state u of the manipulator, we define the state acceleration set Sy -as the image set

of T under the linear mapping (40):
Su={¥°|X? = AT +Kk, 7 € T}. 4

Su is therefore the set of all possible accelerations at any given dynamic state u of the manipulator. Since
the dynamic state u of the manipulator essentially specifies the velocity x? of the point P in (11) in any
configuration, we can also interpret the state acceleration set Sy (the set of available accelerations) as the

acceleration capability of the manipulator when the manipulator is moving with the velocity ¥° in a given

configuration q.

3.5 Properties of the acceleration sets

The definitions of the acceleration sets in the previous subsection will be used in section 5 to determine
them. Once these sets have been determined, one would like to characterize them.

Consider an acceleration set S in the acceleration space %, and two spheres C; and Cz: C, is the
smallest sphere centered at the origin which completely encloses the acceleration set and C; is the largest
sphere centered at the origin which lies inside the acceleration set. The radius ry of the sphere C) is the

13




on in S. The radius 2 of sphere 2 represents the largest (magnitude of) -

maXimum tvaﬂtbk acoelcrati
acceleration available in all directions.
We therefore define the following two properties of S:

um acceleration of S: amax(S) =T1»

o the maxim

o the isotropic acceleration of S: Biso(S) = 2.

Comments:

The isotropic and maximum acceleration are particularly attractive for characterizing set S, in contrast
10 the average acceleration, since they can be readily extracted from the dynamic equations in “closed-
form™ (or by ;ppmpnm bounds). The average acceleration, if

mmmm&mmmgmmmcnmsccﬁon.

required, can be pumerically determined

14



Figure 4: Image set S, of a three degree-of-freedom manipulator

4 Determination of the acceleration sets

Analytic expressions for the determination of the three sets S, Sq and Sy are presented, respectively, in
section 4.1, 4.2 and 4.3. The determination of S, and the state acceleration set Sy follows directly from
well-known properties of linear mappings while the determination of the set Sq requires the derivation of
the properties of quadratic mappings which are new The approach for determining the set Sq under the
quadratic mapping is more fundamental than that given in (Desa and Kim, 1989).

4.1 Determination of the image set S,

The set S, is the image set of the actuator torque set T under the linear mapping (33). We determine the
image set S, of the linear mapping of a three degree-of-freedom manipulator in the X - space. Additionally,
we identify the boundaries of set S, which are planes in the X - space.

15




Result 1: The image set S, of the actuator torque set T under the linear mapping (34) is (thc interior and
boundary of) the parallelopiped A'B'C’D'E F'G'H in the %-space whose vertices ALB,.. . H ar

as follows:
A (@11710 + G127 + A13TI, AT, +anT +0DTh, 1T +aRTL T a1 ™) ' 42)
B (11710 — @12T26 + G13T30, AN TI — A2 T +G23Ts, G31TI0 — GRT20 + ATITS) 43)
c (=110 — G12T20 +G13T30, —G0TIe — A1 T2 +ANTSH, —G1Tlo — ap Ty + 0337T50) (44)
D (@117 + 12720 + A13T8e, —anTio +an T + ATy —31 7o + ART2 +033730) (45)
E (G117 +@12T20 — G13TSe, GUTIe + 00T — G230, 31Tl + 2720 = a33730) (46)
F (11710 — G12T20 — 1373, G2 T — AT — ABTIe; BT — GRT = anTo) 47
G (—@11 e — G12T20 — G13TSe, —@TIo — dBTW — GBI, —HINe = anTw — A1BT30) (48)
H (—@117 + @12 T30 — G13TIe, —anTe +ABTI — DT, —@NTe + 00T~ anT.) 49)

where g, (ij = 1, 2, 3), arc the clements of the matrix A. The centroid of the parallelopiped
A'B' ...H is the origin of the %-plane (see Figure 4).

Result 2: The (planar) sides of the parallelopiped S, are given by the following cquatibns:

ABFE : (anam—anan)t — (anan — auan)h + (anan — auan)ts = M. det(A) (50)
DCGH : (anaw — apanit —(auen — anan)h + (auan — anen)ts = —n, det(A) 61
ADHE : —(enawm—anan)t +(auas — anan) — (anan — anan)is = no det(A) (52)
BCGF : (amam—apan}t —(auan — anan)h +(anan — anan)¥s = m, det(A), (53)
ABCD : (emem - anan)h —(auen — anan)th +(Guan — dnan)¥s = ne det(A), (54)
EFGH : (auan - enan¥t —(auan — anan)h +(auan — dzan)? = — . det(A) (55)

where det(A) is the determinant of the matrix A.

The following are well-known properties of a linear mapping:

L Ap&mhdwfwmmmimnp!mfmﬂwi-ylm In particular, planes p; (1 =0), p2 (2

= 0) and p3 (n3 = 0) map, resp tively, into planes p;, p, and p; whose equations are as follows:
pi ¢ (emen — anen)h — (B2 — axan)h + (anan — anon)h =0, (56)
P2 (@new — apax)h — (Bnan — anan)h + (@161 — apan)is =0, €Y
Py ¢ (amen - amen)h — (auen — ena)h +(@uen — aaan)é = 0. (58)

16




All three planes p), p, and p; pass through the origin of the X-plane.
2. Any plane g; parallel to p; maps into a plane 8’1 parallel to p'l.
3. Any plane g; parallel to p; maps into a plane g, parallel to 2%

4. Any plane g3 parallel to p3 maps into a plane g; parallel to ps.

Proof of result 1:

By regarding the rectangular parallelopiped AB...H (set T) as a set of planes parallel to py, p2 and p3
one can easily show the well-known fact that the image of AB...H is a parallelopiped A'B'...H . The
vertices A", B', ..., H are the images, respectively, of the vertices A, B, ..., H which are as follows:

To Tlo —Tlo —Tlo
Al n, B| —p, c| —mp D| m,
T30 T30 T30 T30
Tio Tlo —Tlo —Tlo
E T2 Fl| —-m, G| —-m H ™ |- (39
—T30 —T30 —T30 —T30
into equation (33), we obtain the coordinates of the vertices A', B', ..., H as given in equation (49).

From (49), we see that the vertices A’ and G are equidistant from the origin and so are the pairs (B, H'),
(C',E') and (D', F’). Therefore, the origin of the %-space is the centroid of the parallelopiped A'B ... H .

Proof of result 2:

We next need to determine the equation of the planes A'B'FE, D'CGH, ADHE, B'CGF,
A'B'C’'D’ and EF G'H which form the boundary of the parallelopiped A'B’...H in the %-space. The
plane A'B'F'E’ in the “space is the image of the plane ABFE whose equation is r; = 7y, in the 7-space;
to obtain the equation of A'B'F'E, substitute the equation of ABFE (n; = 7,) into (33) to obtain the

following parametric equations in ™ and 3:
% = aune.+aum+anm (60)

17




% = @1Tio+anT2+082373 | (61)

%3 = 31710+ G272 +33373. 62)

Eliminating the pammemr'n and m™ between equations (60), (61) and (62), we obtain the equationS of
the plane A 'B'F'E as given by equation (50). In a similar fashion, we obtain the equations of planes
D'CGH.ADHE,BCGF,ABCD, and EFGH as in equations (51) through (55).

42 Determination of the image set Sq

The set Sq is the image set of the joint rate set F under mapping (34) for a three degree-of-freedom
manipulator. We decompose the set F (Figure 5 (a)) into 3 subsets Fy, F, and F3 described as follows:

Definition 1: The set F xs the truncated line congruence (Semple and Kneebone, 1952) consisting of
the doubly infinite set of line scgments passing through the origin with one endpoint on the plane
J1K1M3L, and the other endpoint on the plane M LJ2K>. A typical member of F; is the line
segment g, shown in Figure 5 (b). '

Definition 2: The set F, is the truncated line congruence consisting of the doubly infinite set of line
segments passing through the origin with one endpoint on the plane J1L,K2M) and the other
endpoint on the plane K1M2J2L1. Atypécalmcmbaof}"zistbelincscgmcmgzshowninﬁgum
5 {c).

Definition 3: The set F3 is the truncated line congruence consisting of the doubly infinite set of line

i ugh the origin with one endpoint on the plamc J1K1LiM, and the other
Wmﬁwmwﬁﬁ; A typical member of F3 is the line segment g3 shown in Figure
5 (d).

We can now state the useful results which analytically describe Sg, the image of F.

Result 1:

l.(a}Emy%dﬁwwenhdm@ammﬁmim:ﬁmﬁinﬂmi-spaoc(ﬁgm'cG(a)).one
mﬂpﬁmdwﬁ%hmmsmm:ﬁ,izl,lBmgivcnby(cl(})andthcother

18
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Figure 5: Image set Sq of a three degree-of-freedom manipulator
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Figure 6: Quadratic mappings of a three degree-of-freedom manipulator
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endpoint of which lies on the quadratic surface patch (Figure 6 (b)) whose parametric equation (in

¢2 and @3) is:
%1 || budl, +b12df + bi3d + 2m1 G108 + 2012808 + 2m3dp 10 + 51
%2 | = | b, +bnB +bnd + 2 de + 2n0idn + 203 B0 +52 | - (63)
X3 b1, + b2 + 5333 + 2n31 41082 + 20280 + 2n338p 10 + 53

where

710 < §2< q2

-3 < 43 < @30

1.(b) The set F; maps into a set (S¢)1 in the X-plane which is a doubly-infinite system of line segments,
one endpoint of which is the point S with coordinates s; (i = 1, 2, 3), given by (31) and the other
endpoint of which lies on the quadratic surface described by (63).

Result 2:

2.(a) Every line of the type g2 belonging to the set F, maps into a line g, in the k-space (see Figure 6
(c)), one endpoint of which is the point S and the other endpoint of which lies on the quadratic
surface patch (Figure 6 (d)) whose parametric equation (in ¢3 and ) is:

X bl +b12éB, + 513 + 2n1141820 + 2m28a0ds + 21133y + 51
% | = | bug +bnd, +bnd + 2mq1420 + 2nndneds + 2y +52 | - 64)

X3 b +b32@, + b3B +2m1q1 G20 + 21328200 + 213331 + 53
where

Iqll < 410
12| < ¢20

2.(b) The set F2 maps into a set (S¢)2 in the X-plane which is a doubly-infinite system of line segments,
one endpoint of which is the point S and the other endpoint of which lies on the quadratic surface
described by (64).

21



Carm
tshurg

Result 3:

3.(a) Every line of the type g3 belonging to the set F3 maps into a line g; in the X-space (see Figure 6
(e)), one end of which is the point S and the other end of which lies on the quadratic surface patch

(Figure 6 (f)) whose parametric equation (in ¢; and &) is:

X by + b + b, + 21 + 2n2g {0 + 2n13gae 1 + 51
% | = | bud?+bnd+bnd, +2m1q1dn + 2n0i2ze + 2153 et +52 | - (65)
b} baipp + b + b33, + 2n11 g2 + 213200330 + 2033301 + 53

where

-1 <1 <o

42 << q

3.(b) The set F3 maps into a set (S¢)3 in the X-plane which is a doubly-infinite system of line segments,
one endpoint of which is the point S and the other endpoint of which lies on the quadratic surface
described by (65).

Result 4:
The image set of S4 of the joint variable rate set F is the union of the sets (Sg)1, (S¢)2, (Sq)3 described

above.

Proof of Results 1, 2, and 3:
We will first derive centain useful properties of the quadratic mapping defined by equation (34):

¥ =B<q>?+N§P+s




The above equation can be written in the expanded form

X bugr+ biagE + bi3d3 + 2nq1 g2 + 20120243 + 201331 + 51
2 | = | bud} +bn@+ bn@ +2m1q142 + 20020243 + 2n3q3q1 + 52 | - (66)
X3 b33 + badh + ba3d3 + 2na1qn 2 + 2n0dnds + 2n33 g3y + 53

Consider the (input) g-space. It is convenient to think of this space as being generated by the
continuous doubly-infinite set of lines (also called a line congruence) passing through the origin with

parametric equations

Q=1
gr=mt ; —00<m<oo, —0<m<x. (67
Q3 =mat

Each value of m; and m; gives us a member of the line congruence, a typical member of which is
the line I shown in Figure 7. The image [ in the %-space of the line / is obtained by substituting (67) into
(66) and is described by the following parametric equations,

X m’ltz + 51
B |=| mP+sn - (68)
X3 myP + 53

where

my = b1y + biam? + bysmé + 2nymy + 2nizmymy + 2n13my
my = byy + byt + byami + 2naymy + 2nxamymy + 2nsmy
my = b31 + bsom? + by + 2n3ymy + 2nzamymy + 2n33my.

From equation (67) and (68), one can infer the following facts:
Fact 1. The image of I, viz. [, is a straight line.

Fact 2. The origin of the §-space maps into the point S of the X-space.
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Fact 3. Two points with coordinates (41, 42, 43) and (—§1, —g2, —§3) map into the same point of the

X-space.

These results are shown graphically in Figure 7.

Fact 1 follows from the fact that (68) is the equation of a straight line in the parameter 2. Fact 2
follows from the fact that the point (0, 0, 0) in the §-space, represented by the parameter ¢ = 0 in (67),
maps into the point (s, 52, s3) in the X-space. If ¢ is the parameter corresponding to the point (41, §2,
@3) in the q-space, then, from (67), —t is the parameter of the point (—§1, —J2, —¢3). From (68), we see
that points with parameters ¢ and —¢ will map into the same point in the %-space. This proves Fact 3.

The following two important properties of the quadratic mapping (33) (or (66)) follow directly from
the above facts:

Property 1: The image of a line / passing through the origin of the q-space is the half-line [, one endpoint
of which is the point S(s1, 52, 53) of the X-space (see Figure 7 (a)).

Property 2: Consider a line segment g passing through the origin of the §-space and with endpoints
P1(q1, ¢2, ¢3) and Py (-1, —§2, —¢3) corresponding, respectively, to parameters ¢ and —f; g maps
into a line segment g' in the X-plane, with one endpoint at. S(s1, 52,53) and the other endpoint at O
whose coordinates are given by (68) (see Fig 6 (b)). Q is the image of both points P, and P,.

Property 1 is basically a statement of the fundamental “folding” property of the quadratic mapping.
Property 2 is more useful for our purposes.

We now determine the image, under the mapping (34), of the set F; which consists of the doubly-
infinite system of line segment of the type g1, (see Figure 6 (a) ), which passes through the origin'and
which has endpoints P; and P,, respectively, on planes J1K1M>L, and M1L1J2K; (Figure 6 (a) ).

The plane J1K1M>L; is described by

@1 =q10 (69)
and the plane M,L,J,K; is described by

g1 = —10- (70)
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Therefore, if P; lying on J1KiMzL, has coordinates (q1,@2,@3), then P2 lying on MiL1J2K> has
coordinates (— 10, —§2, —¢3)- By property 2 of the quadratic mapping, the line segment g1 §vith endpoints
Py and P, will map into a line segment with one endpoint at S(s1,52,53) and the other endpoint at Q
(Figure 7), which is the image of both P; and P2 and which we need to determine next. For every
point P1(q10, 32, ¢3) lying in the plane J1K1M2L;, there is a point P2(—§10, —42, —43) lying in the plane
M, L1J.K, which, by Fact 3 established above, has the same image as Py. Therefore, planes J 1KiMaL,
and M;LiJ,K> have the same image. It is sufficient therefore to determine the image of plane J 1K1M2La.
Since plane J1K1M2L; is the set of all possible Py, the image of J1KiMzL, is the set of images of all
possible Py. To obtain the image of J1K1iM2L2, we substitute its equation (69 ) into (66) to obtain (63)
which, because it is quadratic in the parameters 4 and &, represents a quadratic surface in the X-plane.

The quadratic surface (63) is the image of the plane MiL1J2K, as well as the image of the plane
J1KiMaLa. Any point Py of M1L1J2K2 with coordinates (J10» &2, ¢3) and any point P2 of J1KiMaLy with
coordinates (—§10, —§2, —¢3) Will have the same image Q with coordinates (%1, X2, i3) given by (68).

We have thus shown that the line segment with the endpoints P; and P will map into a line segment
in the %-plane with one endpoint at S(s1,52,53) and the other endpoint Q lying on the quadratic surface
(63). This completes Result 1(a).

It is now a simple matter to determine the image (Sq)1 of F1. By Result 1(a), the doubly-infinite set of
line segments Fy of the type g1 with endpoints P1(410, &2, 43) and P2(—410, @2, —43) lying, respectively,
in the planes M1L1J-K> and J1K\M;L, will map into the doubly-infinite set of line segments (Sg) with
one (always) at S and the other endpoint on the quadratic surface (63). This completes the proof
of Result 1(b).

In exactly similar fashion, we can show Results 2(a) and 2(b) and Results 3(a) and 3(b).

Proof of Result 4:
Since the images of F1, F2 and F3 are, respectively, (Sq)1, (Sq)2. and (Sq)s. the image of F = F1UF2UF3
is Sq = (S¢h U (Sq)2 U (Sg)s. (S¢)1,(Sq)2 and (Sg)3 have been defined, respectively, in Results 1(b), 2(b),




Figure 8: State acceleration set of a three degree-of-freedom manipulator

and 3(b). This completes the proof of Result 2.

Comment:
The analytical description of (S4) by means of (S¢)1, (Sq)2 and (Sq)3 is sufficient for the extraction
of the acceleration properties which we are interested in.

4.3 Determination of the state acceleration set Sy

The state acceleration Sy corresponding to a state u = (q, §)7 of the spatial manipulator was defined by
equation (41) and is the image set of the actuator torque set T under the mapping (40). We obtain the
following results for the state acceleration set Sy.



Result 1: For every element X(S;) of the image set Sy, there is a corresponding element X(Su) of the

state acceleration set Su, given by
£(Su) = X(S,) +k(q, O, (2))

where
- N
ki@ = | k
| ks
[ bud +bu@ + b +2nq1p +2n s + 2n3 gy + 51
= | buf+bnB +bnd+2mn1 o+ 2pds + 2P + 52
| G +bnB+nG +2maip+2mpp + 2n33q3¢1 + 53
= B<q>2+Ng’+s. 72)

Result 2: The state acceleration set Sy, corresponding to a state u = (g, @7 of the spatial three degree-
of-freedom manipulator is the parallelopiped A"B"C'D"E'F'G"H" shown in Figure 8 obtained by
translating the set S, by the vector k(q, ¢) in the %-space. The centroid of Su is (%1, k2, k3).

Proof of Resuilt 1:
The results 1 and 2 are straightforward.
From (36), 2 member X(S,) of S is given by

%(5,) = Ar. | 73)
From (41), a member £(Sy) of Sy is given by

Sy =Ar+k (74)
where k is given by equation (72). Combining (73) and (74), we obtain

£(5y) = 2S,) +k s

hich is ion (71).

Proof of Result 2:

S B .




From equation (71), we see that if we take a vector %(S») of S, and add the vector K to it we obtain
the corresponding member %(Sy) of Su. Therefore, if we add the vector k to every vector in the set S, we
C'D"E'F'G"H" (Figure 8) obtained
by translating the set S, (the parallelopiped A'B'C’'D'E'F'G'H’ in Figure 8) by the vector k. The centroid

n_n

obtain the required set Sy. Therefore, Sy is the parallelopiped A" B

of S, is %(S,) = (0, 0). From (75), we see that the corresponding centroid of Sy is
X(Suy)=0+k=k. _ (76)

This completes the proof of Result 2.




5 Properties of the acceleration sets

In this section, we explain how to characterize the image set, S-, Sq, and the state acceleration set, Sy.

using the results in section ?2.
5.1 Properties of the acceleration set S-

We characterize the image set Sy of the linear mapping as follows.

Result 1: The maximum acceleration of the acceleration set S, is denoted by dmax(S-) and is given by

Gmax(S») = max[d(OA'), d(0B'),d(0C’), d(OD")] amn
where

dOA') = \f(aute+anme +anmu) +(aut, + an, + anof + (@317 + AT +dnTw )

dO0B') = \/(@1me — Gt +anmeP + (@u T — anTe + anTw ) + (@111 — duTe + dnr.)?

&0C) = V(—aune — aute + 81372 + (—anne — @nTe +anTe P +(—a31 70 — Gu o +anTLP

’
dOD) = \/(—aumne +anme +a3me) +(—auTe +anm0 + @710)2 + (=570 +anTw + anTLY

Result 2: The isotropic acceleration of the acceleration set S- is denoted by aiso(S7) and is given by

a0 = [p(A'BFE), pA'D'HE), p(A'B'C'D")] (78)
where
M’B'F'E') - IdeT(A) l Neo
V/(anan — anan) +(anan — anan) +(anan — a13any
sADHE) = | dexA) |
V/{enan — anan P + (auan — anan ) + (auan — arzan )
M'B'C’D’) - ‘ MA)' o

V(enan — apan  +(auan — anan ? + (auan — arzan P

Proof of Result 1:

_ Themlxim:uma‘memnofsf is the distance from the origin to the furthest vertex of the par-
W ABCDEFGH . Letting d (0'A’) through d (O'H’) denote, respectively, the distances of

vertices A’ through H' from the origin in the %-space, Gmax(S;) is given by

Gmax(S,) = max(d(0'A’), d(O'B), ...,d(O'H)]. (9
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A’ and G’ are equidistant from the origin O'. Also, B' and H', C' and E', and D' and F are equidistant
from the origin. So, @max(S-) is given by
Gmax(Sr) =max[d(0'A),d(O'B'),d(0'C’),d(0'D')). (80)

Using (33) and the well-known “distance” formula, the distance d(OA’) from the origin O to the point A’
is given by

d(OA) = \/(@11m0 + @170 + Q137367 + (@0 Mo + a0 T + AT + (@31 710 + AT + A1 TP, (81)

In exactly analogous fashion, we obtain

d(OB') = V(@1uTs — @17 + Q13T + (a0 T — AT + AN TP + (a3 1o — Gu T +anTLR (82)

doc’y = V(—a11me = 8127 + @137 P + (—an N0 — G Tae + @372 +(—A31 110 — AT + a1 T ) (83)
and

d(oD') = V(=aum, + @127 + 81370 + (—au o + 0T + A0 TR + (=3 T + auT0 +anTI P (84)

Equations (80), (81), (82), (83) and (84) comprise Result 1.

Proof of Result 2:

The isotropic acceleration of S, is the shortest distance from the origin to the sides of the parallelopiped
A'BCDEFGH. Letting p (A'BFE ), p(D'CGH ), p(ADHE ), p(BCGF ) p(A'BCD
)and p ( EF'G'H ) denote, respectively, the distances from O’ to each plane, @;50(S,) is given by

Guo(S-) = min[pA B FE), pD'C'G'H), pA'D'HE, pB C'GF), pA'BC'D), pEFGHY. (85)

Since the origin is the centroid of the parallelopiped S, parallel faces of the parallelopiped A B CD'EF GH
must be equidistant from the origin. Therefore, we can write the following relations:

pA'BFE) = pD'CGH), < - (86)
HADHE) = pBCGF), 87 ;
pA'B'CD) = pEFGH). (88) ﬂ

Using (86), (87) and (88), (85) can be written as

@iso(S;) = min[p(A'B'FE), p(A'D'HE ), (A'B'CD"). (89)
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The distance p from the origin to a plane ax + by + cz+k = 0 in the xyz - space is given by the

well-known equation:
ko | 0
T VE+BR+ 3
Using equation (90) and equations (S0), (52) and (54), we obtain
I _ l det(A) I To (91)
MABEE) = V(32233 — anan) + (120353 — 613832)* + (@12a23 — G13022)*
R | det(d) | 2, ©92)
FADKE) = (ana33 — anan ¥ + (auasz — a13a31)* + (311023 — a13a21)?
PABCD) = =01 >

V(auas — anan P + (auasz — ai2a31)? + (811822 — a12a21 )
abstituting (91), (92) and (93) into equation (89), we can obtain the required result (78) fot the isotropic

acceleration @;50(S- ).

5.2 Properties of the acceleration set S4

Since each of the set Sq represents the total non-linearity, we characterize the set Sq by the
gnitude element which denote the maximum non-linearity. Also, we calculate the maximum
distances from direction planes in subsection 4.1 to measure the effects of the non-linearity on the state
Similar 1o a two degree-of-freedom manipulator, we illustrate the steps to the analytical expression of
the furthest point of set Sg, and the steps to the analytical expression of the furthest point from direction
planes.

Definition 1: Letf;, i = 1, 2, 3 denote, respectively, the following cubic functions in the joint variable
rates g, i=1,2,3;
A, @0 )= Gudl +ud + bl + 2wt + 2maas + 2msday + 51 Xbuds + My +msi)
“budl +bnd + o + 2min + 2inds + 2mingy +5:Xbads + g +nni)
Hbndl +buid + budl + 2mands + 2aniads + 2amingy +53)bn&1 +mudn + nnip) = 0, 64
Al @, &)= Gudl + bud + bud + 2mpnd + 2004 + 2u0 +51)buds +mud +rnds)
%ﬂ+h&¢hﬁ+hma+mm+m +52Xbndy +rn s + nndp)
Bl + bnd + budd + 2 s + 2emndp + Zaniniy + 53 )buan +ruds +nngs) =0 ©5)
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Equations Variables | Notation used to denote solutions
f2d10, &, 3)=0a0d 310, &2, 33)=0| &2 & g, &
@1, @20, @) =0 and fi(Q1, G0, 3)=0| & &1 &,
fildn, @, B =0ad /@1, &, $)=0| @& &, &
H(@, @20, ) =0 Q g
F@1s —20, 330) =0 a1 7>
f2(q10, @25 430) =0 7p) 3
£(G10s G2, —330) =0 & &
(@10, P20y 33)=0 o 3
3(q10y =420, 43) =0 /g i

Table 1: Solutions of cubic equations

o= dudd +bud +bid +2mididn + 2madnds + 2madpdn + 1 Xbuds + nuds + nsds)
-bnd + b +bndh + 2mi + 2mmipds + 2mpsin +S:Xbady +rudp +nnds)
Hbu &k + bl + budl + 2min + 2mpds + 2ind3i +53)budy + g +nnds) = 0. (96)

where fi(q1, §1, 1), G =1, 2, 3) is cubic in ¢1, & and &.

Definition 2: It is useful in our derivaions to be able to refer to the solutions of certain equations which
play an important role in obtaining the maximum acceleration of Sq, dmax(Sq). Each equation or
equation pair of interest is given in column 1 and the comesponding variables are indicated in
column 2. All equations in column 1 are cubics in the variables in column 2. The notation used to

denote the solution of each equation or equation pair is given in column 3.

Definition 3:

a

Ko = Uq, &.8)
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(X +bp@B+bis@ + 2+ 2l + 23 +51)
2 | 4 (ou+bnd +bnB+ b + s + 2B+ ) | o7
+ (g +bud + b + 2 + 2@ + 2B + D

Definition 4: Let k;, i = 1, 2, 3 denote, respectively, the following linear equations in the joint variable

rates, i, i= 1,2, 3;

-

(anass — anan)bud + nuds + m3ds)
h(q, &, &) = | +(apan —anan)buyi + nad2 + n3ds) %8)
| +(anzan - anan)bndi + g + m3ds) |

-

[ (anas — anan)(buzd1 + mid2 + n2ds)
R, &, &) = | +(apan - anas)bed + 2 + m3ds) 59
|+ (@naxs - a3an)budy +m + r2ds) |

[ (axa33 — apan)(bizd + m2d2 + n3ds) )
k@1, &, &) = | +(apasn — a1an)bnd + g2 + n3ds) (100)
|+ (812833 — a13an)brsdy + nx2da + m33ds) |

m“l(éh ﬁv @}’ﬁ-l.zg)i’lmehﬁn‘dQ-

WS:kh@uuﬁﬂhwduivﬁmsbbel&cwmfuwmesduﬁmofmﬁneqmﬁw
which play an important role in obtaining pme(®(Sg),pi). i = 1, 2, 3, defined below. In table 2,
each equation or equatior pair of interest is given in column 1 and the corresponding variables are
indicated in column 2. All equations in column 1 arc linear in the variables in column 2. The
notation used 1o denote the solution of each equation or equation pair is given in column 3.

Definition 6:

ol & &)
« [iamen - asen) + (aan ~ anan)’ + (euan — apan)'T
(eman — owon Ribudl + budd + bud + 2mbidr + 2P + 2wdhh +0)
* lopdy - enen (bl + bud + dodl + 2mbd + 2mad + 2w +2) aon
+ (onap ~ apapRtul + ol + bodl + 2mad + 2mbdh + Imbd +n)
nip &



Equations Variables | Notation used to denote solutions

ha@1os G2, &) =0 and k310, G2, B3) =0 | &2 &3 &, &
(@1, G20 @) =0 and h(@1, @20, B)=0| &, & a2, &
hi(@1, @2, $30) = 0 and (1, @2, B2)=0 | a1, & @

hi(q1, G200 @30) =0 ) gt

m(@1, —20, @30) =0 @ %

h2(q10, @2, @30) =0 7p) lesl

ho(G10, @y —@30) =0 22 %

k3101 G20r 33) =0 a3 2!

h3(Q10r —G20, @3) =0 a z

Table 2: Solutions of linear equations

= [(enan — anany’ +(auan — auan)® +(anais — anan)’1™} ‘

(anan — anan 2(budf + b + b + 2mnn +2na2deds + 2nudndn +51)
+(anas — anan2(dudi + bnds + bndl + 2miid + 2minds + 2madady + 52)
+(auan — a13a0n)2(bnd} + buip + buds + 21 + 2nminds + 2nudadn + 53)

o3&, &, P)
= (eunan —anen) +(auan — anan)’ + (auan — anan )]~}

(anan — enan2(buffi +bud + bufl + 2 + bl + 2nidsi +51)
+(anan — anan2(bndi + bud + bodh + 2mfids + 2nmads + 2maisin +52)
+(auan — anan2(budi + budi + buldl + 2mdids + 2mmdads + 2ndndy +53)

X(Sq) of S from the planes py, p2 and ps.
Pmax(X(Sq), 1) & max p((Sg), p1),
Pmax(R(Sq), P2) & max p(X(Sy), p2),
Pmax(X(Sq), 73) & max p(X(Sq), p3)-

(102)

(103)

Definition 7: Let p(%(Sq), P1), /(X(Sq),p2) and p(X(Sq), p3) denote, respectively, the distance of any point

(104)
(105)
(106)

Pmax(X(Sq),p1), for example, represents the distance of that point of Sq furthest from plane p;;
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Prmax(%(S4)s P1): Penax(R(Sg), P2) 20d Pmax(%(Sq), p3) are necessary for determining the local isotropic
acceleration in subsection 5.4.

Result 1: For a general three degree-of-freedom spatial manipulator, the maximum acceleration of the
mlcmiommsﬂwﬂlbcdcnmodbyamu(&;)andisgivmby

Gmax(Sg) = maxlqy, L), .-, la3)] (107)

where

ky = Kau, & &
Iy = K&, @ &)
oy = K&, &5 o)
ko = K&, @0, i)
= (&, -t 80
= Ko, &, 430
= Ko, &, —050)
Ko 200 85
= K ~&20 &)
= Kior 200 B30)
lan = Ko 200 —30)
lay = Kdew —G20 ~30)
lan = Ko, ~20r 9

§ §8§ 5 &5
]

Result 2: For a general three degree-of-freedom manipulator, the maximum distance from an element of

$4q 10 the reference planes py, p2 and py are, respectively, given by

max{p((S¢),p)),i =1,2,3 (108)
= max{{oday, (eday. -...(oan] (109)




where

@ = ol & B
@ = o@D, o B
(ol = ai(@, 45 430)
(oD = di(fllfﬂ, G20, @30)
(edis1 = 0@, —420, @30)
(o) = oilqo =, 330)
(edm = o0 &, —0)
(o = Q10 G200 31[381)‘
(@D = 910, —G205 )
(@dua = 0ild10s G20 430)
(@duy = Oildior G20 —Y30)

(ednz = oil@o, —920> — o)

Ui(alo’ —'QZM ‘-130)

(odn3y

where 0i(q1, &2, @) (=12, 3) are defined by equations (101), (102) and (103).

Proof of Result 1:
The magnitude squared of the acceleration of a point X(Sq) of Sq denoted by az(Sq) is given by
A8 2 P, o =580 &®) +B@, & ®+B@ 2 B
(b1 +bud + b3 +2rinp +2n2p B + 2np3dndn + 51
+ (u +bn@+bnf+2mnin+2hd +2mnpq +52)
+ (bl +bnd +bull + 2l + 2mhs + 2nbh +s53)% (110)

The maximum magnitude squared of the acceleration for the set Sg, denoted by @ <(Sq). is given by

= I, 111
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where F is shown inFigumZandisSpcciﬁcdbytheconstraints

| 41 1< Q109 112)
| & 1< §2- (113)
| &3 1< @30 (114)

The maximum of (110) will occur at 4 € F which is either inside F or on the boundaries of F

where one, two or three constraints might be active. In section 5.1.2, we showed that “opposite” pairs of

bounding planes have the same set; Using very similar arguments to those used to demonstrate the result,

we can show that
1. The following pairs of bounding edges of F,
K2L2), (KiLy)
(2Mz), (1M1)
LaMr), (LiMy)
1K), (2K2)
hla), (L)
(KiMa), (KaMy)

2. The following pairs of vertices of F

L, L
i, K
K, K
My, M
have the same image.

Therefore, to obtain the maximum of (110) under the constrair

ts (112), (113) and (114), we should




1. Neither of the constraints is active, i.e., the max[(g1, ¢2,§s)] occurs at a point q inside F.

2. One of the constraints (112), (113) and (114) is active, i.e., max[2(q1, &, )] occurs at a point q
lying on the plane J1K1M2L, or J1L,KM; or LyM3J2K, of F.

3. Two of the constraints (112), (113) and (114) are active, i.c., méx[l”(z'h, &2, @3)] occurs at a point
q lying on the cdgc Kz[a, JzMz, L2M2, 11K1, ./114 and K1M2 of F.

4. All of the constraints are active, i.e., max[/2(J;, ¢2)] occurs at vertex Ly, vertex Jj, vertex K, or

vertex M,.

To obtain the conditions for each one of the above cases to yield a maximum, we first differentiate

(41,42, ¢3) with respect to §1, g2 and g3 to obtain

612 - 4f - - - (115)
32]1 = l(q17 Q, 43)

o8 i | (116
842 = 2(41, q2, 43) . )
. 4, B, & 11
aq3 = 3(41, Q, 43) ( g))

where fi(q1, ¢2, @3), ( = 1, 2, 3), were defined in (94), (95) and (96).

Now, we consider each case.

Case 1
To obtain the maximum of / for the case where all of the constraints are inactive, we set the right-hand

side of (115), (116) and (117) to zero. This gives us the equations

fiq, &, $)=0,G =1, 2, 3) (118)
and the solution

n=p=5p=0 ' (119)
of which actually corresponds to the minimum value of 2(g1, &, &s), viz, zero. Therefore, max() does
not occur at a point § inside F which is to be expected.
Case 2
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Consider the case in which one of the constraints (112), (113) and (114) is active. When constraint
(112) is active on the plane J1K1M2L; of the F, we have

&1 = §1, (constant). (120)

To obtain the maximum of 12, we set both 87/8g, = 0 and 812/8g; = 0. We therefore sct the
right-hand sides of both (116) and (117) to zero to obtain the following cubic equations:

£ (e &2 =0, (121
A Qo &2, $3)=0. (122)
2l < @30, @] < 30 whose real solution, if it exists, is denoted by 45 and ¢5".
Therefore, max l(§1, ¢z, ¢3) for this case is given ’
max{l(@s, &, @)1= Koy &0, 0. (123)

Comment:

Using simple arguments from algebraic geometry (Semple and Roth, 1949), we can show that if the
cubics (121) and (122) with constraints |g2| < &2, and |g3] < g3, have real points of interscction, then
they can at most one real point of intersection. If (41, ¢2, ¢3) does have a maximum Ina, then the
conditions 82 /8¢, = 0 and 82/843 = 0 for obtaining /%, and therefore the pair of equations (121) and
(122) which follow from them, are essentially conditions for the quadratic surface which is the image, in
the %-space, of the plane J;K;MaL; to have a common tangent plane with a sphere of radius K41, &2, ¢3)-
A sphere and a quadratic can have at most two points of tangency. Therefore, the simultaneous solutions
of (121) and (122) can have at most two real roots. However, since (121) and (122) are equations of
cubic curves, they will have, in general, nine points of intersection. If equations (121) and (122) had only
two real roots in common, the remaining seven common roots would have to be imaginary, which is not
possible. Therefore, (121) and (122) will have exactly one root, if we do not impose any constraints on
&2 and &3. In the case where & and §3 are constrained the real root might lie outside the region specified
by the constraints.

In an analogous fashion, we obtain the following maximum for [ when constraint (113) is on plane
LK M,y

max{i(§1, &2, $)] =GP, &0, &), (124)




where q?), ‘qu) is the real solution of the following two cubic equations,

fl ( q1, Q205 513)=0a (125)
B (4, G20, $3)=0. (126)

We also can obtain the following maximum for / when constraint (114) is active on plane L,M2/,K5:
max(i(g1, &, ¢3)1=U5D, &) B0)- (127)

where q?) ) q? ) is the real solution of the following two cubic equations,

.fl ( Qb ('12, 030) = 03 s €128)
f2 ( q1, @2, 430) =0. . ) (129)
Case 3

Consider the case in which two of the constraints (112), (113) and (114) are active. When constraints

(113) and (114) are active on the edch KL, of F, we have the followig conditions,

g2 @2, (constant), (130)

@3, (constant). (131)

s

To obtain the maximum, we set 82/83; = 0. We therefore set the right-hand side of (115) to zero
and set §; = ¢2, and §3 = §3, to obtain the cubic:

fi@@1, 205 @30) =0. || < 10 (132)

Using arguments similar to those used above, we can show that (132) can have at most one real solution
which we denote by i;g‘) The corresponding value of / is as follows:

max({q1, &, 3)]= K&, Loy 30)- (133)
In an analogous fashion, we can obtain the following maximum for ! when constraints (113) and (114)

are active on edge JoMa:
max(lq1, &, §)1= K&, —&2, &0)- (134)
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where 21(,5) is the real solution of the following cubic equation,
fi (@, 32, $)=0;

For the case when constraints (112) and (114) are active on edge LyM;, we obtain
max(iq1, &, )= g0, 45 B30}

where q§6) is the solution of the following cubic equation:
i C Qo0 @5 $0)=0.

For the case when constraints (112) and (114) are active on edge J1Kj, we obtain
max(l(q1, &2, @)1= Kdior &5 —{30)s

where qzm is the real solution of the following cubic equation:
£ (@, & —3)=0.

For the case when constraints (112) and (113) are active on edge J1L2, we obtain
max{l@1, &, &)= KQior &20r B,

where & is the real solution of the following cubic equation,

(&1 @0, $)=0.

s (112) and (113) on edge K1M2, we obtain
max(i(@1, &, @)1= Ko, —G200 &)
where ¢ is the real solution of the following cubic equation:

A &1e —d2e 8)=0.

Case 4
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Consider the case in which all of the constraints (115), (116) and (117) are active. When all three

constraints are active, and if max[/2(J1, g2, ¢3)] occurs at La(d10, J20, §30), then

max[l(q1, &2, §3)1=Ud10s G20y B30)- (144)
If the maximum of 2 occurs at J1(J10, ¢20» -430)» then
max[l(q1, ¢2, §3)1= U0y G20, —330)- (145)
If the maximum of 2 occurs at K1(¢10, G20, -430), then
max{l(§1, &2, @3] = Uq10) —G205 —§30)- (146)
If the maximum of # occurs at M2(G10» 420> §30), then
Q147

max[l(c']l, q21 Q3)]=1(410a —q20, Q30)~

Therefore, amax(Sq) (= max[1(g1, &2, ¢3)]) is obtained as the maximum of thirteen quantitics defined
by equations (123), (124) (127), (133), (134), (136), (138), (140), (142), (144), (145), (146) and (147).

Thus we have demonstrated Result 1.

Proof of Result 2:
The distance of any point i('Sq) of Sq from the line p;, i=1, 2, 3, is given by

pESY,P1) £ a1, &2, B) (148)
pE(S),p2) £ ax, &2, &) (149)
pE(Sq)p) £ 3@, &, B)- (150)

We first wish to determine pmex(X(Sq).p1) the distance of p; from that point of Sq furthest away from it
1)
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where F is shown in Figure 2 and is specified by the constraints

|21 1< &0, (152)
| &< G0 (153)
| & 1< 330- (154)

The maximum of (101) which is required in (151) will occur at point q € F which is either inside F or
on the boundaries of F where one or two or three constraints might be active. Using the same arguments
as in Result 1 above, to obtain the maximum of (101) under the constraints (152), (153) and (154), we
should consider the following possibilities:

1. Neither of the constraints is active, i.e., the max[o1(q1, &2,@3)] occurs at a point § inside F.

2. One of the constraints (152), (153) and (154) is active, i.e., max[o1(41, &2, ¢3)] occurs at a poin't
q lying on the plane J1K31M>L, or plane J1LoKM or plane LoM2J2K; of F.

3. Two of the constraints (152), (153) and (154) are active, i.e., max[01(41, 2, ¢3)]-Ooccurs at a point
4§ lying on the edges Kzl{l, JoMs, LoMs, 1Ky, J1Lo and KiM3 of F.

4. All of the constraints are active, i.e., max[c1(§1, &2, ¢3)] occurs at a point q lying on the vertex
Ly, vertex Jy, veniex K; or vertex Ma.!
To obtain the conditions for each one of the above cases to yield a maximum, we first differentiate
al(@hm’ 63) with respect to ‘Qlu 07y) and 173 to obtain

% -2 (155)
% = .’;:: (156)
%’% = % as”
where &;, (i = 1, 2, 3), have been defined in (98), (99) and (100) and
=-Jm-W+(aam—amuF+(axm—anan)’ (158)

'Since, by virtue of Fact 3 of subsection 3.1.2, the vertices J, and J; have the same image, we only need to consider either
J; oe Jy: we will choose J;. So are the vertices K; and X and vertices M, and M.
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Now, we consider each case.

Case 1
To obtain the maximum of p; for the case where all of the constraints are inactive, we set the right-hand

side of (155), (156) and (157) to zero. This gives us the equations
hi(q1, ¢, $3)=0,3(=1, 2, 3),
and the solution
n=@p=§3=0 (159)

of which actually corresponds to the minimum value of p1(q1, &2, ¢3), viz, zero. Therefore, max(p;)

does not occur at a point q inside F.

Case 2
Consider the case in which one of the constraints (152), (153) and (154) is active. When constraint
(152) is active on the plane J1K1MzL; of F, we have

@1 = 41, (constant). - (160)
To obtain the maximum of p;, we set both 8p;/8g: = 0 and 8p;/8gs = 0. We therefore set the
right-hand side of both (156) and (157) to zero to obtain the following two linear equations,
kr ( q10, @2, B3)=0, (161)
ks ( &0 @2, $)=0. (162)
22| < 20, @3] < &30-
Denoting the solution ¢, and g3 of (161) and (162) by &5, 45, the maximum of / for this case is given
by
max(p1(q1, 32, @)1 = P (d1or 4575 B)- (163)

In an analogous fashion, we can obtain the following maximum for gy when constraint (153) is active on
plane J1L2K2M:

mu[p](41, ‘72’ 73)] =Pl(¢7[121, hﬂv quI)a (164)
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where qm, 21132] is the solution of the following two linear equations,

hh C @1, 2, 113)=0, (165)
h3 ( qQ1, 42, ‘73):0' (166)

We also can obtain the following maximum for p; when constraint (154) is active on plane L;M2J2K5:

max(p1(q1, 42, @)1 = P1@s &5 so)- (167)
where &1, '23] is the solution of the following two linear equations,

b (¢, @2, 8)=0, (168)

k (&1, &, 8.)=0. (169)
Case 3

Consider the case in which two of the constraints (152), (153) and (154) are active. When constraints
(153) and (154) are active on the edge KzL, of F, we have the following conditions,

& &2, (constant), ) (170)

a

{3, (constant). (171)

To obtain the maximum, we set 312/841 = 0. We therefore set the right-hand side of (155) to zero
and set §2 = §2, and & = §3, to obtain

k@1, &0, $0) =0, |1| < G10- amn)

From equation (172), we obtain the solution which is denoted by q{". The corresponding value of p; is

as follows:
max{pi(d1, &2, &)1 = @Y, &0, 30)- a73)

In an analogous fashion, we can obtain the following maximum for p; when constraints (153) and
(154) are active on edge JoM>

max{p1(@1, &2, ) =G ~20r B30)- | 174)



where q‘f‘ is the solution of the following linear equation,
hy ( fIh —3120, 030) =0;
For the case when constraints (152) and (154) are active on edge LoM3, we obtain

max[Pl(fll, ‘72’ 43)] = PI(QIm 17%,6], q30)7

where qgﬂ is the solution of the following linear equation,

hy ( 100 2> 430)=0-

For the case when constraints (152) and (154) are active on edge J1K1, we obtain

max[p1(q1, &2, 491 =P1(Q10, &, -,

where qg'o’ is the solution of the following linear equation:
hy ( o @20 —P0)=0-

For the case when constraints (152) and (153) are active on edge J1l2, we obtain
max(p1(an, @2 @)1= P11 B0 B,

where c‘]?] is the solution of the following linear equation,
ks ( 1o o» @3)=0-

For the case when constraints (152) and (153) on edge KiM>, we obtain
max(p1(@1, s @) = 110y — 20> 85

where ¢! is the solution of the following linear equation:

h3 ( q10v "420, q_")=0'

Case 4
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Consider the case in which all of the constraints (152), (153) and (154) are active. When all three
constraints are active, and ifmax[/’l(i]h a2, 613)] occurs at LZ(q,lo, Q205 030)’ then '

max[p1(q1, 42)] = P1(Q10s G205 B0)- (184)
If the maximum of p; occurs at J1(J10, 20, -@30), then

max[p1(q1, §2, 43)1= P1(@10, q20» —430); (185)
If the maximum of p; occurs at K1(§10, -G20» -330), then

max[p1(q1, §2, 43)1= P1(@10, —G20, —§30), (186)
If the maximum of p; occurs at M2({10» -@20+ §30)» then

max[p1(q1, ¢2, §3)1 = P1(d10s —Q20s §30)- (187)

Therefore, pmax(X(Sq),p1) is obtained as the maximum of thirteen quantities defined by equations
(163), (164) (167), (173), (174), (176), (178), (180), (182), (184), (185), (186) and (187). In exactly,
analogous fashion, pmax(¥(Sq), P2) and Pmax(X(Sq), p3) are obtained as in (109). thus we have demonstrated
Result 2. '

pperties of the state acceleration set

eration set in the &-space with coordinates k;, k, and k3 given by (40).
#(K, py) : distance from point X to the reference plane p;.
#(K, p7) : distance from point X to the reference plane p,.
p(K, p3) : distance from point K 10 the reference plane ps.

HA'BFE), fA"B"F'E"), ... : distance from the origin to plane A'B'FE, A"B"F'E", ...




Result 1: The maximum acceleration corresponding to any dynamic state u of the manipulator is denoted
by @max(Su) and is given by

anex(Su) = max[d(0A"), d(0B"), d(0C"), d©OD"),d(OE"), d(OF"), d(0G"), dOH")] (188)
where
doA”) = V(@1 + aume + aisme + ki + (@ume + anme + antie + k)2 + (@, + auna +an 1. + k)
dOB") = /(@110 — 12720 + G137 + k1) + (@21 110 — G720 + Gz3T0 + k2R + (@1 T1e — GaTa0 + A3 730 + kP
doc”y = V(@110 + a2 — @137 — k1P + (@710 + AT — GBI — k)P + (@ Ts +aRT2% — A0 — k3P
d©oD") = V/(@uTie — @127 — @13730 — k1P + (A T10 — Gn T — G Ti0 — k2 + (@31 10 — G720 — @3 T30 — k3 )
dOE") = \/(@ume+ 01272 — G370 + k1P +(G21710 + G20 — G730 + k2R + (G51700 + G720 — G3Ta0 + ks )2
dOF") = V(@une — @127e — a3 + k12 + (anTie — anT — @370 + k2P + (@ N0 — auTie — auTe + k7
d(0G") = V(@170 + 1272 + Q13730 — k1P + (a0 s + @0 T2e + 13730 — k2P + (@317 + am T2 + @3 Tie — k3P
dOH") = V(@une — 81273 + 81370 — ki1 + (@ N0 — Gn T2 + @ Tse — k2P + (a3 M0 — @ T + auTe — kP

Result 2: The necessary and sufficient conditions for the existence of the isotropic acceleration are the

following:
|det(A)e — |(@zam — anan)h + (a3an — anan)k; +(anaxn — axandks| > 0, (189)
| der(A)|ms — |(anaxm — anandk +(@uan — asandk + (anaxn — anaizdks| > 0, (190)
| det(A)|rse — |(@auaxm — @nandk +(@nan — anandk +(auan — apandks| > 0. 191)

Result 3: The isotropic acceleration corresponding to any dynamic state u of the manipulator is denoted
by dise(Su) and is given by '

det(A)|no—|(anan —anan Y Hazan —anan)h+(anen—anaizdk s
7 (anan —anasn P+apan—ananP+@nen—anan)

min lwyﬁ-I(man —enanlh Hayay —ananb Hayan —enapk| (192)
(anen —ananP+Hanan—aney P+Hanoaxn—ananf
det(A)| 10— (321 a2 —a 22031 Jhy +(a120831 —811812 )y +{a11a2 412
U (a12an —anan P+Hanaen —anen P+Hauan—anan
Proof of result 1:

Let d(OA”) through d(OH") denote, respectively, the distances of vertices A” through H” from the
origin O in the %-space. Then Gmax(Su) is the distances of the furthest vertex of the set Sy which is the
parallelopiped A"B"C"D"E"F"'G"H". Therefore, Gmax(Su) is given by

e (Su) = max(d(0A"), &(0B"), d(OC”"), d(OD"), AOE"), dOF"), dOG"), d(OH )]. (193)
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Using (49), the coordinates 1(A"), #2(4") and #3(A") of vertex A" in the k-space are given by

n@A") = £1(A) + ki = @11710 + Q12720 + Q13730 + K1, (194)
3(A") = 2A)+k =T +anTe+ @ +k, (195)
A7) = B(A)+ks = B1710 + G272 + B30 + k3. (196)

The distance d(OA”") from the origin O to the point A" is given by

(0" A" = /(@ + Gt + G537 + KLP + (@ Ti0 + 0T + anTio + kP + (@170 + An T2 + AnTio + ka2 (197)

In exactly analogous fashion, we obtain

o(0"'B") = @une —aum. +anme+ kP +(ann. — anm, +ante + k) + (@171 — anTe + ante + k(198)

20'C") = \flaune +aum. — a7 — kP +(@n T + @nTie — a7 — kP + (@710 + an T — a7 — k3PA99)

a0'D") = \flaun. —anm. — anne — bR + (@ ne — anme — T — k2P + (@710 — GuT — AT — AZB0)

H0'E) = V(eune +aune. — anne + ki + (@ ne + anme — anne + k2 + (@311, +ane — aume + k3)2(201)

o0'F') = \flaun. —anm. — aune +k) +(@ne — anme — ant + kP + (@M. — GuTe — A, + k5J202)

«0°G") = Vi(aune +aum. +anne — b P +(anne + ante + e — ko) + (@31 11e + an e +an e — k3)2(203)

oO'H) = flaune —onm. +anme — hY +(@nn. — anme +anme — kP + (@710 — anT +anTe — k31204)
Equations (193) and (197) through (204) comprises Result 1.

Proof of result 2 and 3:

The state acceleration set S, is the parallelopiped centered at k(u) = (k;, k2, k3), shown in Figure 8.
The centroids of S, and Sy are, respectively, by O and K.

Using equations (90), (72) and (56) through (58), the distance from X to the planes p;, p2 and p3 are
given by

¥ + (13832 — anza ) + (@123 — anays)? @09
(@133 — apan )k, + (211833 — ay3a31)kz + (@118 — anarsks |
M»P&J = ;
(anay — anan)? +(ana1 — apsan P + (@15 — anaps)? @00)
K, py) = | (an1032 — aman )k + (1285, — ay1a2)ky + (811822 — ay2a ks | 207

(01303 ~ anay ) + (81203 — aynan) + (a6, — aan)?
The distance p(K, p1) from the centroid K of Sy to the plane p, is equal to the perpendicular distance
between plane A'8'F'E' and plane A"B"F"E” and also between the plane D'C' G H' and plane D"C'G'H".
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The distance p(K, p2) is equal to the perpendicular distance between plane A'D'H E’ and plane A"D"H'E”
and also between plane B'C'GF and plane B"C"G"F". The distance p(K, p3) is equal to the perpendicular
distance between plane E'F 'G'H and plane E'F’ 'G'H".

The state isotropic acceleration aiso(Su) is the maximum acceleration which is available in all direc-
tions. It is therefore equal to the minimum of the distances from the origin O (of the acceleration plane)
to the six planes of A'B'"C'D"E'F'G"H" (the set Sy).

Now, we can write the following expression for gjso(Su):

%(Su) - min[p(A” Bu Fu Eu )’ pmu Eu H"D" ), p(En F” G”H" ), p(D" Cu Gn H” ), p(B” cn Gu Fu ), p(A”BH Cu Dn )] (208)

J.

where p(A"B"F'E”) is the (perpendicular) distance from O to plane A"B"F'E" and similarly for
p(A"EIIHIlD”)’ p(EIIFIIGIIHI)’ p(D” CIIG”HI)’ p(B" CJIG”FII)' p(AIlBIIdIDII), a_[l cd posiﬁvc by
definition. From the geometry, we can write,

w_ 1 _ 1 it r I 1" 7 _ 1

pA"B"F'E"Y, p0(D"C"G'H"Y=pA'BF'E") £ p(k, p1). 209)

(Comment: For example, p(A”"B"F'E") = p(A'B'F'E")+ p(K,p1) and p(D"C"G'H'y= pD'C'G'H") -
p(K,p1); the correct choice of signs will depend on the direction of the translation but as will be shown
below we do not have to worry about the correct choice of signs.)

Similarly,
pA'D"H'E"), pB°C"G'F") = p(A'DHE)+ p(X,p2), (210)
KE'F'G'H,p(A"B"C"D"y = pEFGH)*pX,p3), (211)

(The above comment holds for (210) and (211), t00.)
Combining equations (208), (209), (210) and (211), we obtain

Guo(Su) = min{o(A'B'FE )% oK, p1), pAD'H E )y p(X, pa), p(E FG H)= (K, ps)). @12)

Since all distances p() in the above equation are positive by definition, we can rewrite the above equation
as

Gue(Su) = min(p(A B F-E') = p(K, p), A D' H'E) = oK, p2), nEF G H — p(K, py)l. @13)
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Substituting equations (56) through (58) and (205) through (207) into (213), we obtain the required
result (192).

Equation (213) clearly demonstrates that the isotropic acceleration a@iso(Su) for any state u #0 is less
than @;s0(S,) = min[p(A'B'F E), NA'D'HE), (EFGH)]. In fact, if p(X, p1), p(K, p2) and p(K, D3)
are sufficiently large (equivalently, the “nonlinearities” k1, k2 and k3 are sufficiently “large’”), we may not
have any isotropic acceleration. The necessary and sufficient conditions for the existence of the isotropic
acceleration can be obtained either from (213) or (192). From (192), we obtain the following three

necessary and sufficient conditions for the existence of the isotropic acceleration:

no|det(A)] > (@203 — anasdk + (13032 — a12a33)kz + (@12823 — a2813)k3 | (214)
0| det(A)] > |(@na33 — anasndk +(@ndss — ay3a31)ks + (a11a23 — @n1a13)ks| (215)
.| det(A)| > |(anas2 — anasnidki + (31243 — anasks + (a11a22 — a12a21)ks | (216)

These are exactly the necessary and sufficient conditions expressed in (189), (190) and (191) of result 2.
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5.4 Local acceleration properties

At any givén (local) configuration q in the workspace, the following questions are of theoretical and

practical importance.
e Magnitude of the maximum acceleration at any configuration q in the workspace

e Magnitude of the isotropic acceleration at any configuration q in the workspace

Result 1: The local maximum acceleration @maxlocal Of a spatial three degree-of-freedom manipulator at

a given configuration q is specified by
(@max,local)ib < Gmax,local < (@max,localJub 17

where (@maxlocal) is given by (188) with ki1(q,q), k2(q,q), and k3(q, Q) evaluated at that joint
variable vector ¢ which maximizes (g1, &2, 43) in equation (107), and '

(@maxJocalub = amu(sq) + amax(S7) . (218)
where amax(Sq) is given by (107) and amax(S+) is given by (77).

Result 2: The local isotropic acceleration aiso 1ocal at @ given configuration q is specified by

aiso,loal(sn)
A'B'FE) - pmax(¥(Sg), P1)
= min | pA'D'HE) ~ pmax(X(Sq),P2) 219)

p(A'B'C'D") — prmax(X(S¢), p3)
where p(A'B'F'E'), (A'D'H'E’) and p(A'B'C’'D’) are given, respectively, by equations (56) through
(58), and where pmax(X(S4), P1), Pmax(X(Sq),P2), and pmax(X(Sq), p3) are given by equation (109).

Proof of result 1:
The local maximum acceleration dmay is the maximum acceleration over all possible state acceleration
sets Sy at a given position q in the workspace. Therefore, amax Can be written as

Gmax ocal = Max(UgerSu)- 220)
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It is not possible to find an exact analytical expression for @maxocal. However, we can find an upper

bound and lower bound which are very good approximations t0 Gmax local-

Corresponding to every point P of the set Sq, we have a state acceleration set Su(P). Let P’ be the
furthest point (from the origin) of Sq, and let Su(P’) be the corresponding state acceleration set. Let the
set Sy(P") obtained by rotating the set Su(P') about P’ till the longest diagonal of Sy is collinear with the
line OP' joining the origin to the furthest point P’ of Sq- A lower bound for @maxlocal is given by the
distance of the furthest vertex of Sy from the origin, viz

(Guoaz tocal )b = max{d(OA "), d(0B"), d(OC" ), dOD" ), d(OE" ), d(OF '), d(0G"), d(OH" ), (221)
and an upper bound for g, joca is given by

(BmaxJocat)ub = d(OP') + d(A"P'), (222)

(@max Jocal hub = @max(Sq) + Tmax(S+)- (223)

Combining (221) with equation (197) through (204), we obtain equation (188). The values of k;, k2
and k3 in (188) correspond to the furthest vertex P’ of S4 from the origin, i.e., to that joint variable vector
q which maximizes I(g1, 42, 4s) in equation (107). This is simply a matter of computing Xg1, &, ¢3) at
the thirteen vectors defined in subsection 5.2 and determining which of these thirteen vectors maximizes
g1, @, ¢3). This completes the determination of the lower bound (Gmax jocal)ip-

Substituting for amax(Sg) and Qmax(S7) from equations (107) and (77), respectively, we obtain equation

(218) for the upper bound (dmax jocsl)ts- Thus, Result 1 is proved. .

Proof of result 2:
The local isotropic acceleration is obtained in the following steps.

1. The maximum possible isotropic acceleration is obtained when q = 0 and is equal to @;(Sy) as
given by equation (78).

2. Every state acceleration set will have an isotropic acceleration which is less than that given by
(78) because the “nonlinearities” effectively reduce the isotropic acceleration. The resulting state
isotropic acceleration is @ijso(Su) which is given by equation (213).

.




3. The local isotropic acceleration @jso 1ocal is the magnitude of the smallest state isotropic acceleration

at a given local configuration q, i.e.
Giso,local = 1;161}} Giso(Su)- ~ (224)

4. Using equation (213) and (224), we can express the local isotropic acceleration gs, jocal as

gxe'upxmin[pm‘a’ FE)= p(K,p1), oAD' HE )~ p(K,p2), p(EF G H')— p(K, ps)]

min{min{p(A' B F E ) — p(K, p1)}, min{p(A' D'H'E') — p(K, p2), min{p(E F G H') — p(K, p{239)
qerF qeF qerF

1]

Qiso,local

5. Since p(A'BF'E"), (A'D'H'E') and p(E' F'G'H') are constants for a given manipulator and given
actuator constraints, (225) can be written as

Giso, et = min{p(A'B'F E ) — max p(K, p1), p(A'D'HE') — max (K, p2), o(E F G H')— max (K, p3)]. (226)

where max[p(X, p1)] is the distance from the plane p; to the element of S4 furthest away from p;
which we denoted in subsection 5.2 by pmax(X(Sq),P2), max[p(X,p2)] is the distance from the plane
P2 to the element of Sy furthest away from p; which we denoted in subsection 5.2 t;y Pmax(X(Sq), p2)
and max[p(X, p3)] is the distance from the plane p3 to the element of Sq furthest away from p3
which we denoted in subsection 5.2 by pmax(X(Sg),P3). We can therefore write

maxp(K,p1) = pmx(X(Sq),P1) A 227
maxpK,p2) = Pmx(X(Sq),P2) (228)
maxpK,p3) = Pmax(X(Sq),p3) (229)

Combining (226), (227), (228) and (228), we obtain the required result (219). (Note that all
quantities in (219) have been analytically determined earlier.)
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6 Example:

To demonstrate the ease of applicability of the general acceleration set theory for spatial
manipulators developed in the previous sections, we have written simple computer codes to generate the
acceleration properties of the various acceleration sets for a common type of 3 d.o.f. spatial manipulator
which is shown in Figure 9 and whose o kinematical and dynamical equations are given in the Appendix.
(The axis of joint 1 in Figure 9 is vertical). The actual geometric and inertia parameters used in the example
are given in Table 3. The dynamical equations have been derived using Kane's dynamicai equations (Kane
and Levinson 1983; Kane and Levinson 1985; Desa and Roth 1985).

The configuration chosen was q) = 0, g2 = 45" and q3 = 45°
The joint variable rate ("joint velocity™) constraints are

G S Qo =1rmadfs; i=123.

The torque constraints are
S T , i=123,

Tio may be thought of as the size (or maximum torque rating) of the actuators; the numerical values of 710 »
(i = 1,2,3), are given in Table 3.

The properties of the state acceleration set were computed at q] =0, @2 =45° and q3 = 45",

q1=1radfs,e=1rad/sqs=- 1 radfs

In order to show how the theory might be used for design purposes we have determined the
acceleration properties for three cases (Table 4). Five acceleration properties have been determined in each
case: the maximum and isotropic acceleration of the set S, the maximum and isotropic accleration of the
state acceleration set and the (local) isotropic acceleration at the configuration (0, 457, 45° )T.

In all three cases the sizes of the first two actuators remain constant (T390 = 35 N-m and Tyg = 8.2
Nm) and the size of the third actator (driving link 3) is varied. In Case 1 of Table 4 (t30 = 0.17 N-m), the
end-effector does not have either a state or local isotropic acceleration). When the size of actuator 3 is
increased to 0.4 N-m (Case 2), we obtain a state isotropic acceleration of 0.93 m/s2 but the local isotropic
acceleration is very small 0.03 m/s2. Therefore for given T1pand Tzg , T30 must be greater than 0.4 N-m in
order that we may have a local isotropic acceleration at the specified configuration . Case 3 shows that for
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actuator size T3g of 0.6 N-m we have a local isotropic acceleration of 1.61 m/s2. The designer must then
decide (from past experience) whether this magnitude of isotropic acceleration is reasonable.

Comments:

1. These computations can be repeated for various configurations in the workspace after which
decisions can be made regarding actuator sizes.

2. Algorithms for the determination of minimum actuator sizes to achieve a desired isotropic
acceleration are given in (Desa and Kim 1989-2) for the planar case. The extension to the spatial

case is relatively straightforward.

Q1 =00 25> = 0.303 Q3 = 0254 (m)

a; = 00 a = 0.196 a3 = 0.0%4 (m)

mj] = 3.5 my = 2.259 m3 = 1.129 kg)

I; =12 N=— K] = — (kg-m?2)
I =.129 Jp = .129 Ky=0 (kg-m2)
I3 = .003 J3 = .003 K3=0 (kg-m2)

Table 3: Parameters for the spatial manipulator (see Figure 9 and the Appendix).

Actuator Torques Acceleration ' Properties

T10 T20 T30 Amax(st) . Aiso(s0) Amax(Sw) Ajso(sw) Ajso, local
Case (N-m) (N-m) (N-m) (m/s?) (m/s?) (m/s2) (m/s?) (m/s2)
1. 35 82 0.17 20.3 1.35 23.7 0 0
2. 35 82 04 25.06 3.16 . 291 0.93 0.03
3. 35 82 0.6 30.3 475 33.9 2.51 1.61

Table 4: Acceleration Properties for the manipulator of Section 6.
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7 Summary and Conclusions:

In this paper, we extended the acceleration set theory for planar manipulators, developed in (Desa and Kim,
1989-1), to spatial manipulators. As in the planar case we have accomplished the following:

+ Given the kinematical and dynamical equations of a manipulator, we have defined the image set S¢
corresponding to the set T of actuator torques, and the image set Sq corresponding to the set F of the
joint variable rates. We have also defined the state acceleration set Sy, at a specified point u in the
state space.

« We have determined the image sets, St and Sq, and the state acceleration set Sy.

* We have characterized the image sets St and the state acceleration set Sy by their maximum and
isotropic acceleration. The image set S§ has been also characterized by its maximum acceleration.

e At a configuration or position, q, in the workspace, we have established two local acceleration
properties: the local maximum acceleration and the local isotropic acceleration. The local maximum
acceleration specifies the magnitude of the maximum acceleration of (a reference point on) the end-
effector. The local isotropic acceleration specifies the magnitude of the maximum available
acceleration of the end-effector in all directions.

We then demonstrated the application of the acceleration set theory for spatial manipulator to the 3
d.o.f. spatial manipulator shown in Figure 9.

We have, therefore, demonstrated the hypothesis which we stated in the introduction, i.e., that the
analytical properties of acceleration sets can be determined from the properties of the linear and quadratic
mappings which define them (the acceleration sets). Furthermore, the acceleration properties of interest -
especially the isotropic acceleration - have been determined in terms of the manipulator parameters, the
torque limits and joint variable rate (“joint velocity™) limits. These results can therefore be applied w0
manipulator design problems as demonstrated in (Desa and Kim, 1989-2).
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Appendix: Functional relationships for the spatial 3 d.o.f. manipulator of Figure 9.
Notation: (See Figure 9)

2].82,83: dextral orthogonal set of unit vectors fixed in link 1 and parallel to
the central principal moments of inertia of link 1.
b1, b2, b3: dextral orthogonal set of unit vectors fixed in link 2 and parallel to
the central principal moments of inertia of link 2.
€1,€2,¢€3: dextral orthogonal set of unit vectors fixed in link 3 and parallel to
the central principal moments of inertia of link 3.
Q: length of link 2
Q3: length of link 3
a2 : distance from joint axis of link 2 to center of mass of link 2
a3 : distance from joint axis of link 3 to center of mass of link 3
mj : mass of link 1
mJ: mass of link 2
m3: mass of link 3
11,71. K1 ; ceatral principal moments of inertia of link 1 for axes parallel to
a1, 22 and a3 respectively.
I2,12,K3: central principal moments of inertia of link 2 for axes parallel to
b1,b2 and b3 respectively.
13,J3,K3: central principal moments of inertia of link 3 for axes parallel o

€1, €2 and c3 respectively.
(The input and output variables are as defined in section 3.1)

L Jacobian matrix

The joint velocity is related to the velocity % of the point P in Cartesian space by the relation
x=Jq

ThchcobimmwixJﬁoraspﬁd&medegme—of-fmedomﬁmﬁp«ﬂmoﬁnﬁm9ismefouowing:
Ju ju hs

IJ=| 0 f2 A |
| A1 2 s

= sing1(cosq; + 5 cos(q2 + @)
= —cosqi(hsing; + i sin(qz + q3))
—b3 cos q) sin(gz + ¢3)

= heosqy+hcos(qz+ @)

= Lcos(qz+¢3)

G - -
"

1 For link 1, mmmmmnmnq,mmwmh is of importance in
the dynamic equations.
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B = —00841(1200542+13°°S(42+43))
2 = — sin q1(}2 sin g2 + la sin(g2 + ¢3))

a3 = — sin 13 sin(g2 + ¢3)

When the above relation is differentiated with respect to the time, we obtain the following equation,
x=J4+Jq=J4-F<q>? -GIqP? @30)
where F, G are matrices with the following elements:

0 0 fia
F=| 0 f O ,
i 2 f3

fis = cosqibs cos(qz +q3)
I sin g2 + I3 sin(g2 + ¢3)

g

-sinq;(lzcosqz+h°0$(qz+qs))

e
"

fiz = sinqi(acos@+ I3 cos(qz + 43))

iz = singils cos(@2+ @) »

and
0 g12 O
G=|0 gn O] ,
0 g2 0
where

e

g2 = cos q113 cos(qz + @3)
gn = hsin(g2+¢)
g3 = sin q1/3 cos(q2 + @3)
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2. Dynamic equation

The dynamic behavior of the manipulator is described by the following equation:
D+U< q>*+W[¢P+p=r. ' 31)
The components of matrices D, U, and W are as follows:
d, 0 0

D=| 0 dn dn
0 din di

du = I1 +(I3+ma})cos® g2 + I3 cos’ (g2 + @3) + ma(l2 cos g2 + a3 cos(qz + ¢3))°
dn = H+mad+J3+m(dh+2ahcosgs + B)
dys = J3+my(a} +ashcosgs)
d; = dn
di3 = J3+madl
0 0 0
U= w1 0 uxp
uy up O

w = (l2+mya3)cosqasing; +13cos(gz +g3)sin(g2 + g3) +
+ m3(lacos gz + a3 cos(q2 + ¢3)Xh2sin g2 + a3 sin(q2 + ¢3))
3 = mbhaysings
u31 = I3cos(qz +g3)sin(qz + g3) + m(la cos g2 + a3 cos(q2 + g3))as sin(q2 + ¢3)

U2 = up
wiz 0 wys |
W=| 0 wn 0
0 0 O
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wi = —[(Iz+ma§)qusinqz+laoo8(4:+qs)sin(qz+4a)+
+ m(hcosqzwscos(qz+qs))(lz:inqz+assin(qz+qz»1
wiz = —[Iaoodqz+qs)sin(qz+qs)+m(lzcosqz+ascos(qz+qs))aasin(qz+qs)]

wn = mshaisings

The nonlinear vectors, < § > and [§)? are as follows:

s e
<9 .
(]

n = mma+m&mm+¢am+m))k

p = ms(la cos g2 + a3 cos(q2 + @008
3. Acceleration equation
mwmmmmamumﬁm is as follows:

g=Ar+B<g>? +Ngl+s
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where

T w >

D!
—-AU+F
-AW+G

(233)
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